N
N

N

HAL

open science

AN ADAPTIVE FORWARD-BACKWARD-FORWARD
SPLITTING ALGORITHM FOR SOLVING
PSEUDO-MONOTONE INCLUSIONS

Flavia Chorobura, Ion I Necoara, Jean-Christophe Pesquet

» To cite this version:

Flavia Chorobura, Ion 1 Necoara, Jean-Christophe Pesquet.
BACKWARD-FORWARD SPLITTING ALGORITHM FOR SOLVING PSEUDO-MONOTONE IN-

CLUSIONS. 2024. hal-04571492

HAL Id: hal-04571492
https://hal.science/hal-04571492v1

Preprint submitted on 7 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

AN ADAPTIVE FORWARD-


https://hal.science/hal-04571492v1
https://hal.archives-ouvertes.fr

1

N

16

19

20
21
22

AN ADAPTIVE FORWARD-BACKWARD-FORWARD SPLITTING
ALGORITHM FOR SOLVING PSEUDO-MONOTONE INCLUSIONS*

FLAVIA CHOROBURAT, ION NECOARA?¥, AND JEAN-CHRISTOPHE PESQUET$

Abstract. In this paper, we propose an adaptive forward-backward-forward splitting algorithm
for finding a zero of a pseudo-monotone operator which is split as a sum of three operators: the first
is continuous single-valued, the second is Lipschitzian, and the third is maximally monotone. This
setting covers, in particular, constrained minimization scenarios, such as problems having smooth and
convex functional constraints (e.g., quadratically constrained quadratic programs) or problems with
a pseudo-convex objective function minimized over a simple closed convex set (e.g., quadratic over
linear fractional programs). For the general problem, we design a forward-backward-forward splitting
type method based on novel adaptive stepsize strategies. Under an additional generalized Lipschitz
property of the first operator, sublinear convergence rate is derived for the sequence generated by
our adaptive algorithm. Moreover, if the sum is uniformly pseudo-monotone, linear/sublinear rates
are derived depending on the parameter of uniform pseudo-monotonicity. Preliminary numerical
experiments demonstrate the good performance of our method when compared to some existing
optimization methods and software.

Key words. Pseudo-monotone operators, forward-backward-forward splitting, adaptive step-
size, convergence analysis, nonconvex optimization. IATEX

MSC codes. 68Q25, 68R10, 68U05.

1. Introduction. Let H be a finite-dimensional real vector space endowed with

a scalar product (-,-) and the corresponding norm || - ||. Our goal is to find a zero of
a sum of three operators A: H ~— H, B: H — H, and C: H — 2%, that is
(1.1) Find z € H such that 0 € Az + Bz + C=z.

Finding a zero of a sum of operators is a very general problem and covers, in particular,
constrained optimization, and minimax optimization problems frequently encountered
in signal processing [23], triangulation in computer vision [2], semi-supervised learn-
ing [14], learning of kernel matrices [26], steering direction estimation for RADAR
detection [18], generative adversarial networks [29] among others.

Previous work. The problem of finding a zero of a sum of operators is considered
in many works. For example, [8, 15, 17, 24, 37] cover the monotone case, while
[3, 10, 33] consider the nonmonotone case. In [17, 24] all three operators are assumed
maximally monotone and, additionally, the first is Lipschitz continuous. Under these
settings, algorithms based on resolvent and forward operators, activated one at a
time successively, are proposed together with a detailed convergence analysis. Fur-
thermore, finding a zero of a sum of two maximally monotone operators, A+ C, such
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2 F. CHOROBURA, I. NECOARA, J.-C. PESQUET

that A is a continuous single-valued operator, is investigated in [37] and a forward-
backward-forward algorithm is proposed (also known as Tseng’s algorithm), where
the stepsize is chosen constant when A is Lipschitz or based on an Armijo-Goldstein-
type rule, otherwise. Linear rate was derived for this method when A 4 C' is strongly
monotone. In [3, 10, 33], A is assumed Lipschitz, possible nonmonotone, and C' is
maximally monotone, such that either A 4+ C satisfies the weak Minty condition or
a cohypomonotonicity assumption. In particular, [33] considers an extragradient al-
gorithm with adaptive and constant stepsizes, which reduces, for a specific choice of
stepsize, to the forward-backward-forward algorithm in the monotone case. Moreover,
[10] analyzes an optimistic gradient algorithm, while in [3] algorithms based on classi-
cal Halpern and Krasnosel’skii-Mann iterations are analyzed. For all these methods,
under suitable assumptions, sublinear rates are derived. Finally, finding a zero of a
sum of three operators A + B + C' is considered in [15], where A, C' are maximally
monotone and B is Lipschitz and monotone, and asymptotic convergence is proved
for an error-tolerant forward-backward-forward algorithm.

The forward-backward-forward algorithm was also extended to solve variational in-
equalities. For example, [7, 36] consider a variational inequality, where the operator is
Lipschitz, and a (modified) Tseng algorithm is employed with a constant stepsize or
an adaptive stepsize, so that it is not necessary to know the Lipschitz constant. Con-
vergence is derived when the operator is pseudo-monotone. Moreover, the Lipschitz
assumption on the operator involved in the variational inequality is relaxed in [35],
the operator being assumed continuous. Then, Tseng’s algorithm is considered with
an Armijo-Goldestein rule for the stepsize. Under standard conditions, the weak and
strong convergence of the method is obtained in the pseudo-monotone case. Our ap-
proach differs from [35], as we consider that the operator A satisfies a relaxed Lipschitz
condition and we employ Tseng’s algorithm with novel adaptive stepsize rules (e.g.,
based on the positive root of a polynomial equation). Others methods for solving vari-
ational inequalities with a Lipschitz operator in the monotone case were considered
e.g., in [31] and in the nonmonotone case (under weak Minty condition) in [19].

Furthermore, specific algorithms were also developed for particular classes of varia-
tional inequalities, such as convex-concave minimax optimization problems [13, 16].
More specifically, these papers address problems of the form:

(1.2) min max (Lz,y) + o(z) —¥(y),

where X' and ) are Hilbert spaces and ¢ : X — R and ¢ : Y — R are proper, convex,
lower semicontinuous functions. For such problems, a primal-dual proximal algorithm
is proposed in [13] for which sublinear rate is derived in the optimality measure:

G(z,9) = gleag@f, y) — ¥(y) + () — gg;g@w, y) + o(x) — (1Y),

for a given (Z,7) € X x Y. An extension of the algorithm from [13] is given in [16],
where ¢ is split as @1 + @2, with ¢; : X — R convex, differentiable, and having
Lipschitz continuous gradient, while ¢, is a proper, convex, lower semicontinuous
function. It is proved that this algorithm converges weakly to a solution to problem
(1.2) and, if ¢ = 0, then [16] recovers the primal-dual algorithm in [13].

Contributions. In this paper, we propose a method for finding a zero of a sum of three
operators, which are not necessarily monotone. For this general problem we design
a forward-backward-forward splitting type method based on novel adaptive stepsize
strategies and then perform a detailed convergence analysis. More specifically, our
main contributions are the following.

This manuscript is for review purposes only.
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AN ADAPTIVE FBF SPLITTING ALGORITHM 3

(i) We consider the general problem (1.1) of finding a zero of a sum of three operators,
A+ B+, such that A is continuous, B is Lipschitz, and C' is maximally monotone. In
contrast to other works that assume A to be Lipschitz and the sum to be monotone,
we relax these conditions, i.e., we require the operator A to satisfy a generalized
Lipschitz condition and the sum to be pseudo-monotone. Our assumptions cover
important classes of optimization problems such as problems minimizing smooth and
convex functional constraints (e.g., quadratically constrained quadratic programs) or
problems minimizing pseudo-convex objective functions over a simple closed convex
set (e.g., quadratic over linear fractional programs).

(ii) For solving this general problem we propose a variant of the forward-backward-
forward algorithm [37], based on two novel adaptive stepsize strategies. In contrast
to previous works where computationally expensive Armijo-Goldestein stepsize rules
are used when the operator is continuous, we propose two adaptive stepsize strategies
that require finding the root of a certain nonlinear equation whose coefficients depend
on the current iterate and on the parameters characterizing the operator properties.
In particular, for quadratically constrained quadratic (resp. quadratic over linear
fractional) programs the stepsize is computed solving a second-order (resp. third-
order) polynomial equation.

(iii) Within the considered settings, we provide a detailed convergence analysis for
the forward-backward-forward algorithm based on our adaptive stepsize rules. In
particular, when the sum of the operators is pseudo-monotone, we prove the global
asymptotic convergence for the whole sequence generated by the algorithm and, ad-
ditionally, establish sublinear convergence rate. An improved linear rate is obtained
when the sum is uniformly pseudo-monotone of order ¢ € [1,2]. Finally, detailed nu-
merical experiments using synthetic and real data demonstrate the effectiveness of our
method and allows us to evaluate its performance when compared to some existing
state-of-the-art optimization methods from [37, 35], and existing software [20].

