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ABSTRACT
This paper deals with the Cover-Source Mismatch (CSM) problem

faced in operational steganalysis. Based on a multivariate Gaussian

model of the distribution of the noise contained in natural images, it

provides proxies for the two important empirical measures of CSM:

intrinsic difficulty and regret. The former can be modeled with the

determinant of the covariance matrix of the noise present in an

image. The latter can be predicted with a modified Kullback-Leibler

divergence between the distribution of the noises of images coming

from different cover-sources. We first recall the reasoning behind

the multivariate Gaussian model of the noise, and detail how to

compute the statistic of the distribution of the noise. Then, our

proposed models are compared to empirical data with a specifically

designed cover-source generation process. For both quantities,

very high correlation coefficients between the model and the

observations are obtained. Finally, realistic cover-sources are used

to further illustrate the relevance of our model.
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1 INTRODUCTION
In the field of multimedia security, steganography is the art of secret

communication. It uses cover objects from an innocent medium,
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such as images, videos, or text files, and embeds data to form so-

called stego objects. On the other side of the coin, steganalysis

develops tools to distinguish between cover and stego objects,

generally based on supervised Machine Learning (ML) models.

In an operational context, however, the steganalyst might face

images that widely differ from the ones used to design his tools.

This mismatch between the training and testing samples is a major

problem in steganalysis, known as theCover-SourceMismatch (CSM)

problem. The CSM is the fact that samples from different cover-

sources follow different distributions. Its effect on steganalysis is

that, when training a detector on some cover-sources, its decision

rule might become irrelevant on some other ones, to the point

where it can get completely blind.

The CSM problem in steganalysis is well-known and studied.

Most of the research is focusing on mitigating it [3, 14, 25], while

some study the causes of CSM [1, 10]. Providing a model for the

cover-source is very difficult in practice since it can be possibly

defined by infinite and undefined processings, especially ones that

are under proprietary software, and/or using non-standard and new

algorithms. This is partially why, despite the growing interest in

the issue, there is barely any attention given to providing an actual

model of the cover-source.

On the other hand, modeling the CSM, which essentially consists

of describing the discrepancy between cover-sources, also remains

a largely open problem. From the point of view of the steganalyst,

this discrepancy should relate to the empirically observed drop in

the accuracy of detectors. However, it is clear that the embedding

scheme and the design of the detector also impact this drop in

accuracy. Therefore, the measure of the CSM problem, which is

the measure of the cost of testing and training on different sources,

necessarily also captures the impacts of the embedding and the

model.

1.1 Related work
Although there are over 100 papers dealing with the CSM problem

in steganalysis [17], there is currently no proper model of a cover-

source. This task is indeed extremely challenging since the causes of

CSM are very broad. CSM has been a known problem in steganalysis

for 20 years now; but the awareness of the community truly starts

with the BOSS contest in 2010. The following decade mostly bears

studies trying to mitigate the impact of CSM, along with a rough

understanding of its causes. The first deep dive into the causes of

CSM is rather recent [10]. It comes in the aftermath of the ALASKA

competition, which further raised the issue of generalization of

detectors in operational steganalysis.

https://doi.org/10.1145/3658664.3659643
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Since then, there has been more focus on properly identifying

the causes of CSM, and quantifying their impact. Some papers even

give a metric or pseudo-metric for specific causes of CSM, showing

how it can relate to empirical measures: for JPEG quantization

tables [21, 24] or texture complexity [13] for instance. These can

be considered partial models of the CSM, focusing on one cause.

The current most advanced work is probably [2], exploring a

geometrical approach of the CSM. Stating that the cover sources

define manifolds of lower dimensions, in which samples coming

from a given cover-source live, one can predict the impact of CSM

as the angle between the manifolds of two cover-sources. Defined

as a dot product, this signed measure of an angle can actually reflect

the asymmetry of the regret, which can be high from one source to

another but low the other way around [1, 4, 10].

1.2 Contributions & paper’s outline
The present paper provides another approach to the CSM and an

assessment of its impact on steganalysis. The contributions are

listed as the following:

(1) A discussion on what is the cover source mismatch, clearly

identifying causes and consequences, and definitions of the

intrinsic difficulty and regret that take into account the role

of the detector in measuring the CSM problem.

