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We extend the truncated three wave theory used to describe degenerate four-wave mixing in
optical fibers to take into account the impact of higher order harmonic sidebands. Using second
order perturbation theory combined with adiabatic elimination, our extended theory preserves the
initial framework of three waves description. This allows the subsequent discussion regarding the
origin of the non-preservation of Fermi-Pasta-Ulam-Tsingou recurrence. Our analytical results are
supported by numerical simulations and experimental observations.
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I. INTRODUCTION

Wave dynamics in a dispersive medium subject to an
intensity-dependent phase shift is governed by the the
Nonlinear Schrödinger equation (NLSE) [1] which is one
of the seminal equations in science. It can be applied
to numerous different domains including hydrodynamics,
plasma physics, Bose-Einstein condensates and propaga-
tion of light in optical fibers [2–4].

One of the most important NLSE processes at the core
of numerous fundamental discoveries and practical appli-
cations is the modulation instability (MI) [5, 6] which is
manifested in a form of spontaneous or seeded amplifica-
tion of spectral harmonics [7, 8]. The linear stage of the
MI can be described in term of the nonlinear four-wave
mixing (FWM) which is characterized by changes dur-
ing propagation in the fiber in spectral amplitudes and
phases of individual harmonics [9–11]. The understand-
ing of this fundamental process has improved after devel-
opment of an analytical truncated three-wave model op-
erating in terms of conjugate variables [12–14]. This has
revealed the recursive dynamics of the FWM referring
to the celebrated Fermi-Pasta-Ulam-Tsingou (FPUT) re-
currence [15] as well as the existence of different types
of energy conversion processes depending on the optical
phase.

The experimental demonstration and study of FPUT
dynamics in optical fibers has been implemented in [16].
Recently we have developed an original experimental
setup allowing to limit waves interactions to only three
spectral lines in order to demonstrate experimentally the
fundamental FWM process [17]. In this work we have
successfully reproduced typical features of the truncated
model under various initial conditions. However, we also
observed certain deviations from the ideal dynamics, re-
sulting into the slight disturbance of the FPUT cycles
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over long propagation lengths and the non-conservation
of the system’s invariants. In particular, the spectrum
asymmetry and the value of the system’s Hamiltonian
are not preserved. In [18], we have revealed that changes
in the asymmetry originate from a small generation of
the second-order sidebands which are naturally occur-
ring during the MI process. Now we would like to discuss
more globally the origins of the FPUT disturbance and
non-conservation of its associated Hamiltonian.

Systems subject to perturbations, such as, for in-
stance, the presence of higher order harmonics or propa-
gation loss, undergo qualitative changes in their dynam-
ics [19, 20]. Hence, it was demonstrated that linear losses
in optical fibers can cause dissipation of the Hamilto-
nian which results into breaking of the recurrence cy-
cles [21]. In the present work, we consider participa-
tion of the second-order sidebands in the dynamics as
a source of dissipation which allows development of the
modified FWMmodel in terms of conjugate variables and
discussion of the Hamiltonian dissipation. Following ex-
perimental demonstrations evidencing deviation from the
ideal three wave mixing, even in the situation where ex-
tra sidebands and loss are kept negligible, we improve
the accuracy of the idealized model while still retaining
the nominal three wave description of the dynamics. It
now encompasses the effects of higher order sidebands
but keeps the simplicity of nominal idealized model. It
serves then as support to discuss the onset of cascaded
four wave-mixing, and how the Hamiltonian dynamics is
perturbed by the sole presence of extra available photon
exchange paths.

mailto:anastasiia.sheveleva@u-bourgogne.fr


2

II. FUNDAMENTAL FOUR-WAVE MIXING
DYNAMICS AND ITS LIMITS

A. Truncated FWM model

Presented in its normalized form, the NLSE reads:

i
∂A(ξ, τ)

∂ξ
+

1

2

∂2A(ξ, τ)

∂τ2
+ |A(ξ, τ)|2A(ξ, τ) = 0, (1)

where A(ξ, τ) = ψ(z, t)/
√
P0 is the optical field normal-

ized to the average power P0, ξ = z/LNL - the normalized

propagation distance, τ = t/
√
|β2|LNL is the normalized

temporal axis, LNL = (γP0)
−1 is the nonlinear length. γ

and the β2 denote the nonlinear Kerr parameter and the
second-order dispersion, respectively.

