
HAL Id: hal-04571653
https://hal.science/hal-04571653

Preprint submitted on 8 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

No Broadcast Abstraction Characterizes
k-Set-Agreement in Message-Passing Systems (Extended

Version)
Sylvain Gay, Achour Mostefaoui, Matthieu Perrin

To cite this version:
Sylvain Gay, Achour Mostefaoui, Matthieu Perrin. No Broadcast Abstraction Characterizes k-Set-
Agreement in Message-Passing Systems (Extended Version). 2024. �hal-04571653�

https://hal.science/hal-04571653
https://hal.archives-ouvertes.fr


No Broadcast Abstraction Characterizes
k-Set-Agreement in Message-Passing Systems

(Extended Version)

Sylvain Gay∗

École Normale Supérieure
sylvain.gay@ens.psl.eu

Achour Mostéfaoui
LS2N, Nantes Université

achour.mostefaoui@univ-nantes.fr

Matthieu Perrin
LS2N, Nantes Université

matthieu.perrin@univ-nantes.fr

Abstract

This paper explores the relationship between broadcast abstractions and the
k-set agreement (k-SA) problem in crash-prone asynchronous distributed systems.
It specifically investigates whether any broadcast abstraction is computationally
equivalent to k-SA in message-passing systems.

A key contribution of the paper is the introduction of two new symmetry prop-
erties: compositionality and content-neutrality, inspired by the principle of network
neutrality. Such clarity in definition is essential for this paper’s scope, as it aims not
to characterize the computing power of a specific broadcast abstraction, but rather
to demonstrate the nonexistence of a broadcast abstraction with certain characteris-
tics. Hence, delineating the realm of “meaningful” broadcast abstractions becomes
essential. The paper’s main contribution is the proof that no broadcast abstraction,
which is both content-neutral and compositional, is computationally equivalent to
k-set agreement when 1 < k < n, in the crash-prone asynchronous message-passing
model. To the best of our knowledge, this result represents the first instance of
showing that a coordination problem cannot be expressed by an equivalent broad-
cast abstraction. It does not establish the absence of an implementation, but rather
the absence of a specification that possesses certain properties.

Key-words: Agreement problem, Asynchronous system, Broadcast abstrac-
tion, Communication abstraction, Compositionality, Message-passing system, Net-
work neutrality, Process crash, k-Set agreement, Wait-free model, Total order
broadcast.

∗This author was at LS2N, Nantes Université when this research was conducted.

1



1 Introduction

1.1 From Send/Receive to Communication Abstractions

This paper considers distributed systems consisting of a set of asynchronous processes
prone to crash failures. These processes communicate by sending and receiving messages
across an asynchronous network and must cooperate to achieve a common goal. What
makes distributed computing challenging is that the dynamics of the underlying network
on which the distributed application operates are beyond the programmer’s direct con-
trol. This necessitates treating the environment as a “hidden input” [23] and to “manage
uncertainty” at runtime. To facilitate the design of advanced algorithms in this unpre-
dictable setting, it is usual to define appropriate communication abstractions, that allow
modularity and help mitigate uncertainty by restricting communication patterns that
may occur at a higher abstraction level.

In crash-prone asynchronous distributed systems, a significant source of uncertainty
stems from the divergent perceptions of the event set (i.e., message emissions and re-
ceptions) among different processes. Broadcast abstractions, which enable processes to
transmit a message to all participants within the same operation, alleviate this issue by
ensuring consistent and reliable communication across different nodes, thereby simpli-
fying the complexity of managing individual send/receive operations and enhance fault
tolerance by reducing the impact of node failures. Hence, message broadcasts (at least
by correct processes) constitute a set of global events for which all correct processes even-
tually agree they took place, thereby underlining their significance in the architecture of
reliable distributed computing systems.

Another source of uncertainty arises from the disparate order in which different par-
ticipants may receive messages, leading to varied perceptions of the global state of the
system. Several communication abstractions have been defined by enforcing properties
on the message delivery order. FIFO and Causal Ordering are examples of such prop-
erties at the heart of FIFO-broadcast and Causal-broadcast [3, 24]. These abstractions
facilitate the construction of distributed objects, like causal memory in asynchronous
message-passing systems [2].

A remark on vocabulary Throughout this paper, to avoid confusion, we distinguish
between the terms “send” and “receive”, which denote low-level point-to-point commu-
nication primitives applied to individual messages, and “broadcast” and “deliver”, which
describe the higher-level operations of broadcast abstractions (one-to-all). Consequently,
in the context of this paper, the terms “receive” and “deliver” are not used interchange-
ably or as quasi-synonyms.

1.2 Capturing Coordination Problems with Broadcasts

This paper follows the quest of identifying broadcast abstractions that characterize the
major fundamental problems in distributed computing. Specifically, we aim to determine
broadcast abstractions that are computationally equivalent to particular synchronization
problems in a crash-prone asynchronous message-passing system. This equivalence means
that the broadcast abstraction can resolve the synchronization problem regardless the

2



number of crash failures, and vice versa.
A well-known such characterization is the equivalence between Total Order Broadcast

and the consensus problem. Consensus is a fundamental problem of distributed com-
puting, that allows each process to propose a value, and ensures all correct processes
decide on a common value. The defining properties of this problem are as follows: if a
process invokes propose(v) and does not crash, it will decide on a value (termination);
no two processes will decide on different values (agreement); and the decided value must
have been proposed by a process (validity). One of the primary practical applications
of consensus is to maintain consistency across replicated machines in a message-passing
system. However, State Machine Replication (SMR) [26] typically builds on an interme-
diate communication abstraction, the well-known and powerful Total Order Broadcast
abstraction [21]. This abstraction ensures that the order of message delivery is consistent
across all processes.

The consensus problem is famously unsolvable in an asynchronous distributed sys-
tem, even under the assumption that at most one process may crash [11]. The same
holds for Total Order Broadcast. Indeed, both abstractions are computationally equiv-
alent [7]. In a sense, Total Order Broadcast precisely “characterizes” the essence of the
consensus problem. In a similar vein, Mutual Broadcast was recently proposed as a broad-
cast abstraction equivalent to read/write atomic registers [9]. Moreover, Pair Broadcast
characterizes the computational power of both test-and-set and consensus between two
processes [10]. Such capturing broadcast abstractions are instrumental for understanding
the fundamentals of distributed computing problems by reducing their complexity into a
logical property about the order in which different processes perceive events occurring in
the system.

1.3 On the k-set Agreement Side

Specifically, this paper delves into characterizing the k-set agreement problem (k-SA), a
generalization of consensus introduced by S. Chaudhuri in [8]. In k-SA, the agreement
property is weakened as follows: processes are allowed to collectively decide up to k
different values. Here, k represents the maximum disagreement in the number of different
values that can be decided. The smallest value k = 1 corresponds to consensus. As k
increases, the problem becomes less constrained and may become easier to solve. However,
it still embodies numerous complexities and challenges of distributed systems. It remains
insoluble in a crash-prone asynchronous system when k < t, where t is the maximum
number of processes in the system that may crash [5, 14, 25].