(2) Evidences of the limits of measuring the CSM through its

impact on steganalysis, i.e. via the regret.

(3) A statistical approach to the question of the CSM model,

providing a way to predict the intrinsic difficulty and the

source inconsistency, both necessary to compute the regret.

To answer these questions, the paper is organized as follows:

Sec. 2 recalls the considered stochastic model of the noise in natural

images and explains how it can be leveraged as a fingerprint of the

cover-source. Sec. 3 provides rationales and detailed explanations

of how this fingerprint can be used to estimate the empirical impact

of the CSM, namely the source’s intrinsic difficulty and the regret.

Sec. 4 details the settings of the proposed experiments. Results in a

controlled environment are discussed in Sec. 5, and in a realistic

setup in Sec. 6. Finally, Sec. 7 concludes the present paper.

2 GAUSSIAN MODEL OF THE NOISE
Whereas [2] develops a geometrical approach tomodel the CSM,We

explore here a statistical approach, based on estimating the statistics

of the multivariate model of the noise in images, leveraged by [6, 23]

in Natural Steganography.

2.1 Rationale
The correlation of neighboring pixels is a fingerprint of the Image

Processing Pipeline (IPP), as illustrated in Fig. 1. A natural image (as

opposed to forged or generated images), goes through an acquisition

step and a list of processings. Right after acquisition, pixels bear

spatially independent noise. Many steps of the IPP, however, modify

pixel values according to one anothers’ – e.g. during demosaicking,

missing color values are interpolated using neighboring RAW pixel

values. We can hypothesize that different IPPs will correlate the

pixels differently. For example, we can see that the correlated noises

after sharpening and after denoising are very different, with each

line of the matrices indicating the correlation of one pixel of a

Content Camera

Acquisition

parameters

Processing

parameters

decorrelated noise sharpened image

denoised image

Figure 1: Schematic reasoning for the multivariate
distribution of the noise in natural images. Below are
correlations of neighboring pixels in the RAW (just after
acquisition) and developed domains. Red cells indicate a
positive correlation, and blue cells a negative correlation.

8 × 4 neighborhood with every pixel of this neighborhood, and

where a red (resp. blue) cell indicates a positive (resp. negative)

correlation. In particular, note that, as compared to the noises

obtained in developed images, the noise in the RAW domain is

decorrelated.

Being able to compare fingerprints of different pipelines, in

particular being able to quantify their difference would be a good

estimation of the difference between cover-sources, and the impact

of their mismatch in steganalysis.

2.2 Formalization
In a RAW image, there exists a noise stemming from the stochastic

nature of the acquisition process [7]. We can write the value of

a pixel in the RAW domain 𝑥𝑖 as its "true" value, to which an

univariate heteroscedastic noise is added:

𝑥𝑖 = 𝑧𝑖 + 𝑒𝑖 , (1)

with

𝑒𝑖 ∼ N (0, 𝑎 × 𝑧𝑖 + 𝑏) , (2)

and where 𝑎 and 𝑏 are called the heteroscedastic parameters of the

distribution. These, in the most usual setup where the steganalyst

does not have access to the RAW image, are hard to estimate [9].

Furthermore, the noise in a developed image can be considered

to follow a multivariate Gaussian distribution under two conditions

on the IPP [8]. First, it needs to be linear, i.e. there exists a

linear transformation that can transform the RAW image into the

developed image. Rather than considering the whole image, one can

assume that this transformation can be defined on a smaller portion

of the image, such that the

√
𝑛 ×

√
𝑛 section of the RAW image will

be transformed into the

√
𝑚 ×

√
𝑚 developed image, with𝑚 and

𝑛 perfect squares. Formally, we can define 𝐻𝑘 ∈ M𝑚×𝑛
the set of

2-D matrices of size𝑚×𝑛, that transforms the 𝑘-th vectorized RAW
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image block𝑋𝑘 ∈ N𝑛 into the corresponding vectorized developped
image block 𝑌𝑘 ∈ N𝑚 :

𝑌𝑘 = 𝐻𝑘𝑋𝑘 , (3)