Let us consider that the propagating wave contains
only three spectral components which are modeled by
ideal delta functions and which are equally spaced by
the normalized pulsation ωm = 2πfm

√
|β2| /γP0. Then

we can substitute the following ansatz A(ξ, τ) = A0(ξ)+
A−1(ξ) exp(iωmτ) +A1(ξ) exp(−iωmτ) (with the carrier
frequency omitted) in to the NLSE and write the cou-
pled equations for each spectral harmonic, following the
guidelines in [12].

To proceed with this description, we then separate
the phases and the amplitudes of each wave Ai(ξ) =
ai(ξ) exp(iφi(ξ)) which leads to a set of 6 differential
equation. Introducing the reduced variables η(ξ) =

|a0(ξ)|2 /
∑1

i=−1 |ai(ξ)|
2
as the relative spectral ampli-

tude, and ϕ(ξ) = φ−1(ξ) +φ1(ξ)− 2φ0(ξ) as the relative
spectral phase, we obtain after several simplifications [12]

dη

dξ
=
dH(η, ϕ)

dϕ
= −2η (1− η) sinϕ (2a)

dϕ

dξ
= −dH(η, ϕ)

dη
= (κ− 1) + 3η − (2− 4η) cosϕ(2b)

η and ϕ form a set of conjugate variables, so the
H(η, ϕ) represents the Hamiltonian of the system:

H(η, ϕ) = 2η (1− η) cosϕ− (κ− 1)η − 3

2
η2 (3)

Since the FWM process depends strongly on the
phase-matching conditions between the spectral lines
[22], a normalized nonlinear mismatch parameter κ =
sgn(β2)(2πfm)2 |β2| /γP0 is introduced. Note that we
consider that the sidebands at ±ωm are symmetric, e.g.
have equal spectral amplitudes, which leads to simplified
forms of Eq. (2,3) [12].

Using the description of the system in the reduced
variables (η, ϕ), one can display the dynamics on the
phase-space plane [20, 23]. Here, we use coordinates
(η cosϕ, η sinϕ) and a few typical trajectories are dis-
played in Fig. 1 (a). This representation allows to con-
veniently distinguish the dynamics with either bounded
or unbounded phases (red and blue lines, respectively).

FIG. 1. (a) Fundamental FWM dynamics according to Eq. (2)
over ξ = 16 at κ = −2, η0 = 0.80 and ϕ0 = 0 and π (red and
blue lines, respectively). Black dashed line indicates position
of the separatrix. (b) FWM dynamics in a numerical simu-
lation replicating the experiment demonstrates the spiraling
dynamics (the simulation parameters are the same as in (a)).
(c) Experimental concept where the input conditions are con-
tinuously updated after three waves propagated in a small
segment of fiber [17]. Bottom panel (d) displays simulated
changes in spectral amplitudes during a few consecutive iter-
ations.

These two classes of orbits are divided by an unstable
solution at η = 1 and ϕ = cos−1[−(κ + 2)/2] called the
separatrix. In the present paper we will often refer to
these two types of dynamics as solutions belonging to
the right and the left side of the separatrix.
Such a system, where the dynamics is strictly limited

to three spectral lines, is considered as ideal or fundamen-
tal four-wave mixing (FWM) in its degenerate case. Here
the changes in amplitude and phase follow closed trajec-
tories that are unique for each initial condition and never
intersect for a constant κ [24]. Each orbit has its own
Hamiltonian (namely energy) value which is preserved
during propagation, and represents the conservation of
the time-averaged energy of the field. On the extreme

positions of the Hamiltonian
(

dH(η,ϕ)
dϕ = 0, dH(η,ϕ)

dη = 0
)
,

there exist stationary solutions which represent waves
propagating with no changes neither in the relative phase
nor in the relative amplitude [12].

B. Principle of the experimental approach

The experimental demonstration of the fundamental
FWM in optical fibers is a rather challenging task. The
effects of propagation losses and generation of higher-
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order sidebands that naturally occur in the fiber cause
deviation from the ideal model and break the FPUT re-
currence [18, 25].

