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A GENERIC APPROACH TO HOMOGENIZATION OF A
DIFFUSION DRIVEN BY GROWING INCOMPRESSIBLE DRIFT

BRICE FRANKE, SHUENN-JYI SHEU

ABsTrRACT. We study how the resolvent-family of a diffusion behaves, as the
drift grows to infinity. The limit turns out to be a selfadjoint pseudo-resolvent.
After reduction of the underlying Hilbert-space, this pseudo-resolvent becomes
a resolvent to a strongly continuous semi-group of contractions. We prove that
this semi-group is associated to some Hunt-process on some suitable state-
space which is constructed from equivalence classes of the drifts trajectories.
Finally, we show a distributional limit theorem for the accelerated diffusion
toward the associated Hunt process.

1. INTRODUCTION

The influence of a large incompressible drift on a diffusion is a subject which has
gained some attention in recent years. One issue is to understand how fast the
diffusion converges toward its equilibrium when the drift becomes larger. This can
be studied in terms of the operator-norm of the semigroup (see Constantin, Kislev,
Ryzhik, Zlatos (2008)), in terms of the spectral gap of the generator (see Franke,
Hwang, Pai, Sheu (2010)) or in terms of asymptotic variance (see Hwang, Nor-
mand, Wu (2015), Duncan, Leliévre, Pavliotis (2016), Franke, Hwang, Ouled-Said,
Pai (2021)).

Another issue is to search, as the drift grows to infinity, for homogenization along
the trajectories of the flow underlying the drift. In this situation the further and
further growing drift leads to a diffusion which in the limit propagates along the
flow lines at practically infinite speed, while the diffusive path length, which is re-
sponsible for moving from one flow line to another, stays bounded. In the process of
growing drift the position on the flow trajectory of such a diffusion becomes highly
volatile and the only sustainable information is the account for the successive flow
lines which have been visited by the diffusion. Therefore, increasing the speed of
the drift to infinity should lead to a limit diffusion which takes its values on a suit-
able state space of trajectories. However, this picture is too rough, since one has to
account for the possibility that two trajectories come arbitrary close to each other
on large time scales. In that situation an infinitesimal diffusive increment suffices
to move from one trajectory to another. One thus has to use the dynamics of the
underlying flow to introduce suitable equivalence classes on the underlying state
space which account for this possibility. In this manuscript it is our intention to
construct a suitable state space for the limit diffusion. It will turn out that the right
state space is a quotient space with respect to a non-local equivalence relation and
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thus the limit diffusion might not be describable through some differential operator
anymore. It is then natural to use a resolvent family or some Dirichlet form to
describe those diffusions. Our investigation does not limit itself to two dimensions.
To our knowledge most of the existing results on averaging along the trajectories
of a drift accelerated diffusion deal with the two dimensional situations (see Hwang
and Sheu (2000), Freidlin and Weber (2004), Ishi and Souganidis (2012), Dolgopyat,
Freidlin and Koralov (2012). A paper by Barret and von Renesse (2014) also deals
with higher dimensional situations. In this paper they use advanced Dirichlet form
theory to analyse the asymptotic behavior of the drift accelerated diffusion through
some observables, which are first integrals of the accelerating drift. Their situation
is more general, since they do not assume incompressibility of the accelerating flow
with respect to some measure of stationarity for the diffusion. However, it has to
be noted, that the construction of their limit process also uses information from
the level sets of the observable and thus is not an generic process constructed only
from the geometry of the driving flow and the underlying manifold.

In this article we want to present a generic construction for a quotient space and a
sole diffusion on it, which underlies all the limit processes that one can obtain from
observation of the accelerating diffusion through first integrals. We think that this
might help to understand the underlying mechanisms which drive homogenisation
along trajectories.

Our starting point is to understand how the resolvent of the diffusion behaves as the
drift grows to infinity. We will see that those resolvent operators converge strongly
toward a self-adjoint pseudo-resolvent family (see Theorem 1 and Theorem 3). It
will turn out that the range of this pseudo-resolvent is the closure of the kernel of
the drift-generating first order differential operator. Once restricted to this sub-
space, the pseudo-resolvent becomes a true resolvent family. In order to find a
Dirichlet form and a Hunt process for this resolvent we have to further investigate
the closure of the kernel associated with the drift vectorfield. It turns out that it
contains a dense set of smooth drift-invariant functions (see Theorem 2). This will
be essential to prove that the range of the pseudo resolvent is isometric to a Hilbert
space of square integrable functions on a suitable quotient space (see Theorem 4).
This enables us to give explicit representations for the Dirichlet form of the limit
diffusion (see Theorem 5). Some standard arguments show that the semi groups of
the accelerated diffusions converge toward the semi group asociated to this Dirichlet
form (see Theorem 6). Finally we also prove a weak limit theorem for observables
of the associated stochastic diffusions toward the Hunt process which is associated
to the above Dirichlet form (see Theorem 8).

2. THE MATHEMATICAL SETTING

Let (M,g) be a d-dimensional oriented compact Riemannian manifold without
boundary. We denote the metric distance of two points z,y € M by dy(z,y).
For the canonical volume element on M we will use the notations vol(dz) (see
Chavel (1984), p.6 for a definition). Let U be a function from C'(M) such that
m(dz) = exp(—U(z))vol(dz) turns out to be a probability measure on M. By con-
struction the measure 7 has full support on the manifold M. We will denote by
L?(M,7) the Hilbert space of square integrable real valued functions with inner
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product defined for f,h € L?(M,7) as
(f,h) = fhdr.
M

We use a family of local coordinates ¥, : V, — R?: « € I to introduce the Laplace
operator

1 & .
A C2(M) — C(M); f s 7 %azj (gjk\/gaxkf),

where as usual in Riemannian geometry /g denotes the square root of the deter-
minant of the matrix G with entries g;; = g(0,,, 0z, ) and where ¢’* denote the
entries of the inverse matrix G—! (see Chavel (1984), p.5). Note however, that
with the above definition the Laplace operator is a differential operator with spec-
trum contained in | — oo, 0]. We denote by (A, Dom(A)) the Friedrichs extension in
L?(M,7) of the differential operator
Ay : C®°(M) - C®(M); f— Af—-VU-V{.
We assume that the operator A has a discrete spectrum
0=Xg>—-A1 > X > .

with A\, — 0o as n — oo and that the corresponding eigenvectors ¢q, @1, @2, ...
form a complete orthonormal basis of L?(M, ). Note that ¢o spans the constant
functions on M. Then every element ¢ € L?(M, ) can be represented as

o= ardi
k=0

with suitable coefficients ar,k € N. We use the orthonormal basis (¢g)ren to
introduce the Sobolev spaces

= {o= S wo Siaar <o},
k=1 k=1

For notational reasons we will denote H° by H in the following. Once restricted to
the orthogonal complement of the constant functions the domain of the unbounded
operator A is H? and the domain of its associated Dirichlet form

E(fih) = (f,l)m = / Vf-Vhdn
M
in H'. When f is in H?, then one further has
E(fih) = (f,h)g = — | hAfdm.

M

In the previous expression we used the gradient of a function f : CY(M) — R,
which is defined in local coordinates as a tangential vector with j-th component

(Vf)j = Z gij (azif)azj~
i=1d

Here and in the following, we use the lightened notation v-w := g(v, w) for tangent
vectors v,w € T,M. Let b be a C'-vectorfield on M with the properties that
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div(e™Yb) = 0 and H* C Dom(b - V). In local coordinates the divergence of a
Cl-vectorfield b = Z? njazj is defined through

d
1 .
. _: j
div(e) = — §j 0, (' V/9)
(see Chavel (1984) p.5). With those definitions and conventions we have

/ f(A - VUV)hdw - —/ Vf-Vhdr Yfhe C*(M)
M M
and
/ fb-hdr = —/ hb-Vfdr Vf heCYM).
M M
For ¢ € R we then define the differential operators
Ao : C®(M) - C¥(M); f— Af +cb- V.
Proposition 1. There exists a closure (Aq,Dom(A;)) of (Ac,0, C°(M)) such that
that Dom(A,) = H?> = Dom(A) and for all 1» € Dom(A.)
Ach = AY + cBY,
where B is an antisymmetric operator, which equals f — b-V f when restricted to
C>(M).!

Proof : Since for constant functions the statement is obvious, we restrict our con-
sideration to functions v from the orthogonal complement of the constant functions
in L?(M,r). For a sequence t,,,n > 1 of functions from C* (M), which converges
in H'! toward an element 1 € H', we know that

/ bV (6 — o) P < sup g(b,B)(@) [ — il — 0.
M xeEM

Therefore, b - Vi,,,n > 1 is a Cauchy sequence in H. Therefore, the operator
Bt :=limb- V4, is well defined for all ¢ € H'. Moreover, if ¢ is an element from
H', then there exists a sequence ¢,,,n > 1 in C°°(M) such that ¢, — ¢ in H'. It
then follows that

<§07 B¢> = lim / Qonb - Vippdn = — lim Pnb - v@ndﬂ— = _<f¢)7 BSO>

This implies that the operator (B, H') is anti-symmetric.
We already mentioned that Dom(A) = H2. For ¢ € H? we define

Acp = Ap + cBop.

We have to show that (A., H?) is a closed extension of the differential-operator
(Ac.o,C®(M)). Let 1,,n > 0 be a sequence from H? and v, g € H such that one
has

Y, — ¢ and Ay, — ¢ in H.

11 might be better to restate Proposition 1 as follows : The operator (A¢, H?) is a closure of
(A¢,0, C°(M)) such that that for all ¢ € H?

Acth = A + By,

where B is an antisymmetric operator, which equals f — b- V f when restricted to C°°(M).
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We need to prove that ¢ € H? and A = g. Note that

Hwn - meH1 = _<wn - "/’maAc<'(/Jn - 1pm)> — 0 asn,m — oo.

This implies that 1,,,n > 1 is a Cauchy-sequence in H'. Therefore we have that
Bi,,,n > 1 converges in H toward an element h € H and we have that By = h.
Therefore,

Ay, = Ay, — cBY,, — g — ch as n — oo.
Since A is a closed operator, we obtain that v is in H? and Aty = g —ch. This then
implies that 1) € Dom(A) = H? and A,y = Ay + cBy = g. a
The next proposition is a version of Rellich’s lemma for our setting.

Proposition 2. If a sequence of elements ¥p,n > 1 from H' is bounded with
respect to the H'-norm, then there exists an element 1 € H' and a sub-sequence
tn, sk > 1 which converges toward 1 weakly in H' and strongly in H.