2. Background. We denote by zer(A) the set of zeros of an operator A and
by I'o(H) the set of proper lower semicontinuous convex functions on H with values
in (—o00, 4+o00]. Further, let us recall the definition of the subdifferential of a convex
function.

DEFINITION 2.1. The subdifferential of a proper convex function f : H — R is the
set-valued operator Of : H — 28 which maps every point x € H to the set

Of(x) = {u e H[(vy € H) (y —z,u)+ f(z) < f(y)}.

Note that 0f(x) = & for « ¢ domf. For example, let D be a nonempty closed and
convex subset of H and let its indicator function ¢p be defined as

0 ifxeD

(2.1) ip:H—=R: 2~ )
400, otherwise.
Then, dvp = Np, where Np is the normal cone to D, i.e.

{fueH|(VyeD) (y—xz,u) <0} ifzeD
%] otherwise.

(2.2) Nop(a) = {

Moreover, if f is differentiable at a point = € domf, its gradient is denoted by V f(x).
Let us also recall the definition of functions with Holder continuous gradient.

This manuscript is for review purposes only.
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DEFINITION 2.2. Let v € (0,1]. Then, the differentiable function g: H — R has
a v-Holder continuous gradient, if there exists Ly > 0 such that

(2.3) (V(z,w) € H?) ||Vg(z) - Vg(w)| < Lgllz —w]".

If g has v-Hélder continuous gradient, then the following inequality holds:

(24)  (vlew) € ) lg(w) = (o) — (Vo(e),w = )| < 12w — 2]+,

Next, we present the definitions of pseudo-convex functions and operators.

DEFINITION 2.3. Let X C H be an open set, f: X — R be a differentiable function
and let Z be a subset of X. Then, f is said to be pseudo-convexr on Z if, for every
(z,w) € Z2, one has:

(Vi@),w—-2) >0 = f(z) < f(w).

Clearly, any convex function is pseudo-convex and any stationary point of a pseudo-
convex function is a global minimum. However, there are also pseudo-convex functions
that are not convex. For example, consider an open convex set X C R™ and differ-
entiable functions g : X — [0,4+o00[ and h: X — (0, +00) such that g is convex and
h is concave. Then, the function f: X — (0,+00): x — g(x)/h(z), is pseudo-convex
on any subset of X [6]. Other examples of pseudo-convex functions are given in Ex-
ample 3.3 below, see also [27]. The notion of pseudo-convexity was also extended to
nondifferentiable functions, see for example [4].

DEFINITION 2.4. An operator T: H — 2% is said to be pseudo-monotone if
(V(z,y) eH?) (32 € T2) (t,y—2)20 = (V§eTy) (§,y—z)=0.

For example, [25] shows that any differentiable pseudo-convex function has a pseudo-
monotone gradient. In addition, [4] proves that a lower semicontinuous radially con-
tinuous function is pseudo-convex if and only if its subdifferential is pseudo-monotone.
Moreover, note that every monotone operator is pseudo-monotone

Finally, let us recall the definition of the resolvent of an operator C' : H — 2. The
resolvent of C' is the operator Jo = (Id+C)~1, that is

(V(z,p) e H?) peJox <= x—peCp.

If C : H — 2" is maximally monotone, then J¢ is single-valued, defined everywhere
on H, and firmly nonexpansive [5]. Moreover, if C' = df (the subdifferential operator
of a convex function f), then its resolvent is the proximal mapping prox. ;. If f =ip,
where ¢p is defined in (2.1) and D is a nonempty closed convex subset of H, then
prox,,, = projp, where projp is the projection operator onto the set D.

3. Assumptions and examples. In this section we provide several examples
of problems that fit into our framework and also our main assumptions. First, let us
present some important examples of optimization problems that can be recast as (1.1).

Ezample 3.1. (Minimizing the sum of three functions). The most straightforward
example of inclusion (1.1) arises from the optimization problem:

(3.1) min F(x) = f(z) + g(z) + (L),

where L € R™*" f has Holder gradient, g has Lipschitz gradient, and h € To(R™)
is finite at a point in the relative interior of the range of L. This formulation covers

This manuscript is for review purposes only.
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smooth (f = 0), Holder smooth (¢ = 0) or hybrid smooth composite problems,
respectively. The first-order optimality condition for (3.1) at  reduces to 0 € AT +
BZ + C%, where A=V f, B=Vg,and C = L' oc0ho L.

Ezample 3.2. (Minimax problems). Let m and n be positive integers and con-
sider the following minimax problem:

(3.2) min max F(z,y) + o(z) — ¥(y),

where F' is a differentiable function, ¢ = 11 + ¥9 and ¢ = 1 + @9, with 11 and ¢
having Lipschitz gradients, @o € T'o(R™), and 1 € T'o(R™). Note that the minimax
problem (3.2) is more general than problem (1.2) considered in previous works, as
we allow more general expressions for F'(z,y) beyond bilinear terms. The first-order
optimality conditions for this problem are equivalent to solving the inclusion:

(3.3) 0€ A(z,y) + B(z,y) + C(z,79),

where H = R™ x R™ and the three operators are

(3.4) AH—-H: (z,y) = (Vo F(z,y), -V, F(z,y))
B:H—=H: (z,y) = (Vei(z), Vii(y)),
C:H = 2% (2,y) = Opa(x) x Do (y).

One concrete application of the above minimax formulation is the quadratically con-
strained quadratic program (QCQP) problem:

1

T T
min @ —x Qor+b x+c
z€R",z>0 2 @

1
(3.5) s.t. §xTQix+liTx§ri Vie{l,...,m}, lJz=r;Vic{m+1,...,m},

where (Q;)o<i<m are positive semidefinite matrices of dimension n x n, and (I;)1<i<m
and b are vectors in R™. Rewriting the QCQP into the Lagrange primal-dual form
using the dual variables ¥ = (y;)1<i<m, we get:

- 1
A H— H: (m,y) — <Z(QZCL' + li)yi, (—2xTQim — ZZTCC + T‘i> )
i=1 1<i<m

(36) B:H—H: (z,y) = (Qox +b,0,,)
C:H—=2": (z,y) > No ooy (@) X (Notooym (¥i)1<i<m) X {Om—m}),

where we have set Q; = 0 for every i € {m + 1,...,m}. QCQP’s have many ap-
plications, e.g., in signal processing [23], triangulation in computer vision [2], semi-
supervised learning [14], learning of kernel matrices [26], steering direction estimation
for RADAR detection [18].

Ezample 3.3. (Fractional programming). Consider the following quadratic frac-
tional programming problem:
%xTQx —hTz+ ho

(3.7 géi]rjl flz) = I i dy with D= {z €R"|d"z >0},

do € (0,+00), hg € R, (h,d) € (R")?, and Q € R™™" a symmetric matrix. If Z satisfies
the first-order optimality condition for (3.7), then we have the following inclusion:

This manuscript is for review purposes only.
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6 F. CHOROBURA, I. NECOARA, J.-C. PESQUET

(3.8) 0€ Az + C=,

where the operators are

\Y ifreD
(3.9) Az = fa) ifa i and C = Np.
1% otherwise,
When the matrix @ is positive semidefinite, the function f is pseudo-convex since

it is the ratio of convex over concave functions, see [6]. Otherwise, [11, 12] present
necessary and sufficient conditions for the function f to be pseudo-convex. Particular
cases of (3.7) are problems whose objective is a sum of a linear and a linear fractional
function, i.e., when Q = (rd" + dr")/2, which yields the following formulation:
T:L’ + hTI —+ h()
dTx + dg
Reference [28] presents several cases when f is pseudo-convex over the polyhedral set
{x € R" | d"x +dy > 0}, namely, if » = nd, with n > 0, or h = (d, with hg — (dg > 0
(see [28, Theorem 1] for more details). Fractional programming arises e.g., in portfolio
and transportation problems (see [28] for more details).

(3.10) min f(z) =r with D= {zcR"|d z>0}.
xE

Now, we are ready to present our standing assumptions for operators A, B, and C.

ASSUMPTION 1. The following assumptions hold for problem (1.1):
i) C has nonempty closed convexr domain, dom C, and is mazimally monotone.
it) A is a continuous single-valued operator on dom C C H.
i11) B is a single-valued operator and Lipschitz on dom C with a Lipschitz constant
Lp > 0 (when B =0, we can take an arbitrarily small positive value for Lp).
iw) A+ B+ C is a pseudo-monotone operator.
v) There exist ((,7) € (0,+00)? such that for every (u,w) € H?, v € (0,+00),
g = PrOjqomc W, and z = q — ~yu, the following holds:

(3.11) lg = Jyezll < v(Clull + 7).

vi) A satisfies a generalized Lipschitz condition, that is, there exist p € (0,+00),
(8,0) € [2,+00[? and continuous functions a, b, and ¢ from H to [0, +o0| such
that, for every (z1,22) € (dom C)?,

(3.12) [ Az — Azl® < a(z1)llz1 — z2|* + b(21) |21 — 22|° + c(21) |21 — 22°.

Note that our assumptions are quite general. Clearly, Example 3.1 satisfies Assump-
tion 1, if the objective function F' is pseudo-convex. Below we provide other repre-
sentative examples of important classes of problems that fit into our settings.

