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STRUCTURE VERSUS RANDOMNESS IN COMPUTER MUSIC
AND THE SCIENTIFIC LEGACY OF JEAN-CLAUDE RISSET

Vincent Lostanlen
Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

RÉSUMÉ

Si le compositeur et chercheur Jean-Claude Risset (1938–
2016) n’a pas érigé de système théorique unificateur, sa vo-
lonté de “composer le son lui-même”, affirmée dès 1969, a
fait date. Mon article propose d’en tirer les leçons du point
de vue du traitement du signal audionumérique. Dans ce
but, j’emprunte au mathématicien Terence Tao son concept
de “structure–randomness dichotomy” et en décline les
manifestations sur deux moments emblématiques de la mu-
sique par ordinateur : la synthèse additive et les paradoxes
de hauteur. Je montre qu’à chacun de ces moments, Ris-
set a étendu les notions traditionnelles de structure et de
“randomness” (aléa et plus généralement, contingence) en
musique et les a articulées de manière originale. En guise
d’épilogue, je reprends le même motif pour présenter un
travail de recherche en cours : les réseaux de neurones
multirésolution. Ainsi, là où des musicologues ont entre-
pris de situer l’héritage de Risset à partir de son répertoire
de compositions, je propose une grille de lecture alterna-
tive, interne aux conditions d’objectivation des énoncés
mathématiques.

1. INTRODUCTION

No one would dispute that the advent of the Information
Age has profoundly disrupted the history of music [49, 7].
However, the converse assertion — i.e., that contemporary
musicianship can inspire breakthroughs in the mathemati-
cal sciences — has few outspoken advocates. Even fewer
yet are the individuals who put this assertion in practice. In
this context, the figure of Jean-Claude Risset (1938–2016)
epitomizes the infrequent, although by no means incon-
gruous, tenet that “art and science bring about complemen-
tary kinds of knowledge” [33]. In 1969, he presented his
piece Mutations as “[attempting] to explore [...] some of
the possibilities offered by the computer to compose at the
very level of sound—to compose sound itself, so to speak.”
[19] Musicologists Vincent Tiffon [54] and Márta Grabócz
[9] have shown that this aesthetic practice of “composing
sound itself” recurs as a motto in Risset’s writings, up until
his autobiographical note from 2015 [46]. In this article,
I propose to take the same motto as a starting point, yet
while adopting a mathematical and technological outlook,
more so than a musicological one.

“My scientific and artistic activities have nourished each
other”, Risset declared in 1999 upon being awarded the

CNRS gold medal [35]. Yet, Risset also insisted that “com-
puter music should be evaluated as music, not as experi-
ment” [41]. Thus, even so Risset’s “scientific research was
driven by musical desires” [35], he stated that, in general,
“research must strive to preserve its independence, to not
let itself be altered by a demand that would be too pressing
or too precise” [26]. And elsewhere : “I do not think it is
artificial to separate the scientist from the composer” [43].
In other words, if the motto of “composing sound itself”
is to have a scientific meaning, we must uphold it from
within science ; i.e., from its internal criteria of validity and
its specific methods of inquiry.

For this reason, the concept of “structure–randomnness
dichotomy”, as proposed by mathematician Terence Tao,
will be particularly insightful. We will reuse it to discuss
two moments in Risset’s scientific legacy and will conclude
with an example taken from our ongoing research.

2. AGAINST REDUCTIONISM

Before delving into our inquiry, we must avoid a po-
tential pitfall : that of interpreting “sound itself” as the
postulate that musicianship is mathematizable through and
through, and as accessible from audio recordings alone. In
this regard, Risset had warned us as early as 1977 [23] :

We have found limitations to the powers of
mathematics in music. The emergence of mu-
sic (as that of life) imposes a critical mass of
complexity which poses a practical problem
of control. [...] We can no longer hope for the
mathematics to be the champ constitutif fonda-
mental of music 1 . [...] I was once endeared
by the idea that there might be a profound ma-
thematical foundation to the dazzling power
of music—I no longer think so.

