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Abstract

Classically, researchers working in vehicle routing problems (VRPs) assume that the structure of the prob-
lem is known (i.e., objective function, constraints, parameters). However, recent studies have highlighted
the gap between the routes offered by classical optimization algorithms and the routes followed by expe-
rienced drivers. As a result, researchers have turned their attention towards the acquisition and inclusion
of drivers’ knowledge to learn the order in which each customer is going to be served by the driver. In
this study, we describe and solve a new problem called the multiple time window learning problem. In
contrast to other VRP variants, the goal is to learn the time windows associated with each customer. Our
approaches are based on the observation and exploitation of historical data with a new algorithm called the
recall heuristic, and the exploration of new information based on the multi-armed bandit problem. Com-
putational results based on real data extracted from a traffic sign dataset from the city of Montreal showed
that our approaches can learn time windows and, as a result, propose routes similar to those created by
experienced drivers, while still minimizing the routing costs.

Keywords: Multi-Armed Bandit, Traveling Salesman Problem with Multiple Time Windows; Reinsertion
Algorithm.

1. Introduction

In the pandemic and post-pandemic world, retailers have seen a double-digit yearly growth in e-commerce
(Dumanska et al., 2021). To be able to respond to the fast-increasing number of home deliveries while keep-
ing their cost under control, retailers have been forced to look for alternative and creative ways to complete
the last-mile.One such way is crowdsourcing platforms like Amazon Flex. In a nutshell, Amazon Flex is a
platform where the company Amazon obtains independent drivers to perform delivery routes via a smart-
phone app where the drivers sign up and accept or decline routes. Additionally, those independent drivers
are considered freelancers. One of the main problems that these companies that use crowdsourcing plat-
forms have to deal with is the difference between the routes that the companies propose to the drivers and
the routes that the drivers actually do (Samson and Sumi, 2019; Winkenbach et al., 2021).

These differences suggest that drivers have implicit knowledge (e.g., traffic conditions, availability of
parking spots, school schedules, waste collection) which is not captured in most vehicle routing software.
A large difference in duration between the routes that the drivers accept (and get paid for) and the ones that
they perform, may generate dissatisfaction for the drivers and the companies: for the drivers because the
offered route might have a lower duration (and hence a lower cost) than the real one, and for the companies
because they assume a low performance coming from the drivers and they will not propose more routes for
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these drivers. Ultimately, these dissatisfactions might result in the use of more expensive courier services,
due to the lack of drivers accepting the routes proposed in the crowdsourcing platform. In this line, acquiring
drivers’ knowledge through learning mechanisms leads to more efficient and realistic routes that are more
likely to be used by the drivers without any intervention (i.e., the offered route better reflects the real costs)
and without drastically increasing the companies’ routing costs.

There exists previous work about the use of learning mechanisms in vehicle routing problems (VRP).
Nevertheless, research has mainly focused on learning the sequence in which the customers are visited
(Mandi et al., 2021; Wu et al., 2022). In this study, we assume that the knowledge that can be learned
from the drivers goes further than sorting customers and might be related to the period of time when a
specific neighborhood should be visited (i.e., time windows). Furthermore, by learning time windows,
our framework is able to offer routes that could not be offered by learning customers’ sequences from the
drivers. However, the higher flexibility of our algorithms comes with the cost of a more complex routing
problem. Another difference with previous work is that the algorithms presented in this study do not need
historical data to start working with and efficiently validate or invalidate time windows while interacting
with the driver and collecting new data.

Taking this into account, we can describe the main processes of a company to plan the routes and learn
the drivers’ knowledge as follows. At the beginning of day t, the company considers a subset of customers
that must be served. Then, with the current knowledge of the customers’ time windows, the company
uses software to design a route that serves all the customers in a cost-effective way. We call this route the
software route. After that, when considering the driver’s awareness of the customers’ real time windows,
this route may be impractical or inefficient for the driver, and, due to their knowledge, the driver corrects
the infeasibilities and performs a corrected route. We call this route the driver’s route. Finally, at the end of
day t, the company compares the software route to the driver route and applies a learning mechanism to try
to acquire the drivers’ knowledge. This learning procedure allows the company to propose better routes to
the drivers in subsequent days. A flowchart of the company’s process is shown in Figure 1.

Figure 1: Flow chart outlining the different parts of the procedure on day t

In this study, we tackle the problem of learning real time windows from the drivers’ knowledge, which
corresponds to the end of the process before the day t ends. This process can be done simply by mimicking
the drivers’ historical data or by adding learning mechanisms. We first address this learning problem with
the use of a heuristic that imitates the behavior of the drivers, which we called the recall heuristic (RH). Af-
ter that, we add multi-armed bandit (MAB) algorithms (Lattimore and Szepesvári, 2020) as an exploration
mechanism to learn customers’ sets of time windows faster. MAB algorithms use a sophisticated procedure
that balances the exploitation of historical data and the exploration of new data in search of valuable infor-
mation about the correct time windows. Concerning the previous three events of the process (i.e., receiving
the list of customers, creating the software route, and the route correction by the drivers) as we could not
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find real data in the literature, we propose a simulation mechanism that uses a traveling salesman problem
with multiple time windows (TSP-mTW) mathematical programming model to find the software route and
an insertion algorithm to create the driver’s route following the drivers’ knowledge. This data simulation
allows us to test the learning procedures.

The main contributions of this study are the following: we present the multiple time window learning
problem (mTWLP), a new problem that has not been studied in the literature and that is relevant to real-life
applications; we propose various approaches to solve this problem, in particular, the RH learning mechanism
based on mimicking driver’s historical data as well as various MAB algorithms, and we develop problem-
specific optimization-based mechanisms to speed up and improve the scalability of the MAB algorithms.

The structure of the document is the following: Section 2 presents a literature review of the mechanisms
to learn problem characteristics in VRP. Section 3, formally defines the mTWLP. Section 4 details the RH
algorithm, and how to apply four MAB algorithms to the mTWLP. Section 5 details the computational
experiments and experimental setup (i.e., validation process and instance creation). To end the document,
Section 6 presents some conclusions.

2. Learning problem characteristics in VRP

Learning characteristics of a mathematical programming model (e.g., constraints, objective function,
parameters) to offer realistic solutions that resemble the ones built by experts is a fast-growing field (den
Hertog and Postek, 2016). Several methods have been proposed to approach the acquisition of these char-
acteristics, including inverse optimization (Chan et al., 2021); machine learning (Kubat, 2017); data-driven
optimization (Hewitt and Frejinger, 2020); and inverse reinforcement learning (Arora and Doshi, 2021).
Inverse optimization uses optimal solutions as input to determine the parameters of the model that produced
those input solutions. In the survey of Chan et al. (2021), the authors divide inverse optimization into two
parts: classical inverse optimization, which learns the parameters of the model to produce the same solu-
tions used as inputs (Shahmoradi and Lee, 2021; Bodur et al., 2022; Ghate, 2020), and data-driven inverse
optimization, which allows infeasible solutions but penalizes infeasibilities with the use of loss functions
(Aswani et al., 2018; Chan and Kaw, 2020). With the same objective in mind, but with different tech-
niques, there are some works using machine learning methods (e.g., artificial neural networks) to learn the
constraints of the model (Lombardi et al., 2017). Data-driven optimization is another technique that tries
to learn and add side constraints to an original, previously defined, model (Hewitt and Frejinger, 2020).
Lastly, inverse reinforcement learning transforms the problem into a Markov decision process defining
pairs of state-actions to predict the reward function that makes adopted actions optimal (Fu et al., 2018).

