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AN ADAPTIVE FORWARD-BACKWARD-FORWARD SPLITTING1

ALGORITHM FOR SOLVING PSEUDO-MONOTONE INCLUSIONS∗2

FLAVIA CHOROBURA† , ION NECOARA‡ , AND JEAN-CHRISTOPHE PESQUET§3

Abstract. In this paper, we propose an adaptive forward-backward-forward splitting algorithm4
for finding a zero of a pseudo-monotone operator which is split as a sum of three operators: the first5
is continuous single-valued, the second is Lipschitzian, and the third is maximally monotone. This6
setting covers, in particular, constrained minimization scenarios, such as problems having smooth and7
convex functional constraints (e.g., quadratically constrained quadratic programs) or problems with8
a pseudo-convex objective function minimized over a simple closed convex set (e.g., quadratic over9
linear fractional programs). For the general problem, we design a forward-backward-forward splitting10
type method based on novel adaptive stepsize strategies. Under an additional generalized Lipschitz11
property of the first operator, sublinear convergence rate is derived for the sequence generated by12
our adaptive algorithm. Moreover, if the sum is uniformly pseudo-monotone, linear/sublinear rates13
are derived depending on the parameter of uniform pseudo-monotonicity. Preliminary numerical14
experiments demonstrate the good performance of our method when compared to some existing15
optimization methods and software.16

Key words. Pseudo-monotone operators, forward-backward-forward splitting, adaptive step-17
size, convergence analysis, nonconvex optimization. LATEX18

MSC codes. 68Q25, 68R10, 68U05.19

1. Introduction. Let H be a finite-dimensional real vector space endowed with20

a scalar product ⟨·, ·⟩ and the corresponding norm ∥ · ∥. Our goal is to find a zero of21

a sum of three operators A : H 7→ H, B : H → H, and C : H → 2H, that is22

Find z̄ ∈ H such that 0 ∈ Az̄ +Bz̄ + Cz̄.(1.1)2324

Finding a zero of a sum of operators is a very general problem and covers, in particular,25

constrained optimization, and minimax optimization problems frequently encountered26

in signal processing [23], triangulation in computer vision [2], semi-supervised learn-27

ing [14], learning of kernel matrices [26], steering direction estimation for RADAR28

detection [18], generative adversarial networks [29] among others.29

Previous work. The problem of finding a zero of a sum of operators is considered30

in many works. For example, [8, 15, 17, 24, 37] cover the monotone case, while31

[3, 10, 33] consider the nonmonotone case. In [17, 24] all three operators are assumed32

maximally monotone and, additionally, the first is Lipschitz continuous. Under these33

settings, algorithms based on resolvent and forward operators, activated one at a34

time successively, are proposed together with a detailed convergence analysis. Fur-35

thermore, finding a zero of a sum of two maximally monotone operators, A+C, such36
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that A is a continuous single-valued operator, is investigated in [37] and a forward-37

backward-forward algorithm is proposed (also known as Tseng’s algorithm), where38

the stepsize is chosen constant when A is Lipschitz or based on an Armijo-Goldstein-39

type rule, otherwise. Linear rate was derived for this method when A+C is strongly40

monotone. In [3, 10, 33], A is assumed Lipschitz, possible nonmonotone, and C is41

maximally monotone, such that either A + C satisfies the weak Minty condition or42

a cohypomonotonicity assumption. In particular, [33] considers an extragradient al-43

gorithm with adaptive and constant stepsizes, which reduces, for a specific choice of44

stepsize, to the forward-backward-forward algorithm in the monotone case. Moreover,45

[10] analyzes an optimistic gradient algorithm, while in [3] algorithms based on classi-46

cal Halpern and Krasnosel’skii-Mann iterations are analyzed. For all these methods,47

under suitable assumptions, sublinear rates are derived. Finally, finding a zero of a48

sum of three operators A + B + C is considered in [15], where A,C are maximally49

monotone and B is Lipschitz and monotone, and asymptotic convergence is proved50

for an error-tolerant forward-backward-forward algorithm.51

The forward-backward-forward algorithm was also extended to solve variational in-52

equalities. For example, [7, 36] consider a variational inequality, where the operator is53

Lipschitz, and a (modified) Tseng algorithm is employed with a constant stepsize or54

an adaptive stepsize, so that it is not necessary to know the Lipschitz constant. Con-55

vergence is derived when the operator is pseudo-monotone. Moreover, the Lipschitz56

assumption on the operator involved in the variational inequality is relaxed in [35],57

the operator being assumed continuous. Then, Tseng’s algorithm is considered with58

an Armijo-Goldestein rule for the stepsize. Under standard conditions, the weak and59

strong convergence of the method is obtained in the pseudo-monotone case. Our ap-60

proach differs from [35], as we consider that the operator A satisfies a relaxed Lipschitz61

condition and we employ Tseng’s algorithm with novel adaptive stepsize rules (e.g.,62

based on the positive root of a polynomial equation). Others methods for solving vari-63

ational inequalities with a Lipschitz operator in the monotone case were considered64

e.g., in [31] and in the nonmonotone case (under weak Minty condition) in [19].65

Furthermore, specific algorithms were also developed for particular classes of varia-66

tional inequalities, such as convex-concave minimax optimization problems [13, 16].67

More specifically, these papers address problems of the form:68

(1.2) min
x∈X

max
y∈Y

⟨Lx, y⟩+ φ(x)− ψ(y),69

where X and Y are Hilbert spaces and φ : X → R̄ and ψ : Y → R̄ are proper, convex,70

lower semicontinuous functions. For such problems, a primal-dual proximal algorithm71

is proposed in [13] for which sublinear rate is derived in the optimality measure:72

G(x̄, ȳ) = max
y∈Y

⟨Lx̄, y⟩ − ψ(y) + φ(x̄)−min
x∈X

⟨Lx, ȳ⟩+ φ(x)− ψ(ȳ),73
74

for a given (x̄, ȳ) ∈ X × Y. An extension of the algorithm from [13] is given in [16],75

where φ is split as φ1 + φ2, with φ1 : X → R convex, differentiable, and having76

Lipschitz continuous gradient, while φ2 is a proper, convex, lower semicontinuous77

function. It is proved that this algorithm converges weakly to a solution to problem78

(1.2) and, if φ1 = 0, then [16] recovers the primal–dual algorithm in [13].79

Contributions. In this paper, we propose a method for finding a zero of a sum of three80

operators, which are not necessarily monotone. For this general problem we design81

a forward-backward-forward splitting type method based on novel adaptive stepsize82

strategies and then perform a detailed convergence analysis. More specifically, our83

main contributions are the following.84
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(i) We consider the general problem (1.1) of finding a zero of a sum of three operators,85

A+B+C, such that A is continuous, B is Lipschitz, and C is maximally monotone. In86

contrast to other works that assume A to be Lipschitz and the sum to be monotone,87

we relax these conditions, i.e., we require the operator A to satisfy a generalized88

Lipschitz condition and the sum to be pseudo-monotone. Our assumptions cover89

important classes of optimization problems such as problems minimizing smooth and90

convex functional constraints (e.g., quadratically constrained quadratic programs) or91

problems minimizing pseudo-convex objective functions over a simple closed convex92

set (e.g., quadratic over linear fractional programs).93

(ii) For solving this general problem we propose a variant of the forward-backward-94

forward algorithm [37], based on two novel adaptive stepsize strategies. In contrast95

to previous works where computationally expensive Armijo-Goldestein stepsize rules96

are used when the operator is continuous, we propose two adaptive stepsize strategies97

that require finding the root of a certain nonlinear equation whose coefficients depend98

on the current iterate and on the parameters characterizing the operator properties.99

In particular, for quadratically constrained quadratic (resp. quadratic over linear100

fractional) programs the stepsize is computed solving a second-order (resp. third-101

order) polynomial equation.102

(iii) Within the considered settings, we provide a detailed convergence analysis for103

the forward-backward-forward algorithm based on our adaptive stepsize rules. In104

particular, when the sum of the operators is pseudo-monotone, we prove the global105

asymptotic convergence for the whole sequence generated by the algorithm and, ad-106

ditionally, establish sublinear convergence rate. An improved linear rate is obtained107

when the sum is uniformly pseudo-monotone of order q ∈ [1, 2]. Finally, detailed nu-108

merical experiments using synthetic and real data demonstrate the effectiveness of our109

method and allows us to evaluate its performance when compared to some existing110

state-of-the-art optimization methods from [37, 35], and existing software [20].111

2. Background. We denote by zer(A) the set of zeros of an operator A and112

by Γ0(H) the set of proper lower semicontinuous convex functions on H with values113

in (−∞,+∞]. Further, let us recall the definition of the subdifferential of a convex114

function.115

Definition 2.1. The subdifferential of a proper convex function f : H → R̄ is the116

set-valued operator ∂f : H → 2H which maps every point x ∈ H to the set117

∂f(x) = {u ∈ H | (∀y ∈ H) ⟨y − x, u⟩+ f(x) ≤ f(y)}.118119

Note that ∂f(x) = ∅ for x ̸∈ domf . For example, let D be a nonempty closed and120

convex subset of H and let its indicator function ιD be defined as121

(2.1) ιD : H → R̄ : x 7→

{
0 if x ∈ D

+∞, otherwise.
122

Then, ∂ιD = ND, where ND is the normal cone to D, i.e.123

(2.2) ND(x) =

{
{u ∈ H | (∀y ∈ D) ⟨y − x, u⟩ ≤ 0} if x ∈ D

∅ otherwise.
124

Moreover, if f is differentiable at a point x ∈ domf , its gradient is denoted by ∇f(x).125

Let us also recall the definition of functions with Hölder continuous gradient.126

This manuscript is for review purposes only.
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Definition 2.2. Let ν ∈ (0, 1]. Then, the differentiable function g : H → R has127

a ν-Hölder continuous gradient, if there exists Lg > 0 such that128

(2.3) (∀(x,w) ∈ H2) ∥∇g(x)−∇g(w)∥ ≤ Lg∥x− w∥ν .129

If g has ν-Hölder continuous gradient, then the following inequality holds:130

(∀(x,w) ∈ H2) |g(w)− g(x)− ⟨∇g(x), w − x⟩| ≤ Lg

1 + ν
∥w − x∥1+ν .(2.4)131

132

Next, we present the definitions of pseudo-convex functions and operators.133

Definition 2.3. Let X ⊆ H be an open set, f : X → R be a differentiable function134

and let Z be a subset of X . Then, f is said to be pseudo-convex on Z if, for every135