Examples satisfying Assumption 1.iv.
a) Consider Example 3.2, where the operators A, B, C are defined by (3.4) with

(3.13) (V(z,y) eH) F(z,y) = Zyigi(x)v
i=1

where (g;)1<i<m are twice differentiable convex functions, ¢ and i, are convex
functions, and v is the indicator function of the set [0, 400)™. Then, A+ {0,} X
J\/'[07+Oo)7yl is a maximally monotone operator. Indeed, we have

(3.14) AH—-H: (z,y)— (Z yiVgi(x), —9(33)> )
i=1

This manuscript is for review purposes only.



[\oR )
S C
W N

N NN
S Ot

o N

281
282
283
284
285
286
287
288
289
290

293

AN ADAPTIVE FBF SPLITTING ALGORITHM 7

where g(z) = [g1(2),...,gm(z)]T. The Jacobian J of A at (z,y) € H? is

Ta(z,y) = Z%lvyézg%(x) gjfﬁj with Vg(z) = [Vg1(2),..., Vgm(z)].

Note that, for every (z,y) € R"™ x [0, +00)™, Ja(x,y) is positive semidefinite ma-
trix. Since A is continuous and monotone on R™ X [0, +00[™, then A is maximally
monotone on R™ x [0, +o0o[™, see [5]. Moreover, since ¢ and v, are proper lower
semicontinuous convex functions, then A + B + C' is a monotone operator, which
is an instance of a pseudo-monotone operator.

Consider the following problem

(3.15) min f(z),

where D is a nonempty closed convex subset of H = R™ and f : R” — R is a
differentiable pseudo-convex function on D. Then, the operators A, B, and C can
be defined as A = Vf, B =0, and C = Np. Moreover, A+ C is pseudo-monotone.
Indeed, consider (z,w) € D?. Assume that

(3.16) (Ve Cz) (Vf(x)+z,w—z)>0.

We need to show that

(3.17) (Vi € Cw) (Vf(w)+w,w—zx)>0.

It follows from the definition of the normal cone in (2.2) that

(3.18) (Vi e Cz) (Z,w—1z)<0 and (Vi€ Cw) (w,xz—w)<0.

Combining (3.16) and the first inequality in (3.18) yields
(Vf(x),w—z)>0.

Since f is pseudo-convex, then the above inequality implies that
(Vf(w),w—z) > 0.

Hence, from the previous inequality and the second one in (3.18), we derive (3.17).
Therefore, Assumption 1.iv holds. Some examples of pseudo-convex functions are
encountered in fractional programs, see Example 3.3 and also [34, 21].

Exzample satisfying Assumption 1.v.

Let g be a convex function defined as g = g1 + g2, where g; is the indicator function
of a nonempty closed convex set D and g, is a proper lower-semicontinous convex
function which is Lipschitz on its domain with modulus Ly, > 0. We assume that

D

C dom g2 and there is a point in the intersection of the relative interiors of D

and dom go. The latter condition ensures that 9(g; + g2) = 991 + dga. Consider the
operator C' = dg. Let (u,w) € H?, ¢ = projgomcw, and z = ¢ — yu. Then, we have

domC =D and Jyc = Prox,(g, ig,)-

In [1] it was proved that

This manuscript is for review purposes only.
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Jyc = Projgomc © Proxyy,, where proxi, = (I +~0gz o projdomc)*l.

Define p = proxg. z. Then, p + vp = z for some p € 9ga(projyomcp). Moreover,

[Pl < Lg, and
Hprojdomcw - ‘]"/CZH < Hprojdoma - PTOX%Q (Z)” = ||p1'0jd0mcw —z+ Vﬁ”
< [[Projaomew — 2l + V1Pl < [IProjaomew — 2l + vLg, = Yllull +7Lg,,

where, in the first inequality we have used the nonexpansiveness of the projection
operator and, in the last one, we have used the linear relation between z, projyomcw,
and u. Therefore, in this case ( =1 and 7 = Ly,.

Examples satisfying Assumption 1.vi.

Next we present some examples where Assumption 1.vi is satisfied. In the first two
examples we consider the operator A defined in (3.3)-(3.4), where, in the first case,
F(z,y) = yg(x) and g has a v-Holder continuous gradient, and, in the second case, F' is
given by (3.13) where the functions (g;)1<i<m have Lipschitz continuous gradients. In
the third example, we consider the operator A defined with a pseudo-convex function
f as in Example 3.3.

a) Consider the nonlinear operator

A:R"xR—->R"xR: (z,y) = (Vg(x)y, —g(x)) .

where g has a v-Holder continuous gradient with constant L,. Then, for every
z=(x,y) € R" xR and z = (Z,7) € R" x R, we have

1Az — Az|* < 2||Vg(@)[*[l2 — 2I|* +4Ly|lz — 2|** + L2 |y[*|1= — 2|*".
Indeed, from the definition of A,
(3.19) 1A(z, y) — A@@,9)|* = |Va(z)y — Vg(@)gl* + |g(z) — g(a)|*.
Moreover,
IVg(z)y — Vg(@)ylI* = [IVa(x)y — Vg(x)y + Vg(z)y — Vg(2)y]?
< 2[[Vg(@) |y — g* + 2[g1*[Vg(2) — Vg(z)|®

(2.3)
< 2Vg(@)IPly - g1* + 2L3 |7 |la — 2>
(3.20) < 2|Vg(@)*ly — > + ALZJyPlle — 2* + 4L5ly — ||l — 2>,

where, in the first and last inequalities, we used the fact that ||a + b||? < 2||a||? +
2||b]|?>. On other hand, from (2.4) we deduce that

2
l9(z) — g(a)” < 2/(Vg(x),z — ) + ﬁ\\o‘: — x|
2L2
21| = 2 g ~ 2+2v
< 2[|Vg(@)[I*llz — =|" + mnw — |
(3.21) <2|Vyg(a)|?(|Z — 2|* + 4L3]|Z — 2|>*".

Altogether, (3.19), (3.20), and (3.21) lead to
||A((E,y) - A(‘(Ea g)HQ
< 2[Vg(@)?l(z, ) = @, DI*+4L | (z, y) = (@, D17 — 2> +4L] |y * = — z]|*
< 2||Vg(@) [l y) = (@ 9I* + 4LG | (z,y) — (@, DI + 4Lg |yl [l — 2|

Finally, the inequality ||z — Z|| < ||(z,y) — (Z, )| allows us to prove the statement.
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AN ADAPTIVE FBF SPLITTING ALGORITHM 9

b) Consider the nonlinear operator A defined in (3.13)-(3.14) where, for every i €

{1,...,m}, g; has a Lipschitz continuous gradient with constant Ly, > 0 (e.g., g;
is a quadratic function). Then, for every z = (z,y) € R®” x R™ and z = (Z,9) €
R™ x R™, we have:

(322) [l A(z,y) — A@ PI* < bz, y)ll(z,9) = @9 +cl(@,y) - @ D],

+Zlgz gi(@)[?.

with ¢ = > ZL = 2(ple.y) + X0, Vg (@)][2). and

1<i<m

p(,y) = 2max | m max |Vg;(2)]?, (Z

Indeed, similarly to the previous example,

(3:23) [|A(z,y) — Az, 9)|* = ‘ ZVgi( - Vygi(Z)y

Moreover,
2

Z Vi(x)ys — Vgi(Z)y; Z Vi(x)ys — Vgi(x)y; + Vgi(x)gs — Vgi(Z)y;

m 2
< (Z IVgi(@)llly = 5il + 15[V gi(z) — Vgi(x)|>

i=1

m m 2
< <1r<nag< 190 >||Z|y,-—yi|+ZLgi|yi|x—m)
=1 =1
2 2
uilllo— xn) +2<2Lg7 yz-|||m||>

where in the fourth inequality we used the Cauchy-Schwarz inequality. Hence,

§2<\/ﬁlr<ni@>;ll|V91( Mly— yIHZLm

=1

2
— Vgi(Z)yi

< p(a,y) (ly = gl + llz — ll)* +2 (ZL{) 17: — il*ll — 2]

3

(3.24) < 2p(z,y)ll(z,y) — (z,9)]* +2 (Z ) Iz, y) = (2, 9)]1*

On other hand, using (2.4) with v =1,
m m 2

> l(o) - i)’ < YA Vaile)a - a)f + e -

(3.25) <22||ng | IIx—wH2+Z gl||x—x||4

Hence, (3.23), (3.24), (3.25), and the fact ||z — Z|| < ||(z,y) — (&, §)]| yield (3.22).