Learning the driver’s preferences in vehicle routing is one of the streams of research relying on the
aforementioned methods. Chow and Recker (2012) propose an inverse optimization model to estimate the
objective parameters and some constraints in the household activity pattern problem (HAPP). The HAPP
aims to predict the optimal path of household members as they complete a prescribed agenda of out-of-
home activities by analyzing their movement through time and space. The connection between the HAPP
and VRP problems is that Recker (1995) modeled the former as a variant of the Pick-up and Delivery
Problem with Time Windows. In Chow and Recker (2012), the authors suggest an approach to fit the HAPP
model by jointly estimating the objective coefficients and goal arrival times using an inverse formulation. It
is important to remark that this work predicts goal times at the activities by adding a cost to the deviation
from the goal time. The authors also propose an inverse model to predict soft time windows. Some years
later, You et al. (2016) adapted this HAPP inverse optimization model to fit an activity-based freight forecast
model. In Chen et al. (2021), the authors use an inverse optimization model to learn the drivers’ cost matrix
in a capacitated VRP. In a similar way, the authors in Canoy and Guns (2019) and Mandi et al. (2021)
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create a transition probability matrix using a weighted Markov counting approach and a neural network,
respectively. Once the transition probability matrix is estimated, the authors solve a VRP problem by
selecting the route that maximizes the sum of probabilities or, as the authors call it, maximum likelihood
routing. Some examples of inverse reinforcement learning techniques can be found in Ziebart et al. (2008)
and Snoswell et al. (2020), in which the authors model the driver’s route prediction as a Markov decision
process (i.e., the driver has to decide the path to follow at each intersection) and try to recover the reward
function producing the decisions taken based on the maximum entropy principle (Jaynes, 1957). More
recently, Dieter et al. (2023) proposed a framework that combines machine learning with optimization
techniques to propose efficient routes that resemble the ones done by experienced drivers. To do so, the
authors train a neural network to predict the customer sequence and, after, solve an optimization problem to
create another route but limit the tour length deviation from the route predicted by the neural network.

Finally, the Amazon Last Mile Routing Research Challenge (Winkenbach et al., 2021) is a good example
of the increased popularity of the topic of learning in transportation problems. In this challenge, Amazon
made available a dataset containing more than 4,000 driver routes to research teams in order to learn drivers’
preferences and recreate drivers’ routes. In the challenge’s final phase, different techniques were used in
more than 30 technical reports addressing the issue of learning drivers’ preferences. However, to the best of
our knowledge, the issue of learning customers’ time windows as a hard constraint has not been yet studied
in the literature.

3. Problem description

Let G “ pV, Aq be a graph, where V “ t0, 1, . . . ,Nu is the set of vertices and A “ tpi, jq | i, j P V, i ‰ ju
is the arc set. We divide the set of vertices as V “ t0u Y C, where the vertex 0 corresponds to the depot
and the set C contains all the possible customers. A non-negative travel time matrix D “ rdi js is associated
with every arc pi, jq, i ‰ j, where the element di j corresponds to the travel time between the vertices i and j.
Each day t P t0, 1, . . . ,Tu the company serves a set Ct Ă C of customers c P Ct to serve. For the mTWLP,
we refer to the last part of the company’s procedure described in Section 1. This process corresponds to
the end of the day when the driver comes back to the depot and applies the learning mechanism. At that
moment the company compares both the software route that was proposed to the driver with the driver’s
route. We denote the software route ẑ as the output of f pCt, ŷCt q, where f is a minimum tour duration
TSP-mTW algorithm used by the company to build the route, and ŷCt is the company’s current knowledge
about day t customer’s set of time windows. On the other hand, we denote the driver’s route z̄ as the output
of gpCt, yCt , ẑq, where g is the procedure used by the driver to repair route ẑ, and yCt is the set of real time
windows (known only to the driver) for the customers at day t. To compare both routes, the company has
access to the following data: the order and time in which customers were expected to be visited (software
route), and the order and time in which customers were actually visited (driver’s route). We denote the
learning procedure as πpŷCt , ẑ, z̄q.

Following the notation defined above, the mTWLP consists in proposing an online learning mechanism
πpŷCt , ẑ, z̄q for each customer that, using as input the information about the routes ẑ and z̄, is capable of
proposing sets of time windows ŷCt containing time windows from the real sets of time windows (yCt ). If
the learning mechanism succeeds, the routes generated by algorithm f should converge to the ones that the
driver corrects using algorithm g (i.e., the routes ẑ will be more realistic and will satisfy the drivers), and
the routes will be more efficient (i.e., as ŷCt will contain more precise information, algorithm f will propose
routes with lower costs to the company).

For the remainder of the study, we divide a day with duration H into n different time periods of the same
length H{n. We define P as the set that contains the n time periods. In this way, we assume that the set of
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time windows of a specific customer yc corresponds to a subset of P, in other words, yc Ă P, @c P C. To
illustrate this in a more detailed way, let H be equal to 80 and n to 8. In that case, the time horizon is divided
into 8 consecutive time periods of 10 time units (i.e., P “ tr0, 10q, r10, 20q, . . . , r70, 80qu). A valid set of
time windows for a customer c is, for example, yc “ tr10, 20q, r40, 50q, r50, 60qu Ă P, while the set of time
windows yc “ tr10, 25q, r38, 50qu Ă P is not valid. In the first case, we will abuse the notation simply by
saying yc “ tr10, 20q, r40, 60qu Ă P. Figure 2 illustrates this example.

Figure 2: Example of a valid set of time windows for a customer if H “ 80 and n “ 8

4. Solution methods

This section discusses how we adapt learning algorithms to tackle the mTWLP. As we mentioned in
Section 1, we are going to approach this problem in two different ways: by directly and solely utilizing
the information provided by the driver’s route and by enhancing the first approach using an exploration
strategy that may enable to learn and predict the customers’ real set of time windows faster. In Section 4.1
we present RH, an algorithm that purely exploits data from previous rounds, and in Section 4.2 we talk
about how we adapt MAB algorithms to add exploration in the mTWLP.

4.1. Recall heuristic

One of the most straightforward ways to learn the drivers’ knowledge about the customers’ real set of
time windows is to simply use historical data of past visiting times. To implement this principle in our
process, we define the recall heuristic, denoted RH, which works as follows: each time a customer has to
be served, RH proposes the minimal set of time windows that includes all the exact times at which the
customer has been visited in the past, yc. In other words, let ∆ be the historical set of visit times including
all the past visits to the customers, then ∆c Ă ∆ is the set containing the historical visit times to customer c.
Then, yc “ tp P P | pDδ P ∆c | δ P pqu. In case there are no historical visit times for one specific customer
(i.e., ∆c “ ∅), the algorithm returns the entire time horizon.

