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Abstract—Intrusion Detection Systems (IDS) are time-sensitive
applications that aim to classify potentially malicious network
traffic. IDSs are part of a class of applications that rely on
short-lived functions that can be run reactively and, as such,
could be deployed on edge resources, to offload processing from
energy-constrained battery-backed devices. The serverless service
model could fit the needs of such applications, given that the
platform allows adequate levels of Quality of Service (QoS)
for a variety of users, since the criticality of IDS applications
depends on several parameters. Deploying serverless functions on
unreserved edge resources requires to pay particular attention to
(1) initialization delays that could be significant on low resources
platforms, (2) inter-function communication between edge nodes,
and (3) heterogeneous devices. In this paper, we propose both
a storage-aware allocation and scheduling policy that seek to
minimize task placement costs for service providers on edge
devices while optimizing QoS for IDS users. To do so, we propose
a caching and consolidation strategy that minimizes cold starts
and inter-function communication delays while satisfying QoS
by leveraging heterogeneous edge resources. We evaluated our
platform in a simulation environment using characterization data
from real-world IDS tasks and execution platforms and compared
it with a vanilla Knative orchestrator and a storage-agnostic
policy. Our strategy achieves 18% fewer QoS penalties while
consolidating applications across 80% fewer edge nodes.

Index Terms—serverless, orchestration, scheduling, edge,
cloud, IDS, cache, consolidation, heterogeneous computing

I. INTRODUCTION

IDS, a time-sensitive and critical application: A wide
range of embedded systems that operate in static and con-
trolled (e.g. sensors in a factory) or dynamic and uncontrolled
environments (e.g. moving drone swarms) can be temporarily
or constantly exposed to critical attacks through network
links. As these attacks might jeopardize their execution and
seriously damage the related infrastructures, considering them
is a critical issue. To mitigate these threats, Intrusion Detection
Systems (IDS) are used to analyze network traffic and detect
patterns of potentially malicious activities. Machine Learning
(ML) models are particularly relevant for a timely classifi-
cation of the traffic, but are computationally intensive. As a
consequence, running them directly on the embedded platform
is not a safe solution, as it can affect their lifespan if operating
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on a battery [8], interfere with other critical tasks, or even be
downright impossible to run due to resource shortage.

IDS on the edge: A solution to offload these resources-
hungry algorithms from deployed embedded systems while
keeping the system reactive to attacks is to run IDS in the
cloud, and in particular on edge devices [9]. IDS must satisfy
variable Quality of Service (QoS) requirements and might be
needed only during critical periods, identified beforehand. As
a consequence, running IDS on reserved edge devices could
be inefficient from a cost perspective. In fact, different types
of attacks might have different impacts on the underlying
infrastructure. In addition, the risk of attack could change in
time and place (according to application domain). We argue
that deploying IDS on unreserved low-energy resources on
the edge could provide the benefit of a cost-effective solution
for running such applications, while keeping the latency lower
than when relying on the cloud.

Serverless computing for IDS on the edge: One of the
main cloud computing paradigms that makes it possible to run
event-driven applications on unreserved resources with fine
resource allocation granularity is serverless computing [10].
Deploying serverless computing on the edge for IDS, and
more generally for time-sensitive and critical applications, is
cost-effective as it opens up optimization opportunities for
service providers: dynamic scaling of resources following load
peaks in interactive applications, as well as fine and measured
allocation granularity for limited edge resources.

Challenges of serverless on the edge for time-sensitive
and critical applications: To deploy time-sensitive appli-
cations composed of short-lived functions in heterogeneous
serverless edge computing, three challenges should be ad-
dressed: (1) reduce initialization delays, (2) avoid high com-
munication delays, and (3) leverage heterogeneous resources
to satisfy variable QoS. Initialization delays. IDS func-
tions are short-lived, and serverless computing relying on
unreserved resources implies a higher rate of function ini-
tializations, each requiring pulling the function image from
a dedicated image storage node for deployment on the
edge nodes [11]. Edge devices expose low-capacity, low-
performance storage devices behind network links limited in
reliability and speed, hence this issue needs to be considered
closely to satisfy users’ QoS. Communication delays. In a



Table I
STATE OF THE ART WORK ON DATA-AWARE AUTOSCALING PLATFORMS

Function chains QoS-aware Hardware
heterogeneity

Programming
constraint

Energy
consumption Function cache Function com-

munications

Cypress [1] ✓ ✓ ✗ ✓ ✓ ✗ ✓
FaDO [2] ✗ ✗ ✗ ✓ ✗ ✗ ✓
FaasFlow [3] ✓ ✗ ✗ ✗ ✗ ✗ ✗
FIRST [4] ✗ ✗ ✗ ✓ ✓ ✗ ✗
HeROfake [5] ✗ ✓ ✓ ✓ ✓ ✗ ✗
Netherite [6] ✓ ✗ ✗ ✓ ✗ ✗ ✓
Palette [7] ✓ ✗ ✗ ✗ ✗ ✓ ✓
Target solution ✓ ✓ ✓ ✓ ✓ ✓ ✓

distributed infrastructure such as serverless edge, the functions
of the same application can be deployed on several nodes
far from each other, implying the use of the network when
these functions need to communicate intermediate results.
This causes delays that can lead to QoS violations [12].
Heterogeneous resources. The serverless platform cannot
consider all placements equal because they will yield various
levels of performance. However, the affinity of a function to
a specific execution platform cannot alone guide scheduling
decisions, because functions can belong to different chains
depending on the requested application.

Problem statement: The problem we address is how to
account for initialization and communication delays when
deploying chains of short-lived serverless functions on edge
cloud, leveraging heterogeneous hardware to optimize time
sensitive applications that require variable QoS, while limiting
the number of edge nodes used.