This manuscript is for review purposes only.
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367 ¢) Consider problem (3.10) and operator A defined in (3.9). The Hessian of f is:

Q(hTI + ho)
368 Vz e D) V2 =2 —————(dh" +hd").
369 (eeD) Vi) (dTx + do)? (dT9€+d0)2( thé')
370 Consider (z,7) € D%. By the mean value inequality, there exists w € (z,7) s.t.
371 IVf(z) = Vi@)? < IV f(w)|?]le - z|?
372 < #||d||2|hTw+h \ +#|dTh| 2||asf£||2
: = \(dTw + do)? N (dTw + do)?
- 2 27T 2 2T 2T ? —12
s < (ST @ = 0l + PR+ ol + S 1dThL) e — 3l
0 0 0
- 2 27T ? 2 T T ? 2
374 < 2| gldlFFia (z —w)| dngll |h' @+ ho| + —z1d " hl ) | [lz— 2z
2
a7 Sl WPl — 2+ 2 (1E e 4ol 1a7hl) e - 2l
o =% d4 T
376
377 where in the third inequality we used the fact that, since D is convex, w € D,
378 hence d"w > 0. In the fourth inequality, we used the convexity of (-)2, and in the
379 last one we used that w € (x,Z). Hence, Assumption 1.vi holds with a(z1) = 0,
d||? 8
w0 o) = g (LWl 1070} eten) = a0 =2, and 5 =,
0

381 d) Consider problem (3.7) and operator A defined in (3.9). The Hessian of f is
Q ., f@dd" — (Qu—h)d" —dQu—1)T)

382 Vr e D) V2
293 (V= & D) @) =2 + do (dTx +do)?
384 Consider (z,7) € D%. By the mean value inequality, there exists w € (z,7) s.t.
. (3.20) IV f(z) = V@) < IV f(w)l]lz - z]|.
387 By proceeding similarly to the previous example, we get

el 2||d||2 || |
388 IV2 f(w)l| < a (lQNll* + AT — hol) + =5~ |Qz — Al

2||d||2 2||d|| . 2Hdll2 _
i (3.27) + < ([l + 1QI) 1z — [ + Qlliz — =
391 We deduce from (3.26) and (3.27) that
392 |V f(z) - Vf@)|?
. 2||d|I? 2Hdll . 12Hdll4 -
303 <3 ( 1R[] + QI || — |+ QI |z — =|°
HQll 2||dH2 2Hdll .

o v (1 2 e e o+ 2 e ) g
396 Therefore, Assumption 1.vi is satisfied with u=6,0 =4, g =2,

! ] 2ud||2 20 i
s cter) =3 (124 28 e P+l Zghias =)
. 1d]* ||d\| 12Hdll4
oe 29 060 =12 (s ) ana ooy = 2 g
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AN ADAPTIVE FBF SPLITTING ALGORITHM 11

From the previous discussion, one can see that our assumptions cover a broad range
of optimization problems arising in applications.

4. An adaptive forward-backward-forward algorithm. Adaptive methods
are very popular in optimization as they make stepsize tuning cheap [7, 36, 33]. In
contrast to previous works on the forward-backward-forward algorithm in the line
of [37], where computationally expensive Armijo-Goldestein stepsize rules are used
when the operator is assumed continuous [37, 35], we will propose two novel adaptive
strategies. In these strategies, the stepsize is computed by leveraging the current
iterate and the parameters characterizing the operator properties.

4.1. Investigated algorithm. In this section, we introduce a new algorithm
for solving problem (1.1). Our algorithm is similar to the forward-backward-forward
splitting algorithm in [37] as it also involves two explicit (forward) steps using A and
B, and one implicit (backward) step using C. However, the novely of our iterative
process lies in the adaptive way we choose the stepsize 7, which is adapted to the
assumptions considered on the operators A, B, and C (see Assumption 1).
Adaptive Forward-Backward-Forward Algorithm (AFBF):

1. Choose the initial estimate g € dom C.
2. For k > 0 do:

(a) Compute the stepsize v, > 0 and update:

) zZk =2k — Ye(Azk + Bag)
(c) pr = Jy.c2k

(d) ax = pr — v (Apk + Bpx)
(e)

(f)

T = qr — 2k + Tk
Tk+1 = PIOJgomc (j:k)

Typically, to prove the convergence of a forward-backward-forward splitting algo-
rithm, one needs the operators A and B to satisfy a Lipschitz type inequality [37]:

(4.1) Vil Azy, + Bxy — Apr — Bpi||* < agl|lzk — prll?,

where oy € (Qmin, ¥max) C (0,1), & € N. In our case it is difficult to find a positive
stepsize 7y, satisfying (4.1) as the operator A is not assumed to be Lipschitz. However,
imposing appropriate assumptions on the operator A (e.g., some generalized Lipschitz
type inequality as in Assumption 1.vi), we can ensure (4.1). In the next sections we
provide two adaptive choices for v that enable us to prove AFBF convergence.

4.2. First adaptive choice for the stepsize. In this section, we design a novel
strategy to choose 7, when the operator A satisfies Assumption 1.vi with p > 2.
Stepsize Choice 1:

1. Choose 0 < amin < amax < 1 and o > 0.

2. For k > 0 do:
(a) Compute d(zy) = (||Azx + Bxg|| + 7 and choose ok € [min, Omax]-
(b) Choose i such that

(4.2) %6{[07%] if o <y

Yk otherwise,

where 75 > 0 is the root of the following equation in ~:
- - _ !
(43)  a(zr)d(@e)" " + blar)d(er)’ ™y + c(er)d(@n)” "y + LEy* = 716

Note that equation (4.3), which is a polynomial equation when u, 8 and 3 are integers,
is well defined, i.e., there exists 7, > 0 satisfying equation (4.3). Indeed, define
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(V7 € [0,400))  h(7) = 2a(zr)d(wk)* > + 20(xx)d(zr)" "

+ 2c(zr)d(zy) P28 + 2054 —
and wy = y/ar/Lp. Note that, we have h(wy) > o > 0 and h(0) < 0. Since h is
continuous on [0, wy], there exists 75 € (0,wy) such that h(;) = 0. Moreover, since
h'(y) > 4L%~ > 0 for every v € (0,+00), then h is strictly increasing on (0, +00).

Hence, there exists exactly one 7, > 0 such that the equality in (4.3) is satisfied and
h(vk) < 0= h() for v, defined in (4.2).

LEMMA 4.1. Let Assumption 1 hold with > 2. Let k > 0 and let v, be given by
(4.2). Then, inequality (4.1) is satisfied and

amax
4.4 =,/ .
( ) Ye <M 2L23

Proof. From basic properties of the norm,

il Az + By — Apy — Bpi||* < 297 || Bex — Bpx||* + 29i ]| Azy, — Api*.
Using Lipschitzianity of operator B on dom C' and Assumption 1.vi, we get
Vel Azy + Bay, — Apr, — Bpi||® < 27i L ||lzk — prll®
+ 2yala) e — pill” + 292b(@r) e — pil® + 207e(zn) |z, — pill®
= 292 (L% + alew) ok = pill” 2 + bl — o2

(45) o) lor — ol llzk — pull®.
Using (3.11) with ¢ = z, w = Z_1, u = Azxy + Bag, and v = v,
|z — pell = [[Projaome (Fx—1) — Joozkll
(3.11)
(4.6) < (C||Azg + Bag| + 1) = yed ().

From (4.3), (4.5), (4.6) and the fact that h(yx) < h(3x), we deduce that

vi||Azy, + Bay — Apy — Bpg|?
(4.5),(4.6) ) o . )
< 2(Lpvi +alzr)d(@e)" )l — prll
+ (b(ar)d(zr) 290 + c(r)d(@r)® 2 lox — pil®
< 2(LpA; + alew)d(@r) >34 lox — prll?
+ (b(ar)d(zr) 270 + (i) d(@r)® 230 |lox — pil®
(4.7) D ellzr — il

From the above inequality, the first statement holds. Moreover, from (4.3), since
b(zk), c(zx), and d(xy) are nonnegative for every k > 0, we have 2L%L~2 — oy, < 0.
Since ag < max, for every k > 0, inequality (4.4) holds. 0

From previous examples, one can see that Stepsize Choice 1 requires the computation
of a positive root of a second-order polynomial equation for quadratically constrained
quadratic programs (3.5), while for quadratic over linear fractional programs (3.7),
one needs to compute the positive root of a third-order equation. More explicitly:

This manuscript is for review purposes only.
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AN ADAPTIVE FBF SPLITTING ALGORITHM 13

(i) If we consider the quadratically constrained quadratic program (3.5), then the
operator A defined in (3.6) for problem (3.5) satisfies (3.22) where, for every i €
{1,....,m} g;: = 227 Q;z + ] x — r;. Hence, equation (4.3) becomes:

Ak

cd(ai )y + (1Qol* + ba)y? ~ 5 =0,

with function b and ¢ given in (3.22). Solving the corresponding quadratic equation
in 72 yields a second-order equation whose positive root is

(Rl T b)) + 2cd(wnPax — (1Qo]1? + b))\
k= 2¢cd(xy)?