A visual representation of this concept (following the same example as in Section 3) is shown in Figure
3: The time horizon H “ 80 to serve one customer has been divided into n “ 8 periods of 10 units of time
each, and as the customer c has been visited in the past at times ∆c “ t15, 43, 47, 51u, RH proposes using
the set of time windows yc “ tr10, 20q, r40, 60qu Ă P for this customer (highlighted in green in the figure).

It is important to remark that, even though RH does not need to be initialized with historical data, the
second time that a customer is visited RH proposes only one time period. To avoid infeasibility problems
(i.e., serving several customers with an identical time period on the same day), we consider a warm-up
period. During the initialization period (i.e., t ă w, where w ă T, w P N is the number of warm-up
iterations) RH proposes a subset of the time periods (P̂ Ă P) for each of the customers. After the first w
iterations, if there is still one customer c with no visits, the algorithm proposes yc as the entire time horizon
for the first time that c is visited, as explained above..
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Figure 3: Example of using historical data to learn the real set of time windows

Algorithm 1 Recall heuristic
Input: ∆, P, c P Ct,w, t
Output: yc

1: if t ă w then
2: Select P̂ Ă P
3: yc Ð P̂
4: else
5: if ∆c ‰ ∅ then
6: yc Ð tp P P | pDδ P ∆c | δ P pqu

7: else
8: yc Ð P
9: end if

10: end if

The pseudo-code of RH is shown in Algorithm 1. Line 1 checks if the number of iterations devoted to
the warm-up procedure has been reached. If not, in lines 2 and 3 a subset P̂ Ă P is selected and given to the
customer. Otherwise, in lines 5 to 9, a set of time windows is given to the customer as detailed above.

Note, that, after the warm-up iterations, only time periods that are known to be correct are offered by
this algorithm. Hence, the driver only changes a customer if there is a more efficient spot to serve it and,
then, the learning pace is slow.

4.2. Multi-armed bandit algorithms

As mentioned in Section 1, an interesting strategy to learn the customers’ set of time windows is to add
an exploration mechanism to RH. The task of this mechanism is to predict which additional time windows
might be promising for a specific customer and propose them along with the ones known to be correct thanks
to the historical data. An exploration mechanism might help to identify time windows that are helpful to
build an efficient route without waiting for the driver to visit it once (and change the route). In this work, we
investigate the use of multi-armed bandits to learn mTW from the driver corrections to the software routes.

A MAB is a mechanism that models sequential decision problems. In each of the T iterations (i.e.,
days in the planning horizon), an agent must choose from a set of actions, also called arms. At the end of
each iteration, the agent receives a reward that quantifies the performance of the chosen arm. In this way,
the goal of a MAB is to gather enough information to maximize the overall reward after the T iterations.
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In order to maximize the overall reward, at each iteration, the algorithm decides whether it exploits the
current information about certain arms or it explores new arms to escape from a local optimum. Thus, one
of the key challenges of MABs is to find an efficient mechanism to balance exploitation and exploration. As
reinforcement learning mechanisms, MABs learn a model based on rewards. However, unlike reinforcement
learning techniques, in MAB the state of the world is not affected by each taken decision.

Multi-armed bandit algorithms were introduced by Thompson (1933) in the context of a medical trial
design problem, where the author presented a 2-armed bandit to decide between two rival medical treat-
ments. Ever since, MABs have been used to solve a variety of problems. For instance, Villar et al. (2015)
used them to solve another medical trial problem. Li et al. (2010) used a variation of a MAB algorithm to
tackle the Personalized News Article Recommendation problem. These algorithms have also been used in
economic problems such as dynamic assortment (Agrawal et al., 2019) or dynamic procurement (Badani-
diyuru et al., 2018).

In this section, we explain four MAB algorithms detailing the key changes required to address the
mTWLP. For the sake of simplicity, as we worked with two linear MAB algorithms and two combinatorial
MAB algorithms, this subsection will be divided into two. In Section 4.2.1 we detail and introduce the
adaptations to two linear MAB algorithms (i.e., LinUCB and LinTS), and in Section 4.2.2 we describe and
modify two combinatorial MAB algorithms (i.e., CUCB and CTS).

4.2.1. Linear MAB algorithms
As their name suggests, linear MABs assume that the expected reward of each arm follows a linear

function. We use the LinUCB (Li et al., 2010) and LinTS (Agrawal and Goyal, 2013) algorithms to tackle
the mTWLP. In the articles, the authors assume that the expected reward of playing arm k (µt) is a linear
combination of a vector xk P Rd describing the arm and context about the user (also called the features
vector) with an unknown true parameter θt P R (µt “ xJ

ktθt). The authors try to estimate the unknown true
parameters (i.e, µ̂t “ xJ

kt θ̂t), using different approaches. For a more detailed explanation of the parameters
prediction, the reader is referred to the original articles.

In terms of the mTWLP, let P be a set of n periods of time and H be the time horizon, we define an arm
k P K as a combination of periods of time from P (i.e., k Ă P). As we assume that we do not have context
about the users, we define the features that describe one arm as a binary vector xk P t0, 1un characterized
by

xi
k “

#

1, if rpis P k
0, otherwise,

(1)

where rpis denotes the i-th time period in P. In the case that there was information about either the cus-
tomer or the driver, extra features could be added to define this context (i.e., more entries in xk). Following
the same example as before (time horizon H “ 80 divided into n “ 8 periods of 10 time units), the feature
vector assigned to the arm k “ tr10, 20q, r40, 60qu Ă P is xk “ p0, 1, 0, 0, 1, 1, 0, 0q. As each customer
needs a non-empty set of time windows (and it has to be a subset of P), the algorithm will have to select at
each iteration among 2n ´ 1 arms per customer. Hence, it is mandatory to search for the best arm efficiently
as n increases.

There are different ways to define a reward in terms of the mTWLP using the information that the
company has at the end of each day. We define the reward that we use in the linear MAB algorithms as:

rt “ ´

ˇ

ˇ

ˇ
tso f t
c ´ tdri

c

ˇ

ˇ

ˇ
, (2)

7



where tso f t
c P t0, 1, . . . ,H ´ 1u and tdri

c P t0, 1, . . . ,H ´ 1u represent respectively the proposed delivery time
of customer c in the software route and the actual delivery time in the driver’s route.

Hence, if the driver relocated one customer, that means that either the period of time where the customer
was planned to be served is wrong or there exists another period of time that is more efficient. Thus, it is
logical to penalize this set of time windows. On the other hand, if the delivery times of the software route
and driver’s route are the same, then it makes sense not to penalize the set of time windows since this time
period of the arm is correct.

MAB algorithms are known for their mechanisms to find a trade-off between exploitation and explo-
ration. However, as we detail in Section 5, in terms of the mTWLP, exploring incorrect arms over the
iterations might have a big impact on the costs of the software route. Another well-known drawback of
MAB algorithms is the so-called cold start. The cold start is produced due to the lack of historical informa-
tion about the customers, and it is commonly addressed by a period of data collection. In order to address
the cold start problem, we set a warm-up parameter w ă T, w P N. During the first w iterations, in order
to collect enough information, there is no limit in terms of exploration (i.e., the MAB is allowed to propose
as many time periods as it wants per customer). Once the w warm-up iterations have finished, to prevent
the costs of exploring many incorrect time periods, the algorithm is only allowed to explore up to one new
time period (in addition to the ones known to be correct by previous visits). This will result in a high time
slot learning pace during the warm-up period, which will be slowed down after the w iterations due to the
limited exploration.