Proof : See Appendix for a proof. O

3. THE CONVERGENCE OF THE RESOLVENT

Let 7. € H' be the unique soultion of the equation
(1) Ach =M =g.

The resolvent R&c) associated to the operator (A, Dom(A,)) is the family of bounded
operators defined through 2

Rg =~ A>0.

This can be restated as

R =—(A.—N7'g.
We want to analyze the limit behavior of the family of resolvents (RE\C)) A>0 as
lc| = oo. This will later help us understanding the asymptotic behavior of the

semigroups (Tt(c))tzo that are generated by (A.,Dom(A.)) as |c¢|] — co. We will
use ideas that where developed by Bhattacharya, Gupta and Walker (1989) for the
asymptotic analysis of limiting diffusion coefficients in periodic homogenization. In
the present context, we make use of their method to obtain information on the
limit behavior of the resolvent family R&C) as |¢] — oo. We will prove the following
result.

Theorem 1. For g € H, A > 0 and as |c| — oo the functions Rg\c)g converge in
H' toward a limit of the form
Rig:=—PiA(A—-X\)""g,
where Py y is the orthogonal projection onto the space
K = Ker(B) N H' = {<p€ H ;ng:o}
with respect to the scalar product which is defined on H' through
W, 90>1,)\ = <1/}1 S0>H1 + )‘<¢a §D>

20ur definition corresponds to the definition stated on p.209 from Yoshida, Functional Analysis,
Springer Grundlehren der mathematischen Wissenschaften, Springer Verlag Berlin and also on p.15
of Fukushima, Dirichlet Forms and Markov Processes, North Holland, Amsterdam
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Remark : Later in Proposition 5 we will see that R;g = 0 when g € Range(B)NH!.

Proof of Theorem 1 : If we denote 1), := —Rg\c)g, then one has from (1) that
Atpe + cBtpe — Mpe = g
Note that the operator A — A can be inverted and this can be restated as
(2) (14 c(A— N B)pe = (A—N)Tg = 1.
It was noted by Bhattacharya, Gupta and Walker (1989), that the operator
L:=(A-)\N"'B: H' - H*— H'
is an antisymmetric compact operator on the space H' with scalar product

(o)1 = (@) + M, 0) = (¥, (A = A)p).

As a consequence there exist eigenvalues (i )xen and corresponding eigenfunctions
(k) ken with the properties :

i) One has py € R\{0} for all £ € N and limg_,o0 1 = 0.

ii) The family () )ren is a complete orthonormal basis (ONB) for H' N K+, where

3) K= {(p € H' Lh= 0} - Ker((A - A)—lB) = Ker(B) N H™.
iii) For all f € H' one has
f="rfe+> b,
k=1

where fi € K is the orthogonal projection of f toward K with respect to the scalar
product (-,-)1,x and ay := (f, Ok)1 .
If we represent 9. and v := (A — A\)~!g in the ONB mentioned above, we obtain

Ve =terx + P derbi and =7k + Y Bib.
k=1 k=1

The equation (2) then implies the following relations

B

= and Qe =-—"—.
%,K YK ¢k 1+ icin

Therefore, as |c¢| — oo
Ve = K + i Lg i )
c K e 1+ ZCMk k K = Px.
This finishes the proof. a

As a consequence of Theorem 1 we have that for every A > 0 and g € H the

functions RE\C) g converge in H! toward

(4) Rig= .= —-Px(A-)N)"'ge K asc— oo.

In the following section, we will see that the famly of linear operators Ry; A > 0
form a pseudo-resolvent family on H.

Remark : If we define v = (A — \)"1g € H!, then we know from Theorem 1 that
Y =Pia(A=N)"1g =P
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This means that 1, is the unique minimizer in Ker(L) = Ker(B) N H! of the
functional

Y= [l =yl
Thus, we obtain the decomposition ¥, = ¢, + 7y, where « is the unique solution of
(A=Nv=g
and ¢, := 1, — 7y is the unique minimizer of the functional

lellf x = llellF + Alel® = Ex(e)
restricted to the set of ¢ € H! satisfying ¢ + v € Ker(B), which is equivalent to
By = —DBr.

For later use we now generalize some of the concenpts from the proof of Theorem 1.
We first observe that for all m € N\{0} the operators (A—\)~""B are antisymmetric
compact operators on the Hilbert space H™ with scalar product

(¥, @hma o= (1, (A = A)™p).
For two subspaces V,W in H™ we note V L,, x W if V is orthogonal to W with
respect to the scalar product (.,.)m .
For a given g € H, we say that a function ¢ € H is a weak solution for the equation
Bo=g
iff for all » € H! holds
(0, BY) = —(9,9)-
In the following, we denote by Ker(B) N H™ the closure of the set Ker(B)NH™ in
H.

Theorem 2. For all m € N\{0} the closure of the set Ker(B) N H™ in H is just
the set of weak solutions of the equation By = 0; i.e. :

Ker(B) N H™ = {(p €H:(p,BY) =0, Vo € Hl}.

Proof : First we note that for an element ¢ € Ker(B) N H™ there exists some
sequence of elements ¢,, € H™ with ¢, — ¢ in H and By, = 0 for all n € N.
Therefore, for all ¢» € H' we have that

(6, BY) = lim (pp, BY) = — lim (Bey, 1) = 0.
This proves that ¢ is a weak solution of the equation By = 0. Thus it remains
to prove that all weak solutions ¢ € H of By = 0 are in the closure of the set
Ker(B) N H™. TIf we assume that there exists a ¢ € H with Bg £ 0 which is not
in the closure of the set Ker(B) N H™ then there exists a ¢ € H which satisfies
(p,1) > 0 and
(5)  {p,¥) =0 forall p € Ker(B)NH™ =Ker((A—-1)""B)nH™.
Note that since the operator B maps H™ to H™ ! we have that the operator

(A-1)""B:H™ = H*" ' — H™

is a compact antisymmetric operator on H™ with respect to the the scalar product
(., -)m,r- The relation in (5) implies

(o (A=1)"™p) = (p, (1= A™(A-1)"") = (=1)"(p,¢) =0
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for all ¢ € Ker((A—1)""B)NH™; i.e. :
(A—1)""¢ L1 Ker((A—1)""B).
This implies by the closed range theorem (see [24])
(A—1)"") € Range((A —1)"™B),
and therefore there exists a g € H™ with the property
(A=1)"")=(A-1)""Byg
This means that 1) = Bg. The fact that ¢ satisfies B¢ = 0 then implies that
(&, ¢) = (¢, Bg) = 0.

This is a contradiction to our starting assumption. Thus ¢ must be in the closure
of Ker(B) N H™. O

Corollary 1. For all k € N there exists in the set of weak solutions of By = 0
a dense set of C*-functions; i.e. : {<p € H:{p,BY)y=0, Vo € Hl} NCk(M) is
dense in {¢ € H : (¢, By) =0, V¢ € H'}.

Proof : This follows from the previous proposition and the Sobolev embedding
theorems, which states that H™ C C*(M) for m sufficiently large. O

For later use we also need some generalization of Theorem 2 to higher order Sobolev
spaces. On the space H' we introduce the norm

||¢| 1A= <¢5¢7>1,)\~
For m € N\{0} the closure of the set Ker(B) N H™ with respect to the norm |.|[1 x
by Ker(B) n H7 Y.

—_—(1,1) .
Proposition 3. For allm € N\{0} the set Ker(B) N 7 g Jjust the set of weak
solutions in H' of the equation By = 0; i.e. :

(1,1)

Ker(B)NnH™ " ={p e H": (p,By) =0,V € H'} =Ker(B)NH".

—(1,1 )

Proof : For an element ¢ € Ker(B)N Hm( ) there exists some sequence of ele-
ments o, € H™ satisfying ||¢, —¢||1.1 — 0 and By,, = 0. Therefore, for all ) € H*
we have that

(e, BY) = lim(pn, B) = — Tim (Bion, ) = 0.

Again we have to prove that all weak solutions ¢ € H' of By = 0 are in the closure
of the set Ker(B) N H™ with respect to the norm ||.||1,;. Assuming the existence of

a ¢ € H' with B@ = 0 which is not in the closure of Ker(B) N H™ with respect to
the norm ||.||1 1, there must exist a ¢ € H' satisfying (@,4)1.1 > 0 and

(p, )11 =0 for all p € Ker(B)NH™ =Ker((A—1)""B)NnH™.
This last relation implies that for all ¢ € Ker((A — 1)~ B) one has
(o, (A=) ) ma = (o, 1= A" A=) )11 = (1) e, )11 =0,
which can be rephrased as

(A—1)"™e 1,,, Ker((A—1)""B).
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Since the operator (4 —1)~™B is anti-symmetric and compact with respect to the
scalar-product (-, -)p, 1 it follows that

(A—1)"™"1y € Range((A — 1)"™B).
Thus there exists a g € H™ with (4 — 1)~ Bg = ¢ and it follows that
(@ ¥)11 = (p,(1 = A) = (5, (1 - A)(A-1)"'Bg) = —(p, Bg) = 0.
This contradicts our starting assumption. Therefore, all $ € H! satisfying Bp = 0
are in the closure of Ker(B) N H™ with respect to the norm ||.||1,1. O
4. THE LIMIT IS A RESOLVENT AGAIN

The operators A and A. generate strongly continuous semigroups (I});>o resp.
(Tt(c))tzo on H. We will denote their respective resolvent families by (Rx)x>0 resp.

(Rg\c)) A>0- From what we have seen so far follows that RE\ g = —1. converges

for |¢] — oo toward Rig := —1, in H'. We will see that once restricted to
Ker(B) N H!, the resulting limit is a strongly continuous resolvent, satisfying the
contraction property.

Theorem 3. The family (R}) >0 is a selfadjoint psudo-resolvent on H; i.e. :
(n=ANR\R, = R\ — R;, for all A\, > 0.

Proof : The linearity is obvious. The resolvent-identity holds for the true resolvent
(RE\C))A>0. One has for all g € H

(1 — /\) C) R&c)g - Rl(f)g for all A, > 0.

Taking limits and using the fact, that for a fixed A > 0 the family ||RE\C) Il;ceRis
bounded, one obtains the resolvent-identity for (R})x>o :

(n—=NRAR;, = R} — R),.
For A > 0 one has the representation (see Pazy (1983) p.25)

R f = / e M ft.
0

This implies

oo

(ROf.g) = /0 T £, )t
- /m N (T ) g)dt
0
= [T g
0
= <f’Rg\cg>'

Since by Theorem 1 both ), = Rgﬁc)g and ¢Y_, = Rg\c)g converge to the same
element R}g in H', one obtains in the limit

(B3 f.9) = ({f. Ryg)-
This shows that the family (R})x>o is a self-adjoint pseudo-resolvent family (see
Pazy (1983) p.36 for the definition of the pseudo-resolvent family). a
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According to see Fukushima (1980) p.14 a resolvent family Ry; A > 0 is said to have
the contraction property, if

(ARxg, ARxg) < (g,g) for all g € H and X\ > 0.