This position is in stark contrast with some antecedents,
such as Rameau or Schönberg, as well as some contem-
poraries, such as Andreatta or Mazzola. As an example,
Risset showed respect for the non-acoustical element in
music, made evident by pitch spelling [39] :

Music is different from language : it does
not convey a message that could be transla-
ted into another musical dialect. Yet it clearly
has certain linguistic aspects. It is irritating
to hear certain physicists unaware of tonal

1 . This sentence refers to a concept by Jean-Tousssaint Desanti [5].



syntax claim that it does not make sense to
differentiate between a B and a C flat in an
equally-tempered tuning. In fact the same pair
of sounds can imply different resolutions de-
pending on the way you name them [...].

3. STRUCTURE BEYOND REPETITION AND
RANDOMNESS BEYOND CHANCE

With this caveat in mind, we may outline a coherent
thread in the scientific production of Risset around the
concept of “composing sound itself”. Risset often descri-
bed this concept by visual or tactile metaphors, namely,
“sculpture” and “microsurgery” [40]. Let us propose a ma-
thematical standpoint to complement these metaphors.

In 2006, Terence Tao pointed out profound connections
between several well-known theorems across seemingly
unrelated areas of mathematics : combinatorics, ergodic
theory, harmonic analysis, and hypergraph theory [51]. For
each of them, Tao revisited its proof by treating the mathe-
matical object under study as a “superposition of a structu-
red object and a pseudorandom object”. Having acknow-
ledged that his notion of structure could take one of many
forms depending on context, Tao offered some characte-
ristic adjectives : i.e., autocorrelated, low-entropy, smooth,
predictable, concentrated, algebraic. Vice versa, pseudo-
random objects are decorrelated, high-entropy, noisy, un-
predictable, dispersed, or probabilistic.

Structured objects and pseudorandom objects, as depic-
ted by Tao, are inherent to mathematics. As such, they do
not necessarily align with “structure” and “randomness”
as commonly understood in music theory. In interviews,
Risset would occasionally mention Schenkerian analysis
as a precursor of Chomsky’s generative grammars [39], as
well as some musical examples of symmetry by Webern
and Gershwin [29]. Yet, his music rarely involved exact
repetition, and he viewed the proliferation of his synthetic
sounds as closer to a rhizome than to a tree [31]. Therefore,
theories of tonal or serialist music cannot apply [39] :

Structures can often be defined in a rigorous,
objective way, for instance in terms of mathe-
matical descriptions. However what counts in
art is not the objective structure—per se—but
the structure in us, as we experience it through
our senses. (A distinction proposed by Jacques
Mandelbrojt)

Towards the other side of the dichotomy, the concept
of randomness should also be understood at the highest
possible level of abstraction and generality ; i.e., beyond
the well-known case of stochastic music [25]. While Risset
praised Xenakis as an “immense creator” , he was reluctant
to apply probability theory to describe musical complexity
[4] and saw limited value in random exploration [28] :

[...] by varying the numerous parameters of a
complex model at random, we cannot reaso-
nably hope to achieve a precise goal ; try to
randomly turn the faces of a Rubik’s cube to
arrive at the solution.

Most of the mathematical models which are surveyed in
this article have no stochasticity in them : they do not rely
on a pseudorandom number generation software (PRNG)
to compute digital audio samples. Yet, beyond the case
of PRNG, the concept of randomness has other uses in
science, particularly computer science : e.g., arbitrariness,
contingency, indeterminacy, irreducibility, and mutability.
These words are not interchangeable : e.g., the stochasticity
of a “random walk” is not synonym with the arbitrariness
of “random-access memory”. Yet, at the risk of a misun-
derstanding, we choose to maintain the term “randomness”
as an umbrella term throughout our article, both for reasons
of simplicity and as an homage to Tao’s original idea.