The exploration of a broadcast abstraction that characterizes k-SA was initiated in a
work dedicated to the shared-memory model, which proposed k-Bounded Order Broadcast
(k-BO Broadcast in short) [15]. The k-BO Broadcast abstraction limits the disagreement
on the message reception order among processes. Specifically, its ordering property asserts
that every set of k+1 messages contains two messages delivered in the same order by all
processes. In the special case where k = 1, it boils down to Total Order Broadcast.

In crash-prone asynchronous systems where processes additionally have access to a
shared memory composed of atomic read/write registers, k-BO Broadcast is computa-
tionally equivalent to k-set agreement. However, this equivalence in shared memory does
not inherently translate to message-passing systems. Indeed, although k-BO broadcast

3



can be used to solve k-set agreement on its own, it remains unproven whether it can be
implemented using solely k-set agreement objects and send/receive operations. While
consensus is strong enough to emulate atomic registers, k-set agreement, for k > 1, is
unable to emulate shared memory. Indeed, it has been proved that on one hand, k-SA
and a problem called the k-simultaneous-agreement are equivalent in shared memory sys-
tems [1], and on the other hand, the k-simultaneous-agreement problem is harder than
k-SA in message-passing systems where a shared memory emulation is not possible [6].
A corollary of this paper is that the implementation of k-BO broadcast on top of k-SA
is not feasible in message-passing systems.

Problem Statement This paper investigates the following question: Does there exist
a broadcast abstraction computationally equivalent to k-SA in crash-prone asynchronous
message-passing systems?

1.4 Contributions

Symmetric broadcast abstractions. A simplistic approach to the discussed question
might propose the following ordering property: “At most k distinct messages can be
delivered as the first messages by the processes.” Indeed, on the one hand, a k-SA object
can select the set of messages eligible for initial delivery; and on the other hand, k-SA can
be trivially solved by broadcasting all proposed values and deciding on the first delivered
ones, hence establishing equivalence. However, such a solution is “unsatisfactory”, as an
instance of this broadcast abstraction would only be effective for solving k-SA once, before
the ordering property becomes meaningless. Hence, an iterative resolution of k-SA would
necessitate a difference instance of the broadcast for each k-SA object to implement.
This requirement contrasts with the traditional understanding of how processes interact
with the communcation layer in a message-passing system, where a broadcast abstraction
serves as a system-wide service, shared among multiple algorithms for solving higher-level
tasks. Each algorithm employs only a subset of the system’s messages.

Hence, before delving into our main problem statement, another important question
needs to be clarified: What constitutes a satisfactory solution? A major contribution of
this article is the introduction of two symmetry properties drawing inspiration from the
principle of network neutrality: compositionality and content-neutrality. Compositional-
ity ensures that a broadcast abstraction does not discriminate based on the application
using it. This property is essential for constructing higher-level systems in a modular way,
as a composition of independent components that share the same underlying broadcast
abstraction. Content-neutrality ensures that the behavior of a broadcast abstraction does
not depend on the content of the messages.

An Inexistence Result. Having defined what constitutes an appropriate broadcast
abstraction, we are now equipped to address our problem statement, to which we provide
a negative answer: we demonstrate that no broadcast abstraction, which is both content-
neutral and compositional, is computationally equivalent to k-SA for 1 < k < n.

To the best of our knowledge, this research presents the first instance where a coordi-
nation problem has been proven to lack an equivalent broadcast abstraction. This proof
introduces an additional layer of abstraction compared to standard impossibility proofs.

4



Classical impossibility proofs typically demonstrate that a given specification cannot be
implemented within a certain model. In contrast, our approach, which involves dealing
with a specification that remains an unknown variable, presents new challenges. These
challenges require more precise definitions of the computing model and the scheduler,
along with a more careful analysis of arguments related to the expected behavior of the
broadcast abstraction.

Paper Organization. The remainder of this paper is organized as follows. Section 2
delineates the crash-prone asynchronous message-passing distributed computing model
pertinent to our results. Subsequently, Section 3 defines permissible broadcast abstrac-
tions, introducing the novel symmetry properties. Section 4 then establishes that no
content-neutral and compositional broadcast abstraction is computationally equivalent
to k-set agreement for 1 < k < n. Finally, Section 5 concludes the paper.

2 Computing Model

The computing model is the classical asynchronous crash-prone message-passing model.

Process Model. The computing model consists of a set Π of n sequential processes
denoted p1, . . . , pn. Each process operates asynchronously, meaning it progresses at its
own speed, which is arbitrary, unknown to other processes, and may vary through time.
A process may halt prematurely (crash failure) but executes its local algorithm correctly
until it possibly crashes. We do not assume any bound on the number of processes
that may crash, hence t = n − 1. A process that crashes in a run is said to be faulty.
Conversely, a process is called correct or non-faulty if it does not crash.

Communication Model. Communication between each pair of processes occurs
through two uni-directional channels, one for each direction. Consequently, the network is
complete: any process ps can directly send a message to any process pr (including itself).
Each channel is reliable (free from loss, corruption, or message creation), not necessar-
ily FIFO (First-In/First-Out), and asynchronous (messages have finite but unbounded
transit times).

A process ps invokes the operation “send m to pr” to send a message whose content
is m to pr. The event “receive m from ps” occurs at pr upon receiving a message whose
content is m from ps. Although messages may share content, each sent message is unique.
By a slight abuse of language, we say that “a process pi sends (resp. receives) a message
m” when pi sends or receive a message whose content is m. The communication channels
are governed by the following properties:

SR-Validity. If a process pr receives a message m from ps, then ps has indeed sent m
to pr.

SR-No-Duplication. No process receives the same message more than once.

SR-Termination. If a process ps sends a message m to a correct process pr, then pr
will eventually receive m from ps.

5



It is important to note that, due to asynchrony in processes and message delivery, no
process can ascertain whether another process has crashed or is merely slow.

Notation The acronym CAMPn[∅] denotes the described Crash-prone Asynchronous
Message-Passing model without additional computational power. CAMPn[H] represents
CAMPn[∅] enhanced with the additional computational power denoted by H. For in-
stance, CAMPn[k-SA] denotes the model CAMPn[∅] in which processes have access
to as many instances of the k-set agreement object as needed. Similarly, if B repre-
sents a broadcast abstraction, then CAMPn[B] refers to the CAMPn[∅] model in which
processes can broadcast and deliver messages via the abstraction B.

Execution An execution α is a sequence of steps, each represented as a pair ⟨pi : a⟩,
where pi ∈ Π represents a process, and a is an action occurring at pi. These actions
can be local computations, the invocation of primitives (such as message emissions),
the triggering of local events (including message receptions), as well as invocations and
responses of high-level operations as specified in the enriching hypothesis H. Examples
of such high-level operations include proposing or deciding on a value in a k-SA object.

We define an execution α as being admitted by the model CAMPn[H] if it satisfies
several criteria: it must adhere to the three properties of the communication channels,
namely SR-Validity, SR-No-Duplication, and SR-Termination; it must conform
to all properties specified by H and the high-level abstractions it provides; and it must
be well-formed with respect to the algorithm it executes, as delineated by the following
definition.