In this paper, we consider developed image blocks of size 8 × 8. To

account for the pixels on the edge of the block, that are correlated

with pixels outside the block, we consider an extra outer layer of

raw pixels. Therefore,𝑚 = 8
2
and 𝑛 = 10

2
. Secondly, it needs to be

stationary, i.e. this linear application is the same for every block in

the image:

𝐻𝑘 = H. (4)

If both conditions are verified, then the noise in the developed

domain follows a multivariate Gaussian distribution:

𝑦𝑘 ∼ N (H𝑧𝑘 , Σ) , (5)

where Σ is the covariance matrix. Let us now define 𝑋 the matrix

of size 𝑛 ×𝑚𝑥 , with𝑚𝑥 the number of vectorized image block in

the RAW image 𝑋 , and similarly with 𝑌 . Then, given a linear and

stationary IPP, the transformation matrixH can be computed using

the least-square methods:

H = 𝑌𝑋𝑇 (𝑋𝑋𝑇 )−1 . (6)

When dealing with synthetic data, we can get rid of the

heteroscedasticity by generating an artificial homoscedastic noise

by giving the same mean and variance to every pixel of a RAW

image, and developing it. We finally get Σ as:

Σ = HH𝑇 . (7)

3 CSM MODEL
Adopting a formalism inspired by [22], let us define the following

supervised steganalysis detector:

𝑓 (𝑥 |𝜃𝑝,𝛾 ) : 𝑋 → {𝑐𝑜𝑣𝑒𝑟, 𝑠𝑡𝑒𝑔𝑜}
𝑥 ↦→ 𝑦

(8)

where 𝑝 and 𝛾 are the parameters characterizing the IPP and the

steganography respectively, and 𝜃𝑝,𝛾 the learnt parameters w.r.t.

them. We introduce in the rest of the section the intrinsic diffculty

and the regret, and our models for both. We assume that the

steganography is fixed, thus that no stego-scheme mismatch will

occur. Therefore, we will drop the 𝛾 parameter wherever possible.

3.1 Model of the intrinsic difficulty
Definition 1. The intrinsic difficulty of a detector on a cover-

source is the error of the detector tested on images coming from the
same cover-source, assuming that the steganographic embedding is
also the same:

𝐼𝐷 (𝑓 |𝑝) = E(𝑥,𝑦)∼P( (𝑥,𝑦) |𝑝,𝛾 ) (𝑓 (𝑥 |𝜃𝑝,𝛾 ) ≠ 𝑦). (9)

The determinant of a matrix is generally understood as ameasure

of the volume of the parallelepiped defined by the rows of thematrix.

Alternatively, it can be defined as an overall correlation factor.

det(𝐼 ) = 1, where 𝐼 is the identity matrix, and det(𝐶) = 0 implies

that𝐶 contains linearly dependant (i.e. perfectly correlated) vectors.

We hypothesize that the determinant of the covariance matrix

derived from Eq. (7), noted |Σ|, is a good indicator of the intrinsic

difficulty of a source. It is a measure of the "available free space"

for the steganographer to modify pixel values without deviating

𝑃0

𝑃1

(
1 0.1

0.1 1

)

(
1 0.4

0.4 1

)
(

1 0.8

0.8 1

)
Σ1

Σ2

Σ3

|Σ1 |

|Σ2 |

|Σ3 |

Figure 2: Correlation matrices visualized for 2-pixel samples.
As we can see, the stronger each pair is correlated, the
smallest the determinant of their correlation matrix: |Σ1 | =
0.99, |Σ2 | = 0.84 and |Σ3 | = 0.36.

from the distribution, and becoming detectable. In other words,

the more pixels are correlated, the less freedom for steganographic

modifications under compliance with these correlations.

To illustrate this statement, let us look at Fig. 2, depicting

three covariance matrices. One can see that the more correlated

pixel values are, the smaller the determinant (i.e. the volume)

becomes. Accordingly, Fig. 3 shows the distribution of cover and

stego samples of 2-pixel images, drawn from 2-D multivariate

gaussian distributions with different covariance matrices. The stego

samples are generated by randomly adding +1 or −1 to one pixel

of each image. As one can see, looking from Fig. 3a to Fig. 3d, the

more correlated pixels get, i.e. the smaller the covariance matrix’s

determinant gets, hence the more steganography should become

detectable.