The existence of arbitrary long arithmetic progressions
of prime numbers, as proven by Green and Tao in 2004, is
noteworthy in this regard [10]. Indeed, at first glance, the or-
dered sequence of prime numbers is not structured : unlike
the Fibonacci sequence, it does not obey a linear recurrent
formula. It is also not random : the sieve of Erastothenes
is a deterministic algorithm which checks whether a given
number is prime or not with bounded time complexity.

Yet, at a more refined level of mathematical descrip-
tion, the prime numbers show certain aspects of structured
objects and, at the same time, aspects of (pseudo)random
objects. On one hand, Tao lists some structural properties
of prime numbers : e.g, they are all adjacent to a multiple
of six, with two exceptions ; their last digit is 1, 3, 7, or
9, with two exceptions. On the other hand, a theorem by
Hadamard and de la Vallée Poussin states that nth prime
number is approximately equal to n log n. According to
Tao [53] :

[This theorem shows that] the primes have
some large-scale structure, even though they
can behave quite randomly at small scales. [...]
It is possible to use this large-scale structure,
local structure, and small-scale randomness to
prove some non-trivial results.

We contend that the structure–randomness dichotomy of
prime numbers, as exemplified by the Green-Tao theorem,
is “microsurgical” in the same metaphorical sense than the
way Risset described his own practice of computer music.
In both instances, neither structure nor randomness is ex-
plicitly apparent in the material ; and yet, both “deal with
large objects of unspecified (or unusable) structure” (Tao)
[52] via patterns “partially periodic and partially random”
[34] (Risset), as Michael McNabb and John Chowning did
in order to imitate the singing voice.

4. ADDITIVE SYNTHESIS

The need for structured objects in computer sound syn-
thesis was already apparent in the early years of computer
music. In 1963, Max Mathews justified the development
of the Music n software series by pointing out the imprac-
ticality of specifying broadband analog signals in terms
of isolated digital samples [14] : “the numbers-to-sound
conversion is useless musically unless a suitable program



(set of computer instructions) can be devised for compu-
ting the samples from a single set of parameters.” In 2014,
Risset recollected his work with Mathews [45] :

Thanks to programming, one can synthesize
sounds in many different ways. But when Max
Mathews began to write programs for sound
synthesis, he soon realized that he would have
to spend his life writing different programs
to implement different musical ideas. So, he
undertook to write a really flexible program,
as universal as possible. The main key to flexi-
bility was the modular approach. Starting with
Music 3 (1959), the Music n programs—written
by Max and others—would be compilers, that
is, programs that could generate a multiplicity
of different programs. [...] Any connection of
modules corresponds to a particular synthesis
model : it is called instrument by analogy.

In the same text, Risset insists on the innovative character
of Music 3 as a forerunner of modular synthesizers :

Contrary to a common belief, Max Mathews’s
modular conception did not copy that of syn-
thesizers : on the contrary, it inspired the ana-
log devices built by Moog, Buchla and Ketoff
using voltage control—these appeared after
1964, while Music 3 was written in 1959.

Adopting the parlance of software engineering, the vision
of Mathews (and Risset) for computer music could be des-
cribed as a quest towards loose coupling and high cohesion.
Here again, we find an instance of structure–randomness
dichotomy, in the sense that the program combines mu-
table and immutable elements. On one hand, the synthesis
models known as “instruments” remain unchanged at the
scale of the musical fragment to be generated : as such, they
provide a structural backbone to the program. On the other
hand, control parameters for the instrument remain undeter-
mined until the composition of the piece : these parameters
may be chosen at will without technical knowledge about
the implementation of encapsulated modules.