(ii) For the quadratic fractional program (3.7), equation (4.3) becomes

a(wy)d(ze)*y® + blae)d(zr)*y* + (c(zk) + LE)Y — % =0,

where functions a, b, and ¢ are given in (3.28). Setting n = 2, we obtain a cubic
equation with a positive root 7y, and then J, = /.-

4.2.1. Convergence results under pseudo-monotonicity. Next, we show
the asymptotic convergence of the sequences (z)ren and (pi)ken generated by AFBF
Algorithm when p > 2 and the stepsize is computed according to (4.2). The following
sequence will play a key role in our convergence analysis:

(4.8) (Vk € N) up =, (2 — pr) + Api + Bpx € Apy, + Bpi + Cpi.
THEOREM 4.2. Suppose that zer(A + B + C) # 0 and Assumption 1 holds with
w > 2. Let (xk)ken, (28)ken (Pk)ken, and (qx)ken be sequences generated by AFBF
algorithm with stepsizes (Vi )ren given by (4.2). Then, the following hold:
i) (zk)ken is a Fejér monotone sequence with respect to zer(A + B + C);
1) 3025 len = prll® < oo and 50 ||z — qil|* < +oo;
iii) there exists zZ € zer(A + B + C) such that x, — Z, pr — Z, and ux, — 0.
Proof. 1) Let k € N and let z € zer(A + B + C). Then,
g = 2lI* = llax — e +pr — 212
= |lzx — pll® + 2(xk — propk — 2) + [lpk — & + & — 2
= llzx — pell® + llpx — E6l” + 126 — 21* + 2(z% — prs ok — 2) + 2(pk — &k, &k — 2)
= llzx — pell® = llpx — E6ll” + |26 — 21* + 2(zk — pry Pk — 2) + 2(pk — &k, Pk — 2)
= llzx = pell? = llpx — &)1 + &k — 2% + 2(zx — 25,05 — 2).
Moreover, using px, — & = vk (Apr + Bpr — Az, — Bxy,), we deduce that
loe = 211> = llzk — pill® — 72l Apr + Bpr, — Az — By ||? + |2k — 2|2
(4.9) + 2z — Tk, pr — 2).
Note that z € domC'. Using the nonexpansiveness of the projection, (4.9) yields
lzprs = 21 < |2y — 212
4.9 _
D \la — 22 — Nl — pl> + 92l Api + Bpy — Awy — B
(410) 72<Ik — Tk, Pk 72>.
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We deduce from Lemma 4.1 that

(4.11) leksr = 217 < o = 21 = (1= aw)llar, — pll® = 2(zk — &, 0k — 2).
Since zx € (Id +7xC)pk, the inclusion relation in (4.8) holds and

(4.12) Tk — Tp = YiUk-

Since A + B + C' is pseudo-monotone and Z is a zero of A+ B + C, we obtain:
(4.13) (ug,pr — 2) > 0.

Using the last inequality with (4.12) and ay < amax < 1, it follows from (4.11) that
(4.14) lzrrr = 21° < llow — 212 = (1 = amax) l2x — ol < flzw — 2]

This shows that (xy)ren is a Fejer monotone sequence w.r.t. zer(A + B + C).

ii) Since (zx)ken is a Fejér monotone sequence, then it is bounded and (4.14) yields
k
(4.15) (1= amax) D llzj = pjlI* < flwo — 2[]* < +oo.
§=0

It follows that (pr)ren is also bounded. In addition, by using Steps 2.(b) and 2.(e)
of AFBF algorithm, Lemma 4.1, Cauchy-Schwarz inequality, and the fact that oy <
Qmax, We further get

2 2.(e),(112) A2 2.(b),(4.8)

Viellu |2k — pr + Y (Apr + Bpe — Az — Bay)||
= |lzx — pell® + 27k {2k — Pr, Apr + Bpy, — Axy, — Bay)
+ Vil Apr + Bpi — Azi — Bay||?
< @k — pell® + 2vll@r — pell | Apk + Bpe — Azi — By
+ 7|l Apr. + Bpi — Axy, — By |)?
(4.16) < (14 V) llex —pel*.

2k — qrll

As a consequence of (4.15) and the boundedness of (ay)xen, Y peg 12k — qr||> < +oo.
iii) Let ug be defined by (4.8). According to (4.16), since oy, € (0,1),

(4.17) lurll < (v ) U+ V) lew = pell < 29 lew — pll-
On other hand, from the definition of v; and Lemma 4.1, it follows that
(4.18)
Qmin < 0
= 2%; (L2B +a(er)d(er)* 27 + bla)d(ar) 2 + C(xk)d(wk)ﬁ_gﬁzf—Q)

)

(4.4
< 297 (L% + awe)d(ze) *n" 2 + b(ay)d(xe)’*n° 2 + c(ap)d(zx)? 20" 2) .

Since A, B, a, b, and ¢ are continuous on domC' and, (xg)gen and (yx)ken are
bounded, then (dj)ren is bounded and there exist (Ry, Ro, R3) € (0, +00) such that

a(xk)d(xk)“fz < Ry, b(:vk)d(:vk)ef2 < R,, and c(xk)d(xk)ﬁfz < Rs.

This manuscript is for review purposes only.



[ BTSN V)

N 3 3

v Ot Ot Ot

AN ADAPTIVE FBF SPLITTING ALGORITHM 15

This allows us to lower-bound -y as follows:

Omin
4.19 > Yonin := min 4 o, .
(4.19) Te =7 i {U \/2 (L% + Rup =2 + Ry1f=2 + Rynf—2) }
Hence, from (4.17), we deduce that
(4.20) k]| < 25l — pill

As (4.15) implies that xy, — pr — 0, we have
(4.21) up, — 0.

To prove the convergence of (z)ken, according to the Fejér-monotone convergence
theorem [9, Lemma 6], it is sufficient to show that every sequential cluster point of
(zk)ken is a zero of A+ B+ C. Let w be such a sequential cluster point. There thus
exists a subsequence (zy, )nen of (z)ren such that zp, — w. It follows from (4.15)
and (4.21) that

Pk, —w and wug, —0

Since A and B are continuous operators on dom C, ux,, —Apg, —Bpk, - —Aw—Bw. It
follows from (4.8) that (pk, , uk, — Apk, — Bpg, ) lies in gra C'. Maximally monotonicity
of C implies that (w,—Aw — Bw) € graC [5, Proposition 20.33(iii)]. Thus, w €
zer(A+ B + C). Hence x;, — w and, since x; — pr — 0, (pr)ren has the same limit.
This concludes our proof. 0

In [3, 10, 33|, the problem of finding a zero of the sum of two operators B and C' is
considered when B is Lipschitz, C' is maximally monotone, and B+4C' satisfies the weak
Minty condition. Next, we analyze the case when we replace the pseudo-monotonicity
assumption with the weak Minty condition. Let us first recall this condition.

DEFINITION 4.3. An operator T : H — 2% satisfies the weak Minty condition on
Z C H if there exists some p > 0 such that the following holds:

(4.22) (W, w — z) > —p||||* for every z € Z, w € H and, 0 € Tw.

Note that pseudo-monotone operators (see Definition 2.4) satisfy the weak Minty con-
dition on their set of zeros Z with p = 0. Weak Minty condition covers,in particular,
minimization problems having star-convex or quasar-convex differentiable objective
functions [22].

Remark 4.4.

i) First, one can notice that our proof works with a weak Minty type condition,
where Z = zer(A+ B+ C) and p = 0, instead of Assumption 1.iv. Indeed, in the
proof of Theorem 4.2, the pseudo-monotonicity of A + B 4+ C has been used to
derive inequality (4.13), which can also be derived from the weak Minty condition
with p = 0.

ii) Second, let us replace the pseudo-monotone condition in Assumption 1.iv with the
assumption that A+ B+ C satisfies the weak Minty condition on zer(A+ B+ C)
with p > 0 and, additionally, assume dom C' bounded. From the continuity of
A, B, a, b, and ¢, and the boundedness of dom C, there exists (R,, Ry, R.) €
(0, +00)? such that, for every z € dom C,

(4.23) a(z)d(z) < Rq, b(2)d(z) < Rp, and ¢(z)d(z) < R..

This manuscript is for review purposes only.
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Then, the results from the last theorem hold as long as the following conditions

are satisfied:
3

(424) 2- 2/« mln(]- \/amax)

O U+ amaVTh T Rl % R 23 R 2
and either
Qmin B
4.25 > : VE > 0 s
( ) 7= \/2 (L2B —+ RanM*Q + Rbn672 + Rc77572) or ( = ) V& Tk

Indeed, from (4.11) and (4.22),

(VE€N)  lapsr — 27 < llowe — 21 = (1= ) lww — pell* + 2ympllus .
Using (4.17), we obtain
(426)  fargr— 2* < flow — 202 = (1 = aw = 29 p(L+v/ar)?) o — pe|*.

On other hand, (4.2), (4.18), (4.23), (4.24), and (4.25) yield

Qmin
> min {0, 7.} >
" 2 min{o, i} 2 \/ 2(LE + Ran =2 + Ryn =2 + Ren®—2)

> 2prﬂax(1 + \/amax) > 2pl‘ﬂax(1 + m)
N 17\/Oérnax - 1*\/05,1f '

Hence, it follows that

Lo o=t Va2 (1= 2 ) - e = (1202 ) (- )

Pmax Pmax

The inequality above and (4.26) show that (zy)ren is a Fejér monotone sequence
with respect to zer(A + B + C) and Y725 ||lox — pil|? < +oo. By proceeding
similarly to the proof of Theorem 4.2, the convergence of (zj)ren to a zero of
A+ B+ C can be proved.