3.2 Model of the regret
The intrinsic difficulty is the measure of the performance of a

detector in a clairvoyant scenario. When the detector faces samples

from another cover-source, it will likely show some inconsistency.

Definition 2. The source inconsistency of a detector between
two cover-sources is the detection accuracy, of testing the detector on
a cover-source, given that it was trained on the other:

𝑆𝐼 (𝑓 |𝑝1, 𝑝2) = E(𝑥,𝑦)∼P( (𝑥,𝑦) |𝑝2,𝛾 ) (𝑓 (𝑥 |𝜃𝑝1,𝛾 ) ≠ 𝑦) . (10)

Then, the regret is just the cost of this inconsistency in regard

of the intrinsic difficulty.

Definition 3. The regret of a detector between two cover-sources
is the difference between the source inconsistency and the intrinsic
difficulty of source which the detector is tested on:

𝑟
𝑓
𝑝1,𝑝2

= 𝑆𝐼 (𝑓 |𝑝1, 𝑝2) − 𝐼𝐷 (𝑓 |𝑝2). (11)

In this paper, we investigate whether or not the discrepancy

between distributions of the noise coming from different IPPs,
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Figure 3: Scatter plot of the values of 1000 synthetic 2-pixel images, drawn from multivariate normal distributions, of the
specified covariance matrices. in blue are the cover images, in orange their stego counterparts, generated by randomly adding
−1 or +1 to one of the pixels. The more correlated the pixels are, the easier the steganography is detected. The determinant of
the covariance matrix Σ can be a good indication of the detectability of steganography.

−10 −5 5 10

−10

10

−10 −5 5 10

−10

10

sharpened
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raw

Figure 4: Effect of different processings to the covariance of
the pixel noise in an image. The RAW image has decorrelated
noise (orange). Denoising tend to create positive correlation
between the pixels (red), whereas sharpening creates negative
correlations.

characterized by their covariance matrices, can be used as an

accurate measure in order to predict the regret. This idea follows

the observation that different IPPs will produce different statistics

of the noise, as illustrated in Fig. 4. It shows joint distributions of

2 neighboring pixels in images that are either decorrelated in the

RAW domain (orange), positively correlated when processed with a

denosing operation (red) or negatively correlated with a sharpening

one (blue).

There exist many distances between statistical distributions,

such as the Mahalanobis distance or the total variation distance.

But note that the regret is generally asymmetrical. For its link

with the Neyman-Pearson’s lemma, we therefore suggest using

the well-known Kullback-Leibler divergence, which is a measure

of the cost (in bits) of encoding samples from a distribution

𝑃 for a code optimized for another distribution 𝑄 , rather than

using a code optimized for 𝑃 . In the general case, it is quantified

as the expectation of the log-likelihood ratio of the probability

distributions of 𝑃 and 𝑄 . In the case of multivariate Gaussian

distributions, however, we can leverage the following expression

Table 1: Kullback-Leibler divergences obtained on the
example distributions of Fig. 4. The columns give us the
so-called "reference" distributions, and the rows give the
"observations".

𝐷𝐾𝐿 (𝑃 | |𝑄)
Q

Shar Raw Den

P

Shar 0 7.67 6.90

Raw 1.34 0 0.41

Den 0.96 1.19 0

of the Kullback-Leibler divergence:

𝐷𝐾𝐿 (N1 | |N2) =
1

2

(tr
(
Σ−1

2
Σ1

)
+ ln

(
|Σ2 |
|Σ1 |

)
+ (𝜇2 − 𝜇1)𝑇 Σ−1

2
(𝜇2 − 𝜇1) − 𝑛).

(12)

As shown in Sec. 4, we use synthetic developed noise for our

statistical model. This noise has the same mean value on the whole

"image". Therefore, the last term of Eq. (12) is canceled out:

𝐷𝐾𝐿 (N1 | |N2) =
1

2

(
tr

(
Σ−1

2
Σ1

)
+ ln

(
|Σ2 |
|Σ1 |

))
. (13)

To complete our example, we can apply the 𝐷𝐾𝐿 to the joint

distributions shown in Fig. 4. After estimating the covariance

matrices of the obtained joint distributions, we get the divergences

shown in table 1. We can see that the cost is greater when the

sharpened distribution is taken as the observationwith the denoised

or raw ones as references. The asymmetry is clearly visible, and can

also be linked to the asymmetry of the regret between "difficult"

noisy sources and "easier" denoised sources [2].