(x,w) ∈ Z2, one has:136

⟨∇f(x), w − x⟩ ≥ 0 =⇒ f(x) ≤ f(w).137

Clearly, any convex function is pseudo-convex and any stationary point of a pseudo-138

convex function is a global minimum. However, there are also pseudo-convex functions139

that are not convex. For example, consider an open convex set X ⊂ Rn and differ-140

entiable functions g : X → [0,+∞[ and h : X → (0,+∞) such that g is convex and141

h is concave. Then, the function f : X → (0,+∞) : x 7→ g(x)/h(x), is pseudo-convex142

on any subset of X [6]. Other examples of pseudo-convex functions are given in Ex-143

ample 3.3 below, see also [27]. The notion of pseudo-convexity was also extended to144

nondifferentiable functions, see for example [4].145

Definition 2.4. An operator T : H → 2H is said to be pseudo-monotone if146

(∀(x, y) ∈ H2) (∃x̂ ∈ Tx) ⟨x̂, y − x⟩ ≥ 0 =⇒ (∀ŷ ∈ Ty) ⟨ŷ, y − x⟩ ≥ 0.147148

For example, [25] shows that any differentiable pseudo-convex function has a pseudo-149

monotone gradient. In addition, [4] proves that a lower semicontinuous radially con-150

tinuous function is pseudo-convex if and only if its subdifferential is pseudo-monotone.151

Moreover, note that every monotone operator is pseudo-monotone152

Finally, let us recall the definition of the resolvent of an operator C : H → 2H. The153

resolvent of C is the operator JC = (Id+C)−1, that is154

(∀(x, p) ∈ H2) p ∈ JCx ⇐⇒ x− p ∈ Cp.155

If C : H → 2H is maximally monotone, then JC is single-valued, defined everywhere156

on H, and firmly nonexpansive [5]. Moreover, if C = ∂f (the subdifferential operator157

of a convex function f), then its resolvent is the proximal mapping proxγf . If f = ιD,158

where ιD is defined in (2.1) and D is a nonempty closed convex subset of H, then159

proxγιD = projD, where projD is the projection operator onto the set D.160

3. Assumptions and examples. In this section we provide several examples161

of problems that fit into our framework and also our main assumptions. First, let us162

present some important examples of optimization problems that can be recast as (1.1).163

Example 3.1. (Minimizing the sum of three functions). The most straightforward164

example of inclusion (1.1) arises from the optimization problem:165

min
x∈Rn

F (x) := f(x) + g(x) + h(Lx),(3.1)166
167

where L ∈ Rm×n, f has Hölder gradient, g has Lipschitz gradient, and h ∈ Γ0(Rm)168

is finite at a point in the relative interior of the range of L. This formulation covers169

This manuscript is for review purposes only.
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smooth (f = 0), Hölder smooth (g = 0) or hybrid smooth composite problems,170

respectively. The first-order optimality condition for (3.1) at x̄ reduces to 0 ∈ Ax̄ +171

Bx̄+ Cx̄, where A = ∇f , B = ∇g, and C = L⊤ ◦ ∂h ◦ L.172

Example 3.2. (Minimax problems). Let m and n be positive integers and con-173

sider the following minimax problem:174

(3.2) min
x∈Rn

max
y∈Rm

F (x, y) + φ(x)− ψ(y),175

where F is a differentiable function, ψ = ψ1 + ψ2 and φ = φ1 + φ2, with ψ1 and φ1176

having Lipschitz gradients, φ2 ∈ Γ0(Rn), and ψ2 ∈ Γ0(Rm). Note that the minimax177

problem (3.2) is more general than problem (1.2) considered in previous works, as178

we allow more general expressions for F (x, y) beyond bilinear terms. The first-order179

optimality conditions for this problem are equivalent to solving the inclusion:180

0 ∈ A(x̄, ȳ) +B(x̄, ȳ) + C(x̄, ȳ),(3.3)181182

where H = Rn × Rm and the three operators are183

A : H → H : (x, y) 7→ (∇xF (x, y),−∇yF (x, y))(3.4)184

B : H → H : (x, y) 7→ (∇φ1(x),∇ψ1(y)),185

C : H → 2H : (x, y) 7→ ∂φ2(x)× ∂ψ2(y).186187

One concrete application of the above minimax formulation is the quadratically con-188

strained quadratic program (QCQP) problem:189

min
x∈Rn,x≥0

1

2
x⊤Q0x+ b⊤x+ c190

s.t.
1

2
x⊤Qix+ l⊤i x ≤ ri ∀i ∈ {1, . . . , m̄}, l⊤i x = ri ∀i ∈ {m̄+ 1, . . . ,m},(3.5)191

192

where (Qi)0≤i≤m̄ are positive semidefinite matrices of dimension n×n, and (li)1≤i≤m193

and b are vectors in Rn. Rewriting the QCQP into the Lagrange primal-dual form194

using the dual variables y = (yi)1≤i≤m, we get:195

A : H → H : (x, y) 7→

(
m∑
i=1

(Qix+ li)yi,

(
−1

2
x⊤Qix− l⊤i x+ ri

)
1≤i≤m

)
196

B : H → H : (x, y) 7→ (Q0x+ b,0m)(3.6)197

C : H → 2H : (x, y) 7→ (N[0,+∞)n(x)× (N[0,+∞)m̄((yi)1≤i≤m̄)× {0m−m̄}),198199

where we have set Qi = 0 for every i ∈ {m̄ + 1, . . . ,m}. QCQP’s have many ap-200

plications, e.g., in signal processing [23], triangulation in computer vision [2], semi-201

supervised learning [14], learning of kernel matrices [26], steering direction estimation202

for RADAR detection [18].203

Example 3.3. (Fractional programming). Consider the following quadratic frac-204

tional programming problem:205

min
x∈D

f(x) :=
1
2x

⊤Qx− h⊤x+ h0

d⊤x+ d0
with D = {x ∈ Rn | d⊤x ≥ 0},(3.7)206

207

d0 ∈ (0,+∞), h0 ∈ R, (h, d) ∈ (Rn)2, and Q ∈ Rn×n a symmetric matrix. If x̄ satisfies208

the first-order optimality condition for (3.7), then we have the following inclusion:209
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0 ∈ Ax̄+ Cx̄,(3.8)210211

where the operators are212

(3.9) Ax =

{
∇f(x) if x ∈ D

∅ otherwise,
and C = ND.213

When the matrix Q is positive semidefinite, the function f is pseudo-convex since214

it is the ratio of convex over concave functions, see [6]. Otherwise, [11, 12] present215

necessary and sufficient conditions for the function f to be pseudo-convex. Particular216

cases of (3.7) are problems whose objective is a sum of a linear and a linear fractional217

function, i.e., when Q = (rd⊤ + dr⊤)/2, which yields the following formulation:218

min
x∈D

f(x) := r⊤x+
h⊤x+ h0
d⊤x+ d0

with D = {x ∈ Rn | d⊤x ≥ 0}.(3.10)219
220

Reference [28] presents several cases when f is pseudo-convex over the polyhedral set221

{x ∈ Rn | d⊤x+ d0 > 0}, namely, if r = ηd, with η ≥ 0, or h = ζd, with h0 − ζd0 ≥ 0222

(see [28, Theorem 1] for more details). Fractional programming arises e.g., in portfolio223

and transportation problems (see [28] for more details).224

Now, we are ready to present our standing assumptions for operators A, B, and C.225

Assumption 1. The following assumptions hold for problem (1.1):226

i) C has nonempty closed convex domain, domC, and is maximally monotone.227

ii) A is a continuous single-valued operator on domC ⊆ H.228

iii) B is a single-valued operator and Lipschitz on domC with a Lipschitz constant229

LB > 0 (when B = 0, we can take an arbitrarily small positive value for LB).230

iv) A+B + C is a pseudo-monotone operator.231

v) There exist (ζ, τ) ∈ (0,+∞)2 such that for every (u,w) ∈ H2, γ ∈ (0,+∞),232

q = projdomC w, and z = q − γu, the following holds:233

∥q − JγCz∥ ≤ γ(ζ∥u∥+ τ).(3.11)234235

vi) A satisfies a generalized Lipschitz condition, that is, there exist µ ∈ (0,+∞),236

(β, θ) ∈ [2,+∞[2 and continuous functions a, b, and c from H to [0,+∞[ such237

that, for every (z1, z2) ∈ (domC)2,238

(3.12) ∥Az1 −Az2∥2 ≤ a(z1)∥z1 − z2∥µ + b(z1)∥z1 − z2∥θ + c(z1)∥z1 − z2∥β .239

Note that our assumptions are quite general. Clearly, Example 3.1 satisfies Assump-240

tion 1, if the objective function F is pseudo-convex. Below we provide other repre-241

sentative examples of important classes of problems that fit into our settings.242

243

Examples satisfying Assumption 1.iv.244

a) Consider Example 3.2, where the operators A, B, C are defined by (3.4) with245

(3.13) (∀(x, y) ∈ H) F (x, y) =

m∑
i=1

yigi(x),246

where (gi)1≤i≤m are twice differentiable convex functions, φ and ψ1 are convex247

functions, and ψ2 is the indicator function of the set [0,+∞)m. Then, A+ {0n}×248

N[0,+∞)m is a maximally monotone operator. Indeed, we have249

(3.14) A : H → H : (x, y) 7→

(
m∑
i=1

yi∇gi(x),−g(x)

)
,250
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where g(x) = [g1(x), . . . , gm(x)]⊤. The Jacobian JA of A at (x, y) ∈ H2 is251

JA(x, y) =

[∑m
i=1 yi∇2gi(x) ∇g(x)
−∇g(x)⊤ 0m×m

]
with ∇g(x) = [∇g1(x), . . . ,∇gm(x)].252

253

Note that, for every (x, y) ∈ Rn × [0,+∞)m, JA(x, y) is positive semidefinite ma-254

trix. Since A is continuous and monotone on Rn × [0,+∞[m, then A is maximally255

monotone on Rn × [0,+∞[m, see [5]. Moreover, since φ and ψ1 are proper lower256

semicontinuous convex functions, then A+ B + C is a monotone operator, which257

is an instance of a pseudo-monotone operator.258

259

b) Consider the following problem260

min
x∈D

f(x),(3.15)261
262

where D is a nonempty closed convex subset of H = Rn and f : Rn → R is a263

differentiable pseudo-convex function on D. Then, the operators A, B, and C can264

be defined as A = ∇f , B = 0, and C = ND. Moreover, A+C is pseudo-monotone.265

Indeed, consider (x,w) ∈ D2. Assume that266

(∀x̂ ∈ Cx) ⟨∇f(x) + x̂, w − x⟩ ≥ 0.(3.16)267268

We need to show that269

(∀ŵ ∈ Cw) ⟨∇f(w) + ŵ, w − x⟩ ≥ 0.(3.17)270271

It follows from the definition of the normal cone in (2.2) that272

(∀x̂ ∈ Cx) ⟨x̂, w − x⟩ ≤ 0 and (∀ŵ ∈ Cw) ⟨ŵ, x− w⟩ ≤ 0.(3.18)273274

Combining (3.16) and the first inequality in (3.18) yields275

⟨∇f(x), w − x⟩ ≥ 0.276277

Since f is pseudo-convex, then the above inequality implies that278

⟨∇f(w), w − x⟩ ≥ 0.279280

Hence, from the previous inequality and the second one in (3.18), we derive (3.17).281