Now, we show a sublinear convergence rate result for the iterates of AFBF algorithm.

THEOREM 4.5. Under the same assumptions as in Theorem 4.2, the following
hold: for every kg € N and k € N*,

. i | < i — &
“Ymin kogjrgnkl(?+k—1 [Juj |l < kogjrgnkl(?-ﬁ-k—l lzj — ]
Eko
/7 el < 22
(1 + amax) 0<j <k: +k 1 ”xj p]” — \/E’

where uy, is defined in (4.8) and ex, — 0 as kg — +00.
Proof. According to (4.12), (4.17), and (4.19),

(4.27) (7 eN)  minllugll < llzj =250 < (1 + Vomax) |25 — pll-
Let Z be the limit of (2;);en. It follows from (4.14) that
ko+k—1
(1 — atmax) Z [l _ij2 < lzx, =217,
J=ko
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which leads to

ke — 2%

min llz; —p;l|* < 1
ho<iShork—1 1 PI =

1 — amax)k

The result follows from the latter equation and (4.27), by setting

1
Eky = —FV———||Tk, — Z||-
0 m” 0 H
Note that convergence results in Theorems 4.2 and 4.5 are consistent with those
obtained in the literature on (non)monotone inclusion problems [8, 15, 17, 24, 37].

4.2.2. Convergence results under uniform pseudo-monotonicity. In this
section, we refine our convergence results when the operator A + B + C' is uniformly
pseudo-monotone. Next, we present the definition of a uniformly monotone/pseudo-
monotone operator.

DEFINITION 4.6. Let T': H — 2%,
1) T is said to be uniformly monotone with modulus q > 1 if there exists a constant
v > 0 such that, for every (z,y) € H? and (%,9) € Tz x Ty,

“ “ 14
(T—79,xz—y) > §le—y|\"-

it) T is said to be uniformly pseudo-monotone with modulus q > 1 if there exists a
constant v > 0 such that, for every (z,y) € H and (&,y) € Tz x Ty,

N R 1%
(@Ty—xz)>0 = (g,y—x)> §|Iw—y||q-

When ¢ = 2 in the definition above, we say that operator T is strongly monotone /
pseudo-monotone. Note that, if T is uniformly monotone, then T is also uniformly
pseudo-monotone.

Ezample 4.7. Consider a proper uniformly convex function f: R™ — (—o0, 400).
The subdifferential df of f is uniformly monotone [5, Example 22.5]

Below we give an example of a strongly pseudo-monotone map that is not monotone.

Ezample 4.8. Consider the unit ball U = {z € R" | ||z|| < 1} and the map
F: U\ {0} — R" such that
2
Note that F' is not monotone on U \ {0}. For example, setting y = (1,0,...,0) and
w = (1/2,0,...,0) yields
1

(F(y) = F(w),y —w) = —7.

However, F is strongly pseudo-monotone on U \ {0}. Indeed, for every (x,y) €
(U\ {0})2, if (F(x),y —x) >0, then (x,y —x) > 0, and consequently:

(Fy)y—2) = Clyl™ = Dly,y—2) =yl = Dy — 2y —2) 2 [ly — =]

Next, considering operators A, B, C satisfying Assumption 1 with p > 2 and stepsizes
(k) ken computed as in (4.2), we derive linear convergence rates when A + B 4+ C' is
uniformly pseudo-monotone with modulus ¢ € [1, 2], and sublinear rates when ¢ > 2.
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667 THEOREM 4.9. Suppose that Assumption 1 holds with p > 2. Let (xk)ken, and
668 (pk)ken be sequences generated by AFBF algorithm with stepsizes (Vi)ken given by
669 (4.2). Assume that A+ B+ C is uniformly pseudo-monotone with modulus ¢ > 1 and
670 constant v > 0. Then, for some Z € zer(A+ B + C) and constants

671 (4.28) R=sup|py — 2| < +oo and r=min{l — Qmax, Ymin?RT 2} < 1,
672 keN

673 the following hold:
674 i) For q € [1,2], ) converges to Z linearly:

A\ k/2
675 (4.29) wkeN)\uk—zng(1—§) llzo — 2]|-
. _ r _ .
676 1) For ¢ >2 and 7 = Yy TEk xy converges to Z sublinearly:
677 (VkeN) [l — 2] < — k]
678 (557 llwo — 2|2k +1) 72
679 Proof. From Theorem 4.2, the sequence (pg)ren generated by AFBF algorithm is

680 convergent. Hence, for some z € zer(A+B+C), we have R = supy,¢y ||pk — 2| < +00.
681 Since A+ B+ C' is uniformly pseudo-monotone with modulus ¢ and constant v > 0,

083 (Vk eN)  (up,pr — 2) > gllpk — 2]

684 It follows from (4.11) that

R P

63% <z — 201* = llzi — pell” + Vel Apk + Bpi — Azy, — Bay||* — vk — 2|9

688 Since ag < amax and Ymin < Yk, we deduce from Lemma 4.1 that
fag  (4.30) k1 = 2112 < ok = 2[1* = (1 = amax) |2k = Pell? = Yminv o — 2%
691 1) If ¢ € [1,2], using the definition of R, we get

692 (1 - amax)||xk - pk||2 + ’YminVHpk - ZHq
(4.28) 2 -2 =12
693 > (1 - amax)”-rk - pk” + ’YminVRq ||pk - Z”
. : -2 2 2y B2 ~1(2
694 > min{1 — tmax; Ymin B2} (2e — pill® + llox — 2[17) > 3 llw =211
JOo

696  Combining the two last inequalities we obtain

607 |@M4—aﬁ<(1—fﬁmk—aﬁ

698 - 2

699 Therefore, unrolling the above inequality allows us to prove the first statement.
700 ii) If ¢ > 2, it follows from (4.28) that

701 (1 _amax)Hwk _pk||2 +7minV||pk: _ZHq

(4§8) (1 - amax)

= Ra—2

. 11—« _ _ _
2 min {(R”‘)m} (i = pell? + e = 21%) = Pl — 2]

~
)

lzx — prll? + Yminv [Pk — Z||?

33
28
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Therefore, using (4.30), we obtain ||z41 — Z||? < |2k — 2||? — 7|2k — 2]|9. Multiplying
the inequality above by Fq%?, we obtain

NS

2 _ 2 _ _ 2 _
P i — 31 < 7 o — 2| — (77— 2)
Applying [30, Lemma 8(i)] for ¢ = (1;—2 >0, we get

2o — Z||

—.
(77 llwo — 2972k +1) "2

[ — 2]| <

This proves the second statement of the theorem.

Remark 4.10. In Theorem 4.9 |, we can replace the assumption of uniform pseudo-
monotonicity with the following one: there exists v > 0 and ¢ > 1, such that, for every
weH, we (A+ B+ C)w, and z € zer(A + B + C), the following inequality holds:

(4.31) (0, w — 2) > vljw — 2%

Proceeding similarly to the proof of Theorem 4.9, linear and sublinear rates can be
derived under this condition. Condition (4.31), with ¢ = 2, covers, e.g., minimization
problems with strongly star-convex differentiable objective function or strongly quasi-
convex objective functions [22].

4.3. Second adaptive choice for the stepsize. In this section, we present
another possible adaptive choice for the stepsize when the operator A satisfies As-
sumption 1.vi with u € (0,2). Let € € (0,1) be the desired accuracy for solving
problem (1.1), i.e., to obtain « in the range of A + B + C such that |lu|| < e. The
procedure is described below.

Stepsize Choice 2:
1. Choose € € (0,1), 0 < &min < Qmax < 1, and o > 0.
2. For k > 0 do:
(a) Choose ax € [Omin, Omax] and compute d(xx) = C||Azk, + By + 7.

(b) Compute ’_y,(cl) > 0 as the solution to the equation

(432)  Liy® + b(an)d(an)’ " + clan)d(an)’ "y + 2 Falay)y e =
(c) Compute ’_y,(f) > 0 as the solution to the equation
(4.33)
Lgd(wr) ™"y + blar)d(zr)’ ™" + e(ar)d(zn) "™y + alar)y = ;%:ak
(d) Update
(4.34) e = min {5, 7}

(e) Choose 7y such that

(4.35) o
Yk otherwise.