4.2.1.1. LinUCB. The upper confidence bound algorithm with linear rewards (LinUCB) was introduced
in Li et al. (2010) and belongs to the family of UCB MAB algorithms. UCB algorithms are based on the
optimism principle under uncertainty, which assumes an optimistic environment based on previous obser-
vations. In terms of the MAB, the optimism principle means calculating a value based on past historical
data that overestimates each arm’s unknown expected reward and selecting the arm with the best value at
each iteration. This value is called the upper confidence bound and usually has two parts: an estimator
µ̂t of the unknown expected reward µt and the confidence width, that estimates if the arm k still needs to
be explored in order to gather more information. As might be anticipated, the estimator µ̂t converges to
the real expected reward, whereas the confidence width of the arms gradually approaches zero every time
these arms are selected. Thus, the UCB value, which is the sum of µ̂t and the confidence width, converges
with high probability to µt. The first UCB algorithm was proposed by Lai (1987) and has been revisited
multiple times until the current date. UCB is known for being effective in solving MAB problems. Figure
4 illustrates the optimism principle under uncertainty in UCB algorithms. In this example, despite having a
lower expected reward, Arm 3 will be played over Arm 4, to try to gather more information about it.

In order to select the most promising arm at the t-th iteration (kt) LinUCB selects the arm that maximizes
the UCB using

kt “ arg max
k

"

xJ
kt θ̂t ` α

b

xJ
ktA

´1
t xkt

*

, (3)

where At is the matrix containing the information about whether the arm k has been played in the previous
t ´ 1 iterations and gets updated at each iteration following At`1 “ At ` xkt xJ

kt .
In the mTWLP, there are up to 2n ´ 1 combinations of time periods. Because calculating the UCB

of each set of time periods requires matrix multiplications, the enumeration of all the sets of time periods
is untractable for large values of n. Hence, to get the most promising set of time periods, we propose an
integer programming model that selects the set of time periods with the largest UCB. Note that Equation (3)
has a non-linear term. Hence, we apply the square root linearization technique proposed in Asghari et al.
(2022). It is important to highlight that, as the model is independent of the customer c and the iteration t,
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Figure 4: UCB algorithms illustration

with a slight abuse in notation, we will write x, θ̂, A, and I, where I is a set with the indices of the time
periods in which the customer has been visited in the past. The model that selects the most promising set of
time periods follows:

maximize
n

ÿ

i“1

xiθ̂i ` α
?

B (4)

subject to B “

m´1
ÿ

i“0

2izi ` pu ´ 2n ` 1qzm (5)

n
ÿ

j“1

n
ÿ

i“1

pxiAi jqx j ě

m´1
ÿ

i“0

22izi `

m´2
ÿ

i“0

m´1
ÿ

jąi

2i` j`1yi j (6)

` pu ´ 2m ` 1q

m´1
ÿ

i“0

2i`1yim ` pu ´ 2n ` 1q2zm

yi j ď zi @i, j P t0, . . . ,mu (7)

yi j ď z j @i, j P t0, . . . ,mu (8)

yi j ě zi ` z j ´ 1 @i, j P t0, . . . ,mu (9)
n

ÿ

i“1

xi ě 1 (10)

xi “ 1 @i P I (11)

xi P t0, 1u @i P t1, . . . , nu (12)

zi, yi j P t0, 1u @i, j P t0, . . . ,mu (13)

B P N (14)

where yi j and zi are binary variables used to linearize the square root term, u “ rλmaxns is an upper bound

of the square root term (
b

xJ
ktA

´1
t xkt), and m “ tlog2pu ` 1qu. For more details about the upper bound
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of
b

xJ
ktA

´1
t xkt, we refer the reader to the Appendix A. The objective function shown in Equation (4)

corresponds to the UCB of each set of time periods. However, in order to perform the linearization, we
replace the square root term with the integer variable B. Constraint (5) equalizes B to the development by
binary variables of any natural number lower or equal than u P N (i.e., B ď u). The right-hand side (RHS)
of Constraint (6) (that corresponds to the RHS of Constraint (5) squared after applying a linearization
to approach the product of binary variables) is bounded by xJ

ktA
´1
t xkt. Thus, the integer variable B ď

b

xJ
ktA

´1
t xkt. Nevertheless, as B P N, there might be an approximation error bounded in r0, 1q. Constraints

(7), (8), and (9) are used to linearize the product of the binary variables zi. Lastly, Constraint (10) assures
the model to select a non-empty set of time periods, and Constraints (11) force the model to select the time
periods that are known to be correct. For more details about the square root linearization, we refer the reader
to Asghari et al. (2022).

This model will be used during the data collection or warm-up phase (i.e., first w iterations). Once this
phase is finished, Constraint (15) is added to model (4)-(14). This constraint, together with Constraints (11)
allows the bandit to explore at most only one new time period, apart from the time periods known to be
correct.

n
ÿ

i“1

xi ď |I| ` 1 (15)

The pseudo-code of the proposed LinUCB implementation is shown in Algorithm 2. In the first two
lines, the algorithm initializes the matrices with the information of the explored time periods A and their
rewards b. The algorithm’s main loop, which completes the number of specified iterations, is located
between lines 3 and 14. In line 4, the MAB collects the information about the expected reward estimator θ̂t.
Line 5 checks if the number of iterations devoted to the warm-up procedure has been reached. If not, the
agent selects the set of time periods with the most promising UCB (including the time periods known to be
correct) using the mathematical model presented above. Otherwise, Constraint (15) is added to the model,
and the agent uses the extended model to select the best set of time periods. To finish the main loop, the
algorithm receives a reward (line 10) for the chosen set of time periods and updates the matrices A and b
(lines 11 and 12) with the new information.

Algorithm 2 LinUCB
Input: α ą 0, γ ą 0, w, T

1: A Ð γId

2: b Ð 0d

3: for t P t0, 1, . . . ,T ´ 1u do
4: θ̂t Ð A´1b
5: if t ă w then
6: Choose the best arm kt with model (4)-(14)
7: else
8: Choose the best arm kt that with the extended model (4)-(15)
9: end if