4 EXPERIMENTAL SETUP
4.1 Choice of processing pipeline
In order to test our hypotheses, we need to create a setup where

the gaussianity of the distribution of the noise is safe.

In mainstream pipelines, however, it is likely to find one or more

non-linear processings: gamma correction is non-linear, as well as

most denoising operations; demosaicking can be non-stationary,. . .
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Demosaicking: We chose the bilinear demosaicking [16]

algorithm, as implemented in the color-demosaicing python library.

Histogram stretch: To ensure having a broad range of pixel values,
we modify the demosaicked image 𝐼

d
such that the darkest (resp.

brightest) pixel value equals 0 (resp. 255). We therefore compute

𝐼
hs

by performing the following histogram stretch operation:

𝐼
hs

= (𝐼
d
− min(𝐼

d
)) × max(𝐼

hs
)

max(𝐼
d
) . (14)

Grayscale conversion: We then convert our rgb images obtained

via demosaicking to single-channel grayscale images, using the

conversion proposed in the opencv library:

𝐼gs = 0.299𝐼𝑅
hs

+ 0.587𝐼𝐺
wb

+ 0.114𝐼𝐵
hs
. (15)

Post-processing: We chose a variant of the famous unsharp

masking method:

𝐼pp = 𝐼gs + 𝑝 × (L ⊛ 𝐼gs), (16)

where:

L =


0 −1 0

−1 4 −1

0 −1 0

 , (17)

and where 𝑝 is a parameter used to set the strength of the operation.

Note that for values of p close to zero, 𝑝 < 0 corresponds to

denoising, and 𝑝 > 0 to sharpening.

4.2 Construction of the dataset
We define 21 sources, by using values of the strength parameter 𝑝

defined in Eq. (16) in {−1,−0.9,−0.8, . . . , 0.9, 1} For our experiments,

we use two kinds of images. First, we use synthetic images, made

out of noise, to get statistical models as precise as possible. These

synthetic RAW images are created by setting all of their values to

an univariate heteroscedastic Gaussian distribution, with 𝑎 = 1 and

𝑏 = 0:

𝑥 ∼ N (𝜇, 𝜇) , (18)

and with 𝜇 = 2
13
. These images will be used to compute the

covariances matrices, their determinant and the Kulback-Leibler

divergence between cover-sources.

Second, we use regular images to measure empirically the CSM

effect in a steganalysis task. They are developed using the same

pipeline, with an additional center cropping before compression,

such that they are all of size 512 × 512. Each cover-source contains

15 000 images, randomly chosen in a pool of 50 000 coming from

the ALASKA#2 dataset [5] These images are used to create the

empirical measures of the CSM, via steganalysis.

4.3 Steganalysis
We perform steganography with J-UNIWARD [12]. On the other

side, We use DCTR features [11] to do steganalysis, as they show

good results and are rather fast to compute. We use them alongside

several simple detectors: with a linear classifier as proposed in [2],

and with SVMs with linear and Gaussian kernels. Each detector is

trained on 10,000 images, randomly selected as cover or stegos, and

tested on the remaining 5,000 images, also randomly from either

class.

Table 2: Detailed processings used to define the realistic cover-
sources in the experiments of Sec. 6.

Realistic cover-sources

USM DPD DPD-USM USM-DPD

50 30 90-50 350-30

150 50 90-150 350-50

250 70 90-250 350-70

350 90 90-350 350-90

4.4 Case of a realistic setup
To conduct the last experiments of this paper, we designed another

more realistic setup, where the choice of cover-sources include

real processings, performed with the Rawtherapee software. All
the cover-sources apply the same bilinear demosaicking and

white balance operation. They are defined by the following post-

processings. The processings are the directional-pyramid denoising

(DPD) [18] and the unsharp masking (USM) [20]. For each, 4

levels of intensities are chosen, giving 8 1-processing cover-sources.