In our previous works, we have constructed an original
experimental setup aiming to the demonstration of fun-
damental FWM [17]. The main idea of the experimental
approach (displayed in Fig. 1 (c)) was to tailor the in-
put signal’s (ηi, ϕi) with a programmable spectral filter
and then propagate it in a small segment of fiber ∆ξ.
After measuring the output parameters (ηi+1, ϕi+1), we
update the input conditions; and iterate this process in a
loop. This allows to reproduce the ideal FWM dynamics
over long propagation distances: over 50 km or ξ = 12
at κ = −2 in a 500-m fiber with γ = 1.7 (W km)−1,
β2 = −8 ps2km−1 of 500 m length.
Such a method allows to exclude the impact of prop-

agation losses and limits generation of the higher-order
sidebands at ±pωm (p ≥ 2) . After each iteration, we
update the parameters of the three central harmonics
(−ωm, 0, ωm), while others are filtered out in the recy-
cling process. Nevertheless, we cannot completely ex-
clude their generation as light propagates in the fiber,
and we observe occurrence of the second-order sidebands
with a level below 1% of the total spectral intensity. The
panel (d) of Fig. 1 showcases a gradual growth of the
spectral lines at ±2ωm which are filtered after each iter-
ation of ∆ξ, so the process starts anew at updated values
of (ηi+1, ϕi+1).
The impact of the second-order harmonics is not pro-

nounced over short propagation distances (< 50 km),
however, at higher lengths, the accumulation of these
small perturbations results in a deviation from the closed
orbits.

Such a behavior is presented in Fig. 1 (b), where the
signals with the same initial conditions as in Fig. 1 (a)
propagate over ξ = 16 in the numerical simulation, em-
ulating experimental conditions (segmented propagation
according the NLSE with recycling of the three-waves pa-
rameters after each ∆ξ = 0.128). We observe that the
trajectories indeed do not follow the closed orbits any-
more but begin to spiral inwards. Similar behaviour has
been observed experimentally: trajectories stay within
the same dynamics type (with bounded or unbounded
phase) but the FPUT recurrence is not perfectly pre-
served.

In order to provide an unambiguous explanation for
this phenomena that is observed both experimentally and
numerically, we develop in the next section a modified
theoretical model.

III. DEVELOPMENT OF A MODIFIED FWM
MODEL

A. Impact of the second-order harmonics

As soon as their existence is permitted, second-order
harmonics are created and interact with the three central

lines. This corresponds to the opening of new mixing
(i.e. nonlinear scattering) paths for the photons. By
adding into Eq. (2) these new mixing possibilities, the
observed deviation from the ideal dynamics must then
be reproduced.
This would however complexify the theoretical model

from two coupled equations to five. That said, the ampli-
tude of the second-order harmonics remains small, and
they impact the dynamics only after large propagation
distance. Therefore the extended system can be under-
stood as an Hamiltonian (the three central lines) system
in weak interaction with a coherent but dissipative reser-
voir (the second-order harmonics). The equations for sec-
ond order harmonics can be solved in term of the reduced
variables (η, ϕ); and their effects can then be incorpo-
rated adiabatically in the nominal system of Eq. (2). In
contrast with previous derivations regarding the FWM
where the increase of accuracy was made at the cost of
the simplicity (one more equation per extra sideband)
[9–11, 26], the present demonstration retains the original
simplicity of the system.
In detail, to formulate the modified model, we take an

approach similar to our previous work where we discussed
the non-conservation of the asymmetry invariant in the
experimental dynamics [18]. First, the second-order side-
bands are growing from noise, and at low values of κ
(< −1), the modulation instability gain bandwidth does
not include them. As a result they are neither amplified,
nor generated efficiently. In this context, we can there-
fore consider only stimulated processes (see Fig. 6 in the
Appendix A) and neglect spontaneous FWM. The math-
ematical derivation, and the resulting final system of cou-
pled equations for the waves’ amplitudes and phases are
described in the Appendix A.
For segment ∆ξ small enough with respect to the char-

acteristic evolution length of the unperturbed FPUT re-
currence (defined as a length required to observe one re-
currence cycle), the equations governing the evolution of
the extra sidebands Eq. (A1) can be integrated to re-
sult in the following amplitude for the second-order side-
bands:

a±2 =
∆ξ

4

√
η(1− η) [sin(φ±2 − ϕ) + 2 sinφ±2] (4)

Note that the transfer of energy to the ±2 sidebands is
a phase-dependent process. Because at the start of each
fiber segment a±2 = 0, their phase may be undefined at
first. The maximal growth of the a±2 sidebands will ac-
tually happen if all the photons are scattered into them
with the same phase, resulting in a net coherent accumu-
lation of energy. When the (η, ϕ) vary over a small ∆ξ,

this situation corresponds mathematically to dφ±2

dξ = 0,

which hence gives:

φ±2 = − tan−1

(
2 + cosϕ

sinϕ

)
+ πM (5)

M = 1 if sinϕ > 0 and M = 0, otherwise.
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In a case when spectral lines are amplified from noise in
an undepleted pump approximation and ϕ = 0, we recon-
struct the relative phase of ±π/2 from Eq. (5) [27–29].
In other cases, this expression gives a correct approxi-
mation of the second-order sidebands’ phase, which was
verified in our numerical simulation of the iterated NLSE
propagation.