Therefore, Assumption 1.iv holds. Some examples of pseudo-convex functions are282

encountered in fractional programs, see Example 3.3 and also [34, 21].283

Example satisfying Assumption 1.v.284

Let g be a convex function defined as g = g1 + g2, where g1 is the indicator function285

of a nonempty closed convex set D and g2 is a proper lower-semicontinous convex286

function which is Lipschitz on its domain with modulus Lg2 > 0. We assume that287

D ⊆ dom g2 and there is a point in the intersection of the relative interiors of D288

and dom g2. The latter condition ensures that ∂(g1 + g2) = ∂g1 + ∂g2. Consider the289

operator C = ∂g. Let (u,w) ∈ H2, q = projdomCw, and z = q − γu. Then, we have290

domC = D and JγC = proxγ(g1+g2) .291
292

In [1] it was proved that293
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JγC = projdomC ◦ proxg1γg2 , where proxg1γg2 = (I + γ∂g2 ◦ projdomC)
−1.294295

Define p = proxg1γg2z. Then, p + γp̂ = z for some p̂ ∈ ∂g2(projdomCp). Moreover,296

∥p̂∥ ≤ Lg2 and297

∥projdomCw − JγCz∥ ≤ ∥projdomCw − proxg1γg2(z)∥ = ∥projdomCw − z + γp̂∥298

≤ ∥projdomCw − z∥+ γ∥p̂∥ ≤ ∥projdomCw − z∥+ γLg2 = γ∥u∥+ γLg2 ,299300

where, in the first inequality we have used the nonexpansiveness of the projection301

operator and, in the last one, we have used the linear relation between z, projdomCw,302

and u. Therefore, in this case ζ = 1 and τ = Lg2 .303

Examples satisfying Assumption 1.vi.304

Next we present some examples where Assumption 1.vi is satisfied. In the first two305

examples we consider the operator A defined in (3.3)-(3.4), where, in the first case,306

F (x, y) = yg(x) and g has a ν-Hölder continuous gradient, and, in the second case, F is307

given by (3.13) where the functions (gi)1≤i≤m have Lipschitz continuous gradients. In308

the third example, we consider the operator A defined with a pseudo-convex function309

f as in Example 3.3.310

a) Consider the nonlinear operator311

A : Rn × R → Rn × R : (x, y) → (∇g(x)y,−g(x)) .312313

where g has a ν-Holder continuous gradient with constant Lg. Then, for every314

z = (x, y) ∈ Rn × R and z̄ = (x̄, ȳ) ∈ Rn × R, we have315

∥Az −Az̄∥2 ≤ 2∥∇g(x)∥2∥z − z̄∥2 + 4Lg
2∥z − z̄∥2+2ν + 4L2

g|y|2∥z − z̄∥2ν .316317

Indeed, from the definition of A,318

∥A(x, y)−A(x̄, ȳ)∥2 = ∥∇g(x)y −∇g(x̄)ȳ∥2 + |g(x̄)− g(x)|2.(3.19)319320

Moreover,321

∥∇g(x)y −∇g(x̄)ȳ∥2 = ∥∇g(x)y −∇g(x)ȳ +∇g(x)ȳ −∇g(x̄)ȳ∥2322

≤ 2∥∇g(x)∥2|y − ȳ|2 + 2|ȳ|2∥∇g(x)−∇g(x̄)∥2323

(2.3)

≤ 2∥∇g(x)∥2|y − ȳ|2 + 2L2
g|ȳ|2∥x− x̄∥2ν324

≤ 2∥∇g(x)∥2|y − ȳ|2 + 4L2
g|y|2∥x− x̄∥2ν + 4L2

g|y − ȳ|2∥x− x̄∥2ν ,(3.20)325326

where, in the first and last inequalities, we used the fact that ∥a+ b∥2 ≤ 2∥a∥2 +327

2∥b∥2. On other hand, from (2.4) we deduce that328

|g(x̄)− g(x)|2 ≤ 2|⟨∇g(x), x̄− x⟩|2 +
2L2

g

(1 + ν)2
∥x̄− x∥2+2ν

329

≤ 2∥∇g(x)∥2∥x̄− x∥2 +
2L2

g

(1 + ν)2
∥x̄− x∥2+2ν

330

≤ 2∥∇g(x)∥2∥x̄− x∥2 + 4L2
g∥x̄− x∥2+2ν .(3.21)331332

Altogether, (3.19), (3.20), and (3.21) lead to333

∥A(x, y)−A(x̄, ȳ)∥2334

≤ 2∥∇g(x)∥2∥(x, y)−(x̄, ȳ)∥2+4L2
g∥(x, y)−(x̄, ȳ)∥2∥x̄− x∥2ν+4L2

g|y|2∥x− x̄∥2ν335

≤ 2∥∇g(x)∥2∥(x, y)− (x̄, ȳ)∥2 + 4L2
g∥(x, y)− (x̄, ȳ)∥2+2ν + 4L2

g|y|2∥x− x̄∥2ν .336337

Finally, the inequality ∥x− x̄∥ ≤ ∥(x, y)− (x̄, ȳ)∥ allows us to prove the statement.338
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b) Consider the nonlinear operator A defined in (3.13)-(3.14) where, for every i ∈339

{1, . . . ,m}, gi has a Lipschitz continuous gradient with constant Lgi > 0 (e.g., gi340

is a quadratic function). Then, for every z = (x, y) ∈ Rn × Rm and z̄ = (x̄, ȳ) ∈341

Rn × Rm, we have:342

∥A(x, y)−A(x̄, ȳ)∥2 ≤ b(x, y)∥(x, y)− (x̄, ȳ)∥2 + c∥(x, y)− (x̄, ȳ)∥4,(3.22)343344

with c =
5

2

m∑
i=1

L2
gi , b(x, y) = 2(ρ(x, y) +

∑m
i=1 ∥∇gi(x)∥2), and345

ρ(x, y) = 2max

m max
1≤i≤m

∥∇gi(x)∥2,

(
m∑
i=1

Lgi |yi|

)2
 .346

347

Indeed, similarly to the previous example,348

∥A(x, y)−A(x̄, ȳ)∥2 =

∥∥∥∥∥
m∑
i=1

∇gi(x)yi −∇gi(x̄)ȳi

∥∥∥∥∥
2

+

m∑
i=1

|gi(x̄)− gi(x)|2.(3.23)349

350

Moreover,351 ∥∥∥∥∥
m∑
i=1

∇gi(x)yi −∇gi(x̄)ȳi

∥∥∥∥∥
2

=

∥∥∥∥∥
m∑
i=1

∇gi(x)yi −∇gi(x)ȳi +∇gi(x)ȳi −∇gi(x̄)ȳi

∥∥∥∥∥
2

352

≤

(
m∑
i=1

∥∇gi(x)∥|yi − ȳi|+ |ȳi|∥∇gi(x)−∇gi(x̄)∥

)2

353

≤

(
max

1≤i≤m
∥∇gi(x)∥

m∑
i=1

|yi − ȳi|+
m∑
i=1

Lgi |ȳi|∥x− x̄∥

)2

354

≤2

(
√
m max

1≤i≤m
∥∇gi(x)∥∥y−ȳ∥+

m∑
i=1

Lgi |yi|∥x−x̄∥

)2

+2

(
m∑
i=1

Lgi |ȳi−yi|∥x−x̄∥

)2

355

356

where in the fourth inequality we used the Cauchy-Schwarz inequality. Hence,357 ∥∥∥∥∥
m∑
i=1

∇gi(x)yi −∇gi(x̄)ȳi

∥∥∥∥∥
2

358

≤ ρ(x, y) (∥y − ȳ∥+ ∥x− x̄∥)2 + 2

(
m∑
i=1

L2
gi

)
∥ȳi − yi∥2∥x− x̄∥2359

≤ 2ρ(x, y)∥(x, y)− (x̄, ȳ)∥2 + 2

(
m∑
i=1

L2
gi

)
∥(x, y)− (x̄, ȳ)∥4.(3.24)360

361

On other hand, using (2.4) with ν = 1,362
m∑
i=1

|gi(x̄)− gi(x)|2 ≤
m∑
i=1

2|⟨∇gi(x), x̄− x⟩|2 +
L2
gi

2
∥x− x̄∥4363

≤ 2

m∑
i=1

∥∇gi(x)∥2∥x− x̄∥2 +
m∑
i=1

L2
gi

2
∥x− x̄∥4.(3.25)364

365

Hence, (3.23), (3.24), (3.25), and the fact ∥x− x̄∥ ≤ ∥(x, y)− (x̄, ȳ)∥ yield (3.22).366
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c) Consider problem (3.10) and operator A defined in (3.9). The Hessian of f is:367

(∀x ∈ D) ∇2f(x) =
2(h⊤x+ h0)

(d⊤x+ d0)3
dd⊤ − 1

(d⊤x+ d0)2
(dh⊤ + hd⊤).368

369

Consider (x, x̄) ∈ D2. By the mean value inequality, there exists w ∈ (x, x̄) s.t.370

∥∇f(x)−∇f(x̄)∥2 ≤ ∥∇2f(w)∥2∥x− x̄∥2371

≤
(

2

(d⊤w + d0)3
∥d∥2|h⊤w + h0|+

2

(d⊤w + d0)2
|d⊤h|

)2

∥x− x̄∥2372

≤
(

2

d30
∥d∥2|h⊤(x− w)|+ 2

d30
∥d∥2|h⊤x+ h0|+

2

d20
|d⊤h|

)2

∥x− x̄∥2373

≤ 2

[(
2

d30
∥d∥2|h⊤(x− w)|

)2

+

(
2

d30
∥d∥2|h⊤x+ h0|+

2

d20
|d⊤h|

)2
]
∥x− x̄∥2374

≤ 8

d60
∥d∥4∥h∥2∥x− x̄∥4 + 8

d40

(
∥d∥2

d0
|h⊤x+ h0|+ |d⊤h|

)2

∥x− x̄∥2,375
376

where in the third inequality we used the fact that, since D is convex, w ∈ D,377

hence d⊤w ≥ 0. In the fourth inequality, we used the convexity of (·)2, and in the378

last one we used that w ∈ (x, x̄). Hence, Assumption 1.vi holds with a(z1) = 0,379

b(z1) =
8

d40

(
∥d∥2

d0
|h⊤z1 + h0|+ |d⊤h|

)2

, c(z1) =
8

d60
∥d∥4∥h∥2, θ = 2, and β = 4.380

d) Consider problem (3.7) and operator A defined in (3.9). The Hessian of f is381