Following Fukushima (1980) p.23 we say that the resolvent family Ry; A > 0 is
Markovian if for all A > 0 and g € H one has that

0<g<1 implies 0< Ryg <1.

Corollary 2. The pseudo-resolvent family (RX)x>o0 has the contraction property
and is Markovian.

Proof: It is well known that the resolvent family (RE\C)) A>0 satisfies the contraction
property. Thus, we have for every A > 0, g € H and ¢ € R that

<AR§C)9,>\R§C)9> <{9,9)-
Thus, since RE\C) g converges in H toward R}g as ¢ — oo, we also have
(ARNg, AR3g) < (9,9)-

Moreover, since the resolvent, family (R&C)) A>0 is Markovian, we have for all A\ > 0,
g € H and c € R that

0<g<1mae implies 0< R(;)g <1 m-a.e..

This implies for all ¢ € R that
<RE\C)9, 1R§g<o> > 0.

From this follows

(R39, 1R;g<o> =0
and therefore R}g > 0 almost everywhere with respect to .
On the other hand we also have

<1 - RE\C)% 11—R;g<0> > 0.

From this follows

(1—R3g,11_Rsg<0) =0
and therefore R}g < 1 almost everywhere with respect to 7.
Thus we have proved the implication

0<g<1m-ae implies 0<Ryg<1mae.
This finishes the proof of the proposition. O

Proposition 4. The pseudo-resolvent family (R})>o is strongly continuous on the
closure of Ker(B)N H' in H; i.e. :

;ir% IARYg — g|l = 0 for all g € Ker(B) N H!.
—
Proof : First let g € Ker(B)NH'. From the representation of R} given in equation
(4) we see that for g € Ker(B) N H! holds
MRS g =g = —PiaMA=NTlg+g) = —Pia(AA - N9
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Now, recall that (¢, )nen is the ONB of H which is associated to the eigenvalues
(=An)nen of the selfadjoint operator A; i.e. :

Ay, = — A bn.-
We know that A\,, > 0for all n € N and A\,, — oo as n 1 0co. From the representation
9="> (9, $n)¢n
neN
and the fact
Dl = (g, Ag) <

neN
we obtain for any ¢ € H' the following formula

A== Y (6000

neN
This implies for g € H!

AAA- g = 3 (1) M)

neN

)\2
< (9
neN /\n +A

$n)? —0  as A — 0.

Furthermore for g € H! one has

_ Mo\
JA(A - N 1g||%q1=2(A +A) Mg ) — 0 a5 A oc.
neN n

Note that the convergence of the two above series follows from Lebesgue’s theorem
by using the majorant sequence m,, := \,(g, ¢,)> which satisfies

Zm" = Z /\n<ga¢n>2 = ||g||%11 < oQ.

neN neN
Thus it follows for g € Ker(B) N H* that
INRSg —gll; = (1P =295,

IN

laca =2l ,

|[AA—=X)~ gHHl—i—)\HAA )~ gH — 0 as A — oo.

In particular for g € Ker(B) N H' one has ||AR}g — g| — 0 as A — oo. So far we
have proved that the resolvent-family (R}) is strongly continuous on Ker(B) N H!.
Now let g be an element in the closure of Ker(B) N H! and let ¢ > 0. Then there
exists a § € Ker(B) N H! with the property || — g|| < e. Triangle inequality and
the contraction property from Corollary 2 then yield

AR g — gl < [IARX(9 = @) + IARRG — gll + 1§ — 9]
< ARG — gl +2[lg — gll-
Thus the whole expression is smaller than 3e if A is large enough. This proves the
strong continuity on the closure of Ker(B) N H! in H. O

Corollary 3. For any g € Ker(B)NH" one has that AR%g converges in H' toward
g as A — Q.
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Proof : This follows from the proof of the previous proposition. O
Proposition 5. For all A > 0 we have that
Ker(R}) = (Ker(B) N HY)" = (m)L
Here, we use the definition
(Ker(B)NnH")* :={g € H;(g,h) =0 for all h € Ker(B) N H'}.

Proof : Since the second identity holds in general, we only have to prove the first.
We have for all g € H and h € Ker(B) N H' that

(g:h) = =((A=N)""g,h)1xn = —(PLA(A=X)""g,h)1x.

1
This shows that g € (Ker(B) N H1> is equivalent to P; (A — A)~!lg = 0. Since

by (4) we have the representation Rjg = —P; (A — A\)"!g, this proves the first
identity. O

Proposition 6. For all A > 0 we have that Range(R}) = Ker(B) N H!.

Proof: We will use the following representation for the range of a pseudo-resolvent,
which can be found on page 217 in Yoshida 1980 :

Range(R}) = {g € H;)\lim ARYg =g in H} .
—00
Proposition 4 shows that for all g € Ker(B) N H! we have ARyg — g as A — oc.

The inclusion Ker(B) N H! C Range(R}) then follows.

To prove the inclusion Range(R}) C Ker(B) N H' it is enough to show the inclusion
Range(R}) C Ker(B) N H'. This however follows from the fact that we have the
representation Ryg = —P1 (A — )" lg. O

Proposition 7. For all g € Range(B) and A > 0 one has Rg\c)g — 0 as || = oo.

Proof: As B is an antisymetric operator, one has that the subspaces Ker(B) and
Range(B) are orthogonal. Any h € H can be decomposed as h = hy + ho where
hi € Ker(B) and hy € Range(B). It then follows that
(h,Ryg) = <(h1,R\g) since R}g € Ker(B)
= (Ryh1,g) as R} is self-adjoint
= 0 since Ker(B) L Range(B).
Since this holds for all H € H, it follows that R}g = 0. O

5. THE QUEST FOR A SUITABLE STATE-SPACE

In order to associate the resolvent family (R3)x>o to a diffusion, we have to prove,
that its domain of definition Ker(B) N H! can be identified with some space of
square integrable functions over some suitable measure space (X, 11). In this section
we give a construction for this space. The vectorfield b : M — T'M generates a flow
(P4)ter on M. We say that two elements x, y from M are equivalent, if there exist
for all e > 0 a N € N, a sequence (2, )n=0,...n in M with zg = z, zxy = y and two
sequences of real numbers (¢,)n=0,... n—1 and (s,)n=1,.. n With the property

d((I)to (20)7 ésl(zl)) + d(q)tl (21)7 (I)Sz (22)) +..t d((I)tN—l(ZN—l)v (I)SN (ZN)) <€
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We will note = ~ y when two elements x, y from M are equivalent. For an x € M
we denote by [z] the equivalence class containing x. Let X be the quotient space
with respect to this equivalence relation. The space X carries the quotient topology
Og; i.e. @ the largest topology on X with the property that the projection px :
M — X;z — [z] is continuous.

Proposition 8. The quotient topology on X can be obtained from the following
metric

dX([‘TL [y]) := inf { i d(q)h (Zl)’ (I)Si+1 (Zi+1)); N, (tn)7 (S’ﬂ)> (Zn) TR0 = X,2N = y} .

Proof: One has to prove that the topology O, generated by the metric dx equals
O,. In order to show the inclusion Oy C O,, we have to prove that the projection
px : M — X;x — [z] is continuous with respect to the metric dx. This follows
from the following inequalities

dx ([l [y])

N-1
inf { Z d(q)tz (Zl)v (I)Si+1 (Zi+1)); N, (tn)7 (s’ﬂ)7 (Zn) P20 =T, EN = y}
=0

< d(z,y).

In order to prove the inclusion O, C O4, we assume that there exist some U € O,
which is not in Q4. This means that U is not open with respect to dx. It follows
that there exists some [x] € U and a sequence [y,] € U° such that dx ([z], [yn]) = 0
as n — 0o. We then have that U = p3*(U) is open in M and 2’ € U for all 2’ € [z].
Further, there then exists for all 2/ € [z] some € > 0 such that d(2/,y]) > € for
all selections of y, € [y,] and n € N. If we consider one of those subsequences
Yn;n € N, there then exists a subsequence y;, ;& € N which converges toward a
limit point z” in the compact manifold M. It then follows that for all ¢ > 0 there
exists some K € N such that d(y,, ,z") < € and dx([y,, ], [z]) < € for all k > K.
From this follows that =" € [z] and y,,, — 2" as k — oo. This is a contradiction
and thus there is no U € O, which is not also in the topology Og. O

With this metric the space (X, d) is a compact Hausdorf space. We denote by B(X)
the Borel-o-field generated by this topology on X. Then the map px is measurable
with respect to the respective Borel-o-fields on M and X. On M we define the
eventually smaller o-field

Yy = {p¥' (A); A€ B(X)}.

We introduce the measure p1 := mopy' on (X, B(X)) and note that since 7 has full
support on M the measure p also has full support on X.
For a ¢ € L?(M, ) we can define the orthogonal projection from L?(M,n) to the
closed subspace I2(M) := {f € L?>(M,7) : f is ¥j/-measurable}. We denote this
projection by P; and note that by factorization lemma for every ¢ € L?(M,n)
which is ¥j/-measurable there exists a unique ¢ € L?(X,u) with the property
@ = @opx. The above consideration defines a map

R: L2(M7 EM77T) - L2(X7:U’); p = 55
We define the following two maps :
(6) G : Ker(B) N H' — L*(X, p); ¢ — R(Pr(¢))
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and
(7) F: L3(X, 1) — Kor(B) N HL; 4 s [g; s @z;([x])}.

Note that although the map G could be defined on all of L?(M,n), we restrict
its domain to Ker(B) N H!'. We have to prove that G and F are well defined.
Obviously G is well defined, since the involved maps P; and R are well defined.
In order to prove that F' is well defined we have to see that the resulting function
x — ([z]) is indeed an element from Ker(B)N H!. We know from Theorem 2
that this space is equal to {¢ € H : By £ 0}. Thus we have to see whether
U(z) = ¢([z]) satisfies (1), BY) = 0 for all ¥ € H'. We have for all ¢t € R that
[®:(z)] = [z] and therefore

<,(/~]7’l9 © q>t> = <"Z} © q)fh 19) = <Q;a 19)
Thus we have )
(0, BY) = lim — (6,90 @) — (5, 9)) =0,
t—0 ¢
It therefore turns out that F' is well defined and also continuous, since it is linear
and bounded.