For reasons of usability and program conciseness, mu-
table elements should have a straightforward musical in-
terpretability and remain relatively lightweight in terms of
information content. A journal article by John Robinson
Piece, Jean-Claude Risset, and Max Mathews summarizes
these considerations (emphasis is ours) [16] :

Jean-Claude Risset has undertaken an analy-
sis of real trumpet tones to get insight into the
physical parameters which influence mostly
the tone quality. It was found that from a pro-
per specification of a few features, like the
attack, a fast random frequency fluctuation, a
frequency spectrum depending upon the loud-
ness, one could synthesize brass-like sounds.

In a previous publication, researcher Anne Veitl has
pointed out that this “proper specification” is akin to a
new system of musical notation, which is conceptually
closer to tablature than to solfège [55]. Veitl describes the

programming paradigm of Music 5 as a shift away from
notating “certain theorized aspects of perceived phenome-
na” towards “writing down the causes” of sounds. She also
makes the case that Risset’s knowledge of physical acous-
tics and psychoacoustics has served as an underpinning for
“digital tablatures” in Music 5. We may complement and
nuance Veitl’s observation by pointing out that Risset had
an unorthodox practice of audio content analysis. To him,
the ultimate purpose of decomposing real-world sounds
was to produce a flexible and evocative resynthesis, more
so than to explain the formal cause of sound production at
the vibratory level. In particular, Risset points out practical
limitations behind modeling a musical event in terms of a
Fourier series with P partials, with P → +∞ :

x(t) =

P∑
p=1

ap cos(2πpξt). (1)

Even so the Fourier representation is mathematically uni-
versal for absolutely integrable functions, the fundamental
frequency ξ may be lower than the perceived pitch and
the number P may be computationally intractable [12].
This is particularly true for percussive inharmonic sounds
such as bells and gongs, which Risset featured in his 1969
Introductory Catalogue of Computer-Synthesized Sounds.
Risset’s solution was two-fold : first, to relax the constraint
of having all partial frequencies be integer multiples of a
fundamental ; and second, to introduce temporal amplitude
modulation in each sinusoidal component ap cos(2πξpt).
The additive synthesis model becomes :

x(t) =

P∑
p=1

ap(t) cos(2πξpt). (2)

Such an increase in flexibility comes at the cost of grea-
ter complexity and runs the risk of making the adjustment
of each ap(t) intractable. Yet Risset had learned, from his
interactions with Max Mathews, that this complexification
could be curtailed by introducing appropriate subroutines
in the computer program. Specifically, Risset proposed to
drive the temporal envelopes ap(t) by exponential func-
tions whose decay rates are in inverse proportion to fre-
quencies ξp : ap(t) = αp exp(−γξpt), where the series
αp and the dimensionless parameter γ are specific to the
instrument but independent from choice of pitch. This idea
is reminiscent of time–frequency analysis as defined by
Dennis Gabor in 1946 and made computationally efficient
by Cooley and Tukey’s fast Fourier transform (FFT) of
1966. In 1969, Risset and Mathews insisted on the po-
tential of these approaches, which are now ubiquitous in
digital audio [20] :

The importance of time factors in tone quality,
quite familiar to musicians using tape mani-
pulation and computer synthesis of sound, do
not appear to be well publicized among physi-
cists. Clearly one must perform some kind of
“running” analysis that follows the temporal
evolution of the notes.



The availability of pitch-synchronous analysis algorithms
to identify the modulation signals ap(t) automatically from
data is at the heart of Risset’s study of trumpet tones, and
his “exploration of timbre by analysis and synthesis” in ge-
neral [36]. Indeed, it provides the opportunity to introduce
ductility in the design of musical notes via composition of
oscillators, as compared to the excessive rigidity of Fourier
series. As Risset puts it in his Catalogue [22] :

Here no attempt has been made towards eco-
nomy of specification : schematized data from
real trumpet tones have been used.