Definition 1 (Well-Formed Executions). Consider A, an algorithm that implements a
high-level abstraction A within the CAMPn[H] model. An execution is deemed Well-
Formed with respect to A if it fulfills the following conditions:

• Only processes labeled from p1 to pn take actions in α;

• A process only invokes an operation of A after having returned from its previous
invocations;

• The actions undertaken by any process between the invocation of an operation on
A and its corresponding response (if one exists), excluding local events (such as
message receptions and deliveries), must align with the actions specified by A.

3 Defining Admissible Broadcast Abstractions

3.1 Interface of broadcast abstractions

A broadcast abstraction denoted as B, enables processes to broadcast messages that are
guaranteed to be delivered at least to all correct processes. Consequently, all broadcast
abstractions share the same interface, comprising a single operation named broadcast

and an event called deliver.
A process pi invokes the operation “B.broadcast(m)” to utilize B for broadcasting

a message whose content is m. This is referred to as pi B-broadcasting a message whose

6



content is m. Subsequently, the event “B.deliver m from pi” might be triggered at some
processes pj, leading us to say that pj B-delivers a message m from pi. Analogous to the
send/receive interface, it is assumed that each broadcast message is unique, regardless of
having identical content. However, for the seek of conciseness, we amalgamate a message
and its content whenever the distinction is immatereal. The set of all messages that can
be broadcast during an execution is denoted by M. The following properties must be
verified by all broadcast abstractions.

BC-Validity. If a process pi B-delivers a message m from pj, then it is guaranteed that
pj has previously B-broadcast m.

BC-No-Duplication. A process will not B-deliver the same message more than once.

BC-Local-Termination. If a correct process invokes B.broadcast(m), it will eventu-
ally return from this invocation.

BC-Global-CS-Termination. If a correct process B-broadcasts a message m, then all
correct processes will eventually B-deliver m.

The first two properties mentioned are classical safety properties and share the same
definitions as their send/receive counterparts. The third property is a classical liveness
property. It is important to note that the BC-Global-CS-Termination property
only applies to correct processes. (The abbreviation “CS”, standing for correct sender,
emphasizes that this property is contingent on the sender’s correctness.) Consequently,
if a process pi crashes during its execution of broadcast(m), it is permissible for some
processes to deliver m while others do not, unless otherwise specified. This specifica-
tion choice is intentionally made to allow for flexible definitions of liveness properties in
broadcast abstractions.

In particular, the most basic broadcast abstraction that can be defined, only verifies
the four properties defined above. In the CAMPn[∅] model, its implementation involves
simply sending messages to all participants. For this reason, it is commonly referred to
as Send-To-All Broadcast.

Remark on Expressiveness Set-Constrained-Delivery Broadcast (SCD Broadcast) [16]
and its extension k-SCD Broadcast [15] are two examples of broadcast abstractions whose
specification slightly deviate from the propose interface. Indeed, these abstractions deliver
messages not individually, but within unordered sets of messages, hence the designation.
While it is easy to generalize the definitions and the proofs to accommodate this partic-
ularity, doing so would compromise readability. For the sake of maintaining clarity, we
have chosen not to pursue this generalization

A local ordering property When considered together, the BC-Validity and BC-
Global-CS-Termination properties ensure that a step ⟨pi : B.broadcast(m)⟩ exe-
cuted by a correct process pi is always followed by a step ⟨pi : B.deliver m from pi⟩. In a
similar vein, the BC-Local-Termination property guarantees that the B-broadcasting
step is consistently succeeded by ⟨pi : return from B.broadcast(m)⟩. However, there
is no inherent order between the delivery of its own message m by pi, and pi returning

7



from its B.broadcast invocation. Once again, this specification choice is deliberately
made to accommodate flexible definitions of broadcast abstractions. For instance, cer-
tain abstractions may require that B.broadcast returns immediately, or they may wait
until the broadcast message has been delivered, while others may delegate the deci-
sion to the implementation. Nevertheless, it is occasionally beneficial to reason based
on a fixed total order among the three events. Adopting the terminology suggested
in [9], we augment all broadcast abstractions with a trait B.sync-broadcast(m), de-
fined as: B.broadcast(m); wait(m has been B-delivered locally). For every message m
B-broadcast by each correct process pi, the following three steps occur sequentially:
⟨pi : B.sync-broadcast(m)⟩, followed by ⟨pi : B.deliver m from pi⟩, and then ⟨pi :
return from B.sync-broadcast(m)⟩.

3.2 Symmetry Properties of Broadcast Abstractions

Broadcast abstractions can be characterized by additional predicates on the set of exe-
cutions they admit. Typically, these predicates fall into two categories. On one hand,
liveness predicates ensure message delivery in scenarios not covered by Send-To-All Broad-
cast. Examples of this include the definitions of Reliable Broadcast and Uniform Reliable
Broadcast [13]. On the other hand, safety predicates concern the relative order in which
processes deliver messages. Examples in this category are FIFO Broadcast, Causal Broad-
cast [3, 24], Mutual Broadcast [9], Pair Broadcast [10], k-Bounded Order Broadcast [15],
and Total Order Broadcast [21].

As highlighted in the Introduction, not all predicates are equally appropriate for the
design of a broadcast abstraction. In this section, we introduce two novel symmetry
properties inspired by the broader principle of “network neutrality”. Network neutrality
advocates, among other tenets, that network services should not discriminate based on
the content, sender, or usage of the messages they transmit. While concerns regarding
network neutrality often arise in discussions about non-functional aspects of message
routing, they hold significant relevance for the functional design of broadcast abstractions.
Within this framework, we interpret network neutrality to include two essential symmetry
properties: Compositionality and Content Neutrality. These properties assert that the
broadcast abstraction should impartially treat all messages, irrespective of their usage or
content.

Compositionality. Building upon earlier concepts, one might propose characterizing
iterated k-SA using an iterated version of the broadcast described in the Introduction.
This approach, denoted by k-Stepped Broadcast, would be characterized by the following
ordering property: “for each a, define Sa as the set containing the ath message broadcast
by each process; then there are at most k messagesm ∈ Sa such that some process delivers
m before any other message in Sa”. Now, the ordering of messages within each Sa set
could determine the set of values decided on a sequence of k-SA objects, and conversely,
thereby establishing equivalence.

However, since the ordering property only governs specific sets of messages, it imposes
an overly precise communication pattern (lock-step pattern), severely limiting its utility
for constructing modular higher-level systems. Indeed, a broadcast abstraction typically
serves as a system-wide abstraction, manifesting as a single service that is shared among

8



multiple algorithms for solving higher-level tasks. Consider, for instance, a system that
integrates two applications built upon the same service that provides this broadcast ab-
straction: the iterated k-SA algorithm described above and a messaging service utilizing
only the Reliable Broadcast capabilities of k-Stepped Broadcast. Each application em-
ploys only a distinct subset of the system’s messages, and the messages used by the
messaging service interfere with the communication pattern followed by the k-SA al-
gorithm. Unless a shared global counter is used to track the number a of broadcast
messages, the applications cannot fully benefit from the offered ordering property. This
limitation hinders their independent design and composition.

Compositionality is the property required for the implementation of composable algo-
rithms or applications on top of a broadcast abstraction. Each higher-level construction
uses only a subset of the messages broadcast at the lower level. Compositionality ensures
that each of these message sets maintains the same ordering properties as those of the
entire message set. This is achieved by requiring that the restriction of an admissible
execution to any subset of its messages remains an admissible execution.