10: Compute reward rt “ ´

ˇ

ˇ

ˇ
tso f t
c ´ tdri

c

ˇ

ˇ

ˇ

11: A Ð A ` xkt xJ
kt

12: b Ð b ` xktrt

13: end for
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4.2.1.2. LinTS. The Thompson Sampling algorithm with linear rewards (LinTS) was introduced in Agrawal
and Goyal (2013) to solve the contextual bandit problem. LinTS belongs to the family of Thompson Sam-
pling (TS) algorithms to solve the MAB problem, and this family is known for having the first algorithm
proposed to approach the MAB problem in Thompson (1933). The idea behind TS is simple: assume that
the expected reward of each arm µt follows a prior distribution and, at each iteration, the algorithm selects
the arm according to the probability of being the best arm. A way of estimating µt is simply by sampling
µ̂t from the posterior distribution. Hence, the exploration mechanism in TS algorithms is based on random-
ization: if there is almost no information about the arm k (i.e., the posterior distribution is not concentrated)
there will be a large variance between samples, and the algorithm will probably explore until there is enough
information about the arm k (i.e, the posterior distribution is enough concentrated around the true parame-
ter). Hence, there will be less variance and the algorithm will explore less this arm. Figure 5 illustrates TS
algorithms with an example: even though Arm 1 (depicted in blue) seems to have the best mean reward, as
there is still uncertainty around Arm 2 (depicted in orange), the agent will select Arm 2 more often.
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Figure 5: TS algorithms illustration

In Agrawal and Goyal (2013), the authors assume that the unknown true parameter (θt) of each arm fol-

lows a gaussian distributionNpθ̂t, ν
2B´1q, where ν “ R

b

9n ln
` T
ϵ

˘

, R ě 0 being a bound of the difference
between the expected and the real reward, and ϵ P p0, 1s being the high probability bound of the regret. In
terms of the mTWLP, at each iteration, LinTS will sample θ̄t for each time period. Then, unlike LinUCB, the
selection of the most promising set of time periods avoids non-linear terms and this selection only consists
of the first term of Equation (4). Hence, to choose the set of time periods to explore, the algorithm simply
selects the time periods that have a positive value of θ̄t (in addition to the ones known to be correct). The
algorithm follows this criterion during the data collection or warm-up phase (i.e., first w iterations), once
the w first iterations have finished and the algorithm has enough information, the exploration mechanism
will be limited to explore only the time slot with the highest positive θ̄t, if there is any.

The pseudo-code of the proposed LinTS implementation is shown in Algorithm 3. In the first two lines,
the algorithm initializes the matrices with the information of the explored time periods A and their rewards
b. The algorithm’s main loop, which completes the number of specified rounds, is located between lines
3 and 14. Line 4 collects the information about the expected reward estimator θ̂t. In line 5, the algorithm
samples the parameter θ̄t for all the time periods. Line 6 checks if the number of iterations devoted to the
warm-up procedure has been reached. If not, line 7 selects all the time periods with a positive value of θ̄t
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and the time periods known to be correct. Otherwise, line 9 selects the time period with the largest positive
value of θ̄t and the time periods known to be correct. To finish the main loop, the algorithm receives a
reward (line 11) for the chosen set of time periods and updates the matrices A and b (lines 12 and 13) with
the new information.

Algorithm 3 LinTS

Input: R ą 0, ϵ P p0, 1s, T P N
1: A Ð Id

2: b Ð 0d

3: for t P t1, 2, . . . ,Tu do
4: θ̂t Ð A´1b
5: Sample θ̄t from Npθ̂t, ν

2B´1q

6: if t ă w then
7: Choose the time periods that have a positive value of θ̄t and the correct time periods
8: else
9: Choose the time period with the largest positive value of θ̄t and the correct time periods

10: end if
11: Compute reward rt “ ´

ˇ

ˇ

ˇ
tso f t
c ´ tdri

c

ˇ

ˇ

ˇ

12: A Ð A ` xkt xJ
kt

13: b Ð b ` xktrt

14: end for

4.2.2. Combinatorial MAB algorithms
A combinatorial MAB (CMAB) is considered a generalization of MAB, as the algorithm is allowed to

play a combination of arms per iteration instead of only one. This combination of arms is called super arm
and we denote it as S P S, where S is the set containing all the super arms. As a consequence, a CMAB
can receive different rewards for each of the arms k P S t. In terms of the mTWLP, contrary to the Linear
MAB, in the CMAB one arm k P K contains one time period in which customer c will be served and, as
there are n arms, S may contain up to 2n ´ 1 super arms. In this study, one CMAB super arm is equivalent
to one Linear MAB arm, as both are defined as combinations of time periods.

Another important aspect to highlight in CMAB algorithms is that usually the expected rewards are
assumed to be bounded in r0, 1s. Hence, let Jt be the set of indexes of all k P S t and jc P N | jc ď n be the
index of the time period where the driver served customer c. Then we define the reward of each k P S t at
iteration t as

rkt “ 1 ´
|ik ´ jc|

n
, @k P S t. (16)

To illustrate this reward with an example, suppose that there are n different time periods and that the CMAB
algorithm proposes to serve the customer in the first time period. If the driver keeps the customer in that
position, the first time period receives a reward of r1t “ 1 ´

|1´1|

n “ 1, while if the driver prefers to serve

the customer in the n-th time period, the first time period receives as reward r1t “ 1 ´
|1´n|

n “ 1
n . Hence, if

the driver decides to keep a customer, it makes sense to give the best reward to the selected time period. On
the other hand, if the driver prefers to serve the customer in a different time period, that means that either
this time period is incorrect or not efficient and it should be penalized.

In this study, these CMABs face the same challenges as the Linear MABs (i.e., the cold start and
high cost when exploring the wrong time period). To approach these issues, we set a warm-up parameter
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w ă T, w P N. During the data collection or warm-up phase, as the expected rewards are assumed to be
bounded in r0, 1s, to prevent the algorithms to select all the time periods at each iteration, the maximum
time period selection to form S is limited to 10 (including the correct time periods). After the warm-up
iterations, the algorithms are allowed to explore only one new time period at each iteration.

We decided to use CUCB (Chen et al., 2013) and CTS (Wang and Chen, 2018) as CMAB algorithms.
It can be noted that CUCB belongs to the UCB family of MAB algorithms (as LinUCB) and CTS to the
TS family of MAB algorithms (as LinTS), so they share the mechanism to get the exploitation-exploration
trade-off.

4.2.2.1. CUCB. Similarly to the UCB MAB algorithm, CUCB calculates the UCB value of every arm
k P K at each iteration t. To do so, Chen et al. (2013) proposed the following formula:

µ̄k “ µ̂k `

d

3 ln t
2Tk

@k P K, (17)

where µ̂k represents the reward average at iteration t, µ̄k is the UCB of arm k, and Tk is the number of times
that arm k has been played. In terms of the mTWLP, in a similar way to LinUCB, the super arm selection
is done by calculating the UCB of each arm. However, as the second term in Equation (17) only involves
information about the current iteration and the number of times that a time period has been explored, the
algorithm does not need to use the model (4)-(14).

The pseudo-code of our CUCB implementation is shown in Algorithm 4. The algorithm’s main loop,
which completes the number of specified rounds, is located in lines 1 to 11. In line 2, the algorithm calcu-
lates the UCB value of all the time periods. Line 3 checks if the number of iterations devoted to the warm-up
procedure has been reached. If not, line 4 selects the time periods with the 10 largest value of µ̄k, including
the time periods known to be correct. Otherwise, line 6 selects the time period with the largest positive
value of µ̄k and the time periods known to be correct. To finish the main loop, the algorithm receives a
reward (line 8) for each time period in S t and updates the reward averages µ̂k and the number of times that
each time period has been explored Tk (lines 9 and 10).