8 additional 2-processings cover-sources are generated by first

applying the DPD (resp. USM) with the strongest intensity followed

by one of the 4 intensities of USM (resp. USM). Details on the

value of the intensities can be found in table 2. Finally, images are

converted to grayscale, center cropped and JPEG compressed with

a quality factor of 100.

The steganalysis scheme is also more realistically applied, with

a lower (but still relatively high) payload 𝜌 = 0.5 bpnzAC.

5 EXPERIMENTAL RESULTS
5.1 Relation between intrinsic difficulty and

determinant of the covariance matrix
On one side, for each source, we perform steganalysis using

the three detectors described in Sec. 4.3, at both payloads 𝛽 =

{1, 1.5} bpnzAC. On the other, we compute the determinant of the

covariance matrix, using the methodology presented in Sec. 2.2, on

synthetic images, developed on each source. Due to the curse of

dimensionality, the volume described in 64-D is extremely small.

Hence, we use the logarithm of the determinant as a comparison.

We end up with one determinant curve, and 6 intrinsic difficulties

curves. Fig. 5 shows the curves obtained at payload 𝛽 = 1.5 bpnzAC,

and Fig. 6 the ones obtained at payload 𝛽 = 1 bpnzAC. Although

they are of different scales, the shape of the determinant’s curve fits

the intrinsic difficulty curves very well. We can express it in terms of

different indicators. We suggest the Pearson correlation coefficient

(PCC) [19] (see Sec. VII), the Spearman rank-correlation coefficient

(SCC) [26] (see Sec. XIV.7), and Kendall’s 𝜏 [15]. Results are shown

in Table 3. Note that, as the logarithm is strictly monotonous, the

rank-correlation measures are not affected by it.

Results show, contrary to our initial expectations, that applying

a strong “denoising” using the proposed post-processing actually

increases the value of the determinant. This is because this

operation acts as as “noise remover” rather than a proper denoiser. It

appears that under a certain threshold, it starts removing noise that

is not there, hence ends up adding noise. This is visually confirmed
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(c) Gaussian SVM

Figure 5: Determinant and intrinsic difficulty of different detectors, for J-UNIWARD with payload 𝛽 = 1.5 bpnzAC.
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Figure 6: Determinant and intrinsic difficulty of different detectors, for J-UNIWARD with payload 𝛽 = 1 bpnzAC.

(a) 𝑝 = −0.75 (b) 𝑝 = −0.5 (c) 𝑝 = −0.25 (d) 𝑝 = 0 (e) 𝑝 = 0.25 (f) 𝑝 = 0.5

(g) 𝑝 = 0.75

Figure 7: Effect of the processing with different parameter values. Positive values correspond to “adding” noise, and negative
values to “removing” noise. However, we see that for 𝑝 < −0.25, the image seems to get noisier again.

in Fig. 7, where values of 𝑝 < −0.25 seem to enhance contrasts

again, which corresponds to the minimal value of the determinant

obtained at 𝑝 = −0.2.

Additionally, although the correlation coefficients are high –

validating our approach, we still see substantial variations between

payloads. With the linear SVM, at 𝛽 = 1 bpnzAC, 𝑆𝐶𝐶 = 0.991 but

only equals 0.915 at 𝛽 = 1.5 bpnzAC. A similar comment can be

made for the choice of model, where 𝑃𝐶𝐶 = 0.889 for the Gaussian

SVM at 𝛽 = 1.5 and 𝑃𝐶𝐶 = 0.950 for the logistic regressor at the

same payload.

5.2 Relation between regret and statistical
divergence

To compare the regret between two sources and the 𝐷𝐾𝐿 between

the Gaussian models of their noise, we first build the regret matrix

and the 𝐷𝐾𝐿 matrix. The former is obtained by computing the

regret between every pair of training and testing sets:

𝑅
𝑓
𝑝 = (𝑟 𝑓𝑝𝑖 ,𝑝 𝑗 ) (19)

The latter is obtained in the same manner, computing the 𝐷𝐾𝐿
between all sources. Before comparing both matrices, one should

address the scaling problem. Indeed, the 𝐷𝐾𝐿 is defined in [0, +∞[,
but the regret is bounded in [0, 0.5]. To ensure that both quantities
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Table 3: Correlation measures between the determinant
of the covariance matrix |Σ| and the intrinsic difficulties
obtained for the different detectors and payloads.