Definition 2 (Compositionality). A broadcast abstraction B is compositional if, for all
executions α admissible by B, and for any set of messages M , the restriction of α onto
the messages of M is also admissible by B.

To exemplify the Compositionality property, let us demonstrate that k-BO Broad-
cast is compositional. Indeed, its ordering property is defined by a predicate P that must
be satisfied by any set S of messages. Specifically, P (S) stipulates that if S contains at
least k + 1 messages, then at least two of these messages must be delivered in the same
order by all processes. Consider an execution α admissible by k-BO Broadcast, with its
set of sent messages denoted as Mα. For any subset M ⊆ Mα of these messages, every
subset S of M is also a subset of Mα, ensuring P (S) is satisfied, which is the condition
imposed by compositionality. This logical framework can be applied to all broadcast
abstractions defined by a predicate on the relative order of emission and delivery events,
independent of the context of the complete execution. Notably, this encompasses all
broadcast abstractions mentioned in the Introduction and, to the best of our knowledge,
all broadcast abstractions currently described in the literature.

Conversely, the limitations of compositionality can be highlighted by revisiting our
initial counter-example involving k-Stepped Broadcast. Consider an execution α where
two processes, p0 and p1, engage in the 1-Stepped-broadcasting of two messages each: mi

and m′
i. In α, p0 delivers the messages [m0,m

′
0,m1,m

′
1] in this order. Simultaneously,

p1 delivers the sequence [m0,m1,m
′
0,m

′
1]. Although both processes deliver m0 before m1

and m′
0 before m′

1, conforming to the 1-stepped predicate, the execution’s restriction to
the subset {m′

0,m1} fails to maintain this order. This issue arises because the definition
relies on the sequence number a of the broadcast messages, which is only contextually
relevant within the full scope of the execution and varies when subsets of messages are
considered.

Content Neutrality. The second property asserts that the defining predicates of a
broadcast abstraction should be applicable based solely on the occurrence of broadcast
and delivery events during an execution, independent of the message’s content. Hence,
if some messages get substituted by other within an execution, it should not hinder the

9



admissibility of the execution. Content neutrality then stipulates that an admissible
execution must remain admissible even when some of its messages are replaced.

Definition 3 (Content-Neutrality). A broadcast abstraction B is content-neutral if, for
all executions α admissible by B, and all injective functions r on the set of messages, the
execution obtained by replacing all messages m by r(m) in α, is also admissible by B.

It is important to note that while all broadcast abstractions mentioned in the Intro-
duction adhere to the Content-Neutrality property, this is not necessarily true for
all broadcast abstractions found in the literature. For instance, Generic Broadcast [20]
supposes that the messages it transmits encapsulate a command, i.e., an operation in-
vocation on a replicated data structure implemented using the broadcast. In the vein
of Generalized Paxos [18], processes only need to agree on a common delivery order for
pairs of non-commuting commands, as executing commuting commands in different or-
ders does not compromise the consistency of the implemented data structure. However,
specifying such a broadcast necessitates differentiating between messages, which violates
content neutrality.

Returning to the present paper, it would be straightforward to propose a broad-
cast abstraction equivalent to k-set agreement that is not content-neutral. For example,
one could enforce an ordering property that only applies to messages of a special type
sa(ksa, v), where ksa uniquely identifies a k-SA object and v is a value proposed to
ksa. This would require that, for each ksa, at most k distinct messages of the form
sa(ksa, ) are delivered first by any process. However, such an approach would not be
conducive to understanding the essence of k-set agreement. In the following section, we
focus exclusively on content-neutral broadcast abstractions.

4 On Capturing k-Set Agreement

In this section, we establish that no broadcast abstraction, which is both content-neutral
and compositional, can be equivalent to k-set agreement in the model CAMPn[∅] when
1 < k < n. It is evident that for k = 1, boils down to consensus, which is characterized
by Total Order broadcast; conversely, for k = n, n-set agreement can be trivially solved
without any communication, rendering it equivalent to Send-To-All Broadcast.

We begin by recalling the definition of k-set agreement in Section 4.1. The ensuing
proof is structured as a reductio ad absurdum. We hypothesize the existence of a broadcast
abstraction B satisfying the aforementioned conditions. Two deterministic reduction
algorithms are then considered: A, which implements k-set agreement in the model
CAMPn[B], and B, which implements B in the model CAMPn[k-SA]. For any N ∈ N,
Section 4.2 constructs an execution αk,N,B,B (as defined in Definition 4 and illustrated on
Figure 1) of B, wherein each process B-deliversN of its own messages before any messages
from other processes. Subsequently, in Section 4.3, we demonstrate that sufficiently large
values of N inhibit A from effectively resolving k-set agreement, thereby leading to a
contradiction.

10



p1

p2

pk

pk+1

x
x1

x
x2

x
xk

y
yk

x
xk

y
yk+1

Figure 1: Illustration of the adversarial execution αk,N,B,B for k = 3 and N = 2, extending
up to Line 7 of Algorithm 1. Within the CAMPk+1[k-SA] model, plain arrows signify
sent and received messages, while white squares denote propositions on k-SA objects,
with their respective decided values indicated above. In the context of the CAMPk+1[B]
model, simulated by Algorithm B, dotted arrows represent B-broadcast and B-delivered
messages. Notably, the final N messages of each process, enclosed in grey boxes, are
incompatible with an implementation of k-set agreement.

4.1 Definition of k-Set Agreement

k-Set agreement, first introduced by S. Chaudhuri in [8] (refer to [22] for a comprehensive
survey of k-set agreement in various contexts), was conceptualized to analyze the rela-
tionship between the maximum number of allowable process failures (t) and the feasible
degree of agreement (k) among processes. Here, a lower k value signifies a higher degree
of agreement, with the ultimate agreement being k = 1, which corresponds to consensus.

The k-Set agreement problem (abbreviated as k-SA) is a one-shot agreement problem
that equips processes with a singular operation, denoted propose(). When a process pi
invokes ksa.propose(vi) on a k-SA object ksa, it is said to “propose the value vi to ksa”.
This operation yields a return value v, at which point the invoking process is described
as “deciding v on ksa”, and “v becomes a decided value”. In other words, the steps ⟨pi :
return w from ksa.propose(v)⟩ and ⟨pi : ksa.decide(w)⟩ are interpreted as synonymous.
It is a standard assumption that each process is limited to a single invocation of propose()
on any given k-SA object, ensuring the problem’s one-shot nature.

k-Set agreement is defined by the following properties.

k-SA-Validity. If a process decides a value v, then v was proposed by some process.

k-SA-Agreement. No more than k distinct values are decided upon by the processes.

k-SA-Termination. Every non-faulty process that invokes propose() eventually de-
cides.