State-of-the-Art: Previous studies have explored the need
for orchestration platforms that support scheduling function
chains on unreserved resources. Table I summarizes to what
extent these solutions are not applicable in our case study, and
Section VII gives further details. These contributions generally
target cloud deployments where the issue is to fit as many tasks
as possible in an always-on homogeneous infrastructure of
nodes, so as to maximize resource efficiency. The scope of our
study is to show that with adequate allocation and scheduling
policies, we can fit well-defined applications on a limited
number of heterogeneous edge nodes and reduce the overall
energy consumption of the cluster through consolidation.

Contribution: HeROcache, a QoS-aware Heterogeneous
Resources Orchestration Platform for Serverless Edge
Computing based on caching and consolidation: In this
paper, we present a solution that addresses the three challenges
mentioned above. HeROcache: (1) leverages a caching mech-
anism on the edge nodes that reduces initialization delays
without saturating their storage capacity; (2) consolidates tasks
on an application basis to limit the number of slow inter-
node communication delays; (3) manages to respect QoS
requirements for critical tasks by using metadata collected
from the applications and the heterogeneous platforms used
for deployment. These data include performance and energy
metrics that guide the orchestrator in making informed deci-
sions when scheduling tasks on heterogeneous resources.

Results: We evaluated HeROcache in the context of a
real-word IDS application, characterized on various execution

platforms. This evaluation was carried out with an ad hoc
simulator. We also implemented the behavior of a vanilla
Knative [13] orchestrator. HeROcache manages to outperform
Knative, keeping QoS violations under 28% while consoli-
dating tasks on 80% less edge nodes in the infrastructure.
Powering off these nodes would result in a drastic reduction
in static energy consumption.

The paper is organized as follows: Section II gives
some background knowledge; Section III explains the overall
project; Section IV details our offline metadata collection ap-
proach; Section V describes our online orchestration strategy;
Section VI discusses evaluation results; Section VII discusses
state-of-the-art work; Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Serverless challenges

Serverless is a trending service model for the cloud [10]: by
shifting the resource allocation responsibility from customers
to service providers, it alleviates an important part of the
complexity from application developers and opens new oppor-
tunities of optimization and cost control for the infrastructure
manager. In a serverless architecture, developers design their
applications as a composition of stateless functions. Stateless
means that the outcome of the computation depends exclu-
sively on the inputs [6]. These functions take a payload and
an invocation context as input, and produce a result that is
stored in a persistent network-accessible storage tier.

When an event triggers their execution, functions are de-
ployed on nodes in the infrastructure, in execution environ-
ments called replicas. As functions are stateless, requests can
be mapped to any available replica. Scaling a serverless ap-
plication consists in growing or shrinking the pool of replicas
for the functions following the load peaks. Kubernetes-based
serverless platforms such as Knative [13] or OpenWhisk [14]
proposed a threshold-based model for rightsizing the pool of
replicas. For any function, an autoscaler can deploy multiple
replicas to absorb the load. Each replica is allocated on an
execution platform (e.g. one CPU core, one GPU, etc.) and
has a request queue of fixed length for incoming requests.
The number of replicas for a given function at any moment
determines its concurrency level. A scheduler places user
requests in queue on function replicas. When a replica has no
more requests, it is deallocated. When a function is requested
while no replica exists, it goes through a cold start.



Figure 1. Serverless IDS platform, system overview

This cold start presents a risk of increased latency, as the
provider has to allocate hardware resources and instantiate the
application before responding to the request. The more com-
plex the application, the higher the risk of large delays [15].
Providers usually pre-allocate some resources to avoid cold
starts, which comes with a cost in resources provisioning.
Commercial actors such as AWS, Google and Microsoft all re-
use function instances to some extent, keeping them running
during a timeout period in order to circumvent latency costs
incurred by cold starts [16].

A recent study has shown that 50% of serverless appli-
cations deployed at Microsoft Azure Durable Functions 1

consist of 3 or fewer functions, with 65% of the applications
exhibiting a simple DAG of functions arranged as linear chains
[17]. Our IDS application consists of different chains that are
two functions long, as described in Section IV-B. Workload
characterization work showed that 25% of the functions de-
ployed at Microsoft Azure Functions 2 execute in 100 ms or
less [18]. The functions that make up our IDS application
run for hundredths to tenths of a second, which makes them
particularly prone to critical slowdowns in the context of
dynamically allocated resources.

B. Function cache

Function replicas are initialized from function images (e.g.
a Docker image). These are stored in an image registry. Such
registries can be remotely accessible through the Internet.
However, numerous previous studies [1]–[4] only consider
best-case scenarios in which function images are already
available on edge nodes. This does not reflect the reality where
function images are stored in registries on dedicated nodes and
pulled by edge nodes where and when functions are deployed.

1https://learn.microsoft.com/en-US/azure/azure-functions/durable/durable-
functions-overview

2https://azure.microsoft.com/en-us/products/functions/

In fact, pulling images on the edge nodes can account for
more than 80% of function response time [11] since the cold
start latency dominates the function’s total response time. This
is not acceptable when the platform has to meet stringent QoS
requirements, as is the case for critical tasks such as IDS.

C. Inter-function communications

As it is necessary to support dynamic scaling of the func-
tions, each invocation of a serverless function is self-contained
and does not carry information or context from previous
invocations. This allows replicas to queue user requests and
handle them sequentially without the need to go through a
cold start between requests. This introduces a constraint on the
serverless platform: if an application is composed of several
functions that form a processing pipeline, the output of each
function must be stored in persistent storage to be fed as input
to the next function in the chain [19].

State-of-the-art work showed that serverless functions that
communicate through remote storage can suffer up to 11x
slowdown compared to functions using direct communications
[12]. The functions of our IDS application need to com-
municate intermediate results at each stage of the applica-
tion’s DAG. When functions are deployed on different edge
nodes, inter-function communications will have to be achieved
through the use of remote storage. This introduces slowdowns
that can deteriorate QoS.