Our claim is that this original combination of domain-
specific knowledge and data-driven modeling in Risset’s
treatment of additive synthesis is another instance of structure–
randomness dichotomy in computer music. Going back to
the examples of bell and gong-like sounds, the structured
object is made evident by the following system of differen-
tial equations

∀p ∈ {1, . . . , P}, dap
dt

= −γξpap(t), (3)

for which γ is a spectrotemporal invariant. Yet, in his piece
Inharmonique (1977), Risset calls this invariant into ques-
tion, thus recombining randomness with structure [30] :

In most natural sounds, the higher-frequency
components tend to decay more rapidly than
the lower-frequency ones, which can be for-
mulated as a principle : the higher, the shor-
ter. Because with additive synthesis one has
complete control of the decay rates of all com-
ponents, one can add interest to the computer
timbres by occasionally violating the principle.
[...] This kind of transformation was used ex-
tensively in my piece Inharmonique.

Another phenomenon worth discussing is the correla-
tion between high-frequency content and loudness, parti-
cularly in the case of brassy instruments such as the trum-
pet. Risset insisted on the importance of this correlation
many times over five decades, from his 1964 visit to Bell
Laboratories [17] and until a 2015 article for Organised
Sound : “the louder, the brighter” [47]. The key observation
is that the Fourier decomposition is linear : if the signal
x is multiplied by some constant k, the amplitude coeffi-
cient at frequency pξ is equal to kap. Yet, most families
of acoustical instruments, including brass, are nonlinear.
Thus, controlling the amplitude at the source via a simple
multiplicative factor k does not yield the intended effect
of change in loudness. Instead, Risset proposed to depart
from Fourier’s linear decomposition and replaced it with a
nonlinear control of the form

ap = ap,ref + λ(α− αref)p, (4)

where α is the loudness control and the amplitude slope
parameter λ is a spectrotemporal invariant. Note that all
amplitude levels are equal to ap,ref for α = αref and grow
with partial-specific slopes λp for α > αref . This allowed

Risset to present “some examples of brass-like sounds syn-
thesized with more economy of specification” than what
had been obtained from pitch-synchronous analysis [22].
Once again, we find a dichotomy of structure and random-
ness : i.e., a dual effort towards drawing structural connec-
tions between seemingly independent attributes of syn-
thesis whilst introducing free play inside pre-established
structures whenever necessary.

5. PITCH PARADOXES

The age-old debate on the physiological foundations of
harmony might appear to be purely a matter of structure.
A cursory look to the history of Western musical tuning
systems reveals a long sequence of normative constructs,
from the Pythagoreans to the Xenharmonists. While each
of these constructs hinges on a certain notion of structural
regularity, they leave no room, if any, for randomness. On
the contrary, the original treatment of pitch paradoxes by
Risset demonstrates that structure and randomness coexist
in our perception of intervals. Risset first presented this
work to the Acoustical Society of America in 1969 [21] :

Using computer-generated sounds, R. N. She-
pard has demonstrated circularity in judgments
of relative pitch. Other unusual sounds will
be presented, including endlessly descending
glissandi [...].

Here, Risset is referring to the Shepard tones, which are
built as a series of pure tones which are one octave apart.
A Shepard tone of frequency ξ in Hertz and bandwidth
(2J + 1) in octaves is defined by

x(t) =

J∑
j=−J

2j cos(2π2jξt). (5)

Towards the limit of infinite bandwidth (J → +∞),
the signal x satisfies the self-similarity equation x(t) =
2x(2t). In practice, setting J = 10 is sufficient for any ξ
in the hearing range of humans. As a result of this sum-
mation, the pitch of x is fundamentally ambiguous on
a pitch height scale from low to high ; meanwhile, x re-
tains a recognizable pitch class on a log-frequency circle
whose circumference is equal to one octave. Risset has
modified Shepard’s definition by replacing partial tones of
frequencies (2jξ) by exponential chirps whose frequency
(2j+(t/T ))ξ double after a predefined time span T . The
result x(t) is known as a Shepard–Risset glissando :

x(t) = 2(t/T )
J∑

j=−J

2j cos

(
2π

2jξ log 2

T
2(t/T )