(∀x ∈ D) ∇2f(x) =
Q

d⊤x+ d0
+

(2f(x)dd⊤ − (Qx− h)d⊤ − d(Qx− h)⊤)

(d⊤x+ d0)2
.382

383

Consider (x, x̄) ∈ D2. By the mean value inequality, there exists w ∈ (x, x̄) s.t.384

∥∇f(x)−∇f(x̄)∥ ≤ ∥∇2f(w)∥∥x− x̄∥.(3.26)385386

By proceeding similarly to the previous example, we get387

∥∇2f(w)∥ ≤ ∥Q∥
d0

+
2∥d∥2

d30
(∥Q∥∥x∥2 + |h⊤x− h0|) +

2∥d∥
d20

∥Qx− h∥388

+

(
2∥d∥2

d30
∥h∥+ 2∥d∥

d20
∥Q∥

)
∥x̄− x∥+ 2∥d∥2

d30
∥Q∥∥x̄− x∥2.(3.27)389

390

We deduce from (3.26) and (3.27) that391

∥∇f(x)−∇f(x̄)∥2392

≤ 3

(
2∥d∥2

d30
∥h∥+ 2∥d∥

d20
∥Q∥

)2

∥x̄− x∥4 + 12∥d∥4

d60
∥Q∥2∥x̄− x∥6393

+ 3

(
∥Q∥
d0

+
2∥d∥2

d30
(∥Q∥∥x∥2 + |h⊤x− h0|) +

2∥d∥
d20

∥Qx− h∥
)2

∥x̄− x∥2.394
395

Therefore, Assumption 1.vi is satisfied with µ = 6, θ = 4, β = 2,396

c(z1) = 3

(
∥Q∥
d0

+
2∥d∥2

d30
(∥Q∥∥z1∥2 + |h⊤z1 − h0|) +

2∥d∥
d20

∥Qz1 − h∥
)2

,397

b(z1) = 12

(
∥d∥2

d30
∥h∥+ ∥d∥

d20
∥Q∥

)2

, and a(z1) =
12∥d∥4

d60
∥Q∥2.(3.28)398

399

This manuscript is for review purposes only.



AN ADAPTIVE FBF SPLITTING ALGORITHM 11

From the previous discussion, one can see that our assumptions cover a broad range400

of optimization problems arising in applications.401

4. An adaptive forward-backward-forward algorithm. Adaptive methods402

are very popular in optimization as they make stepsize tuning cheap [7, 36, 33]. In403

contrast to previous works on the forward-backward-forward algorithm in the line404

of [37], where computationally expensive Armijo-Goldestein stepsize rules are used405

when the operator is assumed continuous [37, 35], we will propose two novel adaptive406

strategies. In these strategies, the stepsize is computed by leveraging the current407

iterate and the parameters characterizing the operator properties.408

4.1. Investigated algorithm. In this section, we introduce a new algorithm409

for solving problem (1.1). Our algorithm is similar to the forward-backward-forward410

splitting algorithm in [37] as it also involves two explicit (forward) steps using A and411

B, and one implicit (backward) step using C. However, the novely of our iterative412

process lies in the adaptive way we choose the stepsize γk, which is adapted to the413

assumptions considered on the operators A,B, and C (see Assumption 1).414

Adaptive Forward-Backward-Forward Algorithm (AFBF):
1. Choose the initial estimate x0 ∈ domC.
2. For k ≥ 0 do:

(a) Compute the stepsize γk > 0 and update:
(b) zk = xk − γk(Axk +Bxk)
(c) pk = JγkCzk
(d) qk = pk − γk (Apk +Bpk)
(e) x̂k = qk − zk + xk

(f) xk+1 = projdomC(x̂k)

415

Typically, to prove the convergence of a forward-backward-forward splitting algo-416

rithm, one needs the operators A and B to satisfy a Lipschitz type inequality [37]:417

418
γ2k∥Axk +Bxk −Apk −Bpk∥2 ≤ αk∥xk − pk∥2,(4.1)419420

where αk ∈ (αmin, αmax) ⊂ (0, 1), k ∈ N. In our case it is difficult to find a positive421

stepsize γk satisfying (4.1) as the operator A is not assumed to be Lipschitz. However,422

imposing appropriate assumptions on the operator A (e.g., some generalized Lipschitz423

type inequality as in Assumption 1.vi), we can ensure (4.1). In the next sections we424

provide two adaptive choices for γk that enable us to prove AFBF convergence.425

4.2. First adaptive choice for the stepsize. In this section, we design a novel426

strategy to choose γk when the operator A satisfies Assumption 1.vi with µ ≥ 2.427

Stepsize Choice 1:
1. Choose 0 < αmin ≤ αmax < 1 and σ > 0.
2. For k ≥ 0 do:

(a) Compute d(xk) = ζ∥Axk +Bxk∥+ τ and choose αk ∈ [αmin, αmax].
(b) Choose γk such that

(4.2) γk ∈

{
[σ, γ̄k] if σ ≤ γ̄k

γ̄k otherwise,

where γ̄k > 0 is the root of the following equation in γ:

a(xk)d(xk)
µ−2γµ + b(xk)d(xk)

θ−2γθ + c(xk)d(xk)
β−2γβ + L2

Bγ
2 =

αk

2
.(4.3)

428

Note that equation (4.3), which is a polynomial equation when µ, θ and β are integers,429

is well defined, i.e., there exists γ̄k > 0 satisfying equation (4.3). Indeed, define430
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431

(∀γ ∈ [0,+∞)) h(γ) = 2a(xk)d(xk)
µ−2 + 2b(xk)d(xk)

θ−2γθ432

+ 2c(xk)d(xk)
β−2γβ + 2L2

Bγ
2 − αk,433434

and wk =
√
αk/LB . Note that, we have h(wk) ≥ αk > 0 and h(0) < 0. Since h is435

continuous on [0, wk], there exists γ̄k ∈ (0, wk) such that h(γ̄k) = 0. Moreover, since436

h′(γ) ≥ 4L2
Bγ > 0 for every γ ∈ (0,+∞), then h is strictly increasing on (0,+∞).437

Hence, there exists exactly one γ̄k > 0 such that the equality in (4.3) is satisfied and438

h(γk) ≤ 0 = h(γ̄k) for γk defined in (4.2).439

Lemma 4.1. Let Assumption 1 hold with µ ≥ 2. Let k ≥ 0 and let γk be given by440

(4.2). Then, inequality (4.1) is satisfied and441

γk < η :=

√
αmax

2L2
B

.(4.4)442

443

Proof. From basic properties of the norm,444

γ2k∥Axk +Bxk −Apk −Bpk∥2 ≤ 2γ2k∥Bxk −Bpk∥2 + 2γ2k∥Axk −Apk∥2.445446

Using Lipschitzianity of operator B on domC and Assumption 1.vi, we get447

γ2k∥Axk +Bxk −Apk −Bpk∥2 ≤ 2γ2kL
2
B∥xk − pk∥2448

+ 2γ2ka(xk)∥xk − pk∥µ + 2γ2kb(xk)∥xk − pk∥θ + 2γ2kc(xk)∥xk − pk∥β449

= 2γ2k

(
L2
B + a(xk)∥xk − pk∥µ−2 + b(xk)∥xk − pk∥θ−2

450

+ c(xk)∥xk − pk∥β−2
)
∥xk − pk∥2.(4.5)451

452

Using (3.11) with q = xk, w = x̂k−1, u = Axk +Bxk, and γ = γk,453

∥xk − pk∥ = ∥projdomC(x̂k−1)− JγkCzk∥454

(3.11)

≤ γk(ζ∥Axk +Bxk∥+ τ) = γkd(xk).(4.6)455456

From (4.3), (4.5), (4.6) and the fact that h(γk) ≤ h(γ̄k), we deduce that457

γ2k∥Axk +Bxk −Apk −Bpk∥2458

(4.5),(4.6)

≤ 2(L2
Bγ

2
k + a(xk)d(xk)

µ−2γµk )∥xk − pk∥2459

+ (b(xk)d(xk)
θ−2γθk + c(xk)d(xk)

β−2γβk )∥xk − pk∥2460

≤ 2(L2
B γ̄

2
k + a(xk)d(xk)

µ−2γ̄µk )∥xk − pk∥2461

+ (b(xk)d(xk)
θ−2γ̄θk + c(xk)d(xk)

β−2γ̄βk )∥xk − pk∥2462

(4.3)
= αk∥xk − pk∥2.(4.7)463464

From the above inequality, the first statement holds. Moreover, from (4.3), since465

b(xk), c(xk), and d(xk) are nonnegative for every k ≥ 0, we have 2L2
B γ̄

2
k − αk ≤ 0.466

Since αk < αmax, for every k ≥ 0, inequality (4.4) holds.467

From previous examples, one can see that Stepsize Choice 1 requires the computation468

of a positive root of a second-order polynomial equation for quadratically constrained469

quadratic programs (3.5), while for quadratic over linear fractional programs (3.7),470

one needs to compute the positive root of a third-order equation. More explicitly:471
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(i) If we consider the quadratically constrained quadratic program (3.5), then the472

operator A defined in (3.6) for problem (3.5) satisfies (3.22) where, for every i ∈473

{1, . . . ,m} gi : x 7→ 1
2x

⊤Qix+ l⊤i x− ri. Hence, equation (4.3) becomes:474

c d(xk)
2γ4 + (∥Q0∥2 + b(xk))γ

2 − αk

2
= 0,475

476

with function b and c given in (3.22). Solving the corresponding quadratic equation477

in γ2 yields a second-order equation whose positive root is478

γ̄k =

(√
(∥Q0∥2 + b(xk))2 + 2c d(xk)2αk − (∥Q0∥2 + b(xk))

2c d(xk)2

)1/2

.479

480

(ii) For the quadratic fractional program (3.7), equation (4.3) becomes481

a(xk)d(xk)
4γ6 + b(xk)d(xk)

2γ4 + (c(xk) + L2
B)γ

2 − αk

2
= 0,482

483

where functions a, b, and c are given in (3.28). Setting η = γ2, we obtain a cubic484

equation with a positive root ηk, and then γ̄k =
√
ηk.485

4.2.1. Convergence results under pseudo-monotonicity. Next, we show486

the asymptotic convergence of the sequences (xk)k∈N and (pk)k∈N generated by AFBF487