III. IDS APPLICATIONS ON SERVERLESS EDGE

Orchestrating serverless applications while achieving SLA
requires carefully modeling application characteristics and
taking these into account when allocating resources and
scheduling user requests on the serverless platform. Figure 1
gives an overview of the overall lifecycle of a request on our
serverless platform. It is divided in two phases; an offline
phase that consists in characterizing the applications deployed
by the users on edge platforms, and an online phase where the
requests to these applications are scheduled on the platform.

https://learn.microsoft.com/en-US/azure/azure-functions/durable/durable-functions-overview
https://learn.microsoft.com/en-US/azure/azure-functions/durable/durable-functions-overview
https://azure.microsoft.com/en-us/products/functions/


Offline phase. In our platform, the lifecycle of the ap-
plication starts during an offline phase, where the developer
provides the code for their functions for different hardware
architectures (GPU, CPU, DLA, etc.) 1 . This code is stored
by the service provider in a function registry. The functions are
then deployed on a measurement node 2 where they are run to
generate metadata relative to the execution of the functions on
heterogeneous edge nodes. Memory requirements, execution
time, cold start time, energy consumption, function size, and
communication size for each function are written to a metadata
store 3 . Running the offline phase is required once for a given
function on a given platform, as described in Section IV.

Online phase. Requests are sent to the IDS applications
with a payload of TCP traffic (serialized packets) to ana-
lyze 4 , and an associated desired QoS level for request
response time. The request is appended to a request queue 5
at the orchestrator level. When the scheduler pops the request
from the queue, the metadata store is queried to retrieve the
appropriate function metadata 6 .

The scheduler will then try to find an available replica of
the first function in the application to handle the request 7 . If
such a replica does not yet exist, the autoscaler will be asked
to initialize a new instance of the function 8 . During the
lifecycle of the application, the autoscaler periodically checks
the average load of each function to adjust the number of repli-
cas deployed on the platform, depending on the concurrency
threshold set by the service provider.

When the application completes, it returns a classification
vector to the user that gives the probabilities that the traffic is
malicious, exhibiting patterns of a potential attack.

IV. OFFLINE PHASE: IDS CHARACTERIZATION

A preliminary stage of platform and workload character-
ization is necessary to achieve adequate resource allocation
and task placement for the execution of IDS models. To
this end, we benchmarked several IDS models in terms of
performance and energy on heterogeneous edge platforms that
are representative of edge devices [20]. This section describes
our methodology and results.

A. Execution platform benchmarks

We used platforms that are representative of what one can
find in the edge [8], [20]: (1) Raspberry Pi 4B equipped with
a quad core ARM Cortex-A72, 4 GB LPDDR4 main memory
and a 16GB SD Card. It runs on Linux Raspbian 5.4. (2)
Nvidia Jetson Xavier AGX composed of three processing
elements: an 8 core NVIDIA ARM Carmel CPU, an NVIDIA
Volta GPU with 512 CUDA cores, and a Deep Learning
Accelerator (DLA), which is a fixed-function hardware accel-
erator designed for Convolutional Neural Networks (CNN). It
is assumed to be more energy efficient than the GPU. The
NVIDIA Xavier AGX is equipped with 16 GB LPDDR4 and
a 32 GB eMMC 5.1 Flash Storage. It runs on Linux Tegra
4.9.10. The 15 Watts Desktop power mode was used. (3)
PYNQ-Z2 Development Board, a board based on the Xilinx

Table II
IDS MODELS ARCHITECTURES AND SIZES

Model Architecture Model Size on CPUs (MB) Model Size on GPU (MB)

NoFS-RF 5 trees of 100
maximum depth 28 15.4

AE-RF 5 trees of 50
maximum depth - 32.9

ES-RF 10 trees of 10
maximum depth 9.1 5.5

NoFS-DNN1 4 Dense Layers
(128x64x32x10)

0.144
AE-DNN1 0.321
ES-DNN1 0.053

NoFS-DNN2 5 Dense Layers
(7024x704x288x64x10)

3.33
AE-DNN2 2.96
ES-DNN2 2.61

NoFS-CNN 2 Conv1D (x64) - MaxPool
3 Conv1D (x256) - MaxPool
3 Dense Layers (100x20x10)

4.77
AE-CNN 2.9
ES-CNN 2.6

Zynq XC7Z020 System on Chip. It is equipped with the Artix-
7 FPGA and 512 MB DDR3 memory and a 16GB SD card.

B. Workload characterization

Our application consists of different preprocessors and clas-
sifiers. The preprocessor selects a subset of relevant features
of the TCP packets. 3 different preprocessing approaches
were used: (1) using all the packet features without any
selection (NoFS: No Feature Selection); (2) using a DNN
auto-encoder to project features in a smaller latent space (AE:
Auto-Encoder); and (3) expertly selecting a subset of the
features (ES: Expert Selection). For the classifier part, we used
Random Forest (RF), two different Dense Neural Network
(DNN) architectures, and a CNN.

Table II shows the IDS models considered in this study
and some of their characteristics. These models were trained
and characterized on the reference network intrusion dataset
UNSW-NB153 where each observation represents statistical,
content and time features on data traffic during a time window,
and tagged as “normal” or “attack”. The dataset includes 9
attack categories. The neural network models were exported
and optimized using TensorFlow Lite and TensorRT when
intended for CPU and GPU/DLA platforms, respectively.
Regarding Random Forest, the models were exported using
the Emlearn and HummingBird.ml frameworks when targeting
CPU and GPU platforms, respectively. hls4ml was used to
export neural network models for the FPGA target.