Algorithm 4 CUCB
Input: T P N

1: for t P t1, 2, . . . ,Tu do
2: Calculate UCB µ̄k Ð µ̂k `

b

3 ln t
2Tk

for all K time periods
3: if t ă w then
4: Form S t adding the time periods with the 10 largest value of µ̄k and the correct time periods
5: else
6: Form S t adding the time period with the largest value of µ̄k and the correct time periods
7: end if
8: Compute rewards rkt “ 1 ´

|ik´ jc|

n , @k P S t

9: µ̂k Ð
µ̂kT`rkt
T`1 , @k P S t

10: Tk Ð Tk ` 1, @k P S t

11: end for

4.2.2.2. CTS. As a TS algorithm, CTS assumes that the expected reward of each arm k follows a prob-
ability distribution and, at each iteration, the algorithm selects as a super arm the arms with the largest
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probability of getting a reward. The authors in Wang and Chen (2018) assume that µk follows a beta dis-
tribution Betapαk, βkq. Once the rewards for each arm have been received (Equation (16)), αk and βk are
uploaded following the formulas αk “ αk `rkt and βk “ βkt`1´rt to compute the posterior distribution. In
terms of the mTWLP, in the same way as the LinTS algorithm, the super arm selection is done by sampling
µ̄k for each time period.

The pseudo-code of our CTS implementation is shown in Algorithm 5. In the first two lines, the algo-
rithm initializes the Beta distribution parameters. The algorithm’s main loop, which completes the number
of specified rounds, is located between lines 3 and 13. In line 4, the algorithm samples the parameter µ̄k

for each time period k P K. Line 5 checks if the number of iterations devoted to the warm-up procedure
has been reached. If not, line 6 selects the time periods with the 10 largest value of µ̄k, including the time
periods known to be correct. Otherwise, line 8 selects the time period with the largest positive value of µ̄k

and the time periods known to be correct. To finish the main loop, the algorithm receives a reward (line 10)
for each time period in S t and updates the parameters αk and βk (lines 11 and 12) with the new rewards.

Algorithm 5 CTS
Input: T P N

1: αk Ð 1 for all K arms
2: βk Ð 1 for all K arms
3: for t P t1, 2, . . . ,Tu do
4: Sample µ̄k from Betapαk, βkq for all K arms
5: if t ă w then
6: Form S t adding the time periods with the 10 largest value of µ̄k and the correct time periods
7: else
8: Form S t adding the time period with the largest value of µ̄k and the correct time periods
9: end if

10: Compute rewards rkt “ 1 ´
|ik´ jc|

n , @k P S t

11: αk Ð αk ` rkt
12: βk Ð βkt ` 1 ´ rt

13: end for

5. Computational experiments

In this section, we assess the capacity of our approaches to learn customers’ real sets of time windows
and provide more realistic routes to limit the costs for the company. We first describe the framework that
allows testing our approaches (i.e., simulation algorithms, instances, and parameters). Then we compare
the learning mechanisms presented in Section 4 (i.e., RH, LinUCB, LinTS, CUCB, and CTS). We tried
to compare the learning mechanisms with a non-learning algorithm that solves a minimum-tour duration
TSP with a fixed and non-evolving set of customer time windows (i.e., it does not learn after observing
the driver’s route). However, the routes proposed by this non-learning approach were so different from
the ones using time windows that the simulated algorithms that we present below were not able to recover
feasibility. Thus, having a learning mechanism helps to provide more realistic routes in the considered
instances. Lastly, all the computational experiments have been conducted in a processor AMD Rome 7532
@ 2.40 GHz with 10 GB of RAM.
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5.1. Simulation algorithms: generating the software and the driver’s routes
As we defined in Section 3, at the beginning of day t the company considers the set of customers to

serve Ct and, with the current knowledge of the customers’ set of time windows designs the software route
ẑ “ f pCt, ŷCt q. However, this route may be infeasible for the driver. Hence, the driver modifies the route (if
necessary) and creates the driver’s route z̄ “ gpCt, yCt , ẑq. In the remainder of this section, we describe the
procedures used to simulate the construction of the software route and the procedure applied by the driver
to repair the route and generate the driver’s route.

To build the software route, we modify the integer linear programming model for the symmetric TSP-
TW proposed by Kara and Derya (2015). This model is an adaptation of the non-linear TSP-TW model
proposed by Baker (1983) and minimizes the tour duration. The way we adapt this model is by allowing
each customer to have more than one time window (i.e., adapting it to solve TSP-mTW instances).

Let tc P N Y t0u be the arrival time at a certain customer c P C, with t0 being the departure from the
depot and tn`1 the arrival time at the depot. Let pcĉ P t0, 1u be a non-consecutive precedence variable
between the customers c and ĉ. The variable ycĉ takes value 1 if the customer c is served before customer
ĉ, and 0 otherwise. Let Lc be the time window set of indexes of the customer c, zcl P t0, 1u be a binary
variable that gets value 1 if the time window with index l is used for the customer c and 0 otherwise, acl and
bcl be the earliest and latest that a customer c can be served in the time window with index l, and M ą 0
being a sufficiently large constant. The model for building the software route follows:

minimize tn`1 ´ t0 (18)

subject to tc ´ t0 ě d0c @c P C (19)

tn`1 ´ tc ě dc,n`1 @c P C (20)

tc ě
ÿ

lPLc

aclzcl @c P C (21)

tc ď
ÿ

lPLc

bclzcl @c P C (22)

ÿ

lPLc

zcl “ 1 @c P C (23)

tc ´ tĉ ` Mpcĉ ě dcĉ @c, ĉ P C Y t0u (24)

tĉ ´ tc ´ Mpcĉ ě dcĉ ´ M @c, ĉ P C Y t0u (25)

tc ě 0 @c P C Y t0, n ` 1u (26)

zcl P t0, 1u @l P Lc,@c P C Y t0, n ` 1u (27)

pcĉ P t0, 1u @c, ĉ P C Y t0u (28)

The objective function shown in Equation (18) minimizes the tour duration. Constraints (19) and (20)
ensure that the route starts and finishes at the depot. Constraints (21) and (22) bound the delivery time
of customer c inside of the selected time window. Constraints (23) assure that only one time window per
customer is used. Constraints (24) and (25) correspond to the linearization made by Kara and Derya (2015)
and ensure that the delivery time difference between customers c and ĉ is greater than the time between the
two customers dcĉ.

In order to correct the software route, the simulated driver (SD) does the following: first, it checks if the
route is feasible by verifying if the customers are served inside of their set of time windows. If the service
time at a customer is unfeasible, SD removes this customer from the route and tries to reinsert it. This is

15



done with a reinsertion heuristic. Lastly, after checking for infeasibilities, SD tries to improve the route
with a local search algorithm. This process is kept simple to simulate the decisions that a real driver would
make to improve a route in a short time at the beginning of the day. In the following, we summarize the
procedures for the aforementioned insertion and local search algorithms. However, for further details about
the algorithms, we refer the reader to the original papers.