Detector 𝛽 (bpnzAC) 𝑃𝐶𝐶 𝑆𝐶𝐶 Kendall’s 𝜏

LogReg

1.5 0.950 0.978 0.902

1.0 0.953 0.993 0.952

SVM lin

1.5 0.925 0.915 0.775

1.0 0.940 0.991 0.943

SVM rbf

1.5 0.889 0.974 0.895

1.0 0.932 0.978 0.905

are defined on the same set, we suggest using an activation function,

such as the sigmoid:

sig[𝑥] : R → [0, 1]

𝑥 ↦→ 1

1 + 𝑒−𝑥
.

(20)

We note 𝐷∗
𝐾𝐿

the following transformed divergence:

𝐷∗
𝐾𝐿 (N𝑝𝑖 | |N𝑝 𝑗 ) =

1

2

× sig[𝐷𝐾𝐿 (N𝑝𝑖 | |N𝑝 𝑗 )] . (21)

To mitigate the diverging nature of the 𝐷𝐾𝐿 we also considered

the following transformation, noted 𝐷∗∗
𝐾𝐿

:

𝐷∗∗
𝐾𝐿 (N𝑝𝑖 | |N𝑝 𝑗 ) =

1

2

× log[𝐷𝐾𝐿 (N𝑝𝑖 | |N𝑝 𝑗 ) + 1], (22)

where +1 accounts for the fact that the 𝐷𝐾𝐿 between identical

cover-sources is zero. Note that the rank-correlation coefficients

are not impacted by the transformations of Eq. (21) and Eq. (22), as

both are striclty monotonous.

The regret matrix obtained with the LogReg detector at payload

𝛽 = 1.5 bpnzAC and the 𝐷𝐾𝐿 matrix are shown in Fig. 8. Similar

asymmetries are clearly visible in both matrices. On the leftmost

part of the plot (up until 𝑝 = −0.6), however, we also observe clear

differences. We report results in table 4 using the three correlation

measures presented in Sec. 5.1 and for the three versions of the𝐷𝐾𝐿
of Eqs. (13), (21) and (22). As expected after visual investigation,

the correlations are not as good as the ones obtained in Sec.5.1,

although they still confirm that there exists a strong link between

our statistical model and the regret. The differences from one

detector to another, and from one payload to another, also highlight

their non-negligible impact on the regret. This observation further

validates that the CSM and its impact on steganalysis are two

different (even if highly correlated) phenomena.

6 STATISTICAL MODEL AGAINST REALISTIC
SOURCES

In this last section, we investigate the relevance of our models

of the intrinsic difficulty and regret when dealing with empirical

measures conducted on the realistic cover-sources described in

Sec. 4.4. We also provide a visual exploration of the results based

on scatter plots, to illustrate the joint distribution of the statistical

and empirical measures. For the sake of focusing on the impact of

Table 4: Correlationmeasures between the𝐷𝐾𝐿 and the regret
matrices obtained for the different detectors & payloads. For
Pearson’s correlation, the results are given for the 3 versions
of the 𝐷𝐾𝐿 . The the two rank-correlations, the results are the
same, thus only reported once.

Detector 𝛽 𝑃𝐶𝐶 𝑆𝐶𝐶 Kendall’s 𝜏

𝐷𝐾𝐿 𝐷∗
𝐾𝐿

𝐷∗∗
𝐾𝐿

LogReg

1.5 0.367 0.386 0.684 0.713 0.505

1.0 0.379 0.375 0.708 0.678 0.463

SVM lin

1.5 0.337 0.383 0.658 0.709 0.494

1.0 0.359 0.374 0.693 0.671 0.455

SVM rbf

1.5 0.414 0.348 0.737 0.713 0.513

1.0 0.443 0.341 0.763 0.719 0.532

Table 5: Correlation measures between the median log-
determinant of the covariance matrix of realistic cover-
sources and the intrinsic difficulty obtained with the logistic
regressor at payload 𝛽 = 0.5 bpnzAC.

Detector 𝛽 (bpnzAC) 𝑃𝐶𝐶 𝑆𝐶𝐶 Kendall’s 𝜏

LogReg 0.5 0.324 0.914 0.778

the choice of sources, we perform the comparison for the logistic

regressor only, with a payload of 𝛽 = 0.5 bpnzAC.