C. Performance measurements results

Each of the IDS models was deployed on the target plat-
forms and inferences were run with a set of 80,000 packets
from the UNSW-NB15 dataset to characterize inference la-
tency. The results are shown on Figure 2. Only one model (ES-
DNN1) has been characterized on the FPGA platform since the
other HLS models could not be accommodated on the target.
The conclusion that was drawn from these results is that for
neural networks, the Xavier CPU achieves the best perfor-
mance in the majority of cases, except for NoFS-CNN which
takes advantage of the GPU capabilities due to its high number
of parameters and GPU efficiency for convolution operations.
For Random Forest models, the fastest processing element is
the GPU. In terms of cost and availability, the Xavier AGX

3https://research.unsw.edu.au/projects/unsw-nb15-dataset

https://research.unsw.edu.au/projects/unsw-nb15-dataset
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Figure 2. Latency characterization of IDS models
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Figure 3. Energy characterization of IDS models

is respectively around 20x and 10x more expensive than the
RBPI4 and the Pynq-Z2 platforms, respectively. We size our
infrastructure accordingly by providing more RBPI4 platforms
than Xavier AGXs to be representative of real deployments.

D. Energy consumption measurements results

We run inferences on IDS models on each processing
element and measured the energy consumption of the platform
using the N6705A DC Power Analyzer. The results are shown
in Figure 3. For the same reasons mentioned above, only ES-
DNN1 was characterized on FPGA. We observe that the CPU
processing elements show a lower energy consumption than
the GPU in the majority of cases. The only case where the
GPU shows better results is when the speedup it achieves as
compared to CPUs is high. For instance, this occurs for NoFS-
CNN where RBPI4 CPU is more than 30x slower than GPU.
Even if Pynq-Z2 shows the best energy efficiency with the ES-
DNN1 model, since it is more expensive and exhibits a limited
design genericity, we assume it less available than RBPI4.

V. ONLINE PHASE: HEROCACHE ORCHESTRATION

A. Overview of HeROcache

The HeROcache orchestrator is mainly composed of two
modules, the autoscaler and the scheduler (see Figure 1).
The autoscaler is in charge of dynamic resource allocation: it
assigns execution platforms to function replicas. The scheduler
handles the placement of user requests on the replicas.

Table III
NOTATION DICTIONARY

Notation Description
xa Allocation of resource for application a
ya Invocation of application a
zi Placement of task for function i

fN,P
A function f scheduled to run on a platform P

available on node N
fa A function f that belongs to application a

A
Total number of applications to be scheduled on

the platform

Fa
Total number of functions that belong to an

application a

RTfN,P

Time to retrieve function image for f to run on a
platform P available on node N

NBN
Network bandwidth between node N and the

infrastructure
SMTN Storage medium throughput on node N
SMLN Storage medium latency on node N
QP QoS penalty
QD QoS deviation

WET Worst execution time
TT Task total time
CST Cold start time
ST Storage time
ET Execution time
EC Energy consumption
IS Image size
HP Hardware price
TC Task consolidation
Q Task queue on a replica
CP Cache proportion

SISf
a , SOSf

a
Size of resp. input, output state of function f that

belongs to application a

thresholdf,h
Concurrency threshold for a function f on a

replica of hardware type h

scaleCost
fiN,P
a

Cost of creating a new replica for function fi
from application a on a platform P available on

node N

schedCost
fiN,P
a

Cost of scheduling an execution of function f
from application a on a platform P available on

node N

HeROcache addresses the three above-mentioned chal-
lenges through the design of complementary greedy cost-
minimization strategies at the autoscaler and scheduler levels.
HeROcache minimizes initialization delays by considering
the latencies of image extraction at the autoscaler level.
Prefetching strategies are also implemented for function image
caching. Inter-function communication costs are considered
mainly in the scheduler part, which naturally tends to con-
solidate functions from the same application. The autoscaler
participates indirectly in this consolidation by prefetching the
next functions of the DAG of the application on the same
edge node. Finally, heterogeneous platforms are taken into
account as the different execution costs extracted during the
offline phase (see Section IV) are considered throughout the
entire autoscaling and scheduling process. The next sections
describe both the autoscaling and scheduling strategies.

B. Autoscaling cost minimization strategy

We formulate resource allocation as an optimization prob-
lem and solve it with a simple greedy algorithm. The objective
of the autoscaler is to minimize the cost of the sum of
allocations scaleCosta for ya invocations of application a
(Equation 1) for all applications in A, under the constraint of
a finite infrastructure with xa being the allocation of resources
for application a (Equation 2).



∀A, min

A∑
a=0

ya · scaleCosta (1)

s. t.
A∑

a=0

xa ≤ TotalResources (2)

The cost of resource allocation for an application a is the
sum of the allocation costs for its functions (Equation 3). One
replica is allocated to one execution platform.

scaleCosta =

Fa∑
i=0

scaleCost
fiN,P
a (3)

Each function replica has an associated allocation cost.
We designed a cost model (Equation 4) for the resource al-

location needed to deploy one function of a given application.
It is composed of four components, the sum of which we need
to minimize:

• the cache proportion CP translates the scattering of the
functions on the different edge nodes. The higher the
score, the more scattered the functions on the nodes.
Minimizing this term helps in consolidating the functions;

• the total time TT represents the total execution time of
the function. It consider the QoS of the application, the
heterogeneity of the platform and the deployment cost
(whether the image is cached or distant). The higher this
cost, the lower the QoS;

• the energy consumption EC translates the energy con-
sumption of the function deployment. The higher EC,
the higher the cost;

• the hardware price HP describes the Total Cost of Own-
ership (TCO) supported by service providers related to
the execution time. This translates the cost of deployment
on a given hardware platform. The higher HP the higher
the cost of the solution.