Lemma 9. For a Lipshitz continuous ¢ € C(M) N Ker(B) one has that x ~ y
implies p(x) = @(y). As a consequence, the assignment ¢([z]) := ¢(x) defines a
well defined and continuous function on X.

Proof : Let ¢ € C(M) N Ker(B). According to Corollary 1, we can find some
sequence ¢, € C1(M) N Ker(B) such that ¢, — ¢ in H. First note that for all
n € None has 0 = By, = b- Vg, = at\tzocpn o ®;. This implies that one has
©n 0 @i(x) = pp(x) for all z € M,t € R and all n € N. Tt then follows that some
sub-sequence ¢,,(x) converges toward ¢ almost everywhere. Taking limit n — oo
this implies that for any choice of ¢ € R one has po®;(z) = ¢(z) almost everywhere
with respect to . Since ¢ and po®,; are continuous, it follows that o ®(z) = (x)
for all z € M,t € R. The compactness of M implies that ¢ is uniformly continuous
on M;i.e. : for all € > 0 there exist a > 0 such that

d(z,y) < ¢ implies ‘go(x) — <p(y)‘ <.

Let n > 0. Since z ~ y there must exist N, (¢,), (sn) and (z,) with zp = x and
zn = gy such that

N
Z d(cbh (ZZ)a (I)Si (ZiJrl)) <.
=0

It follows from this and the fact that ¢ is constant along the flow that

‘w(w)—w(y)‘ < i‘w(‘bti(zi)) _W((I)si(zi-&-l))‘
1=0

IN

N
CZ’d((I)ti(zi)v(I)si(Zi+1))‘ < e

i=0
where C' > 0 is the Lipschitz constant of the function ¢. Since ¢ > 0 can be
arbitrarily small this proves the statement. [
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Remark : The previous lemma can’t be generalized to general continuous func-
tions. A counter example showing that this is not possible can be found in Section
8 (see example 6).

Theorem 4. The maps F and G are bijective and G is the inverse map of F.
Moreover, G is an isometry between the spaces Ker(B) N H! and L*(X, p).

Proof : We first prove that G o F is the identity map on L?(X,u). This then
implies that F is injective and G is surjective. For a ¢ € L?(X,u) the function
F(¢) = yopx is measurable with respect to X ;. Thus we have P;(F(v)) = Yopx.
This then implies that G o F(¢) = R(¢ o px) = 9.

It remains to prove that the map F is surjective and the map G is injective.

Since the map G is linear, in order to prove its injectivity, it is sufficient to prove that
its kernel only contains the zero-function from Ker(B) N H!. Let ¢ € Ker(B) N H!
be some element with G(¢) = 0. This means that P;(¢) = 0. We know from
Corollary 1 that there exists a sequence of C'-functions ¢,, € Ker(B) N H' which
converges toward ¢ in H. Since those elements are continuously differentiable, they
satisfy

0= By, =b-Vo,.

This implies that ,, is invariant with respect to the flow (®;).cr in the strong sense;
ie. : @, 0P (x) = pn(x) for all t € R and all x € M. From Lemma 9 we know
that the values of ¢, are constant on the equivalence classes and it then follows
that one has P;(y¢,) = ¢, for all n € N. Moreover, we know that in L?(M, ) we
have P;(vy,) — Pr(p) = 0. Therefore, ¢, — 0. Since ¢,, — ¢, we conclude ¢ = 0,
which proves the injectivity of G.

It remains to prove the surjectivity of F. For a ¢ € Ker(B) N H! we saw in the first
part of this proof that there exists a sequence of C''-functions ¢,, which are constant
on the equivalence classes defined on M with ,, — ¢ in L?(M, 7). Obviously there
exist functions v, € L?(X, u) with the property that ¥, ([z]) = ¢, (z) for all x € M;
ie. : F(¢,) = pn. Moreover, by the definition of ;1 we see that

/ W]n _wm|2dﬂ / |wnOpX _Q/JmOpX|2d7r
X M

/ lon — <»0m|2d7T~
M

The convergence of ¢, in L?(M,7) then shows, that the sequence 1,;n € N is a
Cauchy-sequence and should converge toward some element 1 in L?(X,u). The
continuity of F' then implies that F (1)) = ¢.

Since, F' and G are both bijective and G o F' is the identity on Ker(B) N H! it
follows that G is the inverse map of F. O

Note that by the previous definition for an element h € L?(M,7) the image G(h) is
an element in L?(X, 1), which is formally an equivalence class of indistinguishable
functions. This means that there is some ambiguity on the choice of some repre-
senting element from the class. However, in the case of a continuous function h,
which are constant on the equivalence classes, there might be a canonical choice
such that G(h) is also continuous. In order to state this result, we introduce the
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space

C~ (M) = {f € C(M); f(z) = f(y) whenever z ~ y}

Proposition 10. For each h € C~ (M) N Ker(B) N H*, there is a unique element
h in the equivalence class G(h) satisfying h € C(X). If for h € C(M) we identify
the class G(h) with h, then one has

O(X) = G(CN(M) N m).

Proof : Let h € C(X) and (yn)nen a sequence in M which converges toward
some y € M. Since we always have dx ([u], [v]) < dar(u,v), the sequence ([yn])nen
converges toward [y] in X. Thus F(h)(yn) = h([ys]) converges toward h([y]) =
F(h)(y), which proves the continuity of F'(h). By construction F'(h) is then also in
C~(M). This implies

FlC(X))cCY(M)nKer(B)NH!
from which follows by Theorem 4 that

O(X) C G(CN(M) N W)mﬂl).

We still have to prove that G(C’N(M) N Ker(B) ﬁHl) C C(X). For this let

h € C~(M) N Ker(B) N H'From this follows that h(x) = h(y) when [z] = [y].
Therefore, the function h([z]) = h(z) is well defined on X and one has h = hopy. It
follows from the properties of the quotient topology on X, that if & is continuous on
M then h has to be continuous on X. As a consequence the function h is measrable
with respect to the Borel-o-field B(X). This implies that & is ¥ j;-measurable and
thus an element from I%(M). From this follows that P;(h) = h, which yields

G(h) = R(Pr(h)) = R(h) = h, a.e..
The abovementioned continuity of A then shows that G(h) € C(X). O
Corollary 4. One has I?(M) = Ker(B) N H!.

Proof: We have seen in the previous proof that C~(M) N Ker(B) N H* C I*(M)
and we know that C~(M) N Ker(B)N H! is dense in Ker(B) N H!. This shows
that I2(M) C Ker(B) N H!. On the other hand, each element ¢ € Ker(B) N H! is
a limit in H of C*-functions v,, from Ker(B). Since ¢, € I?(M) for all n € N, it
follows that their limit v is also in I?(M). This shows that Ker(B) N H* C I?(M)
and thus I?(M) = Ker(B) N H!. O

Proposition 11. The map G is an algebra homeomorphism between the two alge-
bras C~(M)NKer(B)NH! and C(X).

Proof : It is obvious from the definition, that F' is an algebra homeomorphism
between C'(X) and F(C(X)) which equals C~ (M) N Ker(B) N H! by Proposition
10. From Theorem 4 we know that the map G is the inverse of F'. It follows that
G has to be an algebra homeomorphism from C~ (M) NKer(B)N H! to C(X). O
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6. THE GENERATOR AND THE DIRICHLET FORM

In this section we compute the generator and the Dirichlet-form underlying the
limit resolvent (R3)x>o.

Theorem 5. The Dirichlet-form £* associated to the resolvent family (R})x>o is
the closed form defined on Ker(B) N H' as follows

E*  (u,v) = {u,v) .
Proof : We have for u,v € Ker(B) N H' :
Mu—=ARju,v) = Mu+ AP (A=) u,0)
= A o)+ (PAlA =N 0), = (P =N, 0) )

= A((w0) = (u, Puav) = (PLA(A = X) ' v) )

= MNP a(A—A4) ', 'U>H1 (since Py \v =)

= <)\R§\u,U>H1.
Corollary 3 shows that the last term converges for A\ — oo toward

(u,v) ;= E*(u,v).

This characterizes the associated Dirichlet form (see Fukushima (1980) p.21).
To prove that the form is closed, we have to prove that for every sequence v, €
Ker(B) N H! satisfying £* (¥, — ¥m,¥n — Ym) — 0 as n,m 1 0o there exists some
Y € Ker(B)NH! with £*(¢,, — 1, ¢, —1) — 0 (see Fukushima p.4). Since we know
that (p,1) — (p,¥) is a closed form on H!, we know that there exists some

W € HY with (¢, — 1,4, — )z — 0. We have to prove that ¢ is also in Ker(B).
This follows from the fact that Ker(B) is closed in H!. O

We now obtain a Dirichlet form on the space L?(X, ) through the maps G and F
from Theorem 4. It will turn out that the resulting Dirichlet form is regular (see
Fukushima p.6 for a definition). We saw in Proposition 10 that for any function
h in the set S = C~(M) N Ker(B) N H' there exist some unique function A in
the equivalence class G(h), which is continuous on X. For the statement of the
following proposition, we identify for h € S the class G(h) with the function h.

Proposition 12. The set G(S) is dense in C(X) with respect to sup-norm.

Proof : We first note that C~ (M) N Ker(B) N H! is a commutative algebra. In
order to use the Weierstrass theorem(see Dieudonné 1969) it remains to show that
G(S) contains the constant functions and that for two different points [z], [y] € X
there exists a £ € S with G(¢)([z]) # G(£)([y]). The first part is obvious and so we
have to deal with the second one. Let dj;(.,.) and dx(.,.) denote the metrics on M
and X respectively. Obviously the function h : x — dx([z],[y]) is in Ker(B) and
seperates the two points [z] and [y]. It is sufficient to show that h is an element
from H'. For this we note that

dx ([2], [y]) — dx ([2], [y]) < dx([2], [2']) < dp(2,2") Vw2’ € M.

This proves that the function h is Lipschitz continuous. Now, by Rademacher
theorem this implies that h is in H'. [
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Let m be a measure on the Borel o-field of a compact metric space (Y, d). According
to Fukushima (1980, p.5 and 6) a set C; C D(£) N C(Y) is said to be a core for a
Dirichlet form (£,D(€)) on L?(Y,m) if the two following properties hold :

i) C1 is dense in D(£) with respect to the norm [[ullf := &(u,u) + [[ul|72(y,,)

ii) C is dense in C(Y) with respect to the supremum norm ||.||sup-

A Dirichlet form (€, D(€)) on L?(Y,m) is called regular if it has a core.