4.2 Definition of the adversarial scheduler

For brevity in this subsection, we pose k > 1 and N > 0. Additionally, we postulate the
existence of an algorithm B that implements a certain broadcast abstraction B within the
model CAMPk+1[k-SA]. The argument is then generalized to the case where n > k + 1
in the proof of the main theorem. This is achieved by observing that processes pj,
for j > k + 1, may fail at the beginning of the execution. The adversarial execution
αk,N,B,B is constructed by an adversarial scheduler that follows the procedure outlined in

11



1 Procedure adversarial scheduler(k,N,B,B) is:
2 α← ε; sent ← ∅; decided ← [[⊥, ...], ..., [⊥, ...]];
3 for i from 1 to k + 1 do
4 step ← ⊥; local del ← 0;
5 while local del < N do
6 if step = ⊥ ∨ step = ⟨pi : return from B.sync-broadcast(synch)⟩

then
7 step ← ⟨pi : B.sync-broadcast(synch)⟩;
8 else step ← pi’s next local step in C(α), according to B;
9 α← α⊕ step;

10 if step = ⟨pi : send m to pi⟩ for some m then
11 α← α⊕ ⟨pi : receive m from pi⟩
12 else if step = ⟨pi : send m to pj⟩ for some m and j ̸= i then
13 sent .add(⟨m, i, j⟩)
14 else if step = ⟨pi : B.deliver m from pi⟩ for some m then
15 local del ← local del + 1;
16 else if step = ⟨pi : ksa.propose(v)⟩ for some k-SA object ksa and v

then
17 if i = k + 1 ∧ ∀j ≤ k : decided [ksa][j] ̸= ⊥ then
18 decided [ksa][i]← decided [ksa][k];
19 else decided [ksa][i]← v;
20 α← α⊕ ⟨pi : ksa.decide(decided [ksa][i])⟩;
21 if i = k ∧ ∀j ≤ k : decided [ksa][j] ̸= ⊥ then
22 foreach m : ⟨m, k, k + 1⟩ ∈ sent do
23 α← α⊕ ⟨pk+1 : receive m from pk⟩;
24 sent .remove (⟨m, k, k + 1⟩);
25 local del ← −1;

26 foreach ⟨m, i, j⟩ ∈ sent do α← α⊕ ⟨pj : receive m from pi⟩;
27 return α;

Algorithm 1: Adversarial scheduler used by Definition 4

Algorithm 1. As validated by lemmas 1-8, αk,N,B,B constitutes an execution admitted by
the model CAMPk+1[k-SA].

The algorithm begins with a sequential execution of all processes, ranging from p1
to pk+1. During this phase, each process pi repetitively calls B.sync-broadcast(synch)
until it has B-delivered N of its own messages. This part of the execution remains
indistinguishable to pi from an execution γk,N,B,B,i, where other processes pj would have
crashed before the local delivery of their own N messages. To achieve this, processes
decide on their own value on k-SA objects whenever possible, and the transmission of
their messages to other processes is deferred by the scheduler until the end of this phase.
However, a complication arises when all processes propose a value on the same k-SA
object ksa. In such scenarios, pk+1 is compelled to decide on the value proposed by
pk to maintain the k-SA-Agreement property. This decision renders pk+1’s execution

12



distinguishable from a scenario where pk had initially crashed, allowing pk+1 to await pk’s
message. As a result, all messages sent by pk to pk+1 are received by pk+1 (lines 22-24),
and the messages that pk B-broadcast before this juncture are excluded from its count
of N messages.

Subsequently, in a later phase of the algorithm, all processes receive all messages that
were sent to them in the initial stage but have yet to be received, as delineated in Line 26.
Algorithm 1 concludes by returning the execution halted at this juncture. Notably, at
this point of termination, not all messages that have been B-broadcast are necessarily
B-delivered by every process. However, this does not pose a problem for our analysis: the
counterexample required for the proof in the following section involves a safety property
that is already violated in the execution prefix returned by the algorithm. The scheduler
maintains the following main variables:

• α, which is initially an empty sequence ε, is the execution currently being con-
structed.

• i, which stores the identifier of the process currently under execution.

• sent , initially set to ∅, is a set of triplets. A triplet ⟨m, i, j⟩ is included in sent
when a message m has been sent by process pi to process pj, but has not yet been
received by pj.

• decided [ksa][j] is a two-dimensional associative array. The keys ksa correspond to
k-SA objects used in B, and j represents process identifiers. The values are either
potential values that can be proposed to k-SA objects in B, or a special value ⊥
that cannot be proposed. For each ksa and j, decided [ksa][j] is initially set to ⊥.
It is later updated to value w when the process pj decides on w for ksa.

• local del tracks the number of messages that process pi B-delivers from itself, while
avoiding communication with other processes. Under normal conditions, local del
cycles through values from 0 to N − 1 for each process pi. However, if commu-
nication between processes pk and pk+1 is inevitable during the execution of a
B.sync-broadcast(m) operation by pk, local del is assigned a value of −1. This as-
signment signifies that local del will be reset to 0 once pk completes its B-broadcast
operation. Consequently, this setup enables pk to B-deliver N of its own messages
(excluding m) without engaging in communication.

• step identifies the subsequent step to be executed by Process pi, represented either
by the pair ⟨pi, action⟩ or by the special value ⊥ if the step is yet to be determined.
In this context, there are two primary scenarios to consider. Firstly, if pi has initi-
ated the B.sync-broadcast operation but has not yet completed this invocation,
then the deterministic algorithm B is responsible for defining the subsequent step
that pi must execute (Line 8). This step is crucial to fulfilling the BC-Local-
Termination property of B within the configuration C(α), which delineates its
local state after the execution α. In the second scenario, if the aforementioned
condition does not hold, pi proceeds to B-broadcast a new message, specifically
synch.

13



Definition 4 now outlines the adversarial executions αk,N,B,B, βk,N,B,B, and γk,N,B,B,i.
Our subsequent objective is to demonstrate that αk,N,B,B qualifies as an admissible exe-
cution of the CAMPk+1[k-SA] model. It is required to verify that αk,N,B,B is well-formed
(as per Lemma 6), upholds the three defining properties of the k-set agreement: k-
SA-Validity (Lemma 1), k-SA-Agreement (Lemma 2), and k-SA-Termination
(Lemma 3). and ensures compliance with the three properties of send/receive com-
munication: SR-Validity (Lemma 4), SR-No-Duplication (Lemma 5), and SR-
Termination (Lemma 8).

Definition 4 (Adversarial execution). The following executions are defined:

• αk,N,B,B is the execution produced by the procedure
adversarial scheduler(k,N,B,B), as delineated in Algorithm 1.

• βk,N,B,B constitutes a subset of αk,N,B,B, encompassing only those steps that involve
events associated with B. This includes the invocations of, or the responses from,
the B.broadcast operation, as well as any B-delivery event.

• For each i ∈ 1, ..., k + 1, γk,N,B,B,i is derived from αk,N,B,B by limiting it to, on the
one hand, the steps of process pi occurring strictly before Line 26; and on the other
hand, the steps performed by pk that are succeeded by a reset of local del on Line 25.

In these executions, all processes pj /∈ {pi, pk} are assumed to have crashed initially.
Furthermore, pk is treated as having crashed before executing its first step in αk,N,B,B
that is absent in γk,N,B,B,i, should such a step be present.

Lemma 1 (k-SA-Validity). In the executions αk,N,B,B and γk,N,B,B,i, if a process decides
on a value w on a k-SA object ksa, then the value w was proposed by some process on
ksa.