)
(6)

Shepard tones and Shepard–Risset glissandos are both frac-
tal signals. As such, they are archetypes of mathematical
structure. Yet, the case of the Shepard–Risset glissando
also exhibits randomness in the sense that the choice of
reference frequency ξ becomes irrelevant : a pitch interval
δp = log2(ξ

′/ξ) may be converted into a time interval



δt = (t′ − t) provided that T = (δt/δp). By transforming
the discrete sequence of Shepard tones into a continuous
upward (or downward) frequency modulation, the Shepard–
Risset glissando is indifferent to a choice of temperament
or tuning system. The auditory illusion it elicits, which
Risset included in his Computer Suite for Little Boy [18],
suggests that the disentanglement between pitch height
and pitch chroma is more fundamental to music perception
than interval relationships between fixed pitch classes.

Although the synthesis of the Shepard–Risset glissando
does not rely on pseudorandom number generation, its
construction does reveal significant aspects of indetermi-
nacy and irreducibility in auditory perception—i.e., ran-
domness as understood in a broader sense. Risset strived
to avoid inducing too much of his own knowledge about
music theory into computer programs. On the contrary, he
saw the computer as a “workshop” [44] able to craft “spe-
cially contrived stimuli” [21] that would shatter the dogmas
we inherited from the tonal tradition. This willingness to
maintain as much indeterminacy as possible in the design
of fractal sounds is also apparent in the behavioral expe-
riments on the circularity of pitch judgments, conducted
with Gérard Charbonneau (emphasis is ours) [1] :

Since factor analysis provides a geometrical
model which reflects the structure of the data,
without involving preconceived ideas about
them, we see that pitch judgments on the sti-
muli above are well described by a circular
diagram. These results are compatible with the
helical diagram since the spectral envelope of
artificial stimuli has been kept invariant so that
they should not significantly differ in terms of
pitch height : in this case, the helix degene-
rates into a circle [...].

In the conclusion of the same paper, Charbonneau and
Risset insist on the fact that the experimental design is done
“without a priori” ; i.e., with no visual or textual reference.
Another paper by the same two authors goes further along
the structure–randomness dichotomy by showing that the
orientation of the helix is itself indeterminate [2] :

Our results give a diagram akin to the helix
of Drobisch, Revesz, and Pikler, but here the
helix is leftward, which reflects the fact that
with our stimuli, unlike what typically hap-
pens, sounds become lower (f0 decreases) as
we climb the whole-tone scale.

Esqueda et al. have followed in the footsteps of Risset
by showing that the same “barberpole illusion” of endless
ascent can be achieved via octave-spaced spectral notches
upon a white noise background [8]. The replacement of
narrowband spectral peaks by broadband noise raises the
level of indeterminacy in the construction of the glissando.

A lecture from 2008 by Risset offers an interesting
retrospective on the role of structure and randomness in
auditory paradoxes (emphasis is ours) [42] :

Digital synthesis allows to build very curious
sounds, yielding acoustical illusions [...]. Pur-

kinje, talking about optical illusions, wrote :
“illusions, errors of the senses, are truths of
perception”. The mechanisms of auditory per-
ception are highly idiosyncratic, yet are no-
thing arbitrary : their complexity is unders-
tood in the perspective of auditory scene ana-
lysis, a notion introduced by Albert Bregman
and mentioned by Christine Petit.

Another element of indeterminacy in the structure of
the helical diagram is found in the “tritone paradox” ; that
is, the response of a listeners to two Shepard tones of
frequencies ξ and ξ′ =

√
2ξ. Since 1/

√
2 =

√
2/2, the

frequencies ξ/
√
2 and ξ′ are spaced by one octave : thus,

the problem of finding whichever tone ξ or ξ′ is higher
in pitch is ill-posed, and elicits randomness in listener
responses. In 1979, Risset and David Wessel wrote [24] :

Psychologist Diana Deutsch [...] has used sounds
comprising many components one octave apart—
which in principle gives them the same pitch
height—and asked listeners to make compari-
sons between pitch classes half an octave apart
[...]. Curiously, listeners do not all agree : for
the same sound pair, some hear the tritone
going upward, others hear it downward.