Note that v is well-defined in Steps 2.(b) and 2.(c) of this second procedure for the
choice of the stepsize, i.e., there exist unique ’_y,(fl),f_y,(f) satisfying (4.32) and (4.33),
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respectively. Indeed, consider the functions

h(y) = v*LE + b(xr)d(z)’ 727" + c(ar)d(z)? 297 + 22 Ha(zp)y" e 2 — %
2—p
r(9) = Lhd(w) 7 + bai)dlwn)’ " + cwn) (o) + alw)y — o,
and variables wy = = Y and W = ————5—— 'akH. Note that 2(0) < 0 and h(wy) >
Lp LBd(a:k) 2

ar/2 > 0. Since h is continuous on [0,wy]| there exist ’_y,(cl) € (0,wy) such that
h(?,(cl)) = 0. Moreover, since h'(y) > 2yL% > 0 for every v € (0,+00), then h is
strictly increasing in (0,400). Hence, there exists exactly one fy,(cl) > 0 such that
h(ﬁ,(cl)) = 0. Using the same arguments, we can conclude that r is strictly increasing
on (0, +00) and there exist only one ’7,532) € (0,wy) such that r(ﬁ,(f)) = 0. Since both
functions h and r are strictly increasing in (0, +00), h(0) < 0 and 7(0) < 0, -y, defined
in (4.35) satisfies the following two inequalities:

(4.36) h(v) <0 and r(y) <O0.
Note that

1
2— 2
€ M amax )
9

~(1) ~(2) 5.
(4.37) Y <noand 37 <= <23_“L2372_“

with n defined in (4.4). The theorem below provides a bound on the number of
iterations required, for a given € > 0, to generate ||ug| < €, with uy defined in (4.8).

THEOREM 4.11. Let € € (0,1). Suppose that Assumption 1 holds with p € (0,2).
Let (zg)ren and (pr)ren be the sequences generated by AFBF algorithm with stepsizes
(k) ken given by (4.35). Then, for u, = vgl(xk — pk) + Ap. + Bpy, — Az, — By, €
Apy + Bpy + Cpp and ymin(€) = O(e2=H/1) | performing

K> ( (Lt v/ Gmax)” ))|x0—2|2

= 7x2nin(6)(1 — Qmax

2
iterations ensures that there exists k € {0,--- , K — 1} such that |Juk| < e.
Proof. i) First, consider the case when, for every k € {0,..., K — 1}, 'yl;l ek —
Pl > €/2. We deduce from (4.6) and (4.36) that

vi||Azy, + Bxy — Apy — Bpg||?

(4.6) B ) )
<2 (VL3 + ban)d) 2f + clwr)d] ) + 22 (el 2) ok — el
(4.36) )

< agllzr — pill*

Let z € zer(A+ B+ C). Since ag < aumax, using a similar reasoning as in (4.10),
the inequality (4.14) also holds when k € {0,..., K — 1}, for this second choice
of the stepsize. This implies that
K—1
(4.38) (1~ mas) 3 Nl = el < o — 211
k=0
(k€ {0, K}) Jlan— 2] < fla — 2.
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Let D be the closed ball of center z and radius ||xg — Z||. Since A, B, a, b, and ¢
are continuous on dom C, the quantities define below take finite values:

Ry = sup a(z), Ry =supb(z)d(x)’™2, Rs= supc(x)d(z)’?

z€D xz€D z€D
Ry = supd(z)®> ", Rs=supb(z)d(z)?*, Rg=supc(z)d(x)’ "
xeD zeD zeD

From (4.37), (4.32) and (4.33), one can lower-bound the stepsize as:

(Vk €{0,...., K —1}) 7k > ymin(€) := min{r{, (), 72 (e), 0},

with
1
439 (1) — Qmin r
( ) ’len(e) 2 (L2B,'72—M + 22—;1,R1€p—2 + RQne—M + RSTIIB—N>
and
2—p l
4.40 (2) — { € Qmin W
(4.40) in(©) =\ G (R, LB A Ra + R T RiP7)

Note that, if € is sufficiently small, then i, () = O(e?~#)/1). Using (4.17), we
finally obtain

(Vk€{0,.... K =1}) Jlugll < (ymin(€)) ™ (1 + vVama) 2k — pill,

which, by virtue of (4.38), yields
. 1 ]‘ + amax 2 —
min [lux? < < (LT i) ) o — 212

0<k<K—1 K \ 12,61 — amax)

ii) Second, consider the case when, there exists £ € {0,---,K — 1} such that
v lek — prll < €/2. Let us prove that ||Apy + Bpr — Avg — Bay|| < €/2.
Indeed, we deduce from (4.5) that

| Apy, + Bpy, — Azy, — Bay||?
< 2L |lzk — prll® + 2a(zx) o — prll* + 20(zp)[l2x — prll® + 2¢(z) lzx — pll”

(4.6) B B - _ -~
< 2(Lhd(ar)* g "+ blak)d(ak)’ g + clar)d(a) g "
+ a(ak)) |k — prll”

GH
< 2(LAd(ak)* PR + b(ak)d(xy) Py + clag)d(xy) Py + a(%)%’j)ﬁ
(4-36) €2O[k 62
< < —.
- 4 — 4

Hence, from the definition of uy, applying the triangle inequality leads to ||ug| <
€. Hence, the statement of the theorem is proved.

It can be noticed that the literature on convergence rates for the general inclusion
problem addressed in this section is scarce. Existing results predominantly focus on
the composite problem outlined in Example 3.1, particularly when ¢ = 0 and L = I,,,
spanning both the convex case [32] and the nonconvex one [38].
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5. Simulations. In this section, we evaluate the performance of our algorithm
on convex quadratically constrained quadratic programs (QCQPs), see (3.5), using
synthetic and real data. Then, we also test our algorithm on a pseudo-convex prob-
lem using synthetic data. We compare our Adaptive Forward-Backward-Forward
(AFBF) algorithm to Tseng’s algorithm [37], and one dedicated commercial opti-
mization software packages, Gurobi [20] (which has a specialized solver for QCQPs).
We implemented the algorithm AFBF as follows: at each iteration k € N, the stepsize
Yk = Yk, Where 7y, is computed as in (4.3), b(zy) and c(z) are computed as in (3.22),
and oy = 0.99. The code was implemented using MATLAB R2020a on a computer
equipped with an AMD Ryzen CPU operating at 3.4 GHz and 64 GB of RAM.

5.1. Solving convex QCQPs. We consider the following convex QCQP

: _ 1T T
min f(m)—gx Qox+b'z

1
(5.1) st gi(x) = izTQix +ife—r; <0, Vie{l,...,m},

where (Q;)o<i<m are symmetric positive semidefinite matrices in R"*", (I;)1<i<m and
b are vectors in R™, and (7r;)1<s<m are nonnegative reals. Note that the operator A
defined in (3.6) for QCQPs fits (3.22). For every i € {0,...,m}, Q; was generated as
Q; = R;'—Ri, where R; is a sparse random matrix whose element are drawn indepen-
dently from a uniform distribution over [0,1]. Moreover, the components of vectors
b and (l;)1<i<m were generated from a standard normal distribution A/(0,1). Con-
stants (7;)1<;<m and the components of the algorithm starting point were generated
from a uniform distribution over [0,1]. For the algorithm in [37], named Tseng, the
line-search is computed as in [37, equation (2.4)], with § = 0.995, o0 = 1, and 8 = 0.5.
We consider the following stopping criteria for AFBF and Tseng’s algorithms:

luk|| < 1072, with uy defined in (4.8).

n p m AFBF Tseng [37]

TTER CPU ITER LSE CPU
10° 10 250 3914 36.09 | 15298 | 91513 387.4
10° 10° 500 7563 131.8 | 23400 | 140070 | 1179.3
10° 10° 10° 19044 | 597.6 | 37932 | 227029 | 3570.4
102 103 2-10% | 44039 | 2900.1 | 63143 | 377963 | 12990
10% 10* 125 4705 195.5 3351 19963 418.6
10% 10* 250 6131 475.2 4888 29209 1178
104 10* 500 8862 1329 7240 43319 3398
104 10% 750 11380 1821 8670 51893 4251
10° 500 250 4992 66.9 14750 | 88223 590.9
10% 500 500 11069 | 288.7 | 25741 | 154114 | 2068.7
10° 500 10° 24460 | 1192.7 | 45654 | 273360 | 7010.4
10® 500 2.10° | 59762 5939 * * *
10 | 5-10° 125 5318 336 3428 20412 689.8
10* | 5.10% 250 7445 895.3 4762 28452 1864
10* | 5.10° 500 11515 2711 11271 | 67514 8647
10* | 5.10% 750 15719 | 3655.4 | 14073 | 84324 10462

TABLE 1
CPU time (sec) and number of iterations (ITER) for solving synthetic QCQPs of the form
(5.1) with AFBF and Tseng’s [37] algorithms: strongly convez case (top) and convez case (bottom).

The CPU time (in seconds) and the number of iterations (ITER) required by each
algorithm for solving problem (5.1) are given in Table 1, where “*” means that the
corresponding algorithm needs more than 5 hours to solve the problem. Moreover,
for Tseng’s algorithm, we also report the number of line-search evalutions (LSE).
The first half of the table corresponds to strongly convex functions (Q; > 0, for
every i € {0,...,m}) and the other half is for convex functions (@Q; = 0, for every
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1 €{0,...,m}). As we can notice in Table 1, AFBF outperforms Tseng’s algorithm
(sometimes even 10x faster). Comparisons with Gurobi software are not included in
Table 1, since we observed that its performance is quite poor on these large test cases.