Algorithm when µ ≥ 2 and the stepsize is computed according to (4.2). The following488

sequence will play a key role in our convergence analysis:489

(4.8) (∀k ∈ N) uk = γ−1
k (zk − pk) +Apk +Bpk ∈ Apk +Bpk + Cpk.490

Theorem 4.2. Suppose that zer(A + B + C) ̸= ∅ and Assumption 1 holds with491

µ ≥ 2. Let (xk)k∈N, (zk)k∈N (pk)k∈N, and (qk)k∈N be sequences generated by AFBF492

algorithm with stepsizes (γk)k∈N given by (4.2). Then, the following hold:493

i) (xk)k∈N is a Fejèr monotone sequence with respect to zer(A+B + C);494

ii)
∑+∞

k=0 ∥xk − pk∥2 < +∞ and
∑+∞

k=0 ∥zk − qk∥2 < +∞;495

iii) there exists z̄ ∈ zer(A+B + C) such that xk → z̄, pk → z̄, and uk → 0.496

Proof. i) Let k ∈ N and let z̄ ∈ zer(A+B + C). Then,497

∥xk − z̄∥2 = ∥xk − pk + pk − z̄∥2498

= ∥xk − pk∥2 + 2⟨xk − pk, pk − z̄⟩+ ∥pk − x̂k + x̂k − z̄∥2499

= ∥xk − pk∥2 + ∥pk − x̂k∥2 + ∥x̂k − z̄∥2 + 2⟨xk − pk, pk − z̄⟩+ 2⟨pk − x̂k, x̂k − z̄⟩500

= ∥xk − pk∥2 − ∥pk − x̂k∥2 + ∥x̂k − z̄∥2 + 2⟨xk − pk, pk − z̄⟩+ 2⟨pk − x̂k, pk − z̄⟩501

= ∥xk − pk∥2 − ∥pk − x̂k∥2 + ∥x̂k − z̄∥2 + 2⟨xk − x̂k, pk − z̄⟩.502503

Moreover, using pk − x̂k = γk (Apk +Bpk −Axk −Bxk), we deduce that504

∥xk − z̄∥2 = ∥xk − pk∥2 − γ2k∥Apk +Bpk −Axk −Bxk∥2 + ∥x̂k − z̄∥2505

+ 2⟨xk − x̂k, pk − z̄⟩.(4.9)506507

Note that z̄ ∈ domC. Using the nonexpansiveness of the projection, (4.9) yields508

∥xk+1 − z̄∥2 ≤ ∥x̂k − z̄∥2509

(4.9)
= ∥xk − z̄∥2 − ∥xk − pk∥2 + γ2k∥Apk +Bpk −Axk −Bxk∥2510

− 2⟨xk − x̂k, pk − z̄⟩.(4.10)511512
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We deduce from Lemma 4.1 that513

∥xk+1 − z̄∥2 ≤ ∥xk − z̄∥2 − (1− αk)∥xk − pk∥2 − 2⟨xk − x̂k, pk − z̄⟩.(4.11)514515

Since zk ∈ (Id+γkC)pk, the inclusion relation in (4.8) holds and516

(4.12) xk − x̂k = γkuk.517

Since A+B + C is pseudo-monotone and z̄ is a zero of A+B + C, we obtain:518

(4.13) ⟨uk, pk − z̄⟩ ≥ 0.519

Using the last inequality with (4.12) and αk ≤ αmax < 1, it follows from (4.11) that520

∥xk+1 − z̄∥2 ≤ ∥xk − z̄∥2 − (1− αmax)∥xk − pk∥2 ≤ ∥xk − z̄∥2.(4.14)521522

This shows that (xk)k∈N is a Fejèr monotone sequence w.r.t. zer(A+B + C).523

524

ii) Since (xk)k∈N is a Fejèr monotone sequence, then it is bounded and (4.14) yields525

(1− αmax)

k∑
j=0

∥xj − pj∥2 ≤ ∥x0 − z̄∥2 < +∞.(4.15)526

527

It follows that (pk)k∈N is also bounded. In addition, by using Steps 2.(b) and 2.(e)528

of AFBF algorithm, Lemma 4.1, Cauchy-Schwarz inequality, and the fact that αk ≤529

αmax, we further get530

∥zk − qk∥2
2.(e),(4.12)

= γ2k∥uk∥2
2.(b),(4.8)

= ∥xk − pk + γk(Apk +Bpk −Axk −Bxk)∥2531

= ∥xk − pk∥2 + 2γk⟨xk − pk, Apk +Bpk −Axk −Bxk⟩532

+ γ2k∥Apk +Bpk −Axk −Bxk∥2533

≤ ∥xk − pk∥2 + 2γk∥xk − pk∥∥Apk +Bpk −Axk −Bxk∥534

+ γ2k∥Apk +Bpk −Axk −Bxk∥2535

≤ (1 +
√
αk)

2∥xk − pk∥2.(4.16)536537

As a consequence of (4.15) and the boundedness of (αk)k∈N,
∑+∞

k=0 ∥zk − qk∥2 < +∞.538

iii) Let uk be defined by (4.8). According to (4.16), since αk ∈ (0, 1),539

∥uk∥ ≤
(
γ−1
k

)
(1 +

√
αk)∥xk − pk∥ ≤ 2γ−1

k ∥xk − pk∥.(4.17)540541

On other hand, from the definition of γk and Lemma 4.1, it follows that542

αmin ≤ αk

(4.18)

543

= 2γ̄2k

(
L2
B + a(xk)d(xk)

µ−2γ̄µ−2
k + b(xk)d(xk)

θ−2γ̄θ−2
k + c(xk)d(xk)

β−2γ̄β−2
k

)
544

(4.4)

≤ 2γ̄2k
(
L2
B + a(xk)d(xk)

µ−2ηµ−2 + b(xk)d(xk)
θ−2ηθ−2 + c(xk)d(xk)

β−2ηβ−2
)
.545546

Since A, B, a, b, and c are continuous on domC and, (xk)k∈N and (γk)k∈N are547

bounded, then (dk)k∈N is bounded and there exist (R1, R2, R3) ∈ (0,+∞)3 such that548

549

a(xk)d(xk)
µ−2 ≤ R1, b(xk)d(xk)

θ−2 ≤ R2, and c(xk)d(xk)
β−2 ≤ R3.550551
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This allows us to lower-bound γk as follows:552

γk ≥ γmin := min

{
σ,

√
αmin

2 (L2
B +R1ηµ−2 +R2ηθ−2 +R3ηβ−2)

}
.(4.19)553

554

Hence, from (4.17), we deduce that555

∥uk∥ ≤ 2γ−1
min∥xk − pk∥.(4.20)556557

As (4.15) implies that xk − pk → 0, we have558

uk → 0.(4.21)559560

To prove the convergence of (xk)k∈N, according to the Fejèr-monotone convergence561

theorem [9, Lemma 6], it is sufficient to show that every sequential cluster point of562

(xk)k∈N is a zero of A+B +C. Let w be such a sequential cluster point. There thus563

exists a subsequence (xkn)n∈N of (xk)k∈N such that xkn → w. It follows from (4.15)564

and (4.21) that565

pkn
→ w and ukn

→ 0566567

Since A andB are continuous operators on domC, ukn−Apkn−Bpkn → −Aw−Bw. It568

follows from (4.8) that (pkn
, ukn

−Apkn
−Bpkn

) lies in graC. Maximally monotonicity569

of C implies that (w,−Aw − Bw) ∈ graC [5, Proposition 20.33(iii)]. Thus, w ∈570

zer(A+ B + C). Hence xk → w and, since xk − pk → 0, (pk)k∈N has the same limit.571

This concludes our proof.572

In [3, 10, 33], the problem of finding a zero of the sum of two operators B and C is573

considered when B is Lipschitz, C is maximally monotone, and B+C satisfies the weak574

Minty condition. Next, we analyze the case when we replace the pseudo-monotonicity575

assumption with the weak Minty condition. Let us first recall this condition.576

Definition 4.3. An operator T : H → 2H satisfies the weak Minty condition on577

Z ⊂ H if there exists some ρ ≥ 0 such that the following holds:578

(4.22) ⟨ŵ, w − z⟩ ≥ −ρ∥ŵ∥2 for every z ∈ Z, w ∈ H and, ŵ ∈ Tw.579

Note that pseudo-monotone operators (see Definition 2.4) satisfy the weak Minty con-580

dition on their set of zeros Z with ρ = 0. Weak Minty condition covers,in particular,581

minimization problems having star-convex or quasar-convex differentiable objective582

functions [22].583

Remark 4.4.584

i) First, one can notice that our proof works with a weak Minty type condition,585

where Z = zer(A+B+C) and ρ = 0, instead of Assumption 1.iv. Indeed, in the586

proof of Theorem 4.2, the pseudo-monotonicity of A + B + C has been used to587

derive inequality (4.13), which can also be derived from the weak Minty condition588

with ρ = 0.589

ii) Second, let us replace the pseudo-monotone condition in Assumption 1.iv with the590

assumption that A+B+C satisfies the weak Minty condition on zer(A+B+C)591

with ρ > 0 and, additionally, assume domC bounded. From the continuity of592

A, B, a, b, and c, and the boundedness of domC, there exists (Ra, Rb, Rc) ∈593

(0,+∞)3 such that, for every z ∈ domC,594

a(z)d(z) ≤ Ra, b(z)d(z) ≤ Rb, and c(z)d(z) ≤ Rc.(4.23)595596
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16 F. CHOROBURA, I. NECOARA, J.-C. PESQUET

Then, the results from the last theorem hold as long as the following conditions597

are satisfied:598

(4.24) ρ <
2−

3
2
√
αmin(1−

√
αmax)

(1 +
√
αmax)

√
L2
B +Raηµ−2 +Rbηθ−2 +Rcηβ−2

:= ρmax,599

and either600

(4.25) σ ≥
√

αmin

2 (L2
B +Raηµ−2 +Rbηθ−2 +Rcηβ−2)

, or (∀k ≥ 0) γk = γ̄k.601

Indeed, from (4.11) and (4.22),602

(∀k ∈ N) ∥xk+1 − z̄∥2 ≤ ∥xk − z̄∥2 − (1− αk)∥xk − pk∥2 + 2γkρ∥uk∥2.603604

Using (4.17), we obtain605

∥xk+1− z̄∥2 ≤ ∥xk − z̄∥2−(1− αk − 2γ−1
k ρ(1+

√
αk)

2)∥xk− pk∥2.(4.26)606607

On other hand, (4.2), (4.18), (4.23), (4.24), and (4.25) yield608

γk ≥ min {σ, γ̄k} ≥
√

αmin

2 (L2
B +Raηµ−2 +Rbηθ−2 +Rcηβ−2)