Since then, Diana Deutsch has shown that, even so the
response of a human listener to the tritone paradox can-
not be predicted with perfect certainty, it correlates with
certain objective factors such as geographical background
and vocal pitch range [6]. More recently, Claire Pelofi has
shown that the judgment of tritone directionality may be
affected by probing listeners with a random melodic se-
quence of Shepard tones whose pitch class distributions is
non-uniform [15]. Pelofi also found that this priming effect
depends, in turn, on the level of musical expertise of the
listener. Once more, we find that a highly structured model
of pitch perception (the spiral diagram) harbors traits of
randomness ; and vice versa, that seemingly random res-
ponses to a paradoxical stimulus (the Shepard tritone) may
be partly explained by sociocultural determinations.

6. MULTIRESOLUTION NEURAL NETWORKS

Structure–randomness dichotomies remain active today
as a framework to design and interpret computer music
systems. The recent surge of “hybrid deep learning” is
arguably a redux of its founding principles, only at a larger
scale of operation 2 . As one of many possible illustrations,
we hereafter present an example from our own research :
namely, multi-resolution neural networks (MuReNN).

MuReNN comprises two stages, multiresolution ap-
proximation (MRA) and 1-D convolutions, of which only
the latter is learned from data. We implement the MRA
with a dual-tree complex wavelet transform (DTCWT) [50].
The DTCWT relies on a multirate filterbank in which each

2 . The concept of “hybrid deep learning” arose in physical sciences
and was brought to music signal processing by Gaël Richard. See in
particular Richard’s keynote at DAFX 2020 and ISMIR 2023 featuring
George Fazekas, Changhong Wang, Zhiyao Duan, and Gus Xia.



Figure 1. Compared impulse responses of Conv1D (left), Gabor1D (center), and MuReNN (right) after convergence, shown
in the time domain. Rows corresponds to different Gammatone filters as targets : high-frequency (top), mid-frequency
(center), and low-frequency (low). Solid blue (resp. dashed red) lines denote the real part of the impulse responses of the
learned filters (resp. target). Figure reproduced from [13] with permission from coauthors.

wavelet ψj has a null average and a bandwidth of one oc-
tave. Denoting by ξ the sampling rate of x, the wavelet
ψj has a bandwidth with cutoff frequencies 2−(j+1)π and
2−jπ. Hence, we may subsample the result of the convolu-
tion (x ∗ψj) by a factor of 2j , yielding :

∀j ∈ {0, . . . , J − 1}, xj [t] = (x ∗ψj)[2
jt], (7)

where J is the number of multiresolution levels.
The second stage in MuReNN consists in defining lear-

nable filtersϕf . Unlike in a one-dimensional convolutional
neural network (Conv1D), those filters do not operate over
the full-resolution input x but over one of its MRA levels
xj . More precisely, let us denote by j[f ] the decomposi-
tion level assigned to filter f , and by 2Lj the kernel size
for that decomposition level. The number of such filters
sharing the same level j is the number of filters per octave
of MuReNN, and may vary depending on j.

We convolve xj[f ] with ϕf and apply a subsampling
factor of 2J−j[f ], hence :

ΦWx[f, t] = (xj[f ] ∗ ϕf )[2
J−j[f ]t]

=

Lj−1∑
τ=−Lj

xj[f ]

[
2J−j[f ]t− τ

]
ϕf [τ ] (8)

The two stages of subsampling in Equations 7 and 8 result
in a uniform downsampling factor of 2J for ΦWx.