B. Complete modified model

After solving the equations in a the undepleted pump
approximation, the second-order harmonics can be ex-

pressed only in term of the reduced variables. Eq. (2)
can therefore be complemented by a corrective term in-
volving only the latter, hence we obtain:

dη

dξ
=−2η (1− η) sinϕ+ (6a)

1

2
∆ξη (1− η)

2 [
(1 + η) sin2(φ±2 − ϕ) + 4η sinφ±2 sin(φ±2 − ϕ) + 4(η − 1) sin2 φ±2

]
dϕ

dξ
=(κ− 1) + 3η − 2 (1− 2η) cosϕ+ (6b)

1

4
∆ξ(1− η) [sin(φ±2 − ϕ) + 2 sinφ±2] [4(3η − 1) cosφ±2 + (5η − 1) cos(φ±2 − ϕ)]

Here, the first part of the equation is responsible for
the fundamental FWM processes (Eq. (2)) which are pre-
served in the modified model too. The second part of
expressions appears only due to existence of additional
stimulated photon mixing processes which leads to the
energy exchange with the second-order harmonics with
the phase φ±2 given by Eq. (5). Such a simplification
of the model is possible only by assuming a perturbative
adiabatic growth of the ±2 spectral lines.

Note that Eq. (6) is only valid for short segment lengths
∆ξ, as discussed previously. If ∆ξ is large, the as-
sumptions on small growth and constant phase are no
longer valid which would lead to discrepancies between
the model and the segmented NLSE propagation.

To verify our model, we numerically simulate the ex-
perimental dynamics by using segmented propagation of
the NLSE. We choose the propagation length of ξ = 30
(216 segments of ∆ξ = 0.128) which allows to observe a
significant spiraling and, hence, benchmark the solutions
of Eq. (6). The results are presented in Fig. 2 for initial
conditions η0 = 0.90, ϕ0 = 0 (panels 1), η0 = 0.70, ϕ0 = π
(panels 2) and η0 = 0.995, ϕ0 = π (panels 3) at κ = −2
which implies the maximum modulation instability gain
for the ±1 sidebands.

We note a very good agreement of the numerical re-
sults and our modified model especially at early stages
of propagation. Further dynamics starts to deviate from
numerical predictions which can be explained by: a) ac-
cumulation of inaccuracies that arise from analytical as-
sumptions regarding φ±2 and the processes included; b)
by the fact that η tends to decrease with distance which

means that the sidebands are becoming stronger and
starting to act as two pumps symmetrically located with
respect to the central frequency which ultimately leads
to development of additional photons exchange processes
not included in our model (this would correspond to the
growth of third-order harmonics and could be in some
extend related to the discussion in [13]). The accumula-
tion of these effects can ultimately break the recurrence
when the trajectory passes nearby the unstable solution
which leads to the separatrix crossing as it is depicted in
panels 3 of Fig. 2.

IV. STATISTICAL PROPERTIES AND
HAMILTONIAN DISSIPATION

As demonstrated in the previous section, the system
follows spiraling trajectories gradually, away from the ini-
tial closed orbits. This behaviour could be explained by
the fact that there may exist global attractors on the
phase-space plane, and that the dynamics is impaired by
dissipation. Therefore, the next question is to investi-
gate statistical properties of the dynamics and redefine
the Hamiltonian.

A. Statistical estimation of attraction regions

To define the attraction regions, we run both the nu-
merical simulation and the developed theoretical model
over very long propagation distance ξ = 255 on the grid
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FIG. 2. FWM dynamics according to: numerical simulations
(solid lines) and the modified model Eq. (6) (colored points).
The inset subplot shows positions of each trajectory on the
phase-space map and solutions according to the ideal trun-
cated model. Input parameters are η0 = 0.90, ϕ0 = 0 (panels
1), η0 = 0.70, ϕ0 = π (panels 2) and η0 = 0.995, ϕ0 = π (pan-
els 3) at κ = −2, ∆ξ = 0.128. Cases (a), (b) and (c) display
evolution on the phase-space plane, changes in the relative
amplitude η and phase ϕ with propagation distance, respec-
tively.