The overall objective of the cost model is to deploy a
function with the lowest cost possible, that is an increased
consolidation, a reduced makespan, a reduced energy con-
sumption, and a reduced cost of ownership. We will detail each
part of Equation 4 in the next paragraphs. Each component of
the equation is weighted to allow flexible tuning; the values we
chose for the deployment of the IDS application are specified
in the evaluation part (Section VI).

∀N,∀P ∈ N, scaleCost
fiN,P
a = kCP · CPaN+

kTT · TT fN,P
+ kEC · ECfN,P

+ kHP ·HP fN,P

(4)

Cache Proportion. As seen earlier, enforcing task (a func-
tion execution) consolidation among applications should help
minimize communication and delays in the function chains.
HeROcache pushes toward deploying replicas of a function on
nodes where other functions belonging to the same application
are already deployed.

To do so, HeROcache keeps track of CF
fiN,P
a the number

of function images fi of application a deployed on node N
on a given execution platform P (e.g. GPU) available in cache
on node-local storage. The proportion of cached functions is

computed for each application (Equation 5) and then averaged
over all applications running on a given node and inverted
to give a high value for non-consolidated functions (as the
objective is to minimize this proportion), see Equation 6.

∀a ∈ A, ∀f ∈ a, CF
fiN,P
a =

∑Fa
i=0 isCached(fi,N,P )

Fa
(5)

∀N,∀P ∈ N, CPaN =
A∑Fa

i=0 CF
fiN,P
a

(6)

In addition to the cost minimization, in order to reduce de-
ployment delays, the autoscaler prefetches images for function
chains when deploying a new replica on a node. It inspects
function chains and sequentially pulls missing function images
from the remote registry to node-local storage asynchronously.

Total Time. The second component of scaling cost is the
total time. Minimizing total time should prevent initialization
delays snowballing throughout function chains, thus prevent-
ing SLA violations.

Thanks to the metadata collected about each function during
the offline phase, the autoscaler is able to predict the time to
completion TT fN,P

of the first request that will be scheduled
onto a new function replica (Equation 7).

TT fN,P
= RT fN,P

+WT fN,P
+ CST fN,P

+ ET fN,P
(7)

• RT fN,P
is the duration of the image retrieval time of the

function. If the function’s image is already cached on the
compute node, this duration is zero; otherwise, it depends
on the image size IS and is influenced by the network
link bandwidth NB, as the image will be read from a
remote image registry, and by the node storage medium
throughput SMT and latency SML, as the image will
be written and stored locally for further use (Equation 8);

RT fN,P
=

ISfN,P

min(NBN , SMTN )
+ SMLN (8)

• WT fN,P
is the time that the task will spend waiting in

the queue of the platform. At the time of replica creation,
this will be equal to zero as we only predict the latency
of the first request on the replica;

• CST fN,P
is the cold start time required to initialize

the function’s instance (i.e. decompressing the image,
preparing the container, initializing the libraries, etc.). It
is measured in function of extracted metadata;

• ET fN,P
is the duration of the function execution, includ-

ing the time of communications with its potential prede-
cessors and successors in the DAG. This time considers
the platform metadata extraction (Equation 9).

ET fN,P
= CT fN,P

+ ST fN,P
(9)

CT fN,P
is the compute time of the function – the expected

time for the function to complete its execution once fully ini-
tialized. The value depends on the performance and availability
of the execution platform. ST fN,P

is the storage time of the
function – the expected time for the function to retrieve its



input data and store its output data. The value depends on
network link and storage devices performance.

The function storage time ST fN,P
depends on the size of its

state, i.e. its input and output data. Retrieving the input and
storing the output of each function in the chain depend on
the performance of the network link and the selected storage
medium throughput and latency, as shown in Equation 10.

ST fN,P
=

SIS
fiN,P
a + SOS

fiN,P
a

min(NBN , SMTN )
+ SMLN (10)

Energy Consumption and Hardware Price. Finally, ac-
counting for energy consumption and hardware price should
help breaking ties when multiple possible allocations seem to
be yielding the same cost (providing the same level of QoS).

ECfN,P
and HP fN,P

correspond respectively to (a) the
dynamic energy consumption generated by this allocation
obtained thanks to the offline workload and platform charac-
terization phase and (b) the Manufacturer’s Suggested Retail
Price (MSRP) of the hardware mobilized HardwarePriceP
to deploy the function on said node and platform with regards
to the function execution time ETfN,P

(Equation 11).
HP fN,P

=
HardwarePriceP

ETfN,P

(11)

C. Scheduling cost minimization strategy

As with autoscaling, we formulate an optimization problem
to find the optimal scheduling configuration for each user
request (as the QoS is to be guaranteed on a user request
basis) and solve it with a simple greedy algorithm. The
objective of the scheduler is to minimize the cost of zi tasks
placement on Ri replicas of function i for ya invocations of
application a (Equation 12), under the constraint of a finite
set of function replicas Ri (Equation 13) previously deployed
by the autoscaler. We assume that applications always run to
completion and that nodes do not fail, hence there is no cost
associated to task migrations or retries.

min

A∑
a=0

ya · schedCosta (12)

s. t.∀a
Fa∑
i=0

zi ≤
Fa∑
i=0

Ri (13)

As the platform operates at the granularity of functions, the
cost of scheduling an application a is the sum of the scheduling
cost for its function chain (Equation 14).

schedCosta =
A∑

i=0

schedCostfia (14)

Each function scheduled in the chain has an associated cost
computed for each possible placement on an existing replica.
We designed a cost model (Equation 15) for the placement of
tasks required to complete a user request for an application.

schedCostfiN,P
= kQP ·QPfN,P

+ kEC · ECfN,P
+ kTC · TCfN,P

(15)

It is composed of three components, the sum of which we
need to minimize:

• the QoS penalty QP is incurred by the service provider
when a user request is not handled in a timely manner. It
is a boolean value that determines whether or not a given
placement will make the application miss its deadline;

• the energy consumption EC translates the energy con-
sumption of the function execution. The higher EC, the
higher the cost;

• the task consolidation TC describes resource usage for
a given placement. The lower TC, the more a replica
queue is close to its concurrency threshold, maximizing
the hardware utilization.