Corollary 5. The form E.(p,) == E*(F(p), F(v)) with domain G(Ker(B) N H?)
is a regular Dirichlet form on L?(X, ).

Proof : We have to show that C(X)NG(Ker(B)NH?) is dense in G(Ker(B)NH?')
with respect to the norm defined on G(Ker(B)N H') through

19115 1, x = Ex(@, ) + %122 (x,p0

and dense in C(X) with respect to the supremum norm. By Sobolev embedding
theorem and Proposition 3 it follows that C1(M)NKer(B)NH! is dense in Ker(B)N
H' with respect to the ||.||1,1-norm. Since the functions from C*(M)NKer(B)NH*
are constant on equivalence classes by Lemma 9, it follows that C~ (M) NKer(B) N
H' is dense in Ker(B)N H! with respect to the same norm. If ¢ € G(Ker(B)NH?')
there exists some ¢ € Ker(B) N H* such that G(¢) = v and thus by Theorem
4 one has F(¢) = ¢. As we just saw, there exists a sequence p,;n € N from
C~(M)NKer(B) N H' satisfying

EX(n— @ron — ©) + llon — @lI> = llon — @I}, — 0 as n — oo.

From the fact that G is an isometry from Ker(B)N H! to L?(X,u) and by the
defintion of the bilinear form £, we obtain from this

5*(0(()071) - ve((p'rJ - w) + ||G((Pn) — ’(/JH%?'(X,M) —0asn— oo.

Since we know from Proposition 10 that the elements of the sequence G(p,);n € N
can be assumed to be contiuous, we have proved that C(X) N G(Ker(B) N H') is
dense in G(Ker(B) N H') with respect to the norm ||.|[1,1,x introduced previously.
In order to prove the second requirement, let 1/3 € C(X). By Proposition 12 there
exists a sequence @,;n € N from C~ (M) N Ker(B) N H' satisfying

||G(95n) - '(Z}Hoo — 0 asn — oo,

where |[|.[| denotes the sup-norm on C'(X). Clearly U = G(@n) is in G(Ker(B)N
H') and further one has by Proposition 10 that 1), € C(X). This shows that the
set C(X)NG(Ker(B)N H') is dense in C'(X) with respect to sup-norm. O

The Dirichlet form £* is associated to some strongly continuous contraction semi-
group (T});>0 of symmetric operators on Ker(B) N H' (see Fukushima p.14ff).
Moreover, the semigroup (T}");>0 is related to the resolvent family (R3)x>o through

Ryg = / e MT} gdt.
0
According to Fukushima (1980) p.15 there exists a generator

A" D(A™) > H; f s Tim 2 =S
t—0 t
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with domain of definition

D(A*) = {f € H; lim LT =T yists in H} .
t—0 t

According to general semi-group theory (see Pazy (183)) one has that :
i) f(f Trpds € D(A*) for all t > 0 and ¢ € Ker(B) N HY;

ii) LTy =Ty A*p for all ¢ € D(A*);

iii) Range(R}) = D(A*).

In order to obtain some more explicit representation for the generator A* we will use

Pg to denote the orthogonal projection from H to the sub-space F := Ker(B) N H'.
We have the following result.

Proposition 13. Restricted to the space E the family (R}) >0 is the resolvent of
the closure of the operator A* which on Ker(B) N H? has the representation

A*g = PgAg.

Proof : Note that we have the representation R} = —P; y(A — A\)~!. In the
following argument, we denote C’ the adjoint of a bounded operator C. Since R}
is self-adjoint and since its range is a subset of E, we have that

R} = (R}) = (PpR}) = (R})'Pp = R Pg.
It then follows for any g € Ker(B) N H? that
Ry(A—=PpA)g = R Pg(A\—A)g = Ri(A—A)g
= —PA(A-N"TA-A)g = Piag=yg

If we define § := (A — PgA)g, then it follows that § € Ker(B) N H!. Hence we have
that R}g € Dom(A*) and further (A — A*)R5g = g. As seen above, we have
Ry\g = R\(A = PpA)g =g
which yields
(A—=A%g=g= (- PpA)g.

This finally proves that A*g = PgAg. (]
We now want to investigate, whether the semigroups (Tt(c))tzo converge toward
the semigroup (7;)¢>0. If (R})a>0 would be some true resolvent family, then this
would be implied by Theorem 4.2 from Pazy (1983). The proof presented there

however carries over to our situation. For convenience of the reader we include
those arguments and adapt them to our particular situation.

Lemma 14. For every ¢ € Ker(B) N H!, ¢ € R and A with Re(\) > 0 we have
¢
RS (T - 17 ) Ry = / T, (R5 — RY) TS s
0
Proof : For ¢ € Ker(B) N H! we note that the function

s T ROT Ry
is well defined.
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By differentiation we obtain
LTOROT R = ~TOAROT Ryp + TOROT ARy

= 1°( = AR + RV A TRy
_ 7 <(A AR 4+ RO (A% — )\))T*R§<p
= T\ = A)RYRIT o + TR (A" — NRITS
= ~TOR{TIe+ Tffl RYT
= 19 (R - BV )Tie.

Now integration yields

RO(T; - T Ryp = RUT Ry - TR Ry

= [19.ROT R,

S /O ), (75— B T2 ds.

This finishes the proof of the lemma. O

Theorem 6. For all t € [0,00[ and ¢ € Ker(B)N H' one has Tt(c)w converges
toward T4 in H as |c| — oc.

Proof : We know that for all A > 0
(8) RY¢ — R¢ forall £ € H as |¢| — oc.
The triangle inequality yields for ¢ € W)ﬁfll that
)l [ - )] ()
(R - R3) 17|

For the first term we use the contraction property and (8) to see that

HTP (R§ - RE\C))@H < H (R’; - R@)@H — 50 as |d = oo
For the third term we apply (8) to the function £ = T ¢ to obtain
H( R/\)Tt*QOH — 0 as |c] — .

In order to treat the second term we note that by Lemma 14 for any choice of
1 € H we have

|0 (59 )i < [ (5 - )2z

We note that one can use (8) with £ = T4 to see that for every s € [0, ] one has

|

T, (R - B )Tow]| < || (Rs - BTl — 0 as fel = o,
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Since moreover

e (s - o] < (-
< |mre] [

IN

/ e TT*Ts*z/)Hdr—i—/ e
0 0

o0
2 [ e uar

0

2
= Sl

it follows from Lebesgue dominated convergence theorem that

T | ar

IN

HR(;) (Tt@ - Tt*)Rf\@bH — 50 as ¢ = oo

Now, if we assume that ¢ € Dom(A*), then it can be represented as ¢ = R3¢ with
some suitable ¢ € Ker(B) N H!. Then it follows that

HR(;) (Tt(c) _ T;)(p” _ HR&C) <Tt(0) _ Tt*)Rin “50 as o - oo
So far we have seen that for all ¢ € Dom(A*) holds
H(Tt@ - T;“)R;@H — 50 as |d] = oo

Note also that every ¥ € Dom((A*)?) can be represented as ¥ = R}¢ with some
suitable » € Dom(A*). Therefore, we have proved that for all ¥ € Dom((A*)?)
holds
H(Tt(c) - Tt*)ﬂH — 0 as |c] = oc.

According to Theorem 1.2.7 in Pazy (see Pazy p.6) we know that since T} ;t >
0 is a Cy-semi group (i.e. : strongly continuous) its generator A* satisfies that
Dom((A*)?) is dense in Ker(B) N H!. It is now easy to use the boundedness of the
semigroups to conclude that for any choice of ¢ € Ker(B) N H! one has

H(Tt(c) - Tt*)goH — 0 as|c| — oc.
This finishes the proof. a

7. THE CONVERGENCE OF THE DIFFUSIONS

In this section, we want to study the behavior of the diffusion processes, which

are associated to the resolvent families Rg\c), as |¢| — o0o. According to Hsu (2001,
p.24) there exists a probability space (9, A, P) a filtration F;,t > 0 and F;-adapted

diffusion processes Y;(C),t > 0 with the property that for all f € C°°(M) the process

M) = 1) - 50§ - [ LAV ds

is a local Fi-martingale. Moreover, it is proved in Hsu (2001 p.30) that the laws
of those processes are uniquely determined. Following Fukushima (1980, p.184)
the regular Dirichlet form &, generates a symmetric Hunt-process Z;¢ > 0 on the
compact separable Hausdorff space X equipped with the Radon measure of full

support u.
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For the following theorem we will need the following assumptions on the initial
distribution :

A1 : For all ¢ € R the initial distributions py = E(YO(C)) do not depend on ¢ and
that po has a density g € C'(M) with respect to the measure 7 on M.

A2 : The process Zy is distributed according to the density ¢ = G(Pr(g)) with
respect to p on X, where G is the isometry constructed in (6) and Py : L2(M, ) —
I%(M) is the orthogonal projection, that we defined in the proof of Theorem 4.

Theorem 7. Under assumptions A1 and A2 we have for all f € C(M)NKer(B) N H?!
that the finite dimensional distributions of processes f(Yt(C));t > 0 converges in dis-
tribution toward the finite dimensional distributions of the process G f(Z;),t > 0,
where G : Ker(B) N HY — L%(X, ) was defined in (6).

Proof : We first prove the convergence of the finite dimensional distributions.
According to Theorem 6 we have for all f € Ker(B) N H! that

T\f — TFf in H as || — .

If we denote as Sy;t > 0 the semi-group on L?(X, ) which is associated to the
process Zy;t > 0, then we have the following commutative diagram involving the
two isometries F' and G, which where introduced in (7) and (6) :

T
Ker(B) N H' ———— Ker(B) N T
G F
S
L3(X, p) —— L2(X, p1)

For f € Cf(M) NKer(B)NH! C C~(M)NKer(B) N H! there is a f € C(X) such
that f = f opx and thus G(f) = f. In that situation we also have that

exp(ilf) = exp(i€f) o px € C~ (M) NKer(B) N H?

and thus it follows that

G(exp(i&f)) = exp(i& f) = exp(i€G(f)).
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If we use the fact that F' is the inverse of G and that both are L2-isometries (see
Theorem 4), this implies for £ € R that

tim E [exp(icf ()] = Tim [ g1 explicf)dn
le|]—o0 le|=oo J s
- / 9T} expli€ f)dr
M

/M Pr(g)T; exp(i&f)dn  (since Ty exp(i€f) € I*(M))
_ /MPAg)F(st (G (exp(iE[)))) dr
- / 35, (exp(i€Cf)) dy
X
E| exp(i€G(£)(Z0)]-

This proves that the one dimensional marginal distribution converge. In order
to treat the higher dimensional case, we use the Markov property to see that for
&1,& € R we have

B[ exp (i€ /() +i&af (V) |
E [exp <i§1f (Yt(lc))) Eyt<1c> {GXP (i§2f (Yt(ﬁh)ﬂ}

/M g7 (eiflth(;Ztlei@f) dr.