Let C̄ Ă Ct be the set of customers to reinsert. In terms of the insertion algorithm, SD tries to reinsert
every customer c P C̄ following a simplification of the reinsertion algorithm for the TSP-TW presented in
Gendreau et al. (1998). The first step in our adaptation is to sort the customers c P C̄ in ascending order
of the sum of the width of their time windows. Then, SD tries to insert every customer c P C̄ in every
possible position of the route trying all of its time windows. Lastly, SD inserts c in the feasible position
that generates the lowest increase in the duration of the tour (breaking ties using the lowest increase in total
travel time). By feasible we mean that the insertion of the customer c in the partial route should not push
other customers out of their time window. In the original paper, the authors allow a backtracking technique
that removes customers from the route to increase feasibility. To better align with what real drivers would
do, we do not allow backtracking, and we do not allow the customers already in the route to move between
time windows.

To improve the solution found by the insertion algorithm, we use a simple local search based on the
TSP-TW 2-exchange algorithm presented in Savelsbergh (1992). The 2-exchange is an algorithm that at
each step considers two different edges from a route vcĉ and vc̄c̃, and exchanges them with vcc̄ and vĉc̃,
reversing the orientation of all the other edges between the customers ĉ and c̄. Again, to better align with
what real drivers would do, we adapt this local search to allow the 2-exchanges that involve reversing only
one edge. Hence, following the example shown above, SD swaps the edges vcĉ and vc̄c̃ with vcc̄ and vĉc̃ only
if in the original route those edges are linked by the edge vĉc̄. Lastly, as in the insertion algorithm, we do
not allow the customers to move between time windows.

5.2. Test instances
To carry out our experiments, we used a dataset coming from the city of Montreal, Canada. This dataset

(available through the Open Canada website) contains the location and the information about all the parking
signs in the great area of Montreal. Under the assumption that a customer lives in front of the parking sign
and that the driver has to follow the parking restriction to perform the delivery, this dataset can be used to
create mTWLP instances.

To create the instances, we have restricted the dataset to the parking signs that: 1) the resulting parking
time window intersected with r9am, 5pms is not void; 2) the parking signs affect during weekdays (i.e.,
Monday to Sunday, Monday to Friday, etc); 3) the parking signs are located in the neighborhoods of Le
Plateau - Mont-Royal, Outremont, Rosemont - La Petite Patrie, or Ville-Marie. This results in 4,373 parking
signs of 209 different types.

To create each instance we sample 100 parking signs from the restricted dataset. As all the resulting
parking time windows always start and end either at o’clock or at half past, we divided the time horizon
r9am, 5pms into 16 periods of 30 minutes each. In order to calculate the travel time matrix, the haversine
formula (de Mendoza y Rios, 1795) has been used. We assume a uniform service time of 3 minutes, and
the average speed of the vehicle is assumed to be 8.8 m/s (Saunier and Chabin, 2020). Lastly, the depot has
been located in the industrial area of Saint Laurent.

Each run of the algorithms simulates a total of T “ 450 days and, on each day t, the driver has to serve
|Ct| “ 30 randomly selected customers. In order to simulate fairly all the algorithms, the set of customers
to serve on any of the 450 days (Ct) is the same for all methods. In addition, the warm-up parameter w
equals to 50 iterations for all the methods.
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5.3. Results

In this section, we discuss two experiments. The first aims to assess the value of the learning mecha-
nisms. In other words, it tests whether the learning mechanisms are capable of acquiring a higher number
of correct time slots and the impact that this learning has on the routing costs, and if the proposed routes
are more likely to be used by the drivers without any intervention. The second aims to analyze the quality
of the learned time windows. To do so, we let the MAB algorithms run normally for 100 iterations (50 data
collection iterations and 50 limited exploration iterations) and then we turn off the exploration. By turning
off the exploration we will be able to see if the learned time periods help the software to propose good
routes. This experiment could represent a company that at some point wants to stop exploring and exploit
the information that have acquired. For the remainder of the section, we denote all the algorithms by con-
catenating their name with the number of warm-up iterations (i.e., CTS50, CUCB50, LinTS50, LinUCB50,
and RH50).

Figure 6 details the results of the first experiment. In Figure 6a we show the percentage of customers
that the software route served inside of the real set of time windows (i.e., the higher the percentage, the
fewer the number of customers that must be reaccommodated by the driver). In this chart, to get some
smoothness, each point over the x-axis represents an average over the previous 25 days and over the whole
set of instances, while the y-axis represents the percentage of customers served at a feasible time over the
30 daily customers. All the algorithms serve correctly above 85% of the customers after the 50 warm-up
iterations. However, it can be seen that the combinatorial MABs are proposing more wrong time windows,
as they might be exploring more new time slots than the linear MABs. Figure 6b compares the percentage
of correct time periods that each algorithm learns over 450 days. In the chart, we can see that all the
algorithms learn at a fast rate during the warm-up period. After that, as the exploration is restricted for the
MAB algorithms and RH50 only learns what it observes from the drivers. Thus, the learning pace decreases
for the remaining 400 days. As expected, the MAB algorithms learn more correct time periods than RH50
over the 450 iterations. Analyzing the figures 6a and 6b together we can conclude that the algorithms that
explore more are able to learn more time slots, but also propose more incorrect time windows.

Figure 6c hecks the convergence of the software route tour duration towards the driver’s route tour
duration. Again in this chart, each point over the x-axis represents an average over the previous 25 days
and over the entire set of instances, while the y-axis represents the deviation between software route and
driver’s route tour duration (i.e., pdurso f t ´ durdriq{durdri, where dur corresponds with the tour duration
of the route). We can see that the algorithms provided with learning mechanisms improve after the warm-
up period. However, due to the higher exploration of the combinatorial MABs, the proposed routes have
irrealistic costs while the linear MABs are able to propose routes that are closer to the driver route. Taking
into account both figures 6a and 6c, we can conclude that the MAB algorithms keep exploring incorrect time
windows (MAB algorithms never reach 100% in Figure 6a) and propose less realistic routes, while RH50
proposes feasible routes that the drivers rarely have to change. Thus, RH50 offers more realistic routes than
CTS50, CUCB50, LinTS50, and LinUCB50, with the combinatorial MABs being the learning algorithms
with the worst tour deviation.

Similarly, Figure 6d compares the driver’s route tour duration with an oracle that knows the real set of
time windows and calculates a near-optimal solution (i.e., pdurso f t ´ duroraq{durora). As in Figure 6c, the
drivers have difficulties repairing routes designed by the combinatorial MABs, yielding low-performance
routes. With respect to the linear MABs, the costs of routes seem to stop improving after the warm-up
iterations, incurring overruns in comparison with the oracle. RH50 reaches the lowest tour duration devi-
ation for the drivers. However, taking into account figures 6c and 6d, as RH50 reaches 0% of deviation
in the first figure and is approaching the 5% of deviation in the latter figure, this means that the company
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incurs almost no overruns. In conclusion, after observing Figure 6, we can state that having an exploration
mechanism allows to learn a higher number of correct time slots (over 25% for CTS50). However, as that
implies proposing more incorrect time slots, a higher learning rate does not translate into a significant value
to the company, as the driver is creating more expensive routes after correcting the infeasibilities.
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(a) Correctly served customers per iteration
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(b) Learned time periods per iteration