covering the full phase-space. It gives 112 trajectories
which allows to conclude about the number and loci of
the attractors, and their respective basins of attraction
characterized by the density parameter. It is defined by
incrementing the count on the phase-space map’s grid
when each segment of each trajectory passes by. Since
one of the parameters defining the dynamics in our sys-
tem is the segment length, we repeat the simulation at
different values of ∆ξ = {0.064, 0.128, 0.192, 0.255}.
Firstly, the data reveal that there exist two well-defined

attractors - one on each side of the separatrix. In Fig. 3
we display two families of initial conditions which are
attracted to the left and the right-side attractors (panels
(a) and (b), respectively) depending on their position
on the phase-space map. The density parameter tells
how fast a given input configuration would be attracted
(the lower value, the faster). We see that attraction is
much stronger for large ∆ξ. Moreover, the separatrix
between the right and left attractors now differs from

FIG. 3. Density of convergence towards left and right-side
stationary solutions (panels (a) and (b), respectively) com-
puted by numerically iterated NLSE propagation (panels 1)
and the modified FWM model (panels 2) at κ = −2.

the ideal case. In particular, the cycle η = 1 now belongs
exclusively to the right attractor.
With the data presented in Fig. 3, we can benchmark

the performance of our model by comparing statistical
properties of trajectories computed with the segmented
NLSE propagation (panels 1) and with the Eq. (6) (pan-
els 2). We see that both methods provide similar results,
and the dependence of the trajectories density at differ-
ent segment lengths is reproduced correctly. When the
segment length is increased, the attraction region on the
right side reduces, which can be explained by a more
rapid change of parameters during each segment propa-
gation so the spiraling does not appear so gradual.
Secondly, we mark in Fig. 4 (a) the positions of the at-

tractors on the energy landscape defined by the system’s
Hamiltonian. We see that they are located in the very
vicinity of its extreme values: the yellow square shows
the exact fixed point (ηfp = 0.7143, ϕfp = 0) at κ = −2,
while the green dot displays the attractor at ∆ξ = 0.128
which corresponds to the segment length that was inves-
tigated experimentally [17]. The extreme point on the
left side at ηfp = 0 coincides perfectly with the fixed
point of the ideal TWM system.
Details of the right-side attractor also confirm the im-

portance of the stationary point. Even if the exact lo-
cation very slightly differs from ηfp, it remains in the
close vicinity from the expected value. In more details,
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the relative amplitude and phase values of the attrac-
tor are found to be ηa = {0.7159, 0.7143, 0.7144, 0.7144}
and ϕa = {0.0156, 0.0312, 0.0469, 0.0625} rad for ∆ξ =
{0.064, 0.128, 0.192, 0.255} corresponding to red, blue
and magenta dots in Fig. 4 (a), respectively. We may,
however, note a slightly more pronounced change in the
relative phase of the attractor that tends to increase with
the segment length.

Depending on the starting point, each trajectory con-
verges to the attractors at different rate, hence, it takes
different propagation distance before the waves are trans-
formed to the stationary solutions. Dependence of the
convergence length (defined as length at which η is close
to ηa and the relative change after the consecutive iter-
ation is smaller than 0.01) on the position on the phase-
space plane is depicted in Fig. 4 (b).

FIG. 4. (a) Attractors of the spiraling dynamics at dif-
ferent segment lengths ∆ξ are displayed on the Hamilto-
nian profile at κ = −2. Yellow square - fixed point
ηfp = 0.7143, ϕfp = 0, colored circles - correspond to ∆ξ =
{0.064, 0.128, 0.192, 0.255} (red, green, blue and magenta).
(b) Convergence length for each initial condition on the phase-
space map at κ = −2 and ∆ξ = 0.128. Black dashed line
indicates the separatrix position.

We observe that the total propagation lengths required
to converge to each attractor differ significantly. Tra-
jectories on the right tend to have gradually decreasing
convergence length when located closer to the attrac-
tor, while on the left side of the separatrix there is a
region with short and almost homogeneous convergence
lengths surrounded by a ring with much higher conver-
gence lengths. In fact, this set of initial conditions con-
verges not to the left, but to the right-side attractor by
crossing the separatrix as it is depicted in Fig. 3. In other
words, the convergence basins are not exclusively defined
by the separatrix. As demonstrated and discussed in [18],
growth of the second-order sidebands is not homogeneous
on the phase-space map, but more pronounced on the
right side of the separatrix. So when an initial condition
corresponds to high pump energy on the left side, the
contribution of the sidebands into the dynamics is mini-
mal, so the trajectory follows the separatrix closely to a
position where the second-order sidebands start to play a
more significant role. Since the separatrix is an unstable
solution, this small perturbation results into a change in
the type of dynamics. So the trajectory can now cross

the separatrix and gradually converge to the right-side
attractor. Such a case is depicted in panels 3 of Fig. 3.