The overall objective of the cost model is to place tasks in
function replicas at the lowest possible cost, that is avoiding
penalties suffered by the service provider for missing the
application’s deadline set by user request, using the less power-
hungry execution platforms as possible, and enforcing a high
usage ratio for the resources allocated to each function. We
describe each part of Equation 4 in the next paragraphs. Each
component of the equation is weighted to allow flexible tuning;
the values we chose for the deployment of the IDS application
are specified in the evaluation part (Section VI).

QoS penalty. The scheduler selects incoming tasks by earli-
est deadline first, leveraging the function metadata to compute
a worst-case execution time noted WET (Equation 16). The
user request is associated with a QoS level that sets a variable
QoS deviation QD applied to the application execution time.
This constitutes the application deadline.

∀ (N,P ), WETf = maxETfN,P (16)

We can predict the application penalty by summing the
expected total time for its tasks and comparing it with the
application’s deadline (sum of functions deadlines), see Equa-
tion 17. We re-use Equation 7 to compute the total time
for a function execution; however, here, RT and CST will
be zero as the replica has already been initialized by the
autoscaler during allocation. WT will be equal to the sum
of the execution time of tasks of higher priority currently in
queue on the replica.

QPa =

Fa∑
i=0

TTfiN,P
>

Fa∑
i=0

WETfi ·QDa (17)

By factoring storage time in the scheduling cost, we seek
to nudge the scheduler into placing tasks as close as possible
to the data they operate on. To prevent saturating node-local
storage, the platform proceeds to cleanup the intermediate data
as soon as the application finishes its execution, i.e. when the
last function in the chain returns its value.

Energy consumption. ECfN,P
corresponds to the dynamic

energy consumption generated by this scheduling configura-
tion. It is related to the execution time of the function. The
offline measurement results are used for this term.

Task consolidation. We want function replica queues to
reach their maximum length: the worst case is to have an
empty queue, meaning that hardware resources would have
been allocated for nothing. We also want to prevent replica



queues from growing too fast beyond this threshold, otherwise
it could generate QoS violations because of long waiting times.

We start by establishing the platform usage ratio PU of
each replica for the function we try to schedule (Equation 18):
the closest the replica queue length Q is to the concurrency
threshold (threshold in the equation), the lower the score.

PUfN,P
=

QN,P

thresholdf,P
(18)

Then, we compute a task consolidation score TC by ap-
plying an exponential function to PU (Equation 19). This
makes TC the lowest for placements in idle replicas, and this
cost increases sharply as the queues are filled up, resulting in
the scheduler prioritizing placements on empty replicas and
disregarding replicas where the request queue is saturated.

TCfN,P
= exp(PUfN,P

) (19)

VI. EVALUATION

This section presents our evaluation methodology and re-
sults obtained in an IDS deployment scenario on edge devices.
The evaluation is done in two phases: we compare HeROcache
with several baselines, then we evaluate the impact of each of
its components (autoscaler and scheduler) taken apart.

A. Experimental setup

Offline characterization metadata. To evaluate our contri-
bution, we ran measurements for three IDS applications (see
Section IV-B). These applications consist of different prepro-
cessing and inference functions that have been implemented on
heterogeneous hardware (see Section IV-A). These metadata
served as input for a simulator 4 we built using SimPy [21].

Online scheduling. We generated synthetic scenarios by
modeling user requests as a Poisson process, following a
uniform distribution across application invocations as devised
in [22]. By tweaking the λ parameter of the Poisson process,
we can generate various traces with different rates of Requests
per Second (RPS). We considered a scenario with 10 edge
nodes communicating through 4G (LTE) connectivity. The
bandwidth for 4G LTE depends on various factors ranging
from antenna coverage, to communications service provider’s
QoS, to receiver quality. We chose to use broad values of
100 Mbps (12.5 MB/s). TCP packets to be analyzed are
1.5 KB size, and are sent in batches of 100 units to the IDS
applications. This results in a rate of 83 RPS in our scenario,
for 10 minutes of user requests.

Weights for the autoscaling decisions (Equation 4) have
been set to kCP = 3

8 , kTT = 3
8 , kEC = 1

8 and kHP = 1
8 .

Weights for the scheduling decisions (Equation 15) have been
set to kQP = 2

3 , kEC = 0.5
6 and kTC = 1.5

6 . We use values
inspired from [5] so as to be comparable.

In our experiments, we make it possible to evaluate the
autoscaler and the scheduler separately to better understand
their behavior. We evaluated different combinations to show
which part of each policy is relevant to address the various

4https://github.com/b-com/HeROsim

challenges in our problem. We implemented three autoscalers
in our simulator:

• HeROcache (HRC) – Our autoscaling policy;
• HeROfake (HRO) [5] – Enforces a policy similar to HRC,

but is oblivious of storage costs;
• Knative (KN) [23]– We modeled the Knative autoscaler

behavior to the best of our knowledge. It deploys function
replicas on the most available node.

On top of these autoscalers, we used four schedulers:
• HeROcache (HRC) – Our scheduling policy;
• HeROfake (HRO) [5] – Enforces a policy similar to HRC,

but is oblivious of storage costs;
• Knative (KN) [13] – Knative considers execution plat-

forms as homogeneous and does not enforce QoS. Repli-
cas are sorted by in-flight requests count; the replica with
the shortest queue is selected;

• Bin-Packing First Fit (BPFF) [24] – Tasks are consoli-
dated on the minimum number of nodes and execution
platforms. Nodes are sorted by available memory; the
first function replica on a node with available memory
will be selected for the user request. BPFF is likely to be
the scheduling policy for AWS Lambda;

• Random Placement (RP) – Tasks are scheduled on a
randomly selected replica.