The trainable weights in MuReNN may be optimized
via reverse-mode automatic differentiation, either in a su-
pervised or self-supervised setting. In a recent publica-
tion [13], we have formulated a supervised task of know-
ledge distillation, also known as teacher–student training,
in which the “teacher” model is an auditory filterbank. The
neural network weights in ψf [t] are initialized with in-
dependent random Gaussian and the cost function is the
cosine distance between the magnitudes of the teacher mo-
del and those of the student model.

As a point of comparison with MuReNN, we also train
a plain (single-resolution) Conv1D model and a parame-
tric model known as Gabor1D, in which only the center
frequencies and bandwidths of Gabor filters are learnable
[56]. We use 3190 spoken English vowels from the NT-
VOW dataset as our training corpus.

Figure 1 illustrate our findings for three Gammatone
teachers at various frequencies and three models as stu-
dents : Conv1D, Gabor1D, and MuReNN. On one hand,
the learned filters of the Conv1D model follow the temporal
envelope of the Gammatone teacher but their time-domain
impulse responses remain noisy, even after one hundred
training epochs. On the other hand, the learned filters of
the Gabor1D model are noiseless by design and have an
excellent Heisenberg time–frequency localization, but their
symmetric (Gaussian) temporal envelopes is a poor fit for
Gamma functions, which have a sharp attack and a slow
decay. To put it bluntly, learning with Conv1D has “too
much randomness” whereas learning with Gabor1D has
“too much structure”. In this context, MuReNN appears
to strike the happy medium : it outperforms both Conv1D
and Gabor1D in terms of goodness of fit by learning to
replicate Gammatone filters with the appropriate temporal
envelope (unlike Conv1D) and with few high-frequency
artifacts (unlike Gabor1D) ; and so at any resolution.

The MuReNN project, which is currently ongoing, de-
liberately withdraws into the scientific legacy of Risset,
and particularly his motto of “composing sound itself” via
well-adapted dichotomies between structure and random-
ness. In Equations 7 and 8, the structured objects are the
wavelets ψj while the random objects are the learnable
filters ϕf . As of today, much remains to be understood
about the abilities and limitations of MuReNN, both from
theoretical and practical standpoints. For now, what we
can say is that MuReNN offers an actionable solution for
parameter-efficient deep learning in the raw waveform with



limited domain-specific knowledge.

7. CONCLUSIONS

In this article, I have proposed an original interpreta-
tion for Risset’s well-known motto of “composing sound
itself” with the computer. After borrowing the concept
of structure–randomness dichotomy from mathematician
Terence Tao, we have shown how this concept may also
apply for computer music research. In doing so, we have
interpreted these two concepts at the highest possible de-
gree of generality : i.e., structure beyond repetition and
randomness beyond chance. A common theme between all
the presented contributions is that Risset made a playful
use of structure for sounds which did not conform to clas-
sical theories of musical acoustics (e.g, inharmonic tones) ;
and vice versa, he introduced elements of contingency and
indeterminacy where they were the least expected : e.g,
inside geometrical models of pitch perception. This theme
is eloquently described in the concluding remarks of one
of Risset’s last published lectures [48] :

The composer has a direct grip on the physical
nature of sound, but music comes into being
in the auditory realm : natural and cultural
models, schemes, scenarios, archetypes, uni-
versals help to craft musically the collision of
the physical and the sensible.

I acknowledge that our survey is not comprehensive.
Much could be said, for example, about structure and ran-
domness in Risset’s use of the Gabor wavelet transform
[27] as well as of digital audio effects [38]. It is my hope
that, in spite of these limitations, our article may inspire
other theoreticians and practitioners of computer music to
examine how structure and randomness interact in their
own work. The work in progress on multiresolution neural
networks (MuReNN), as sketched in Section 6, serves as
an example to show that the dichotomy between structure
and randomness remains an effective paradigm in the age
of stochastic optimization with deep neural networks.
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