609

≥
2ρmax(1 +

√
αmax)

1−√
αmax

≥
2ρmax(1 +

√
αk)

1−√
αk

.610

611

Hence, it follows that612

1− αk − 2γ−1
k ρ(1 +

√
αk)

2 ≥
(
1− ρ

ρmax

)
(1− αk) ≥

(
1− ρ

ρmax

)
(1− αmin).613

614

The inequality above and (4.26) show that (xk)k∈N is a Fejèr monotone sequence615

with respect to zer(A + B + C) and
∑+∞

k=0 ∥xk − pk∥2 < +∞. By proceeding616

similarly to the proof of Theorem 4.2, the convergence of (xk)k∈N to a zero of617

A+B + C can be proved.618

Now, we show a sublinear convergence rate result for the iterates of AFBF algorithm.619

Theorem 4.5. Under the same assumptions as in Theorem 4.2, the following620

hold: for every k0 ∈ N and k ∈ N∗,621

γmin min
k0≤j≤k0+k−1

∥uj∥ ≤ min
k0≤j≤k0+k−1

∥xj − x̂j∥622

≤ (1 +
√
αmax) min

k0≤j≤k0+k−1
∥xj − pj∥ ≤ εk0√

k
,623

624

where uk is defined in (4.8) and εk0
→ 0 as k0 → +∞.625

Proof. According to (4.12), (4.17), and (4.19),626

(4.27) (∀j ∈ N) γmin∥uj∥ ≤ ∥xj − x̂j∥ ≤ (1 +
√
αmax)∥xj − pj∥.627

Let z be the limit of (xj)j∈N. It follows from (4.14) that628

(1− αmax)

k0+k−1∑
j=k0

∥xj − pj∥2 ≤ ∥xk0
− z∥2,629
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which leads to630

min
k0≤j≤k0+k−1

∥xj − pj∥2 ≤ 1

(1− αmax)k
∥xk0

− z∥2.631

The result follows from the latter equation and (4.27), by setting632

εk0 =
1√

1− αmax
∥xk0 − z∥.633

Note that convergence results in Theorems 4.2 and 4.5 are consistent with those634

obtained in the literature on (non)monotone inclusion problems [8, 15, 17, 24, 37].635

4.2.2. Convergence results under uniform pseudo-monotonicity. In this636

section, we refine our convergence results when the operator A+B + C is uniformly637

pseudo-monotone. Next, we present the definition of a uniformly monotone/pseudo-638

monotone operator.639

Definition 4.6. Let T : H → 2H.640

i) T is said to be uniformly monotone with modulus q ≥ 1 if there exists a constant641

ν > 0 such that, for every (x, y) ∈ H2 and (x̂, ŷ) ∈ Tx× Ty,642

⟨x̂− ŷ, x− y⟩ ≥ ν

2
∥x− y∥q.643

644

ii) T is said to be uniformly pseudo-monotone with modulus q ≥ 1 if there exists a645

constant ν > 0 such that, for every (x, y) ∈ H and (x̂, ŷ) ∈ Tx× Ty,646

⟨x̂, y − x⟩ ≥ 0 =⇒ ⟨ŷ, y − x⟩ ≥ ν

2
∥x− y∥q.647

648

When q = 2 in the definition above, we say that operator T is strongly monotone /649

pseudo-monotone. Note that, if T is uniformly monotone, then T is also uniformly650

pseudo-monotone.651

Example 4.7. Consider a proper uniformly convex function f : Rn → (−∞,+∞).652

The subdifferential ∂f of f is uniformly monotone [5, Example 22.5]653

Below we give an example of a strongly pseudo-monotone map that is not monotone.654

Example 4.8. Consider the unit ball U = {x ∈ Rn | ∥x∥ ≤ 1} and the map655

F : U \ {0} → Rn such that656

(∀x ∈ U \ {0}) F (x) =

(
2

∥x∥
− 1

)
x.657

Note that F is not monotone on U \ {0}. For example, setting y = (1, 0, . . . , 0) and658

w = (1/2, 0, . . . , 0) yields659

⟨F (y)− F (w), y − w⟩ = −1

4
.660

However, F is strongly pseudo-monotone on U \ {0}. Indeed, for every (x, y) ∈661

(U \ {0})2, if ⟨F (x), y − x⟩ ≥ 0, then ⟨x, y − x⟩ ≥ 0, and consequently:662

⟨F (y), y − x⟩ = (2∥y∥−1 − 1)⟨y, y − x⟩ ≥ (2∥y∥−1 − 1)⟨y − x, y − x⟩ ≥ ∥y − x∥2.663

Next, considering operators A, B, C satisfying Assumption 1 with µ ≥ 2 and stepsizes664

(γk)k∈N computed as in (4.2), we derive linear convergence rates when A+ B + C is665

uniformly pseudo-monotone with modulus q ∈ [1, 2], and sublinear rates when q > 2.666
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Theorem 4.9. Suppose that Assumption 1 holds with µ ≥ 2. Let (xk)k∈N, and667

(pk)k∈N be sequences generated by AFBF algorithm with stepsizes (γk)k∈N given by668

(4.2). Assume that A+B+C is uniformly pseudo-monotone with modulus q ≥ 1 and669

constant ν > 0. Then, for some z̄ ∈ zer(A+B + C) and constants670

R = sup
k∈N

∥pk − z̄∥ < +∞ and r = min{1− αmax, γminνR
q−2} < 1,(4.28)671

672

the following hold:673

i) For q ∈ [1, 2], xk converges to z̄ linearly:674

(4.29) (∀k ∈ N) ∥xk − z̄∥ ≤
(
1− r

2

)k/2
∥x0 − z̄∥.675

ii) For q > 2 and r =
r

2q−1Rq−2
, xk converges to z̄ sublinearly:676

(∀k ∈ N) ∥xk − z̄∥ ≤ ∥x0 − z̄∥(
q−2
2 r∥x0 − z̄∥q−2k + 1

) 1
q−2

.677

678

Proof. From Theorem 4.2, the sequence (pk)k∈N generated by AFBF algorithm is679

convergent. Hence, for some z̄ ∈ zer(A+B+C), we have R = supk∈N ∥pk− z̄∥ < +∞.680

Since A+B +C is uniformly pseudo-monotone with modulus q and constant ν > 0,681

(∀k ∈ N) ⟨uk, pk − z̄⟩ ≥ ν

2
∥pk − z̄∥q.682

683

It follows from (4.11) that684

∥xk+1 − z̄∥2685

≤ ∥xk − z̄∥2 − ∥xk − pk∥2 + γ2k∥Apk +Bpk −Axk −Bxk∥2 − γkν∥pk − z̄∥q.686687

Since αk ≤ αmax and γmin ≤ γk, we deduce from Lemma 4.1 that688

∥xk+1 − z̄∥2 ≤ ∥xk − z̄∥2 − (1− αmax)∥xk − pk∥2 − γminν∥pk − z̄∥q.(4.30)689690

i) If q ∈ [1, 2], using the definition of R, we get691

(1− αmax)∥xk − pk∥2 + γminν∥pk − z̄∥q692

(4.28)

≥ (1− αmax)∥xk − pk∥2 + γminνR
q−2∥pk − z̄∥2693

≥ min{1− αmax, γminνR
q−2}

(
∥xk − pk∥2 + ∥pk − z̄∥2

) (4.28)
≥ r

2
∥xk − z̄∥2.694

695

Combining the two last inequalities we obtain696

∥xk+1 − z̄∥2 ≤
(
1− r

2

)
∥xk − z̄∥2.697

698

Therefore, unrolling the above inequality allows us to prove the first statement.699

ii) If q > 2, it follows from (4.28) that700

(1− αmax)∥xk − pk∥2 + γminν∥pk − z̄∥q701

(4.28)

≥ (1− αmax)

Rq−2
∥xk − pk∥q + γminν∥pk − z̄∥q702

≥ min

{
(1− αmax)

Rq−2
, γminν

}
(∥xk − pk∥q + ∥pk − z̄∥q) ≥ r∥xk − z̄∥q.703

704
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Therefore, using (4.30), we obtain ∥xk+1− z̄∥2 ≤ ∥xk − z̄∥2− r∥xk − z̄∥q. Multiplying705

the inequality above by r
2

q−2 , we obtain706

r
2

q−2 ∥xk+1 − z̄∥2 ≤ r
2

q−2 ∥xk − z̄∥2 −
(
r

2
q−2 ∥xk − z̄∥2

) q
2

.707
708

Applying [30, Lemma 8(i)] for ζ = q−2
2 > 0, we get709

∥xk − z̄∥ ≤ ∥x0 − z̄∥(
q−2
2 r∥x0 − z̄∥q−2k + 1

) 1
q−2

.710

711

This proves the second statement of the theorem.712

Remark 4.10. In Theorem 4.9 , we can replace the assumption of uniform pseudo-713

monotonicity with the following one: there exists ν > 0 and q ≥ 1, such that, for every714

w ∈ H, ŵ ∈ (A+B + C)w, and z̄ ∈ zer(A+B + C), the following inequality holds:715

(4.31) ⟨ŵ, w − z̄⟩ ≥ ν∥w − z̄∥q.716

Proceeding similarly to the proof of Theorem 4.9, linear and sublinear rates can be717

derived under this condition. Condition (4.31), with q = 2, covers, e.g., minimization718

problems with strongly star-convex differentiable objective function or strongly quasi-719

convex objective functions [22].720

4.3. Second adaptive choice for the stepsize. In this section, we present721

another possible adaptive choice for the stepsize when the operator A satisfies As-722

sumption 1.vi with µ ∈ (0, 2). Let ϵ ∈ (0, 1) be the desired accuracy for solving723

problem (1.1), i.e., to obtain u in the range of A + B + C such that ∥u∥ ≤ ϵ. The724

procedure is described below.725

Stepsize Choice 2:
1. Choose ϵ ∈ (0, 1), 0 < αmin ≤ αmax < 1, and σ > 0.
2. For k ≥ 0 do:

(a) Choose αk ∈ [αmin, αmax] and compute d(xk) = ζ∥Axk +Bxk∥+ τ .

(b) Compute γ̄
(1)
k > 0 as the solution to the equation

L2
Bγ

2 + b(xk)d(xk)
θ−2γθ + c(xk)d(xk)

β−2γβ + 22−µa(xk)γ
µϵµ−2 =

αk

2
(4.32)

(c) Compute γ̄
(2)
k > 0 as the solution to the equation

L2
Bd(xk)

2−µγ2 + b(xk)d(xk)
θ−µγθ + c(xk)d(xk)

β−µγβ + a(xk)γ
µ =

ϵ2−µ

23−µ
αk

(4.33)

(d) Update

(4.34) γ̄k = min
{
γ̄
(1)
k , γ̄

(2)
k

}
(e) Choose γk such that

(4.35) γk ∈

{
[σ, γ̄k] if σ ≤ γ̄k

γ̄k otherwise.