Proof. Assume that αk,N,B,B includes a step ⟨pj : ksa.decide(w)⟩. This step origi-
nates from Line 20, following pj’s invocation of ksa.propose(v). Consequently, w =
decided [ksa][j], that was set either on Line 18 or Line 19.

• If decided [ksa][j] was assigned on Line 19, then w = v. The step ⟨pj : ksa.propose(v)⟩
would have been included in αk,N,B,B at Line 9.

• Otherwise, w = decided [ksa][k], and per Line 17, i = k + 1. In this case,
decided [ksa][k] ̸= ⊥ was previously set by pk in αk,N,B,B on Line 19, following
the inclusion of the step ⟨pk : ksa.propose(w)⟩ in αk,N,B,B.

This sequence of events establishes the property for αk,N,B,B. Consider now the case of
γk,N,B,B,i containing a step ⟨pj : ksa.decide(w)⟩, following the same case disjunction as
before. In the case of Line 19, the property holds because γk,N,B,B,i and αk,N,B,B both
encompass identical propose and decide steps executed by pj. In the second case, the
fulfillment of the condition at Line 21 for pk leads to the subsequent reset of local del
on Line 25. Therefore, in both cases, the step ⟨pk : ksa.propose(w)⟩ is also included in
γk,N,B,B,i.

Lemma 2 (k-SA-Agreement). In both αk,N,B,B and γk,N,B,B,i executions, no more than k
distinct values are decided on any given k-SA object.

14



Proof. By the definition of γk,N,B,B,i, at most two processes, specifically pi and pk, are
capable of deciding a value in γk,N,B,B,i, satisfying the condition as 2 ≤ k.

Assume that in αk,N,B,B, k + 1 distinct values are decided. Given that processes ex-
ecute sequentially, processes p1 through pk would have already recorded their value in
decided [ksa][.] before pk+1 proposing its value. Consequently, the condition at Line 17
would be met, leading to pk+1 deciding the same value as pk, thus resulting in a contra-
diction.

Lemma 3 (k-SA-Termination). In the executions αk,N,B,B and γk,N,B,B,i, if a process
proposes a value on a k-SA object ksa, then this process will also decide a value on ksa.

Proof. Suppose that αk,N,B,B includes a step ⟨pj : ksa.propose(v)⟩. This step was in-
troduced on Line 9. Subsequently, the condition at Line 16 is satisfied, leading to the
inclusion of a step ⟨pj : ksa.decide(w)⟩ in αk,N,B,B at Line 20. This confirms the lemma
for αk,N,B,B.

Now, assume γk,N,B,B,i contains a step ⟨pj : ksa.propose(v)⟩. Here, j can only be
either i or k.

• If j = i, then γk,N,B,B,i includes the same step ⟨pj : ksa.decide(w)⟩ as found in
αk,N,B,B.

• If j = k, it is important to note that the steps ⟨pj : ksa.propose(v)⟩ (at Line 9)
and ⟨pj : ksa.decide(w)⟩ (at Line 20) cannot be isolated by a reset of local del on
Line 25. Therefore, if the proposal step exists in γk,N,B,B,i, the decision step must
also be present.

In both scenarios, the lemma’s condition is satisfied in γk,N,B,B,i, thus completing the
proof.

Lemma 4 (SR-Validity). In the executions αk,N,B,B and γk,N,B,B,i, if a process pr receives
a message m from process ps, then process ps has indeed sent m to pr.

Proof. Assume that αk,N,B,B includes a step ⟨pr : receive m from ps⟩. This step is either
introduced on Line 11 following a step ⟨ps : send m to pr⟩ where r = s, or on Line 23
or Line 26 when ⟨m, s, r⟩ ∈ sent . The triplet ⟨m, s, r⟩ is added to sent only on Line 13,
implying that ⟨ps : send m to pr⟩ was previously included in αk,N,B,B on Line 9. This
confirms the lemma for αk,N,B,B.

Now, consider a reception step in γk,N,B,B,i. Given the previous argument, αk,N,B,B
must contain a corresponding emission step. Since reception steps from Line 26 are not
part of γk,N,B,B,i, there are two possible scenarios:

• If the reception step is added to γk,N,B,B,i on Line 11, then the preceding emission
step is also included in γk,N,B,B,i.

• If the reception step is added to γk,N,B,B,i on Line 23, the sender is pk, and local del
was reset on Line 25 subsequently. Therefore, the emission step is also present in
γk,N,B,B,i.

Both cases confirm the lemma’s condition on γk,N,B,B,i, thus completing the proof.

15



Lemma 5 (SR-No-Duplication). In both αk,N,B,B and γk,N,B,B,i executions, each message
is received at most once.

Proof. The property for αk,N,B,B is substantiated by the message reception mechanics: a
message can only be received on Line 11, in which case it is not added to sent so it is
not received again later, on Line 23 followed by its removal from sent , or singularly on
Line 26 due to sent ’s set semantics. Since γk,N,B,B,i comprises only a subset of αk,N,B,B’s
reception events, the lemma is valid for γk,N,B,B,i as well.

Lemma 6 (Well-Formed Executions). αk,N,B,B and γk,N,B,B,i are well-formed executions
of CAMPk+1[H] with respect to B.

Proof. To validate the property for αk,N,B,B, we observe that the participation of only
processes p1 to pk+1 stems for (1) loop bounds defined on Line 3, and (2) the SR-
Validity property and the correctness of B for the receiving processes on Line 26. A
process initiates the operation B.broadcast either at the start of its execution on Line 4,
or immediately after returning from its previous invocation, as indicated on Lines 6 and 7.
This ensures adherence to the required pattern of alternating invocations and responses.
Furthermore, the sequence of steps a process follows between its invocations and responses
is consistent with B, as defined on Line 8.

As for γk,N,B,B,i, the property comes from the fact that for all processes pj, the sequence
of steps taken by pj in γk,N,B,B,i is a prefix of the sequence of steps taken by pj in
αk,N,B,B.

Lemma 7 (Termination of Algorithm 1). The execution αk,N,B,B is finite.

Proof. Assume for contradiction that αk,N,B,B contains an infinite number of steps. Given
that Algorithm 1 includes no recursion and only one while loop, there exists some i ∈
{1, ..., k + 1} engaged in an infinite loop starting at Line 5 with local del < N remaining
true indefinitely.

By Lemmas 1-5, γk,N,B,B,i satisfies all the conditions required for an admissible ex-
ecution, except SR-Termination. Let us establish that γk,N,B,B,i also verifies SR-
Termination:

• For i < k, γk,N,B,B,i contains only messages sent by pi, as the ith iteration does
not terminate. Process pi receives its own messages on Line 11, and others are not
required to receive them as they have crashed.

• For i = k, similar to the previous case, γk,N,B,B,i includes only messages by pi by
definition of γk,N,B,B,i. Message reception follows the same logic as above.