B. Dissipation of the Hamiltonian and its impact
on the FWM

As it was discussed in the previous section, the very
existence of additional paths of photons interaction, rep-
resented by the higher-order harmonics, leads to devia-
tion of the FWM dynamics from its ideal model. The
developed model has shown that the second-order side-
bands act as perturbations disrupting the fundamental
dynamics which leads to changes in the Hamiltonian pro-
file. The Eq. (6) do not form an Hamiltonian expression,
however we can consider a general framework of a Hamil-
tonian system impaired by dissipation.
In this case, by using the definition of the conjugate

variables and splitting functions responsible for the fun-
damental dynamics dη

dξ = dH
dϕ = Hη,

dϕ
dξ = −dH

dη = Hϕ

and the additional terms coming from the second-order
harmonics fδη,δϕ, one obtains:

dη

dξ
= Hη + fδη (7a)

dϕ

dξ
= Hϕ + fδϕ. (7b)

Then we take a total derivative of the Hamiltonian
which reads:

dH

dξ
=
∂H

∂ξ

∂ξ

∂ξ
+
∂H

∂η

∂η

∂ξ
+
∂H

∂ϕ

∂ϕ

∂ξ
. (8)

Now we can substitute the Hamiltonian derivatives by
the expressions coming from the ideal model and deriva-
tives of η and ϕ by the modified expressions Eq. (7).
Since the unperturbed Hamiltonian does not change dur-
ing propagation ∂H

∂ξ = 0, the dissipation of the Hamilto-

nian reads:

dH

dξ
= Hη(Hϕ + fδϕ)−Hϕ(Hη + fδη) = Hηfδϕ −Hϕfδη

(9)
This equation represents changes in the Hamiltonian

under the impact of perturbations induced by the second-
order harmonics. Fig. 5 (a) shows dH/dξ portrait on the
phase-space map at different values of κ.
Firstly, we observe on the left side of the separatrix

that the highest decay rate is located close to η = 0,
hence explaining the uneven spiraling rate that has been
observed in this region (dashed white line in Fig. 5 (a1)).
On the right side, the decay rate is not as pronounced,
and there is a region where the Hamiltonian is actually
recovering (dH/dξ positive), which slows down further
the global spiralling that is observed in this region.
Secondly, in Fig. 5 (a1-3), we see that the positions

of regions with growth or decay are more or less pre-
served and do not depend much on either ∆ξ, nor the



7

FIG. 5. (a) Distribution of the Hamiltonian dissipation ac-
cording to Eq. (9) at ∆ξ = 0.128. Thin white dashed and
dotted lines correspond to propagation of η0 = 0.90, ϕ0 = π
and ϕ0 = 0, respectively, over ξ = 60. Thick white dashed line
marks position of the separatrix. White dots denote positions
of stationary solutions. (b) Density of convergence towards
the fixed point at κ = −0.8 and different segment lengths ∆ξ.

value of the non-linearity κ. This implies that dissipa-
tion mechanism depends mainly on the relation between
phases and amplitudes of the pump and the sidebands,
but not on type of the dynamics (i.e. with bounded or
unbounded phase on the right and left sides of the sepa-
ratrix, respectively). With growth of κ (e.g. with higher
non-linearity), we observe that dissipation and changes
in the Hamiltoninan become more significant. Conse-
quently, the nominal ideal dynamics can be modified sig-
nificantly enough during a single segment of propagation
∆ξ that it crosses the separatrix (dotted white lines in
panels (a2) and (a3) Fig. 5). Existence of localized re-
gions with high losses also explains the rapid spiraling on
the left side after just a half-orbit.

To verify the statistical properties of the systems with
higher non-linearity, for instance, κ = −0.8, we run sim-
ulations similar to those in Fig. 4. The results are pre-
sented in Fig. 5 (b) and (c) for numerical simulation and
our modified model, respectively. We observe now that
the system converges only to the fixed point ηfp = 0 on
the left side of the separatrix, at any segment length.
Even trajectories passing closely to the right-side fixed
point (ηfp = 0.543, ϕfp = 0) converge to the left side.
Such a behavior denotes a complete change of the dy-
namics (transition from two stable fixed points to only
one).