Further, since by Proposition 11 the map G is an algebra homeomorphism, it follows
that

E[exp (i61G()(Ze) +i&G(/) (Z1,))]
_ / 3 Se (eiélG(ﬁStz_tleing(f)) dy
X
G(Prg) Si, (eiglG(f)G(TtZ—tlei&f)) dp
G(Prg) Su(G( Ty, ') )du

G(Prg) G (th(eiﬁlth’gftl e’fzf)>d,u

Prg (ﬂt(ei€1th*;7tleifz.f>)dw

th*l (61£1th*27t1 el&zf) dr.

Il
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Furthermore, for a given € > 0 as |c¢| becomes sufficiently large, we have

/ oIy (ez‘slth*Q i eifzf)dw . / o7 (eislth(chtleing>dW
M M

< ’/ gTy (eiglth*Q_tlei§2f>dﬂ-7/ th(lc)(eiﬁlth*;_tleiﬁzf)dﬂ
M M

+ / th(1C) (eiﬁlth*?_tl ei€2f) dm — / th(lc) (ei€1 th(QC)—tl €i§2f) dr
M M

< €+

/ th(IC) (ei& th*Q—h elbef _ pi& th(zc)—t1 U f) dr
M

By Cauchy-Schwarz ineqality we have that the second term in the last line is
bounded by the square root of the following expression

gl HTt(IC) (eiﬁlth27t1 JRIZY R 3 th(ZCltl eifzf) H

‘—>0 as |¢| — 0.

IA

eiﬁl.th§7t1 etéef _ eiflth(zcztl etz f

Il

IN

ol Tyt =T, e

This proves that as |¢| — oo the bivariate characteristic distribution

O g (€. 62) = E [exp (166G +i66(H (1))
converge toward the characteristic function
DG(f)(24,).G()(2y) (&1, §2) = Efexp (i61G(f)(Z,) + 162G (f)(Z1,))] -

Tteration of those arguments proves the convergence of the all finite dimensional
distributions. ]

Corollary 6. Under assumptions A1 and A2 the finite dimensional distributions
of the equivalence class valued processes [Yt(c)];t > 0 converge weakly toward the
finite dimensional distributions of the process Zy;t > 0.

Proof : This is a direct consequence of Theorem 7. O

Theorem 8. Under assumptions A1 and A2 we have that for all f € C*(M) N
Ker(B) N H! that the family of processes f(}Q(c));t > 0 converges in distribution
toward the process Gf(Z;),t > 0, where G : Ker(B) N H* — L?(X, u) was defined
in (6).3

Proof : Tt is now sufficient to prove tightness of the family of processes f(Yt(C)), t>

0. According to Billingsley (1968 p.55) the sequence of processes f(Yt(C)); t€0,1]
is tight in C([0,1]) when the two following conditions are satisfied :

i) the family of random variables f(YO(C)), ¢ € R is tight in R;
ii) for all n > 0 and € > 0 there exists a § > 0 and a ¢y > 0 with the property

P( sup | f(V)) - f(Yt(C))| > e) <n for all ¢ with |c|] > c.

|s—t|<d

3Does this prove that Z has continuous trajectories 7
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The first condition holds, since the C2-function f is bounded on the compact man-
ifold M.

For the second condition, we note that

P( sup [ (VL) — f(v)| > )

|s—t|<d

< P| sup ‘M}C)(t)—M;c)(s)‘ + sup / |Acf( (v,{) )|dr > e
|s—t|<d |s—t|<d

< ]P’( sup ‘M}C)(t)—M}C)(s)‘ €>+P< sup / |AfY(°) )|dr > )
ls—t|<s 2 ls—t|<§

By compactness of M for f € C?(M) N Ker(B) N H! there exists a Cy > 0 such
that

|Acf’ = |Aof| = |Af—VU : Vf| < Cy.
Then the second term yields

sup / ’A JI0 S |dr> <P| sup Cy|t— s > :P(Cf(SZ E),
|s—t|<d |s—t|<d 2

In order to obtain some bound on the first term, we need some more insight into
the construction of the process Y (¢). The definition of the process Y (©) uses the
fact that the d-dimensional Riemannian manifold (M, g) can be embedded into
some euclidean space RY by virtue of Whitney’s theorem. In local coordinates the
differential operator A, takes the form :

Z ij0, 0, | + Z b0y, f,

1]1

where the matrix valued function (a;j)1<i j<q is symmetric. The coefficient func-
tions a;5,1 < 4,7 < d and b;,1 < i < d can be extended to some functions
a1 <i,j < d and bi,1 < i < d defined on some neighborhood of M in RY.
The resulting differential operator

d
Za xlam]f—s-Zb& f

i=1

L\DM—*

satisfies A.f = A.f whenever f is a twice continously differentiable extension of a
function f € C?(M) to RY. We note @ the matrix valued function (a;;)1<i j<4 and b
the vector valued function (Bi)lgigd. We note that there exists a unique symmetric
positive definite matrix & satisfying 56¢ = a. The operator A, is the generator of
the RN-valued diffusion process Y'(¢) which is the solution of the following stochastic
differential equation

v = b(v{)dt + 5(v))dw,

where W;,t > 0 is standard Brownian motion on RY on a suitable filtered proba-
bility space (2, A, P, (F;)i>0) . It is proved in Hsu (2001 p.28) that the diffusion
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Y (9 stays in M if YO(C) € M. In order to obtain a representation of the local mar-
tingale M }C) in terms of stochastic integrals we use Ito-formula to see that for some
f € C®(M) we have

/Zazlfw S (Y1O)dWd + Ry,

where R;,t > 0 has bounded variation. Thus we have that

/Zax,f Y)Y AW

1,0=1

By Nash’s embedding theorem we can assume without loss of generality that the
embedding used to construct Y(¢) is a Riemannian isometry mapping (M, g) into
RY with its usual Riemannian structure. Thus the functions f, 05,1 <1,7 < N can
be assumed to have compact support. Thus those functions can be assumed to be
bounded by some constant. Following some argument that we found in Bensoussan
et al. (1978 p.403), we note that for

Q= sup ‘M}C) (t) — M(c)(s)‘
0<s,t<1,|s—t|<d

we have that

Q =  sw / S 00, V) (V)W
0<s,t<1,|s—t|<d | /s ig=1
t N B )
<2 s s |30, f)a, (V)W
ke{0,...,[1]} kO<t<(k+1)8 | Sk ;52

It follows that

€
PlQ>-] < P sup
( 2) Z L <k6<t<<k+1)6

ke{0,....[4]}

@,

/ S 0, FY)6 (W]

7,7=1

€
> —].
)
Applying first Chebyshev inequality and then Doob inequality (see Karatzas and
Shreve (1987 p.14)) yields

(c) (c) €

P sup MO - M) > <

<0<S,t<1,st<§‘ f ( ) f ( )| 2)

4% .
< — Z E[ sup / Z a f Y(c ( C))dW] ‘|
= 4

¢ ke€{0,...,[1]} kS<t<(k+1)8 | ks ;50

49 (k+1)s N o A
< E ) -
= Be > ; /k(S > 0., f( (V)W

ke{o,...,[+ 3,7=1
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It now follows from Burkholder-Davis-Gundy inequality that there exists a constant
C > 0 such that for all k£ one has

(0 & (©) © '
E B, F(VLN) G5 (V) )dWd
/. PIL AL ]
(k+1)s N 5 \?2
C Oy, (YO d
< E</5 Z(Z FEN5, (7)) )]

where the constant E; only depends on the bounds for the coefficients 7;; and the
partial derivatives of f. Finally this shows that

(©) (© 62 Y
IP’( sup |M (t) — M; (s)|>> < CEf€—4 Z 1 ~ CEf€—4.

0<s,t<1,|s—t|<d ! 2

This finishes the proof of the tightness since § can be choosen arbitrarily small. [J

Corollary 7. Suppose that the assumptions A1 and A2 hold. If for all x € M the
functions y — dx ([z], [y]) are in C*(M), then the equivalence class valued processes

[Yt(c)];t > 0 converges in distribution toward the process Z;t > 0.

Proof : By Corollary 6 it is sufficient to prove tightness for the family of process
[Y;(C)]; t > 0. The tightness criterion from Billingsley in this context becomes :

i) the family of random variables [YO(C)], c € Ris tight in X;
ii) for all 7 > 0 and € > 0 there exists a § > 0 and a ¢g > 0 with the property

P<|Su|p6dX([ ()], Y(C ‘>e) <n for all ¢ with |c| > ¢.
s—t|<

The first condition follows from the compactness of the metric space X. For the
second condition, we note that by triangle inequality

c (C c
dX(D/s( )] Y ZdX a 7(1421])

where s = rg < r1 < ... < r, =t is an arbitrary partition of [s,t]. Refining this
partition, we obtain as max; |r;+1 — ;| — 0 the following inequality

ax ) < MPO-MP) + [ |46y 0 Dlas

where Mo(lc) (t) is a Fy-martingale and
Gy : M — Ry —»=dx([z], [y]).

From this inequality the arguments described in the proof of Theorem 8 can be
used again. (]
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8. EXAMPLES

In this section we want to illustrate the main theorem through some examples. We
begin with the two extremal situations.

Example 1 : If the vectorfield b is the zero vectorfield, then ®;(z) = « for all
t € R. The equivalence classes introduced in the previous section then only contain
one element; i.e. : [z] = {z} for all x € M. From this results X = M and the
generator of the limit diffusion is Aj.

Example 2 : Let b be a C'-vectorfield such that the flow (®;);cr generated by the
equation & = b(x) has the property that for some 2 € M one has {®;(x);t € R} =
M. This property holds in particular, when the flow (®;):cr is transitive; i.e. :

Jwe M : {y liminf d(y, ®(2)) = 0} = M.

We note that every ergodic flow is also transitive (see Mané p.104).

Since there exists a trajectory, which is dense, it follow that = ~ y for all z,y € M.
Thus we have [x] = M for all z € M and it follows that the state space X consists
of only one point and the Hunt-process Y™ is trivial.

