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Abstract

In this paper we prove that the time dependent solutions of a large class of Smolu-
chowski coagulation equations for multicomponent systems concentrate along a particular
direction of the space of cluster compositions for long times. The direction of concentra-
tion is determined by the initial distribution of clusters. These results allow to prove the
uniqueness and global stability of the self-similar profile with finite mass in the case of co-
agulation kernels which are not identically constant, but are constant along any direction
of the space of cluster compositions.

Keywords: multicomponent Smoluchowski’s equation; localization; time-dependent so-
lutions; self-similarity; stability.
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1 Introduction

1.1 Motivation

In this work, we are concerned with the multicomponent Smoluchowski coagulation equation
of (z,t) =Ky[f)(z,t), zeRL t>0 (1.1)

where the coagulation operator reads

Kilfl@t)i=g [ EK@-695 @600 [ dK@E w0 S ED

*

(1.2)
with ¢ = (z1,29,...,24), ¥ = (Yy1,Y2,---,Ya).- We use the the notation R, = (0,00) and
= [0,00)"\{O}, W1th 0 =(0,0,...,0), as well as, the comparison notation: < y whenever

x <y componentwise and x # In partlcular we thus have

/{0<£<x} d = /Owl d /0"”2 d€o - /Oxd dg .

Equation (L.1)-(L.2) describes the evolution of the number density (or concentration), f(z,t),
of particles characterized by the composition vector, x, interacting by binary coalescence.
The rate of coagulation between two particles is given by the coagulation kernel K. Equa-
tion — generalizes the well-known (one-component) Smoluchowski coagulation equa-
tion [23] where each particle is described by a scalar, instead of a vector. Contrarily to
the one-component equation, multicomponent equations have been much less studied in the
mathematics literature.

The multicomponent coagulation equation arises in applications as a model for systems in
which the size is not the only characteristic of the particles affecting the rate of coagulation. It
has been extensively used to analyse the evolution of chemical properties of aerosol particles
in atmospheric science (cf. [21) 25]). See, for instance, [2I] where the rate is also affected by
the particle charge in the context of aerosol growth. Additional details about the physics of
these systems can be found in [§], [9], [13].

Coagulation equations with two-components, i.e., d = 2, have been introduced in [15]. In
that paper, the solutions to the coagulation equations with kernels of the form K(z1, zo;y1,y2) =
Ki(x1+22; y1 +y2) have been written in terms of the solutions of the one-component coagula-
tion equation with kernel K. In particular, the solutions with the constant kernel K (z,y) = 1
are computed explicitly.

This paper is centred around a phenomenon that is specific to multicomponent coagulation
equations and that we termed in [9] as localization. We say that the solutions to equation
localize if for large particle sizes they tend to concentrate along a line, more precisely,
along a ray starting from the origin O, in the space of compositions. In the physics literature,
it has been noticed that localization can be observed in the solutions of the discrete version
of equation for some particular kernels for which the solutions of the time dependent
problem can be explicitly computed (cf. [I4] and also [7] for further details). We also remark
that the solutions of the continuous equation can be computed in the case of the constant
and the additive kernels using multicomponent Laplace transform [5] [I5]. In all these cases
the solutions concentrate for long times along a ray of the space of cluster concentrations.



In this paper we prove that the localization of the solutions of the time dependent prob-
lem , as well as of the solutions of the corresponding discrete problem where z € N¢,
hold under very general conditions on the coagulation kernels K (z,y) and initial conditions.
Our results imply in particular that localization is a universal property of multicomponent
coagulation systems. The direction of localization is determined by the initial distribution of
clusters. This could be expected, due to the following reasoning. First we note that, formally,
the following mass conservation property holds (|1.1))

Oy (/R‘j xf (z,t) dm) =0. (1.3)

This vector identity represents the conservation of the different types of monomers for the
solutions of . We will restrict our attention to coagulation kernels for which the so-
called gelation phenomenon does not take place. Therefore, the mass-conservation identity
will be satisfied for the solutions considered in this paper. Assuming this conservation
law and localization, we can then deduce the direction of localization. For this, let
us consider the standard 1-norm |- | on RY, using |z| = Z;l:l z; for x € RE. Now, if f at
time ¢ is concentrated along a ray in some fixed direction 6y with |fy| = 1, then to each z
in this region of concentration x ~ |z|fy. But then the conserved total mass vector satisfies
m(t) := ng xf (z,t) dx =~ b ng |z| f (z,t) dx which implies that (6y); ~ m;(0)/|m(0)|. Hence,
for completely localized solutions the direction g is already determined by the initial mass
vector. In other words, the conservation law implies that the monomer composition
of clusters, relative to the total number of monomers, along the ray follows the relative
composition of monomers in the initial data. Interestingly, the localization direction is not
encoded in any property of the coagulation kernel. Indeed, we show in this paper that
localization takes place for a large class of coagulation kernels for which there is not any
strongly preferred direction in the space of cluster compositions. Due to this we can think of
localization as an emergent property of the coagulation dynamics.