The naming of each scenario consists of two parts divided
by a dash symbol. The first part corresponds to the autoscaling
policy; the second part corresponds to the scheduling policy.

We designed a two-step performance evaluation:
(1) Comparison against baselines: we compare full-featured
HeROcache (HRC-HRC) to: (1) full-featured Knative (KN-
KN), (2) full-featured HeROfake (HRO-HRO), (3) Knative
autoscaler with BPFF scheduler (KN-BPFF), (4) Knative au-
toscaler with RP scheduler (KN-RP).
(2) Impact of HeROcache components on the overall per-
formance: we discuss the individual impact of the autoscaler
and the scheduler in different strategies: (1) HeROcache
autoscaler with HeROfake scheduler (HRC-HRO), and (2)
HeROfake autoscaler with HeROcache scheduler (HRO-HRC),
comparing them to full-featured HeROcache and HeROfake.

We evaluate HeROcache on the basis of three metrics:
(1) the number of unused nodes in the infrastructure, which
measures the consolidation level reached; (2) QoS penalties,
which expresses the capability for our strategy to meet user
requirements; (3) energy consumption, which is a salient
challenge in resource-constrained edge computing.

B. Experimental results

1) Comparison against baselines: Tasks consolidation.
Figure 4a shows that our combination of autoscaler and sched-
uler achieves the best task consolidation, utilizing only 20%
of the edge infrastructure for the execution of the scenario.
Knative behaves as expected, spreading the load across the
entire infrastructure. Note that BPFF under Knative produces
slightly different results: as task queues are maximized, the
autoscaler does not need to allocate as many replicas. In this

https://github.com/b-com/HeROsim
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Figure 4. Evaluation – Comparison against baselines (a-c) and impact of individual components (d-f)

scenario, if the unused edge nodes were powered off instead
of sitting idle, our strategy would allow the service provider
to save almost 100 Wh (that is 80% of the static energy and
more than 83% of the total energy) by turning off 80% of the
infrastructure, while still guaranteeing the application response
time for 72% of user requests.

Quality of Service. Figure 4b illustrates how relevant taking
resources heterogeneity into account is. Indeed, our policy
manages to keep QoS violations at 27.5% while leaving 80%
of the infrastructure unused. Knative violates just over 30%
of the user requests QoS while spreading the load over all
the available edge nodes, which is counterintuitive. This is
explained by the dependencies between tasks that Knative does
not take into account. As a consequence, tasks communicate
over slow network storage. While tasks in Knative may spend
less time in queue, they still exhibit higher latency than in
HeROcache. When using the BPFF policy, violations go up
to almost 70%: in this situation, replica queues are too long
for tasks to complete within their deadline. For comparison’s
sake, Knative using the RP scheduler keeps QoS violations
around 50%. HeROfake generates 39% QoS violations.

Our policy keeps the proportion of cold starts below 0.011%
of user requests, whereas Knative suffers from 4 times more
cold starts. In HeROcache, node-local image cache is hit in
33% of function initializations, reducing initialization delays
by 17.6%. With HeROcache, 30% of the tasks manage to com-
municate through node-local storage, speeding up application
execution by reducing communications latency by 88.4%.

Energy consumption. Figure 4c shows that HeROcache
manages to cut dynamic energy consumption by a third: with
a makespan of 1505 seconds for the scenario, the infrastructure
consumes 0.0088 kWh, as compared to 0.0266 kWh for
2193 seconds of execution time under Knative. Not only
does HeROcache’s consolidation strategy allow for power-
off policies that could provide important reductions in static
energy requirements for running IDS applications on the
edge, but by selecting adequate execution platforms, it also
reduces the overall consumption of the edge cluster. HeROfake
consumes the most energy at 0.31 kWh because of a much
longer execution time for the scenario.

2) Impact of each component: Tasks consolidation. Fig-
ure 4d shows that strategies that are oblivious to storage costs
do not manage to consolidate tasks as well as HeROcache:
HRO-HRC and HRO-HRO respectively use 80% and 70%

of the infrastructure. We explain these results as follows: as
dependencies are not satisfied in time, load keeps on growing
for the various functions, leading the autoscaler to increase the
number of replicas, thus enroling more nodes for the duration
of the scenario.

Quality of Service. Figure 4e illustrates the consequence of
the previous point: QoS penalties are higher with an autoscaler
that does not factor in the delays introduced by function image
pulling and function communications. While HRO-HRC is
indeed aware of hardware and request heterogeneity, it still
finishes at 37.9% of applications missing their deadline.

Energy consumption. Figure 4f displays that while HRO-
HRC allocates 70% of the infrastructure, it still manages to
keep energy consumption almost as low as HRC-HRC. This is
because it chose the nodes that were the least energy-hungry,
at the expense of penalties that it could not predict since it is
not storage-aware.

Note on complexity: HeROcache employs a greedy opti-
mization technique comparable to HeROfake. In HeROcache,
the complexity is bounded by the number of applications A,
their size fa and the size of the infrastructure N (Equation 20):
in the worst-case scenario where all the resources are available,
the autoscaler scans through the whole infrastructure N to
score each node for replica creation.

Oautoscaling(A · fa ·N) (20)

As the scheduler works with already created replicas Rf of
functions, its complexity is lower (Equation 21).

Oscheduling(A · fa ·Rf ) (21)

As our current case study implies a limited subset of
IDS functions with a reasonable number of edge nodes, the
scalability was not an issue. However, this overhead should be
considered for wider deployments of different case studies.