6.1 Case of the intrinsic difficulty
The intrinsic difficulties of the realistic sources are obtained

following the procedure shown in Sec. 5.1. On the other hand,

since we are dealing with realistic cover-sources processed through

Rawtherapee, developing Gaussian homoscedastic noise is not

easy. Rather, for each cover-source, we take 100 true developed

images and their RAW counterpart, and, for each pair, compute

the transition matrix H as in Eq. 6 before compute the associated

covariance matrix as in Eq. 7. We then select the median value

of the determinant out of the distributions of each cover-source

as the candidate determinant. The joint distribution of the log-

determinant and the intrinsic difficulty is shown in Fig. 9. A strong

positive correlation is clearly visible. Furthermore, we obtain a

distribution that is very consistent with our understanding of the

effect of the cover-source on the intrinsic difficulty. Indeed, the

more the source is denoised, the lower the intrinsic difficulty (in

blue and red) becomes. Oppositely, the more sharpened they are,

the more difficult they become (in orange and green).

Again, we can quantify the positive correlation, with the same

three tools as in Sec. 5.1. Results are reported in table 5. They show

that, despite the weak correlation captured by Pearson’s correlation

coefficient, the rank correlation coefficients still indicate a very

strong link between the two quantities.

6.2 Case of the regret
We construct the regret matrix in the same fashion as in Sec. 5.2.

As mentioned in Sec. 6.1, we can not directly leverage developed
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Figure 8: Modified Kullback-Leibler divergences’ matrix (8a) and regret matrix (8b) of the LogReg detector at payload 𝛽 = 1.5

bpnzAC.
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Figure 9: Scatter plot showing the joint distribution of the
log determinant and the intrinsic difficulties.

noise; this time, we use an averaged covariance matrix over 100

RAW-developed pairs, estimated using the methodology presented

in Sec. 2.2, as the parameter of the Gaussian distribution of the noise.

Then, the 𝐷𝐾𝐿 matrix can be computed. We can finally plot the

joint distribution of the regrets and the divergence, which is shown

in Fig. 10 for the 𝐷∗∗
𝐾𝐿

. This time, although a positive correlation is

still visible, it appears less convincing.

To evaluate the relevance of our approach, we compare

the correlation coefficients obtained with the three correlation

coefficients, and with the three versions of the 𝐷𝐾𝐿 for Pearson’s

correlation in table 6. The results still indicate that there is a relation
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Figure 10: Joint distribution of the regret and modified
Kullback-Leibler divergences between the realistic cover-
sources.

between the Kullback-Leibler divergence and the empirical regret.

Although they are still promising results, they highlight the current

limitations of our approach to model the regret, especially in a

realistic setup.

7 CONCLUSION
In this paper, we proposed a model for the two important practical

quantities of the Cover-Source Mismatch problem in steganalysis.

First, we showed that the determinant of the covariance matrix of
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Table 6: Correlation measures between the 𝐷𝐾𝐿 and its two
modified versions with the regret matrices obtained for the
realistic cover-sources with the logistic regressor at payload
𝛽 = 0.5 bpnzAC.

Detector 𝛽 𝑃𝐶𝐶 𝑆𝐶𝐶 Kendall’s 𝜏

𝐷𝐾𝐿 𝐷∗
𝐾𝐿

𝐷∗∗
𝐾𝐿

LogReg 0.5 0.664 0.382 0.665 0.550 0.399

the developed noise in an image was a promising approximation of

the intrinsic difficulty of a source. The high correlations between

the determinant and the empirical measure of difficulty validate

our approach. Furthermore, we showed that, while the choice of

detector and the payload both impacted the results, the correlations

were maintained.

Second, we showed that the Kullback-Leibler divergence

between the multivariate Gaussian models of the processing

pipelines is a promising approximation of the regret between the

cover-sources.

These encouraging results are the first step towards practical

mitigation strategies of the CSM. In particular, they could be used

in constrained environments, where the labels are very costly

since predicting the intrinsic difficulty as well as the generalization

ability of a source can help design efficient training sets in holistic

approaches.
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