Example 3 : The three dimensional torus 72 can be represented by the cube
[0, 27]2 with the usual identifications (21, z2,23) = (y1,¥2,y3) iff v; = 0 and y; = 27
for at least one i € {1,2,3}. On T2 we define a divergence-free vectorfield through

b(x) = (0, sin x1, cos xl) )

It is not difficult to see that for all z; € [0, 27] the two dimensional tori

T = {(xlyyz,ys);yz,yg € [0,277]}

are invariant under the flow (®;).;cr generated by the vectorfield b. It is well known,
that the flow restricted to those two dimensional tori is ergodic iff tanz; is irra-
tional. Those points form a dense set in [0, 27]. In that case the flow is also transient
and there exists some dense trajectory. As a consequence, we see that if tanx; is
irrational, then any two elements z, y from Tfl are equivalent. When tanz; is
rational and x, y are two points from Tg?l, then there exist two points v and v such
that w3 = vy, tanw; is irrational, d(u,z) < €/3 and d(y,v) < ¢/3. Obviously, one
can follow the flow-line through « until one comes €/3-close to v. This reasoning
shows, that  and y are equivalent. It follows that M = [0, 27] where 0 and 27 are
identified. The limiting diffusion is a Brownian motion on the circle.

Example 4 : Let S? be the two dimensional sphere. We obtain a parametrization
of S? in R3 through

(61,02) — ( cos 01 sin 05, cos 61 cos O, sin 91)
Given a C'-function p :]0, 7] — R the incompressible flow

cos 01 sin Oy cos 0 sin(fs + tp(61))
¢¢ | cos by cosby ;= | cosbcos(B2 +tp(6h))
sin 61 sin 01
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After differentiation with respect to ¢ we see that this flow is generated by the
following vectorfield on 52

cos 01 sin 6y cos 01 cos 05
b| cos6;cosby :=p(01) | —cosbysinb,
sin 64 0

The flow (®;):cr generated from this vectorfield leaves invariant the small circles
defined through

S;l = {(00891 sin 6, cos 61 cosHQ,sint%);@g S [0,27r)}.

Since those small circles are parallel to each other it follows that any two elements
from two different small circles can not be in the same equivalence class with re-
spect to the relation defined in section 5. The flow generated by the vectorfield b is
essentially a rotation along those small circles. The geometry of the metric space
X is determined through the set where the function p vanishes as follows :

If p(f1) # 0 then all of Sj forms one equivalence class (since one can move along
the circle at zero cost);

If p(f;) = 0 and there exists a sequence of values 9:(Ln) with p(9§n)) # 0 converging
toward 6, then all of S;l forms one equivalence class (since one can reach a zero
cost trajectory at arbitrary low price);

If 6; is in an open set, where the function p is zero, then any two elements from
S, are not equivalent.

If 0; is not in an open set, where the function p is zero, then all the elements from
the small circle 8, are in the same equivalence class.

The resulting space X is thus obtained from the manifold M through collapsing of
small circles where the function p is non-zero.

Example 5 : For 0 < ag < a1 < az the ellipsoid is defined through

pefdod g
ap al ag

The sphere boundle SE carries a natural Riemannian metric. The associated
Laplace operator Agp generates Brownian motion on this resulting four dimen-
sional compact Riemannian manifold. The geodesic flow on SE is an integrable
dynamical system which preserves the Liouville measure on SE. It is generated by
a divergence free vectorfield that we will denote by by. In Franke, Hwang, Pai, Sheu
(2010) one can find further information on the diffusions generated by the elliptic
operators
A. = Agg + Cbg - V.

Example 6 : We present an example that shows that a continuous H' function
can be constant along the flow lines without being constant along the equivalence
classes with respect to the relation ~ introduced for the construction of the state
space X. Let C be the Cantor set in [0,1]. In the usual construction of the
Cantor set one starts with the interval Cy = [0, 1] from which one removes the open
interval G171 =]1/3,2/3[. Let x11 be the center point of this interval. From the
resulting set C = [0, 1]\G1,1 one removes the two open intervals G2 =]1/9,2/9[
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and G2 =|7/9,8/9] one obtains the set Co = C1\(G2,1UG22). Let 21 = 1/6 and
Z2,2 = 5/6 be the mid points of the two intervals G 1 resp. G2 2. We can continue
to obtain

C3 = Co\(G3,1 UG32UG33UG34)

with center points x31 = 1/18, x32 = 5/18, x33 = 13/18 and z3 4 = 17/18 for the
intervals G 1, G3,2, G3,3 and G3 4. In the n-th step of the construction, one has

Cn = nfl\(Gn’l U...u Gn’Qn—l)

and center points xy, 1, ..., T, gn—1 for the intervals G, 1, ..., G;, 2n—1. The Cantor set
is then obtained as the intersection

C .= ﬂC’n.

neN

Note that the distances between one of those points x, ; and the Cantor set C
equals 7, :=1/(2-3"~1) — 1/3" (this can be seen from the situation around z,, 1).
Further, it is well known, that the Lebesgue measure of the sets C), converge to
zero as n — oo. The Cantor function f : [0,1] — [0, 1] is continuous, takes constant
values on all gaps C,, ; and satisfies f(0) =0 and f(1) =1 . It can be obtained as
a uniform limit of a sequence of continuous functions f,,. The construction of the
sequence f,;n € N is done through induction. One starts with fo(x) = z for all
x € [0,1]. For n > 1 functions f, are defined inductively as follows

%fn(3a:) for0<z< %;
fn+1(x): % for§<x§§;
s+ 3fa(Bz—2) forz<az<1

By construction, the function f,, is continuous, is constant on the gaps C,, ;. for all
m < n and satisfies f,,(0) = 0 and f,(1) = 1. The sequence f,;n € N converges
uniformly toward a function f as n — oo. It follows that this limit function
f is continuous, constant on the gaps of the Cantor set and satisfies f(0) = 0
and f(1) = 1. Let T? be the two dimensional torus, which can be constructed
from the square [—1,1] x [—1,1] with the following relations (—1,y) ~ (1,y) and
(x,—1) ~ (z,1). On the torus, we can define the family of points z, ; = (znx,0)
forn >1and 1 < k < 27!, The above consideration then shows that the family
of open balls B, (2,k); n > 1 and 1 < k < 2771 are pairwise disjoint and if
one removes their intersections from the geodesic circle {(z,0);z € [-1,1]} in T?
one obtains the Cantor set on the segment {(x,0);z € [0,1]}. Let p : R — R
be a smooth function which vanishes outside [1/2,1] and which is positive for all
x €]1/2,1[. For a given z, = (z,,0) we can construct a vectorfield b, ; with
support in B, (z, %) as follows

bn,k(x,y):p(rgl (xxn,k)2+y2)( y )

Tn,k —

This vector field generates circular flow lines with center z,; for any radius r €
/2,0l
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c@o G Qo

Figure : Some illustration of the flow lines constructed in example 6.
The vector field

b(l’,y) = Z Z bn,k(xvy)

n=1gk=1,....2n—1

generates circular flow lines around all z,  forn > 1and 1 <k < 2n=1 Tt results
from this that for any gap Gy, 1 its extremal points inf Gy, ;, and sup G,, i, are on the
same flow line. Note that any two points u and v from C,, can be joint by a path
which consists in using the flow to cross the gaps G, 1, which might separate u and
v. The maximal amount of cumulative jumps necessary to link v and v between
those zero-cost flow portions is certainly less than the Lebesgue measure of C,,.
This implies that all points of the form (x,0);z € C are in the same equivalence
class, since the Lebesgue measure of (), decreases to zero as n goes to infinity and
C= ﬂnEN Cn

Our goal is to define a continuous function g on the torus 72 which is also in
Ker(B) N H! and which is constant on the flow-lines of the vector field b but not
constant on the equivalence classes. In order to define the function g, we put
g(x,y) = f(znk) for all (z,y) € By g := By, (2n,k), where f is the Cantor function.
As a result the function g is defined on the set

oo 277t

K =] | Br.(zan)-

n=1 k=1

Note that the function g is continuous on K.
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We now have to define the function g on the remaining parts of the torus. On the
sets {(z,y); —1 < x < 0} we define g(z,y) = —

It then remains to define the function g on the set {(x,y);0 < z < 1}\C. In the
following we describe its construction on the upper part {(x,y);0 < z,y < 1}\C.
The construction on the lower part {(z,y);0 <z < 1,—1 <y < 0}\C carries over
symmetrically. We first construct the familly of rectangles

Diy = ]0,1[x]ry,2[

Dy = 10,211 —m[X]re, 1]

Doy = Jx11+r1, 1[x]re, |

D31 = 10,221 — ro[x]rs, 2|

D3y = Jwo1 472,211 —ri[x]rs, ra
D3 5 Jz1,1 4+ 711,22 — ro[X]rs, ro|
etc.

The following graphic illustrates the sets D,, . Observe that for n > 1 one has

2n71

U Dn,k =Cho1 X]7’7n7’n—1[~
k=1

Dy

1

D271 /B \ D2’2
o 1,1
7“3**m—t B2 i—wr | ﬁﬁv—t Bs.2 i—rr
T T T T T
T31 T1,1 33 T2 2

]
T
T34

T
€21 x3,2

On the set D;; we define the function to satisfy f(x,y) = z. It follows that
g(x11—ri,m) = % —ryand g(z1,1 +71,71) = % + 1. On the vertical line segment

Vl(fl) = {(x11+71,9);0 < y < r1} we then define g through linear interpolation as
follows

g(xq +r1,y) = % +vy.

Since by construction g(1,y) = 1, we can define the values of g on D32 through
horizontal linear interpolation as follows

_1_
x 3 T1

g(z,y) = (5 +y) + A -yiltrm<z<lim<y<rn.

2"

A similar construction can be done to define g on the rectangle Ds ;. As a result
the partial derivatives of g on the rectangles D; » and D5 s satisfy

1 1
-l =l i3

|029(z, y)| = ‘%_T
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and

1 1
_1_ _ 1-1_
e SR P S

dyg(z,y) ::’1‘*

| v ‘ % -7 % — T % — T
Now, one can iterate this process to define the value of the function g on all rect-
angles D,, ;.. For convenience we introduce a notation which helps to relate the set
D, 1, to the center and radii of the balls which are to be found on its left and right
side. Note that for £ > 1 the rectangle D, j, is delimited on its left side by a vertical

line segment V( ,)C, Wthh is tangential to one of the balls B )k with 1 < m < n.

For those &, let 2! k be such that (z 0 0) is the center of the ball B( ) . Further,

n,k?
denote by 7" i its radius. For k =1 we put x( ) =0 and 7’ =0. The above line

segment then can be represented as Vrfl,)c = {( ff)k Ti)k, ) O <y<r k} In the

same way, we use the fact that for k < 2"~ the set D,, \ is delimited on its reight

side by a vertical line segment V( & which is tangential to one of the balls Bffl)k
(r)
=1

with 1 < m < n to define suitable a:( ) and ?"(T) Furthermore, we put Ton—1 4

and 7"2”71 1 = 0. The following figure 111ustrates the situation.