Thirdly, we can now justify why the system is spiraling
to the fixed points. From the distributions, presented in
Fig. 5 (a), we see that the fixed points (marked as white
dots) are located at zero-dissipation values and extremes
of the Hamiltonian energy. On the left side, the dissi-
pation is of negative value and the fixed point is a min-
imum of energy, hence forming a stable attractor (as in
the Fig. 5 (a1) and (a2)). In contrast, on the right side of
the separatrix, the fixed point is located in between the
growth and decay regions, hence forming a saddle point.
Therefore, this fixed point becomes gradually more and
more unstable as the non-linearity (i.e. 1/|κ|) is increased
(as in the Fig. 5 (a3)).

V. DISCUSSION

In previous works, the differences between the evolu-
tion of the idealized FWM model and of a real fiber sys-
tem were attributed to gradual depletion of energy lo-
cated inside the three central harmonics which is linked
to the cascade of the FWM events. In the present work,
we can trace the origin of the observed divergences to
the very existence of the second-order harmonics. While
they carry little energy, the resulting dynamics may differ
significantly from the ideal model.
This study bridges a gap between the ideal system

where only three spectral lines participate in the dynam-
ics [12, 14] and the full-spectrum wave-mixing during the
MI dynamics [30]. The modified model Eq. (6) provides
a quantitative description of the cumulative impact of
the higher-order sidebands. It can be relevant for sys-
tems undergoing parametric wave mixing [26, 29] and for
explaining spontaneous FPUT breaking in optical fibers.
Furthermore, we discuss a method to include the higher-
order sidebands into an intrinsically three-waves dynam-
ics, which can help to describe the spatial Benjamin-Feir
instability where the second-order harmonics are linearly
stable [31].
On the left side of the separatrix (or on both, in case

of high non-linearity), we observe a full conversion of
the pump power to the sidebands at any initial condi-
tion. This allows a potential implementation of the gain
through losses mechanism [32] in our experimental con-
figuration. Indeed, it has been demonstrated that by
introducing wavelength-dependent distributed losses [33]
or chain of filters [32] one can induce an optical gain
that results in a new type of MI [34] or more efficient
signal amplification during the FWM process [35]. This
type of instability is different from the parametric gain
occurring at special resonant conditions under effects of
periodic variation of power [36] or dispersion [37–39].

VI. CONCLUSION

In the present work, we demonstrate that the very
existence of photons exchange paths with the higher-
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order harmonics can lead to disturbance of the funda-
mental FWM dynamics. We have investigated the non-
conservation of the truncated FWM dynamics under a
perturbative impact of the second-order sidebands. We
have developed a modified model in terms of conjugate
variables where some additional photon interaction paths
are included, which allows more precise description of the
experimental dynamics observed in [17, 18]. The discus-
sions around the Hamiltonian dissipation has allowed to
define the origin of this new type of dynamics and ex-
plain the spiraling behavior of the trajectories. Before,
it has been shown that the linear fiber losses can induce
variations of the Hamiltonian [21]. Now we demonstrate
that impact of the second-order harmonics can be con-
sidered as a perturbation which leads to appearance of
Hamiltonian dissipation with positive or negative signs.
This approach can be generalized to any system subject
to perturbations.

Similarly to nonlinear fiber optics, deep water waves
propagation in hydrodynamics can be described by the
NLSE, so we can make a link between dissipation in these
systems. The waves propagating in a water tank are im-
paired by frictions and viscosity which impacts the FPUT
recurrence [40] and can lead to change of the dynamics
type. In the deep water approximations, the perturba-
tions can be caused by the effects of damping and forcing
[41] which ultimately leads to the separatrix crossing and
change of the dynamics [19, 20]. In our case, even though
the nature of dissipation is different, it can still however
be considered as a system impaired by a factor external to
the truncated three-waves system which is an exchange of

photons with higher order harmonics. Therefore, such an
approach can be applied to other dynamics which allows
to achieve a more accurate description while retaining a
simple analytical model.
Our approach relies on adiabatic elimination by assum-

ing a constant phase and an averaged spectral amplitude
of the second-order harmonics over each fiber segment,
which, on the one hand, allows a simple analytical for-
mulation of the modified equation but, on the other hand,
is valid only for a short segment of fiber. A complemen-
tary approach for the case of longer fiber segment would
be to identify the relevant distributed model by mean
of data-driven techniques aiming in the identification of
nonlinear dynamics [42].
This work can be also used to gain an understanding

and develop new types of fiber-optic parametric ampli-
fiers. Indeed, filtering out the second-order harmonics
at each iteration allows conversion between states that
are not located on the same trajectory. Our work, which
encompasses a complete study on how the dynamics is
affected by different initial conditions and introduces the
Hamiltonian analysis, can improve understanding on how
such systems are affected by asymmetric losses.
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Appendix A: Complete set of equations for spectral
phases and amplitudes