5.2. Solving multiple kernel learning in support vector machine. In
this section, we test AFBF on Support Vector Machine (SVM) with multiple kernel
learning using real data, which can also be formulated as a convex QCQP. Let us
briefly describe the problem (our presentation follows [14]). Given a set of ngat data
points S = {(d;,1;) }1<j<na., Where, for every j € {1,...,nqat} d;j € R™ is the input
vector and [; € {—1,1} is its class label, SVM searches for a hyperplane that can best
separate the points from the two classes. When the data points cannot be separated
in the original space R™¢, we can search in a feature space R"f, by mapping the input
data space R™¢ to the feature space through a function ¢ : R — R"™/. Using function
@, we can define a kernel function  : R™ x R™ — R as k(d;,d;) := (p(d;), ¢(d;))
for every (d;,d;) € (R")?, where (-, -) denotes the inner product of R"f. One popular
choice of the kernel function in the SVM literature is the Gaussian kernel:

N s —dyr? o 2
keau(d;,dj) = exp 52 , V(4,5 e{l,...,nqat}

with o > 0. We separate the given set S into a training set, Si. = {(d;,{;)}1<j<n..
and a testing set, Ste = {(d;,1j)}1<j<n.., such that n¢ + nge = ndae. Choosing a set
of kernel functions (k;)1<i<m, the SVM classifier is learned by solving the following
convex QCQP problem on the training set St,:

1
min ~2"Qoz — ez + Ry
zERr z0€R,z>0 2

1 1 , s
(5.2) s.t. ixT (RiGi(Kur)) r—x0<0 Vie{l,...,m}, Z;ljxj =0,
where @y = C'_llntr, C being a parameter related the soft margin C%i_teria, and the
vector e denotes a vector of all ones. In addition, for every i € {1,...,m}, K, €

R™: X"t jg 4 symmetric positive semidefinite matrix, whose (j,7) element is defined
by the kernel function: [Kj ;0 := ki(dj,dj). The matrix G;(K; ) € R™ ™ in
the i-th quadratic constraint of (5.2) is a symmetric positive semidefinite matrix, its
(4,4") element being [G;(K; )]0 = Uil [Ki te)j;7- Moreover, R and (R;)1<i<m are
given positive constants. Clearly, (5.2) is an instance of problem (3.5). In our exper-
iments, we employed a predefined set of Gaussian kernel functions (k;)i<i<m, with
the corresponding (02)1<i<y, values. Following the pre-processing strategy outlined
in [14], we normahzed each matrix K i, such that R; = trace(Kt,) was set to 1, thus
restricting R = ", R; = m. For each dataset, the o7’s were set to m different grid
points within the interval [107!, 10] for the first five datasets and [1072,10?] for the
last one, with two different values for the number of grid points, namely m = 3 and
m = 5. Additionally, we set C' = 1. In order to give a better overview of the advan-
tages offered by the multiple kernel SVM approach, we also learn a single Gaussian
kernel SVM classifier with 0‘ set a priori to 7, by solvmg the following QP problem:
(5.3) xe[%lg]lntrix TG(Kiy)x —e'x, Zl z; =0.

We consider the following stopping criteria for AFBF and Tseng’s algorithms:

|f(z) — f*] <1074, lexj <107* and max(0,g;(x)) <107, Vie {1,...,m},
j=1
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with f* computed by Gurobi solver and the starting point chosen as the null vector.
Moreover, for Tseng’s algorithm the line-search was computed as in [37, equation
(2.4)], with § = 0.99, 0 = 1 and § = 0.1. Table 2 presents a comparison between
AFBF algorithm , Tseng’s algorithm [37], and Gurobi solver [20] (specialized solver for
QCQPs) in terms of CPU time for solving the QCQP of the form (5.2) using 6 real
datasets Ozone-level-8hr, mfeat-fourier, USPS, isolet, semeion and Ovarian
from https://www.openml.org. Each dataset was divided into a training set com-
prising 80% of the data and a testing set of the remaining 20%. For each dataset,
we also provided the nonzero optimal dual multiplier value y* corresponding to the
unique active quadratic inequality constraint and the corresponding value of o corre-
sponding to that active constraint. Finally, the table presents a comparison between
the Testing Set Accuracies on the remaining testing datasets obtained by the multiple
Gaussian kernel SVM classifier with o2 derived from (5.2), named TSA, and the single
Gaussian kernel SVM classifier with o = 7, named TSAO.

Dataset 2 AFBF TSENG Gurobi
(n, n4) m | TSAO | TSA | o CPU |y~ | CPU ~——CPU [ ¢
Ozone-level-8hr 3 59.7 91.7 5.05 31.18 3.1 58.09 | 2.99 95.61 3
(2534, 72) 5 : 91.7 2.575 49.9 5.04 61.38 5 339.88 5
mfeat-fourier 3 ]7.7 89 5.05 11.82 3.04 21.5 2.99 40.56 3
(2000, 76) 5 ) 89 2.575 | 20.54 | 5.02 | 35.06 | 4.99 170.06 5
USPS 3 60.2 91.5 10 4 3 5.23 3 232.98 3
(1424, 256) 5 i 92.2 10 3.95 5 8.33 5 1106.7 5
isolet 3 575 95 10 0.59 3 1.35 3 10.8 3
(600, 617) 5 ) 95.8 10 0.68 4.97 2.23 5 25.09 5
semeion 3 47.6 77.8 10 0.75 2.98 1.43 2.97 1.37 3
(319, 256) 5 ) 84.1 10 0.89 5.02 3.19 4.99 4.12 5
Ovarian 3 66 78 100 0.38 3.04 1.72 2.99 0.82 3
(253, 15154) 5 88 100 0.47 4.96 2.48 4.99 2.31 5

TABLE 2

Comparison between our algorithm AFBF, Tseng’s algorithm [37] and Gurobi solver [20] in
terms of CPU time (in seconds) to solve QPQC's of the form (5.2) for various real datasets and two
different choices of m = 3,5. Additionally, TSA’s are provided for (5.2) and (5.3).

5.3. Fractional programming. In this final set of experiments, we consider the
linear fractional program (3.10), where the objective function is pseudo-convex. We
compare our algorithm with [35, Algorithm 1] developed for solving non-Lipschitzian
and pseudo-monotone variational inequalities. We implemented [35, Algorithm 1]
with the parameters u = 0.995, v = 1, and | = 0.001. From Theorem 1 in [28],
when the vector r = nd with n > 0, the objective function f in (3.10) is pseudo-
convex on D. In our simulations, the components of the vector d and the constant hg

n=1 =10
T RS ) ==
] ~ o .
o S~ Q N
o N 7] N
1-J N o N
S . S AN
g g AN
5 10? §10° N
g B R
c c N
2 E .
2 2
g - - FBF 3 - - FBF
5 — AFBF g —AFBF
102 10° 102 102 10° 10?
Time(s) Time(s)

FIGURE 1. Ewolution of Algorithm 1 in [35] (called here FBF) and our AFBF algorithm in
Sunction values along time for two linear fractional programs of the form (3.10) with data generated
randomly, n = 1 and n = 10, and dimension n = 105,

were drawn independently from a standard normal distribution A (0, 1), vector r was
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chosen as r = nd, with n > 0, vector h was taken as a perturbation of vector d, i.e.,
h =d+0.01v. Vector v and constant dy were generated from a uniform distribution.
Moreover, we chose the starting point z¢ as x¢ = projp(t), vector ¢ being generated
from a standard normal distribution A/(0,1). The results are displayed in Figure 1,
where we plot the evolution of function values along time (in sec). Note that, AFBF
is faster than Algorithm 1 from [35] (named here FBF) for chosen values of 7.

6. Conclusions. In this paper, we have addressed the problem of finding a zero
of a pseudo-monotone operator. We have made the assumption that this operator
can be split as a sum of three operators: the first continuous operator A satisfies a
generalized Lipschitz inequality, the second operator B is Lipschitzian, and the third
one C is maximally monotone. For solving this challenging problem, our solution
relied upon the forward-backward-forward algorithm, which requires however the use
of an iteration-dependent stepsize. In this context, we designed two novel adaptize
stepsize strategies. We also derived asymptotic sublinear convergence properties un-
der the considered assumptions. Additionally, when A + B + C satisfies a uniform
pseudo-monotonicity condition, the convergence rate becomes even linear. Prelimi-
nary numerical results confirm the good performance of our algorithm.

For future research, it would be intriguing to investigate the possibility of achiev-
ing more precise convergence rates. For instance, in Example 3.1, when g = 0 and
L = I,,, [32] introduces a universal gradient method with a convergence rate of order
O(e=2/(4¥)) for the convex (i.e., maximally monotone) case, where v is the constant
from Definition 2.2 (note that p = 2v in this scenario). Conversely, in the noncon-
vex (i.e., nonmonotone) case under the same settings, [38] examines a gradient-type

method with an adaptive stepsize and achieves a convergence rate of order 0(67(1#))
in the norm of the gradient. On the other hand, the convergence rate obtained in
Theorem 4.11 within the general nonmonotone framework we considered is of order
O(e~2/*) in the norm of the gradient, which is not as favorable as the rate in [38].
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