• For i = k + 1, note that pk is considered faulty in γk,N,B,B,i due to (1) taking a
finite number of steps in αk,N,B,B since pi is executed after pk’s last step, and (2)
the condition local del < N only becoming false post Line 15 which is preceeded
by a step ⟨pk : B.deliver m from pk⟩ that belongs to αk,N,B,B but not γk,N,B,B,i.
Therefore, suffices to show that pi receives all messages directed to it. Only pk and
pi send messages in γk,N,B,B,i. Process pi receives its own messages on Line 11, and
all messages sent by pk to pi in γk,N,B,B,i are sent prior to the reset of local del ,
hence they are received by pi on Line 23.

16



Therefore, γk,N,B,B,i is an execution admitted by the model CAMPk+1[k-SA], in which
pi takes an infinite number of steps. By correctness of B and the BC-Global-CS-
Termination property of B, all B-broadcast messages by pi in γk,N,B,B,i must eventually
be B-delivered by pi in γk,N,B,B,i. Moreover, since γk,N,B,B,i and αk,N,B,B contain the same
steps of pi, all messages B-broadcast by pi in αk,N,B,B are eventually B-delivered by pi
in αk,N,B,B. Since pi immediately B-broadcasts a new message after returning from its
previous B.sync-broadcast invocation (Lines 6-7), pi B-delivers an infinite number of
messages from itself, and repeatedly increments local del on Line 15. As local del is
bounded by N , it must be reset on Line 25 infinitely, following proposals to k-SA objects.

Let K be the set of k-SA objects such that pi executes Line 25 after proposing a value
to them. Given the one-time proposal limit per k-SA object, K is infinite. Based on
Line 21, i = k, and decided [ksa][1] ̸= ⊥ for all ksa ∈ K. However, decided [ksa][1] is set
during the first iteration for an infinite number of distinct k-SA objects. This indicates
that the first iteration does not terminate. This is a contradiction because (1) k > 1 so
k ̸= 1 and (2) the kth iteration of the loop started because pk takes (an infinite number
of) steps in αk,N,B,B. This contradiction implies that αk,N,B,B must be finite, completing
the proof.

Lemma 8 (SR-Termination). In αk,N,B,B
1, if a process ps sends a message m to a correct

process pr, then pr will eventually receive m from ps.

Proof. Consider a message m sent by ps to pr in αk,N,B,B. A step ⟨ps : send m to pr⟩
is recorded in αk,N,B,B at Line 9. If s = r, then a step ⟨pr : receive m from ps⟩ is
subsequently appended to αk,N,B,B at Line 11. In contrast, if s ̸= r, ⟨m, s, r⟩ is added to
sent at Line 13. As established in Lemma 7, αk,N,B,B is finite. If ⟨m, s, r⟩ remains in sent
at the conclusion of the execution, then a step ⟨pr : receive m from ps⟩ is appended to
αk,N,B,B at Line 26. Conversely, if ⟨m, s, r⟩ is not present in sent , it implies that it was
removed at Line 24 subsequent to appending a step ⟨pr : receive m from ps⟩ to αk,N,B,B
at Line 23. Therefore, in every case, pr receives m from ps.

4.3 N-Solo Executions and the Contradiction

Definition 5 (N -solo executions). Let β be an execution of the model CAMPn[B], and
let N ∈ N. We say that β is N-solo if, for each process pi, there exist N messages
mi,1, ...,mi,N B-broadcast by pi such that, in β, for all pairs of distinct processes pi and
pj, pi B-delivers all its own messages mi, before B-delivering any of pj’s messages mj, .

Lemma 9. For all k > 1, and for every content-neutral and compositional broadcast
abstraction B, if there exists an algorithm A that solves k-SA in the model CAMPk+1[B],
then there exists an integer N > 0 such that B does not allow any N-solo execution.

Proof. Assume B is a broadcast abstraction and A is an algorithm solving k-SA in the
model CAMPk+1[B]. It’s noteworthy that A can be transformed into an alternative
algorithm, A′, which also solves k-SA in the same model but without relying on the point-
to-point primitives send and receive. This transformation is feasible because the send

and receive primitives can be trivially emulated using B. Moreover, the correctness ofA′

1Unlike previous lemmas, this property is not proven for γk,N,B,B,i in the general case.

17



results from the compositionality of B. Specifically, the executions of A′, when projected
onto the set of messages shared with A (excluding those utilized solely for simulating
send/receive in A′), are admitted by CAMPk+1[B], thereby yielding identical results
in A and A′.

Consider an execution αi where a process pi ∈ Π proposes i to a k-SA object using A′,
while all other processes crash before taking any step. Due to the k-SA-Termination
property of the k-SA object, pi eventually decides on a value. The k-SA-Validity
property ensures this value is i. Denote by mi,1, ..., mi,Ni

the sequence of messages pi
B-delivers in αi prior to its decision.

Let N = max{1, N1, ..., Nk+1}, and suppose B admits an N -solo execution β. Con-
struct γ as the sub-execution of β containing, for each pi, exactly Ni of the N messages
B-broadcast by pi, amongst those verifying the defining property of N -solo executions.
Due to the BC-Compositionality property of B, γ is an execution admitted by B,
where each process pi B-delivers its Ni messages before any message from other processes.
Now, define δ from γ by replacing each process pi’s Ni messages with the messages mi,1,
..., mi,Ni

from αi. The BC-Content-Neutrality of B ensures that δ is admitted by
B. For each process pi, αi is indistinguishable from δ, as both executions involve iden-
tical B-broadcast and B-delivery steps for pi. Hence, when A′ is executed on δ, each
pi decides on its own value i, leading to k + 1 distinct decisions. This contradicts the
k-SA-Agreement property of k-SA. Therefore, such β cannot exist, implying B does
not allow any N -solo execution.

Lemma 10. For all k > 1 and N > 0, if there exists an algorithm B that implements
some broadcast abstraction B in the model CAMPk+1[k-SA], then B admits an N-solo
execution.

Proof. Assume k > 1 and N > 0, and suppose an algorithm B implements a broadcast
abstraction B in CAMPk+1[k-SA]. According to Lemmas 1-8, αk,N,B,B constitutes an
admissible CAMPk+1[k-SA] execution, thus by B’s correctness, βk,N,B,B is admitted by
B. We aim to demonstrate that βk,N,B,B is N -solo. For each i ∈ {1, ..., k + 1}, the loop
starting on Line 5 halts by Lemma 7, but only after local del has been incremented at least
N times on Line 15, without having been reset on Line 25. Each of these incrementations
corresponds to the B-delivery, by pi, of its own message mi,local del . We now prove that
these (k + 1)×N messages satisfy the criteria in Definition 5.

Consider two distinct processes pi and pj, assuming without loss of generality that
i < j. Due to the sequential nature of the loop on Line 3, pi B-delivers all its own
messages before pj even begins its B-broadcasts. Consequently, by the BC-Validity
property of B, pi completes delivering its messages before any of pj’s. Lemmas 1-6
confirm that γk,N,B,B,j upholds all safety properties of send/receive and k-SA objects,
and is well-formed, indicating γk,N,B,B,j is the prefix of an execution of CAMPk+1[k-SA].
In γk,N,B,B,j, pi does not B-broadcast its messages mi,1, ...,mi,N , hence pj does not B-
deliver these messages, as ensured by B’s correctness and BC-Validity of B. Since
αk,N,B,B and γk,N,B,B,j share identical pj steps before Line 26, in αk,N,B,B, pj B-delivers
all its own messages before Line 26, without B-delivering any of the messages of pi.
Consequently, βk,N,B,B, which includes only B-related steps from αk,N,B,B, is an N -solo
execution admitted by B.