)
Viok
BY), v
D .
— By,
Tk Tk T
: 0 | —ri)

nk

Now, in the process of defining the function g on the set D, j it is already known

on the horizontal line segment H, j = ] ,(f)k + Tfll)k, (T) (T) [ {rn-1} Thus

its values in the upper endpoints of the vertical line segments V( i and V are
known. The values of g on those line segments are then obtalned through hnear
interpolation from those values toward f(l)k = f( ) resp. ffl = f(z n,k)' As a

consequence on V(l)c the function g has the followmg representation

g(z g)k — ’I“fll)k, y) = 57(3,)14‘/ + f(l) for 0 <y < r(l)

and on VTEl,)C the function g has the expression

(r)

((l) 0 JY) = 5(Tky+f(7) f0r0<y<7’n,k,

nk:+r

with suitable positive coefficients 5(l)k and 5(T). Those coefficients correspond to

the rate of increase of the function z — g(z, S)k) resp. © — g(z, 7"7(1 ). As we will

see below, they are upper bounded by (5) . The function g is then defined on
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the rectangle D,, ;, through horizontal interpolation as follows

l l
- — 10,

r r 1) l s 1) l
g(z,y) = ((5( ky+f( )) (5( ky+f( ) )) (T) (r ) 0) (z (5( ky+fv(L,)k)'
T Tk~ Tpk

Note that by construction of the Cantor function, one has f(r) f(l),C = 2n-L

Moreover, by construction of D,, j one has :cgzﬁ + rg;ﬂ gf )k 7(3 ) =371, It thus

follows

@ @

T

n— T l l
3 1\<f£,1f653“3€y> <f£L o.5)|

< (%)"‘1.

IN

By the symmetry of the construction the rate of increase of the function g along
the segments V(l) reproduces its rate of increase along the horizontal line segment
] s)k - rfj)k, gk [ {r } Thus it follows that

0 < 8k(l) < [Bug(a,rV)| < ()™

Thus it follows that 0 < 57(1% < (3)"=2. Since a similar reasoning also applies to
65:2, we have for all 1 < k < 271 that

0 < min(8),8)) < max(8\),800) < (3)"2.

Further, one has

(r) _ 50 r x(l)k (l)k 0)
|ay9(33»y)} = (6n,k - 5n, ) ( 3€+T(r) (l) _ Ts)k + 6n,k
O] (l)
R0 T Tk~ Tnk 0)
< 18k = 8l 0 0 | ok
n k n kT n k n,k
(r) <(
S 2max (67:14:’ 611 )k)

We so far have seen that on D,, ;, we have

Vol = @0 + (@40 < () + (2") =53
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It thus follows that

271.71

[ Vawfasay = 53% [ (3 deay
n,k

nok Dk n=1 k=1

oo 2771

53> (3P UAE(Dy, k)

n=1 k=1

I

oo 277t

= 522 (B - ) ()

We now turn our attention to the remaining part of |0, 1[*\ K. For this, we define
the sets

Rn,k = {(fﬂ,y) Tk < T < Tk + Tk, \/ r'i’k- - y2 <y< rn,k}
Ln,k = {(%y) CTnk — Tnk <z< Tn ks \/ ri)k - Z/Q <y< Tn,k}

Those two sets can also be represented in polar coordinates around the point
(Tn.k, 1) as follows

and

Rn,k: = {(4107T)70 <p< %ﬂ"mk <r< rn,k/Sin@}

The remaining part, were the function g has to be defined is the union of disjoint
sets

In order to define the function g on those two sets, we use polar coordinates around
the point (x, ,1) and introduce the functions r(¢) and h(y) according to the foll-
wing figure.

Ly i Ry
B,k T
() h(e)
A
f Tn {
We then have
r(p) = " and h(p) = r(p)sinp = r, tangp
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Note that the values of g are already defined on the boundary of the region R, .
Its values inside of the set R, are then obtained through interpolation along lines
passing through z,, ,: The value on the set B, i equals fy, 1 := f(zn,1). We already
discussed that on the vertical segment {x,, j + 7,}x]0,7,[ which forms the right
boundary of R, j we have g(z, k + rn,y) = On k¥ + fnr With some suitable ¢,
satisfying |6, x| < (2)"~!. Further, on the horizontal segment ]z, i, @y + 75 [x{ry }
forming the bottom boundary of R, we have g(x,y) = 6n k(2 + Tn k) + fok By
symmetry it is sufficient to study the interpolation of the function along straight
lines intersecting the vertical segment {x,, x +r,}x]0,r,[. We there then define the
function g with respect to polar coordinates as

Tp —T
9(re) = for+ ———=(9(@nk + 10, () = frk)
() ()
Ty — T
= fn,k + ﬁ(g(xn,k + 7y, Ty tan QO) - fn,k)
n cos ¢

Tp —T
= fn,k: + ﬁ(sn)]ﬂ"n tanap

n cos ¢

sin ¢
= fn,k + (’rn - T) n,k-
cosp —1
Its partial derivative with respect to r equals
sin
Org(r, = —pp———
’I"g( SD) n,k COSSO* 1

and its partial derivative with respect to ¢ equals

cos p(cosp — 1) + sin psin

aipg(ra ()0) = 6n,k(rn - T) (COSQD R 1)2
1 —cosyp
- 6’”, n - N9
#(rn =) (cosp — 1)
1
#(ra =) (cosp —1)

It follows that

// |0 g/ dady
Rk

T rrle) )
/ / rl0,g(r, ) Pdrdo
()
= / / sin’ ¢ —————drdyp
- (cosp —1)2

4 2
- 2, / L(r(g) — )’

sin® ¢
——=d
(cosp —1)2 7

A

Ld .92
4 s @ 2 2
62 2 —1)2 — T __dp < K6
= nk2 n(\/> ) /0 (COSQO—l)Q 4 10n,k"n
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1) 1—cos ¢

Tn
r T'n"cos ©

— 1
cos @ n T"(coszp

T rrie)
/ /R 10,9 dedy = / / r|20,9(r, o) Pdrdy
n,k
(%) (r—r )
- =) e
n k/ / COS(p — 1) ray

T(sa) —r k)
< A, W drd
- / /, cos<p —1)2 14
1 _ 3
_ 6721,]@7/04 (T(SD) ’I"n) ng

(cosp — 1)

and also since r(¢) —r, =

T (1 — cos
= 2 kr2/0 7( cos%psp)d@ < K25,21);€7“,21

As a consequence we have that

// Vol2dady = // 10,9 2dudy + // 10,9Pdedy < K622
Rn,k Rn,k Rn,k

It follows from this that

// Vgldedy = // Vgl2dedy
Un k Bak n=1 k=1 “ 7 Bnk

IA IN |

= = 8
e 10]s y
M7 I

— D)

oo %

=

oy

G

=

n=1 k=1
< K(é)222n71(%)2n 2(%)271 2
n=1
= K(%)?Zanl(%)nfl <
n=1

All in all we have shown that

//T? |Vg|2dzdy < cc.

Thus the function g is in H! N C(T?) and constant along all trajectories. However,
it is not in Ker(B).

9. APPENDIX

Proof of Proposition 2 : The first part is a special case of Riesz theorem on the
weak compactness of the unit-ball in a separable Hilbert-space. We give a proof
for the convenience of the reader. Assume that there exists a sequence v¢,,,n > 1
in H' such that [¢,|%: < C for all n € N. There exist suitable coefficients
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an.k,n € N,k € N such that

Yy = Z%,k% and Zai,k/\k < C.

k=1 k=1
This implies that the sequence a, i,n € N satisfies 0721,1)\1 < C. There exists an
infinite set Nl C N and an a; € R such that

Gn,1 — a1 as n — 00 in 1\71.

We note that we can find an infinite subset N; C N; such that

oo
Zai,k)‘k <C—ai\ +1/2 forallne Nj.
k=2
We now observe that the sequence a,2,n € N; also satisfies a%72A2 < C. If we

iterate the above procedure, we find a sequence of infinite subsets N,,;m € N with
N,, C Np,_1 and a sequence of real numbers a.,,;m € N such that

Qnym — Qm S N — 00 in Ny,

and )
S a2 <C— Y a4 (1/2)™ forall n € Ny,
k=m =1

If we choose a diagonal-sequence with the property n(m) € N,, for all m € N, then
it follows that for all £ € N we have

Ap(m),k —7 Ak AS M — OO

and
00 m—1
Z ai(m%k)\k <C- Z ai\ + (1/2)™  for all m € N.
k=m =1

This last statement implies that ¢ := 21;“;1 ar¢y, is in H' since we also have

Z G%Ak S C.
k=1

Now, we fix an arbitrary ¢ € H'. It then can be represented in the following form

o0 oo
= ch¢k with Z i < 00.
k=1 k=1
For an arbitrary € > 0 there exists a K € N such that

Z A < E/(C+1).

E>K
Moreover, we have for all m € N that

1/2 1/2
Z |an(m),k\|0k|)\k = (Z a‘i(m),kAk> (Z c%)uc) < €.

k>K k>K k>K

1/2 1/2
(Z a%)\k> (Z ci)\k> <.

k>K k>K

A

In the same way we have

> larller| A

k>K

IA
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This yields that
’<wn(m)a <)0>H1 - <¢7 <)O>H1 |

< Z |y el len A + Z | (m) e — kel cr| Ak + Z |ak||cx) Ak
E>K k<K E>K
S 26 + Z |an(7n,)7k', - ak||6k|>\k~
k<K

However, the last term converges to zero as m — oo, because a, () r — ax for all
k € N. This proves the first part, since € can be arbitrarily small.

The second part is a type of Sobolev-embedding theorem for our situation, since
it states that the inclusion of H' into H is compact. Here we use the fact that
An — 00. We have to prove that v,,(,,) converges toward ¢ in H. For all N € N
and m € N we have

> 1
Z |an(m),k’ - ak|2 < /\7 Z |an(m),k - ak|2)\k
k=N N =N
1 4C
< = — Y3 < —.
< )\N|\¢n(m) Yl < Y.

Thus there exists for all e > 0 a N > 0 such that

oo
Z | (my x — arl” < e
k>N

This implies that for all m € N

o0
”wn(m) - ¢||2 = Z |an(m),k - ak|2 <e+ Z |an(m),k - ak‘2'
k=1 E<N

The last term converges toward zero as m — oo. This proves the result, since € can
be chosen arbitrarily small. ([l
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