726

727
Note that γ is well-defined in Steps 2.(b) and 2.(c) of this second procedure for the728

choice of the stepsize, i.e., there exist unique γ̄
(1)
k , γ̄

(2)
k satisfying (4.32) and (4.33),729
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respectively. Indeed, consider the functions730

h(γ) = γ2L2
B + b(xk)d(xk)

θ−2γθ + c(xk)d(xk)
β−2γβ + 22−µa(xk)γ

µϵµ−2 − αk

2
731

r(γ) = L2
Bd(xk)

2−µγ2 + b(xk)d(xk)
θ−µγθ + c(xk)d(xk)

β−µγβ + a(xk)γ
µ − ϵ2−µ

23−µ
αk,732

733

and variables wk =

√
αk

LB
and w̄k =

√
αk

LBd(xk)
2−µ
2

. Note that h(0) < 0 and h(wk) ≥734

αk/2 > 0. Since h is continuous on [0, wk] there exist γ̄
(1)
k ∈ (0, wk) such that735

h(γ̄
(1)
k ) = 0. Moreover, since h′(γ) ≥ 2γL2

B > 0 for every γ ∈ (0,+∞), then h is736

strictly increasing in (0,+∞). Hence, there exists exactly one γ̄
(1)
k > 0 such that737

h(γ̄
(1)
k ) = 0. Using the same arguments, we can conclude that r is strictly increasing738

on (0,+∞) and there exist only one γ̄
(2)
k ∈ (0, w̄k) such that r(γ̄

(2)
k ) = 0. Since both739

functions h and r are strictly increasing in (0,+∞), h(0) < 0 and r(0) < 0, γk defined740

in (4.35) satisfies the following two inequalities:741

h(γk) ≤ 0 and r(γk) ≤ 0.(4.36)742743

Note that744

(4.37) γ̄
(1)
k ≤ η and γ̄

(2)
k ≤ η̄ :=

(
ϵ2−µαmax

23−µL2
Bτ

2−µ

) 1
2

,745

with η defined in (4.4). The theorem below provides a bound on the number of746

iterations required, for a given ϵ > 0, to generate ∥uk∥ ≤ ϵ, with uk defined in (4.8).747

Theorem 4.11. Let ϵ ∈ (0, 1). Suppose that Assumption 1 holds with µ ∈ (0, 2).748

Let (xk)k∈N and (pk)k∈N be the sequences generated by AFBF algorithm with stepsizes749

(γk)k∈N given by (4.35). Then, for uk = γ−1
k (xk − pk) + Apk + Bpk − Axk − Bxk ∈750

Apk +Bpk + Cpk and γmin(ϵ) = O(ϵ(2−µ)/µ), performing751

K ≥ 1

ϵ2

(
(1 +

√
αmax)

2

γ2min(ϵ)(1− αmax)

)
∥x0 − z̄∥2752

753

iterations ensures that there exists k ∈ {0, · · · ,K − 1} such that ∥uk∥ ≤ ϵ.754

Proof. i) First, consider the case when, for every k ∈ {0, . . . ,K − 1}, γ−1
k ∥xk −755

pk∥ > ϵ/2. We deduce from (4.6) and (4.36) that756

γ2k∥Axk +Bxk −Apk −Bpk∥2757

(4.6)

≤ 2
(
γ2kL

2
B + b(xk)d

θ−2
k γθk + c(xk)d

β−2
k γβk + 22−µa(xk)γ

µ
k ϵ

µ−2
)
∥xk − pk∥2758

(4.36)

≤ αk∥xk − pk∥2.759760

Let z̄ ∈ zer(A+B +C). Since αk ≤ αmax, using a similar reasoning as in (4.10),761

the inequality (4.14) also holds when k ∈ {0, . . . ,K − 1}, for this second choice762

of the stepsize. This implies that763

(1− αmax)

K−1∑
k=0

∥xk − pk∥2 ≤ ∥x0 − z̄∥2,(4.38)764

(∀k ∈ {0, . . . ,K}) ∥xk − z̄∥ ≤ ∥x0 − z̄∥.765766
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Let D be the closed ball of center z̄ and radius ∥x0 − z̄∥. Since A, B, a, b, and c767

are continuous on domC, the quantities define below take finite values:768

R1 = sup
x∈D

a(x), R2 = sup
x∈D

b(x)d(x)θ−2, R3 = sup
x∈D

c(x)d(x)β−2
769

R4 = sup
x∈D

d(x)2−µ, R5 = sup
x∈D

b(x)d(x)θ−µ, R6 = sup
x∈D

c(x)d(x)β−µ.770
771

From (4.37), (4.32) and (4.33), one can lower-bound the stepsize as:772

(∀k ∈ {0, . . . ,K − 1}) γk ≥ γmin(ϵ) := min{γ(1)min(ϵ), γ
(2)
min(ϵ), σ},773774

with775

γ
(1)
min(ϵ) :=

(
αmin

2 (L2
Bη

2−µ + 22−µR1ϵµ−2 +R2ηθ−µ +R3ηβ−µ)

) 1
µ

(4.39)776
777

and778

γ
(2)
min(ϵ) :=

(
ϵ2−µαmin

23−µ (R1 + L2
B η̄

2−µR4 +R5η̄θ−µ +R6η̄β−µ)

) 1
µ

.(4.40)779
780

Note that, if ϵ is sufficiently small, then γmin(ϵ) = O(ϵ(2−µ)/µ). Using (4.17), we781

finally obtain782

(∀k ∈ {0, . . . ,K − 1}) ∥uk∥ ≤ (γmin(ϵ))
−1(1 +

√
αmax)∥xk − pk∥,783784

which, by virtue of (4.38), yields785

min
0≤k≤K−1

∥uk∥2 ≤ 1

K

(
(1 +

√
αmax)

2

γ2min(ϵ)(1− αmax)

)
∥x0 − z̄∥2.786

787

ii) Second, consider the case when, there exists k ∈ {0, · · · ,K − 1} such that788

γ−1
k ∥xk − pk∥ ≤ ϵ/2. Let us prove that ∥Apk + Bpk − Axk − Bxk∥ ≤ ϵ/2.789

Indeed, we deduce from (4.5) that790

∥Apk +Bpk −Axk −Bxk∥2791

≤ 2L2
B∥xk − pk∥2 + 2a(xk)∥xk − pk∥µ + 2b(xk)∥xk − pk∥θ + 2c(xk)∥xk − pk∥β792

(4.6)

≤ 2(L2
Bd(xk)

2−µγ2−µ
k + b(xk)d(xk)

θ−µγθ−µ
k + c(xk)d(xk)

β−µγβ−µ
k793

+ a(xk))∥xk − pk∥µ794

≤ 2(L2
Bd(xk)

2−µγ2k + b(xk)d(xk)
θ−µγθk + c(xk)d(xk)

β−µγβk + a(xk)γ
µ
k )
ϵµ

2µ
795

(4.36)

≤ ϵ2αk

4
≤ ϵ2

4
.796

797

Hence, from the definition of uk, applying the triangle inequality leads to ∥uk∥ ≤798

ϵ. Hence, the statement of the theorem is proved.799

It can be noticed that the literature on convergence rates for the general inclusion800

problem addressed in this section is scarce. Existing results predominantly focus on801

the composite problem outlined in Example 3.1, particularly when g = 0 and L = In,802

spanning both the convex case [32] and the nonconvex one [38].803
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5. Simulations. In this section, we evaluate the performance of our algorithm804

on convex quadratically constrained quadratic programs (QCQPs), see (3.5), using805

synthetic and real data. Then, we also test our algorithm on a pseudo-convex prob-806

lem using synthetic data. We compare our Adaptive Forward-Backward-Forward807

(AFBF) algorithm to Tseng’s algorithm [37], and one dedicated commercial opti-808

mization software packages, Gurobi [20] (which has a specialized solver for QCQPs).809

We implemented the algorithm AFBF as follows: at each iteration k ∈ N, the stepsize810

γk = γ̄k, where γ̄k is computed as in (4.3), b(xk) and c(xk) are computed as in (3.22),811

and αk = 0.99. The code was implemented using MATLAB R2020a on a computer812

equipped with an AMD Ryzen CPU operating at 3.4 GHz and 64 GB of RAM.813

5.1. Solving convex QCQPs. We consider the following convex QCQP814

min
x∈Rn

f(x) =
1

2
x⊤Q0x+ b⊤x815

s.t. gi(x) =
1

2
x⊤Qix+ l⊤i x− ri ≤ 0, ∀i ∈ {1, . . . ,m},(5.1)816

817
where (Qi)0≤i≤m are symmetric positive semidefinite matrices in Rn×n, (li)1≤i≤m and818

b are vectors in Rn, and (ri)1≤i≤m are nonnegative reals. Note that the operator A819

defined in (3.6) for QCQPs fits (3.22). For every i ∈ {0, . . . ,m}, Qi was generated as820

Qi = R⊤
i Ri, where Ri is a sparse random matrix whose element are drawn indepen-821

dently from a uniform distribution over [0, 1]. Moreover, the components of vectors822

b and (li)1≤i≤m were generated from a standard normal distribution N (0, 1). Con-823

stants (ri)1≤i≤m and the components of the algorithm starting point were generated824

from a uniform distribution over [0, 1]. For the algorithm in [37], named Tseng, the825

line-search is computed as in [37, equation (2.4)], with θ = 0.995, σ = 1, and β = 0.5.826

We consider the following stopping criteria for AFBF and Tseng’s algorithms:827

∥uk∥ ≤ 10−2, with uk defined in (4.8).828829

n p m
AFBF Tseng [37]

ITER CPU ITER LSE CPU

103 103 250 3914 36.09 15298 91513 387.4
103 103 500 7563 131.8 23400 140070 1179.3
103 103 103 19044 597.6 37932 227029 3570.4
103 103 2 · 103 44039 2900.1 63143 377963 12990
104 104 125 4705 195.5 3351 19963 418.6
104 104 250 6131 475.2 4888 29209 1178
104 104 500 8862 1329 7240 43319 3398
104 104 750 11380 1821 8670 51893 4251

103 500 250 4992 66.9 14750 88223 590.9
103 500 500 11069 288.7 25741 154114 2068.7
103 500 103 24460 1192.7 45654 273360 7010.4
103 500 2 · 103 59762 5939 * * *
104 5 · 103 125 5318 336 3428 20412 689.8
104 5 · 103 250 7445 895.3 4762 28452 1864
104 5 · 103 500 11515 2711 11271 67514 8647
104 5 · 103 750 15719 3655.4 14073 84324 10462

Table 1
CPU time (sec) and number of iterations (ITER) for solving synthetic QCQPs of the form

(5.1) with AFBF and Tseng’s [37] algorithms: strongly convex case (top) and convex case (bottom).