18



Theorem 1. For all n, k such that 1 < k < n, there is no content-neutral and composi-
tional broadcast abstraction equivalent to k-SA in the model CAMPn[∅].

Proof. Assume the existence of a content-neutral and compositional broadcast abstrac-
tion B that is equivalent to k-SA in CAMPn[∅]. Let A be an algorithm implementing
k-SA in CAMPn[B], and B be an algorithm implementing B in CAMPn[k-SA]. Re-
mark that the model CAMPn[∅] is functionally identical to the model CAMPk+1[∅]
when n − k − 1 processes crash at the start of execution. Hence, the two algorithms
would still be correct in the model CAMPk+1[∅]. By Lemma 9, there exists an integer
N > 0 such that B does not admit any N -solo execution. Conversely, by Lemma 10,
B admits an N -solo execution. This contradiction implies the non-existence of such a
broadcast abstraction B.

5 Conclusion

This paper investigates the computational equivalence of any broadcast abstraction to
k-set agreement (k-SA) in message-passing systems. Following the introduction of two
new symmetry properties defining admissible broadcast abstractions—compositionality,
content-neutrality—we demonstrate that no broadcast abstraction, which is both content-
neutral and compositional, is computationally equivalent to k-set agreement when 1 <
k < n. This paper highlights a crucial distinction in the application of k-set agreement
in shared memory versus message-passing systems: for 1 < k < n, k-SA is equivalent
to a broadcast abstraction in shared memory (specifically, k-BO broadcast), but no such
equivalence exists in message-passing systems.

As Lamport famously observed in [17], “The concept of time (...) is derived from the
more fundamental concept of the order in which events occur.” Therefore, at the abstrac-
tion level of message broadcasting in the system, each broadcast abstraction inherently
provides a definition of time. On one end of the spectrum, broadcast abstractions that
can be implemented solely through send and receive operations, such as Causal broadcast,
offer processes a relativistic notion of time, defined by the “happened before” relation—a
partial order. Conversely, at the other extreme where processes can utilize consensus, the
set of broadcast events in Total Order broadcast forms an absolute timeline, known to
all processes. Under this interpretation, k-SA represents a symmetric predicate on time
—hence an elegant synchronization problem— when utilized within a shared-memory
model. However, its inapplicability in message-passing systems questions the usefulness
of k-SA in these contexts.

References

[1] Yehuda Afek, Eli Gafni, Sergio Rajsbaum, Michel Raynal, and Corentin Travers.
The k -simultaneous consensus problem. Distributed Comput., 22(3):185–195, 2010.

[2] Mustaque Ahamad, Gil Neiger, James E Burns, Prince Kohli, and Phillip W Hutto.
Causal memory: Definitions, implementation, and programming. Distributed Com-
puting, 9:37–49, 1995.

19



[3] Kenneth P Birman and Thomas A Joseph. Reliable communication in the presence
of failures. ACM Transactions on Computer Systems (TOCS), 5(1):47–76, 1987.

[4] François Bonnet and Michel Raynal. On the road to the weakest failure detec-
tor for k-set agreement in message-passing systems. Theoretical Computer Science,
412(33):4273–4284, 2011.

[5] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-
resilient asynchronous computations. In Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA,
pages 91–100. ACM, 1993.

[6] Zohir Bouzid and Corentin Travers. Parallel consensus is harder than set agreement
in message passing. In IEEE 33rd International Conference on Distributed Comput-
ing Systems, ICDCS 2013, 8-11 July, 2013, Philadelphia, Pennsylvania, USA, pages
611–620, 2013.

[7] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225–267, 1996.

[8] Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally
asynchronous systems. Information and Computation, 105(1):132–158, 1993.

[9] Mathilde Déprés, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Brief
announcement: The mbroadcast abstraction. In Rotem Oshman, Alexandre No-
lin, Magnús M. Halldórsson, and Alkida Balliu, editors, Proceedings of the 2023
ACM Symposium on Principles of Distributed Computing, PODC 2023, Orlando,
FL, USA, June 19-23, 2023, pages 282–285. ACM, 2023.

[10] Mathilde Déprés, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal.
Send/receive patterns versus read/write patterns in crash-prone asynchronous dis-
tributed systems. In Rotem Oshman, editor, 37th International Symposium on Dis-
tributed Computing, DISC 2023, October 10-12, 2023, L’Aquila, Italy, volume 281 of
LIPIcs, pages 16:1–16:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[11] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM, 32(2), 1985.

[12] Eli Gafni and Petr Kuznetsov. The weakest failure detector for solving k-set agree-
ment. In Proceedings of the 28th ACM symposium on Principles of distributed com-
puting, pages 83–91, 2009.

[13] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical Report Tech Report 94-1425, Cornell University,
1994. Extended version of ”Fault-Tolerant Broadcasts and Related Problems” in
Distributed systems, 2nd Edition, Addison-Wesley/ACM, pp. 97-145 (1993.

[14] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-
resilient tasks. In Proceedings of the Twenty-Fifth Annual ACM Symposium on
Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 111–120. ACM,
1993.

20



[15] Damien Imbs, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Which
broadcast abstraction captures k-set agreement? In 31st International Symposium
on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria, vol-
ume 91 of LIPIcs, pages 27:1–27:16, 2017.

[16] Damien Imbs, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Set-
constrained delivery broadcast: A communication abstraction for read/write im-
plementable distributed objects. Theoretical Computer Science, 886:49–68, 2021.

[17] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications, 1978.

[18] Leslie Lamport. Generalized consensus and paxos. 2005.

[19] Achour Mostefaoui, Michel Raynal, and Julien Stainer. Chasing the weakest failure
detector for k-set agreement in message-passing systems. In 2012 IEEE 11th Inter-
national Symposium on Network Computing and Applications, pages 44–51. IEEE,
2012.

[20] Fernando Pedone and André Schiper. Generic broadcast. In Distributed Computing:
13th International Symposium, DISC’99 Bratislava, Slovak Republic September 27–
29, 1999 Proceedings 13, pages 94–106. Springer, 1999.

[21] David Powell. Group communication (introduction to the special section). Commun.
ACM, 39(4):50–53, 1996.

[22] Michel Raynal. Set agreement. In Encyclopedia of Algorithms, pages 1956–1959.
Springer, 2016.

[23] Michel Raynal. Fault-tolerant message-passing distributed systems: an algorithmic
approach. Springer, 2018.

[24] Michel Raynal, André Schiper, and Sam Toueg. The causal ordering abstraction and
a simple way to implement it. Information processing letters, 39(6):343–350, 1991.

[25] Michael E. Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible:
the topology of public knowledge. In Proceedings of the Twenty-Fifth Annual ACM
Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages
101–110. ACM, 1993.

[26] Fred B. Schneider. The state machine approach: A tutorial. In Proc. of Asilomar
Workshop on Fault-Tolerant Distributed Computing, volume 448 of LNCS, pages
18–41. Springer, 1986.

21