The phenomenon of localization takes place also for multicomponent coagulation equations
for which an additional source term is included. In [9] we provide a detailed study of the
localization properties of stationary solutions of the continuous equation

Kalf](x) +n(x) =0, (1.4)

and its discrete counterpart, where the source n (z) > 0 satisfies suitable integrability condi-
tions. Solutions to equation have been proven to exist in [I0] under general conditions
on the kernels K (z,y) satisfying the condition (L.6). It has been proved in [9] that those
solutions are concentrated along rays in the space R? for large values of |z|. We emphasize
that, differently from the case studied in this paper, in the stationary regime the direction of
the localization line depends on the first moments of the source term 7 (z).

An important consequence of localization results is that they allow to reduce multicompo-
nent coagulation equations to one-component equations. An example of how this idea can be
applied to specific cases is given later in Theorem where existing results for one-component
explicitly solvable kernels are used to characterize the long-time behaviour of multicomponent
systems with kernels for which it does not seem possible to obtain explicit solutions. Another
important application of localization results pertains to numerical methods for multicompo-
nent equations. The large computational effort and storage needed for the simulations in the
multidimensional composition space make a straightforward implementation very challenging



[16]. Localization results allow reducing the dimensionality of the problem by means of ap-
proximating the multidimensional composition space by a region around a one-dimensional
space, thus, greatly improving the numerical efficiency of the algorithms.

In the rest of this paper, we assume that the coagulation kernel K satisfies

K € C((RY)?), K(z,y) = K(y,2), K(z,y) 2 0. (1.5)

We require continuity of the kernels K in order to obtain meaningful formulas for measure-
valued solutions f. In addition, we will assume that

|z| d
K(w.9) 2 erlle] + bl 2, | oy eR! (16)
"\ 2] + 1yl
|z| d
K(w.9) < calle] + bl 2, | oy eR! (1.7)
"\ z] + 1yl
with v € R, and for some p € R and &, € C(0, 1) such that
1 .
Qp(s):m, 0<s<1, withy+2p>0, (1.8)

and some constants 0 < ¢; < ¢y < oo Note that then ®,(s) = ®,(1 —s) and thus the bounds

are symmetric functions, due to el

+ z|+
We remark that the estlmat‘esl { 8) lal‘}é' invariant under the permutation of the
components r1, T3, ..., 4. In partlcular the kernels satisfying (1.6) cannot have different
power law behaviour along any two different variables, say x;, mk With j#k.
In order to avoid gelation, we will assume also the following conditions for the parameters

v and p in (L.6), (1.7), (1.8), (cf. [1I)
y+p<l, ~y<l1. (1.9)

We would like to point out that the class of kernels considered here is equivalent to another
class commonly found in the literature, namely, of those kernels satisfying the power law
bounds

([l ™A+ Jy [ ) < K@ y) < Sy [y 27, (1.10)

A<, v+A<1l , y<1,

for some constants ¢; and ¢és. Given , we may choose p = max{\, —y — A}, for which
v+ p > —pdue to v+ 2p = |y + 2)\|. Conversely, given —, we may choose A = p to
obtain ([1.10)). We recall that the coagulation kernels depend on the specific mechanism which
is responsible for the aggregation of the clusters at the microscopic level. In particular, the
class of kernels (| contains the physically relevant kernels that are often used in aerosol
science, such as the free molecular (ballistic) kernel and the Brownian kernel (cf. [I3] 25] as
well as [9] for a more detailed discussion).