The CPU time (in seconds) and the number of iterations (ITER) required by each830

algorithm for solving problem (5.1) are given in Table 1, where “*” means that the831

corresponding algorithm needs more than 5 hours to solve the problem. Moreover,832

for Tseng’s algorithm, we also report the number of line-search evalutions (LSE).833

The first half of the table corresponds to strongly convex functions (Qi ≻ 0, for834

every i ∈ {0, . . . ,m}) and the other half is for convex functions (Qi ⪰ 0, for every835
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i ∈ {0, . . . ,m}). As we can notice in Table 1, AFBF outperforms Tseng’s algorithm836

(sometimes even 10× faster). Comparisons with Gurobi software are not included in837

Table 1, since we observed that its performance is quite poor on these large test cases.838

5.2. Solving multiple kernel learning in support vector machine. In839

this section, we test AFBF on Support Vector Machine (SVM) with multiple kernel840

learning using real data, which can also be formulated as a convex QCQP. Let us841

briefly describe the problem (our presentation follows [14]). Given a set of ndat data842

points S = {(dj , lj)}1≤j≤ndat
where, for every j ∈ {1, . . . , ndat} dj ∈ Rnd is the input843

vector and lj ∈ {−1, 1} is its class label, SVM searches for a hyperplane that can best844

separate the points from the two classes. When the data points cannot be separated845

in the original space Rnd , we can search in a feature space Rnf , by mapping the input846

data space Rnd to the feature space through a function φ : Rnd → Rnf . Using function847

φ, we can define a kernel function κ : Rnd × Rnd → R as κ(dj , dj′) := ⟨φ(dj), φ(dj′)⟩848

for every (dj , dj′) ∈ (Rnd)2, where ⟨·, ·⟩ denotes the inner product of Rnf . One popular849

choice of the kernel function in the SVM literature is the Gaussian kernel:850

κGAU(dj , dj′) = exp

(
−∥dj − dj′∥2

2σ2

)
, ∀(j, j′) ∈ {1, . . . , ndat}2851

852
with σ > 0. We separate the given set S into a training set, Str = {(dj , lj)}1≤j≤ntr

853

and a testing set, Ste = {(dj , lj)}1≤j≤nte , such that ntr + nte = ndat. Choosing a set854

of kernel functions (κi)1≤i≤m, the SVM classifier is learned by solving the following855

convex QCQP problem on the training set Str:856

min
x∈Rntr ,x0∈R,x≥0

1

2
x⊤Q0x− e⊤x+Rx0857

s.t.
1

2
x⊤
(

1

Ri
Gi(Ki,tr)

)
x− x0 ≤ 0 ∀i ∈ {1, . . . ,m},

ntr∑
j=1

ljxj = 0,(5.2)858

859 where Q0 = C−1Intr
, C being a parameter related the soft margin criteria, and the860

vector e denotes a vector of all ones. In addition, for every i ∈ {1, . . . ,m}, Ki,tr ∈861

Rntr×ntr is a symmetric positive semidefinite matrix, whose (j, j′) element is defined862

by the kernel function: [Ki,tr]j,j′ := κi(dj , dj′). The matrix Gi(Ki,tr) ∈ Rntr×ntr in863

the i-th quadratic constraint of (5.2) is a symmetric positive semidefinite matrix, its864

(j, j′) element being [Gi(Ki,tr)]j,j′ = lj lj′ [Ki,tr]j,j′ . Moreover, R and (Ri)1≤i≤m are865

given positive constants. Clearly, (5.2) is an instance of problem (3.5). In our exper-866

iments, we employed a predefined set of Gaussian kernel functions (κi)1≤i≤m, with867

the corresponding (σ2
i )1≤i≤m values. Following the pre-processing strategy outlined868

in [14], we normalized each matrix Ki,tr such that Ri = trace(Ki,tr) was set to 1, thus869

restricting R =
∑m

i=1Ri = m. For each dataset, the σ2
i ’s were set to m different grid870

points within the interval [10−1, 10] for the first five datasets and [10−2, 102] for the871

last one, with two different values for the number of grid points, namely m = 3 and872

m = 5. Additionally, we set C = 1. In order to give a better overview of the advan-873

tages offered by the multiple kernel SVM approach, we also learn a single Gaussian874

kernel SVM classifier with σ2 set a priori to 7, by solving the following QP problem:875

min
x∈[0,C]ntr

1

2
x⊤G(Ktr)x− e⊤x, s.t.

ntr∑
j=1

ljxj = 0.(5.3)876

877
We consider the following stopping criteria for AFBF and Tseng’s algorithms:878

|f(x)− f∗| ≤ 10−4,

∣∣∣∣∣∣
ntr∑
j=1

ljxj

∣∣∣∣∣∣ ≤ 10−4 and max(0, gi(x)) ≤ 10−4, ∀i ∈ {1, . . . ,m},879

880
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with f∗ computed by Gurobi solver and the starting point chosen as the null vector.881

Moreover, for Tseng’s algorithm the line-search was computed as in [37, equation882

(2.4)], with θ = 0.99, σ = 1 and β = 0.1. Table 2 presents a comparison between883

AFBF algorithm , Tseng’s algorithm [37], and Gurobi solver [20] (specialized solver for884

QCQPs) in terms of CPU time for solving the QCQP of the form (5.2) using 6 real885

datasets Ozone-level-8hr, mfeat-fourier, USPS, isolet, semeion and Ovarian886

from https://www.openml.org. Each dataset was divided into a training set com-887

prising 80% of the data and a testing set of the remaining 20%. For each dataset,888

we also provided the nonzero optimal dual multiplier value y∗ corresponding to the889

unique active quadratic inequality constraint and the corresponding value of σ2 corre-890

sponding to that active constraint. Finally, the table presents a comparison between891

the Testing Set Accuracies on the remaining testing datasets obtained by the multiple892

Gaussian kernel SVM classifier with σ2 derived from (5.2), named TSA, and the single893

Gaussian kernel SVM classifier with σ2 = 7, named TSA0.894

Dataset
m TSA0 TSA σ2 AFBF TSENG Gurobi

(n, nd) CPU y∗ CPU y∗ CPU y∗

Ozone-level-8hr 3
52.7

91.7 5.05 31.18 3.1 58.09 2.99 95.61 3
(2534, 72) 5 91.7 2.575 49.9 5.04 61.38 5 339.88 5

mfeat-fourier 3
87.7

89 5.05 11.82 3.04 21.5 2.99 40.56 3
(2000, 76) 5 89 2.575 20.54 5.02 35.06 4.99 170.06 5

USPS 3
60.2

91.5 10 4 3 5.23 3 232.98 3
(1424, 256) 5 92.2 10 3.95 5 8.33 5 1106.7 5

isolet 3
57.5

95 10 0.59 3 1.35 3 10.8 3
(600, 617) 5 95.8 10 0.68 4.97 2.23 5 25.09 5
semeion 3

47.6
77.8 10 0.75 2.98 1.43 2.97 1.37 3

(319, 256) 5 84.1 10 0.89 5.02 3.19 4.99 4.12 5
Ovarian 3

66
78 100 0.38 3.04 1.72 2.99 0.82 3

(253, 15154) 5 88 100 0.47 4.96 2.48 4.99 2.31 5

Table 2
Comparison between our algorithm AFBF, Tseng’s algorithm [37] and Gurobi solver [20] in

terms of CPU time (in seconds) to solve QPQCs of the form (5.2) for various real datasets and two
different choices of m = 3, 5. Additionally, TSA’s are provided for (5.2) and (5.3).

5.3. Fractional programming. In this final set of experiments, we consider the895

linear fractional program (3.10), where the objective function is pseudo-convex. We896

compare our algorithm with [35, Algorithm 1] developed for solving non-Lipschitzian897

and pseudo-monotone variational inequalities. We implemented [35, Algorithm 1]898

with the parameters µ = 0.995, γ = 1, and l = 0.001. From Theorem 1 in [28],899

when the vector r = ηd with η ≥ 0, the objective function f in (3.10) is pseudo-900

convex on D. In our simulations, the components of the vector d and the constant h0

Figure 1. Evolution of Algorithm 1 in [35] (called here FBF) and our AFBF algorithm in
function values along time for two linear fractional programs of the form (3.10) with data generated
randomly, η = 1 and η = 10, and dimension n = 106.

901

were drawn independently from a standard normal distribution N (0, 1), vector r was902
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chosen as r = ηd, with η > 0, vector h was taken as a perturbation of vector d, i.e.,903

h = d+0.01ν. Vector ν and constant d0 were generated from a uniform distribution.904

Moreover, we chose the starting point x0 as x0 = projD(t), vector t being generated905

from a standard normal distribution N (0, 1). The results are displayed in Figure 1,906

where we plot the evolution of function values along time (in sec). Note that, AFBF907

is faster than Algorithm 1 from [35] (named here FBF) for chosen values of η.908

6. Conclusions. In this paper, we have addressed the problem of finding a zero909

of a pseudo-monotone operator. We have made the assumption that this operator910

can be split as a sum of three operators: the first continuous operator A satisfies a911

generalized Lipschitz inequality, the second operator B is Lipschitzian, and the third912

one C is maximally monotone. For solving this challenging problem, our solution913

relied upon the forward-backward-forward algorithm, which requires however the use914

of an iteration-dependent stepsize. In this context, we designed two novel adaptize915

stepsize strategies. We also derived asymptotic sublinear convergence properties un-916

der the considered assumptions. Additionally, when A + B + C satisfies a uniform917

pseudo-monotonicity condition, the convergence rate becomes even linear. Prelimi-918

nary numerical results confirm the good performance of our algorithm.919

For future research, it would be intriguing to investigate the possibility of achiev-920

ing more precise convergence rates. For instance, in Example 3.1, when g = 0 and921

L = In, [32] introduces a universal gradient method with a convergence rate of order922

O(ϵ−2/(1+ν)) for the convex (i.e., maximally monotone) case, where ν is the constant923

from Definition 2.2 (note that µ = 2ν in this scenario). Conversely, in the noncon-924

vex (i.e., nonmonotone) case under the same settings, [38] examines a gradient-type925

method with an adaptive stepsize and achieves a convergence rate of order O(ϵ−(
1+ν
ν ))926

in the norm of the gradient. On the other hand, the convergence rate obtained in927

Theorem 4.11 within the general nonmonotone framework we considered is of order928

O(ϵ−2/ν) in the norm of the gradient, which is not as favorable as the rate in [38].929
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