VII. RELATED WORK

Previous work focused on autoscaling platforms for the
deployment of short-lived tasks, comprised in applications
exhibiting unpredictable load patterns (see Table I).

[2] proposes a data-aware orchestrator, but does not con-
sider the snowballing of delays across function chains. [4]
does not support the scheduling of these function chains. All of
these contributions consider a homogeneous infrastructure [1]–
[4], [7]. This is not representative of our use case, where edge



devices are highly heterogeneous. HeROfake [5] leverages
hardware heterogeneity in their orchestration policy, but does
not integrate inter-function dependencies nor image caching
in their cost model. It was chosen for evaluation purposes
to highlight the need to consider such costs. Some of these
contributions optimize energy consumption at the autoscaler
level [1], [4]. However, they focus on the dynamic part of
energy consumption: they do not consider the possible impact
of consolidation towards static energy consumption. We argue
that service providers should seek task consolidation as a
means to power off as many nodes as possible, dramatically
lowering the overall infrastructure energy requirements. In
[25], the authors investigated the various overheads inflicted by
serverless orchestration. This element has not been taken into
account in our study, as we are targeting an edge infrastructure
limited in size for the deployment of a single application.

VIII. CONCLUSION

In this work, we presented an allocation and scheduling
policy for serverless edge computing. This policy seeks to
optimize time-sensitive applications deployment for QoS on
energy-constrained devices. By leveraging workload charac-
terization, hardware heterogeneity and local storage devices
on the edge nodes, HeROcache enforces applications consoli-
dation and manages to reduce average initialization delays by
17.6% and communication delays by 88.4%. This results in
reducing the static energy consumption of the platform by
80% while maintaining under 28% of QoS violations. We
plan to generalize the HeROcache approach for case studies
including several types of application on larger edge or cloud
infrastructures. For such a sake, machine learning strategies or
metaheuristics could be used for scaling purposes.
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APPENDIX

A. Artifact description

We developed a Python simulator 5 that models a generic
serverless platform. The software design given in Figure 5
follows the reference architecture of state-of-the-art orchestra-
tors such as Google Knative [13] or Apache OpenWhisk [14].
This section describes the general organization of the artifact;
more details are given in the README.md file at the root of
the software repository.

5We used the SimPy [21] library (MIT licensed) for discrete-event simula-
tion.
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Figure 5. High-level view of the simulator’s architecture

1) Simulation tool: The source code for the simulator and
the input data used for the experiments conducted in our paper
are available in the following repositories:

• Persistent identifier: https://hal.science/hal-04468894;
• GitHub repository: https://github.com/b-com/HeROsim.
2) Simulator usage: HeROsim replays an allocation and

placement scenario under different orchestration policies. A
simulator run requires the following inputs:

1) a workload description – found under data/ids;
details on the characteristics of the functions that
will be invoked during the scenario, i.e. their execution
time, cold start time, memory requirements, energy
consumption, etc.;

2) an infrastructure description – found under
data/ids/infrastructure.json; the listing of
the different nodes available, their different execution
platforms (i.e. hardware resources), storage devices,
network bandwidth, etc.;

3) an execution trace – found under
data/ids/traces/workload-83-600.json;
the arrival times for all user requests, associated with
the requested application and desired Quality of Service
(QoS) level.

The user chooses their desired orchestration policy for the
run and executes the main program. The simulator will:

• initialize the infrastructure as described: the scenario
starts with all the nodes idle, waiting for new requests;

• follow the arrival times of events from the execution trace,
and pass the user requests to the orchestrator;

• let the scheduler try to place these requests on function
replicas;

• let the autoscaler allocate and deallocate hardware re-
sources that will execute user requests.

The simulation advances when functions are invoked: it is
a called a task execution. The simulator knows how long a
function’s response time is thanks to the metadata measured
beforehand. These metadata concern the specific hardware and
workloads the user is interested in scheduling. Details on the
methodology we used to characterize various platforms and
workloads can be found in our paper.

During the simulation, logs are written under the log
directory. When all the user requests have been processed, the
simulation stops and returns results and charts summarizing
the simulation run, respectively in the result and chart
directories.

B. Experiments replication

1) Prerequisites: The simulator has been tested using
Ubuntu 22.04 under WSL2 6, but should work in any
GNU/Linux environment, provided it ships with Python 3.12
or any tool that allows installing Python 3.12. Note that it has
not been tested under native Windows.

Also note that the process will write approximately 4 GB of
logs to the disk (two times 2 GB), and 2 GB of results files.

Please follow the instructions found in the README.md
file at the root of the project’s Git repository. In particular,
the Usage section of the file will guide you through the steps
necessary for artifacts installation and evaluation.

2) Instructions: Please refer to the detailed README.md
file at the root of the repository for complete replication
instructions.

Using consumer-grade hardware (i.e. a Dell laptop with
an Intel i5-1145G7 CPU and 16 GB RAM), the simulation
scenario finishes in under an hour, including charts generation.

Overall, counting the environment setup steps, you should
not have to dedicate more than two hours for the replication
of the results.

C. Results

The main results presented in the paper that should be
reproduced with this artifact are six charts presented in Figure
4. Once the scenario has been successfully executed, these
charts should be available under the chart directory.

The evaluation in the paper is done in two parts: (1)
evaluation of our policy against baselines, and (2) evaluation
of the impact of individual components. Running the scenario
script will produce two subdirectories, named after the date
of execution, under the root chart directory. In these two
directories, you will find a figures directory that contains
the following files:

• 2-unused-nodes.png (Figure 4 (a) and (d));
• 3-penalty-proportions.png (Figure 4 (b) and

(e));
• 6-energy-consumption.png (Figure 4 (c) and (f)).

D. License

This software is released under the Apache License, Version
2.0. Feel free to modify, distribute, and use the software in
accordance with the terms of the license. Contributions to the
project are also welcome.
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