In order to define the cumulative effect of the second-
order sidebands, we include the extra processes that in-
volve generation of the respective spectral lines. Suppos-
ing small level of non-linearity (κ < −1), we can include
only photon exchange paths that involve the central lines
and one of the sidebands as depicted in Fig. 6.
Considering only symmetric evolution (hence, the

asymmetry invariant equals zero [12, 18]), which im-
plies equal changes in phase and amplitude of +nωm and
−nωm spectral lines, we can denote spectral amplitudes
and phases as a−n = a+n = a±n and φ−n = φ+n = φ±n

(n = 1, 2), respectively. Then the coupled equations pre-
sented in [12] are modified as following:


da0

dξ = −2a2±1a0 sin(2φ±1 − 2φ0)− 4a±2a
2
±1 sin(φ±2 − φ0)− 2a2±1a±2 sin(2φ±1 − φ±2 − φ0)

da±1

dξ = −a20a±1 sin(2φ0 − 2φ±1)− 2a±2a±1a0 sin(φ±2 + φ0 − 2φ±1)
da±2

dξ = −a2±1a0 sin(2φ±1 − φ0 − φ±2)− 2a0a
2
±1 sin(φ0 − φ±2)

(A1)


dφ0

dξ = a20 + 4a2±1 + 4a2±2 + 2a2±1 cosϕ+
4a±2a

2
±1

a0
cos(φ±2 − φ0) +

a±2a
2
±1

a0
cos(φ±2 + φ0 − 2φ±1)

dφ±1

dξ = 1
2κ+ 2a20 + 3a2±1 + 4a2±2 + a20 cosϕ+ 4a0a±2 cos(φ±2 − φ0) + 2a0a±2 cos(φ±2 + φ0 − 2φ±1)

dφ±2

dξ = 2κ+ 2a20 + 4a2±1 + 3a2±2 +
a2
±1a0

a±2
cos(φ±2 + φ0 − 2φ±1) +

2a2
±1a0

a±2
cos(φ±2 + φ0)

(A2)

Since the energy of three lines is conserved at first ap-
proximation, and the accumulated energy in the second-
order sidebands remains small, we can denote a±1 =

√
(1− η)/2. Substituting this simplification in Eqs. (A1-

A2) and using definition a0 =
√
η, results into:


da0

dξ = −(1− η)
√
η sin(2φ±1 − 2φ0)− 2a±2(1− η) sin(φ±2 − φ0)− (1− η)a±2 sin(2φ±1 − φ±2 − φ0)

da±1

dξ = −η
√
(1− η)/2 sin(2φ0 − 2φ±1)− a±2

√
2(1− η)

√
η sin(φ±2 + φ0 − 2φ±1)

da±2

dξ = −(1− η)/2
√
η sin(2φ±1 − φ0 − φ±2)−

√
η(1− η) sin(φ0 − φ±2)

(A3)


dφ0

dξ = 2− η + 4a2±2 + (1− η) cosϕ+ 2a±2(1−η)√
η cos(φ±2 − φ0) +

a±2(1−η)
2
√
η cos(φ±2 + φ0 − 2φ±1)

dφ±1

dξ = 1
2κ+ 2η + 3(1− η)/2 + 4a2±2 + η cosϕ+ 4

√
ηa±2 cos(φ±2 − φ0) + 2

√
ηa±2 cos(φ±2 + φ0 − 2φ±1)

dφ±2

dξ = 2κ+ 2η + 2(1− η) + 3a2±2 +
(1−η)

√
η

2a±2
cos(φ±2 + φ0 − 2φ±1) +

(1−η)
√
η

a±2
cos(φ±2 + φ0)

(A4)

Integrating Eq. (A3) over a short segment of fiber ∆ξ results in Eq. (4). The stationary phase condition for
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FIG. 6. Possible processes of energy exchange between the
three central lines and the second-order sidebands. Sponta-
neous breaking of a pair of pump photons into +2 and −2
sidebands is negligible in comparison to the others processes
which are the stimulated ones.

the second-order harmonics dφ±2

dξ = 0 applied to Eq. (A4)

results into Eq. (5).
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