0 25 50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

Days

−35

−30

−25

−20

−15

−10

−5

0

%
 o

f d
ev

ia
tio

n

CTS50
CUCB50
LinTS50

LinUCB50
RH50

(c) Tour duration deviation between software and driver’s route
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(d) Tour duration deviation between driver and oracle’s route

Figure 6: Learning mechanisms comparison with 50 warm-up iterations

As it is not clear whether having an exploration algorithm adds significant value, we present an addi-
tional experiment. First, we let all the algorithms warm up for 50 iterations. After that, we restrict the
exploration for another 50 iterations, as defined in Section 4. Lastly, we turn off the exploration mecha-
nisms for the remaining 350 days. Once the exploration mechanisms are turned off, the MAB algorithms
propose as a set of time windows, the time periods known to be correct (i.e., the same behavior as RH).
Hence, with this experiment, we compare if allowing the MAB algorithms to explore for a short period of
time compensates for the costs in the long run in comparison with having no exploration, as RH. We denote
the algorithms with 50 warm-up iterations and 50 exploration iterations by concatenating their name with
”50-50” (i.e., CTS50-50, CUCB50-50, LinTS50-50, LinUCB50-50). We also add to the comparison RH50
and RH100, respectively RH with 50 and 100 warm-up iterations. The results of the second experiment are
shown in Figure 7.

Figure 7a shows the percentage of customers that the software route served inside of the correct set
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(a) Correctly served customers per iteration
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(b) Learned time periods per iteration
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(c) Tour duration deviation between software and driver’s route
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Figure 7: Learning mechanisms comparison with 50 warm-up days and turning off the exploration after other 50 days

of time windows. As expected, during the first 100 iterations, all the MAB algorithms behave similarly
to the equivalent ones in the first experiment, and, after turning off the exploration mechanisms, the MAB
algorithms always propose feasible routes. In addition to that, RH100 has a similar behavior to RH50 in
the first 50 iterations and remains almost constant until the 100 warm-up iterations are over. Figure 7b
compares the percentage of correct time periods that each algorithm learns over 450 days. Again, we see
that all the MAB algorithms but LinUCB50-50 still learn more time periods than RH50. Additionally, due
to the larger warm-up periods, RH100 is able to learn more than the linear MABs, but not more than the
combinatorial MABs. Figure 7c shows results on the same line: after the first 100 days, all the learning
algorithms propose realistic routes that the driver barely has to change. Note that the MAB algorithms
seem to be bounded between RH50 and RH100 during the second 50 days. Lastly, Figure 7d shows that,
after turning off the exploration, the combinatorial MABs and RH100 are capable of generating slightly less
expensive routes than RH50 but incurring higher costs in the days 50 to 100. Analyzing together figures
7b and 7d, we can conclude that the highest learning pace of combinatorial MAbs with respect to RH50
and RH100 yields less expensive routes once the exploration mechanism is turned off. That being said, the
routes proposed by the combinatorial MABs during the first 100 iterations are less realistic than the ones
proposed by the RH.
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Therefore, it seems reasonable to conclude that adding learning mechanisms help to provide more re-
alistic routes that the drivers accept and change less often (figures 6c and 7c) without incurring high costs
for the company (figures 6d and 7d). Additionally, having an exploration mechanism for a short period of
time leads to acquiring more knowledge from the driver yielding more realistic and efficient routes. How-
ever, this comes with the price of less realistic routes during the iterations where the MABs are allowed to
explore.

6. Conclusions

Motivated by the relevant real-life problem of understanding the behavior of the drivers in the last-
mile delivery, we presented the mTWLP, a problem that has not been studied in the literature before. The
mTWLP defines the drivers’ knowledge in terms of time windows that have to be learned. We addressed
this problem in two different ways. First, we proposed RH, a new algorithm that learns the customers’ real
sets of time windows by mimicking drivers’ historical data. Second, we adapted four MAB algorithms to
add an exploration mechanism to RH. Furthermore, those two approaches are able to start learning without
the need for historical data. Additionally, we also developed an integer programming model that selects the
most promising arm without incurring the enumeration of all of them, which can be untractable if the set of
arms is large.

The computational experiments showed that the implementation of a learning mechanism results in
more effective and realistic routes that are more likely to be followed by the drivers without significantly
raising the companies’ routing costs. Furthermore, it was shown that RH solves the mTWLP, and the
addition of exploration mechanisms leads, as expected, to learn a larger number of time periods. If the
exploration of the algorithms is turned off after a short period of iterations, as a company might decide to do,
the higher information acquired by the MABs yields lower costs than RH. However, this short exploration
phase comes with higher costs. Therefore, a company would search for a trade-off between high costs in
the short term (i.e., exploration phase) and lower costs in the long term (i.e., exploitation phase).

Future studies could explore whether a harder set of instances could better support the use of exploration.
Furthermore, other types of learning procedures could be used to acquire time windows (e.g., inverse opti-
mization, machine learning, or data-driven optimization). Lastly, it would be interesting for future studies
to look at the dynamic version of the mTWLP, in which the sets of time windows change over time. It is
reasonable to believe that some of these time windows change over time in practice (e.g., in summer versus
winter). This dynamic version of the mTWLP should also better highlight the additional value of explo-
ration since it would then be hard for RH to unlearn the previously correct but now incorrect time windows;
which is done automatically with MABs due to exploration.
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Appendix A. Upper bound of
b

xJ

kt
A´1

t xkt

In order to get u (i.e., an upper bound of
b

xJ
ktA

´1
t xkt), first we have to prove that At P Rnˆn is a

symmetric and positive definite matrix. Let C P Rnˆn, we denote that C is positive definite by C ą 0, and
that C is positive semidefinite by C ľ 0. Then, as A0 “ γIn, where γ ą 0 and In is the identity matrix
of size n, A0 ą 0 and symmetric. In addition to that, as @x̂ P Rn we have that x̂x̂J ľ 0 and symmetric
and xk P t0, 1un, it follows that xkt xJ

kt ľ 0 and symmetric @t ă T . Consequently, as At`1 “ At ` xkt xJ
kt ,

At`1 @t ă T , A0 ą 0 and symmetric and xkt xJ
kt ľ 0 @t ă T and symmetric, we have that At`1 ą 0 and

symmetric @t P T . By last, as At`1 ą 0 and symmetric, it follows that A´1
t`1 ą 0 and symmetric. Hence, to

get the upper bound of
b

xJ
ktA

´1
t xkt, as A´1

t`1 ą 0 and symmetric, and x ‰ 0n, where 0n is a vector of size n
having all entries equal to 0, the Rayleigh quotient (Horn and Johnson, 1985) ensures that

xJ
ktA

´1
t xkt ď λmaxxJ

kt xkt,

where λmax is the largest eigenvalue of A´1
t . As the arm that maximizes the UCB is uncertain, we bound

xJ
kt xkt ď 1nJ1n “ n, where 1n is a vector of size n having all entries equal to 1. In this way, the following

inequality holds:
xJ

ktA
´1
t xkt ď λmaxn. (A.1)

Lastly, as u P N, we define the upper bound of xJ
ktA

´1
t xkt as

u “ rλmaxns (A.2)
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