Notice that the kernels K satisfying , , are bounded from above and below
by homogeneous functions, but they are not necessarily themselves homogeneous. In some
of the results presented later we will need to assume homogeneity, i.e., then we additionally
require that

K(rz,ry) =" K(z,y) , r>0 , z,yeR%. (1.11)



In the one component case (d = 1), there are several results about solutions to equation

(1.1). For example, assuming that (1.6, (1.7), (1.8), (1.9) are satisfied and that the initial

mass ( [pq 2 f (x,t) dz, respectively) is finite, then the mass becomes concentrated in the region

of cluster sizes of order o ~ tﬁ or T = tﬁ, respectively, as t — oo. Moreover, if d = 1,
0<~v<1,0<y+p<1,and (L.11)) holds, it is well known that self-similar solutions of
with the form f (z,t) = #F 1‘i ) exist (cf. [3, 4, I1]). These self-similar solutions are
tl—= tl=

expected to represent the long time asymptotics of the solutions of in great generality,
although this has been rigorously proven only for particular kernels from the class defined by
(L.6), (.7, (L.8), (1.9), specifically, only if the kernel K is constant [I7] or a perturbation
of a constant [2, 24]. We note though that it is also possible to obtain rigorously the long
time asymptotics for other special kernels that do not satisfy , namely for the additive
kernel K(x,y) = x + y and the multiplicative kernel K(z,y) = xy (cf. [I7], [18]). In the
multicomponent case (d > 1), representation formulas for the solutions of the initial value
problem associated to can also be obtained for the constant kernel K(x,y) = 1, the
additive kernel K (z,y) = |z|+ |y| and the product kernel K(z,y) = |z||y| (cf. [5, 16, 15]) using
multicomponent Laplace transform methods.

Analogous estimates, which show that the mass of the clusters is concentrated in the self-

similar region (i.e. |z| = tﬁ) for large times ¢, can be derived in the case of multicomponent
coagulation systems, by adapting in a suitable manner the methods used to prove these results
in the case d = 1. In addition to such estimates, we further prove that the self-similar profiles
are completely concentrated along a ray of the cluster space. As a final remark, we note that,
except for particular kernels such as the constant kernel [I§] or kernels that are ’close’ to
constant [19, 24], in general there are no uniqueness results for self-similar profiles available
in the literature. Nevertheless, our result implies that all self-similar profiles are localized.
Notably, for a special class of kernels that are constant only along rays, it is possible to obtain
uniqueness and stability results by employing earlier results for the one-component equation
with constant kernel (cf. Theorem [1.5)).

1.2 Notations

We collect here for the reader’s convenience the main notations and definitions which will be
repeatedly used throughout the paper, some of these having been already introduced above.

We recall the already defined sets R, = (0,00) and R? = [0,00)?\{O}. We use | - | and
| - || to denote the following norms on R,

d

Z(xj)27 for z € RY, x = (x1,22,...,Tq) -
j=1

d
el =D lagl 2l =
j=1

We denote by C. (Rff) the set of compactly supported continuous functions in R¢, and by
Cf (Rf), for k = 1,2,..., the set of such compactly supported functions with k£ continuous
derivatives. We use the notation .# (Rff) to denote the space of non-negative Radon measures
on R? with finite first moment, i.e., satisfying ng |z| f(dx) < co. We will use indistinctly the

notation f (dz), f(z)dz, or f to denote a measure f € .#; (R{). The former notation will
be preferred when the measure is integrated against a test function. We stress that we will
use the notation f (x)dz to denote a measure on R? even if this measure is not absolutely



continuous with respect to the Lebesgue measure on R%. We denote by C ([0, ) ; A (Rff))
the space of continuous functions on [0, c0) with values in .# (RY) which is endowed with
the weak-* topology.

We denote by A%~! the simplex

AL = {9 eRe: (9| = 1}, (1.12)

and by .#, (A?!) the space of non-negative Radon measures on A%~ Let dv () de-
note the (d —1) dimensional Hausdorff measure restricted to A?"!. Then we denote by
M (R* X Adil) the space of non-negative Radon measures, G, on R, x A?"! satisfying the
moment bound [ ra-1 pG(p,0)dpdv (0) < co. We will denote by dg, or d (- — o) the Dirac
measure supported at 6 € AL,

We will denote by C a generic constant which can depend on d and on the properties of
the kernels (specifically, ~, p, as well as ¢; and ¢ in , ) but which is independent of
the solution under consideration. The value of C' may also change from line to line.

1.3 Main results

We now state the main results proved in this paper. The precise definitions will be given later
in Section 2l We begin with our main localization result.

Theorem 1.1 Let fo € .41 (R%) satisfy ng(\x\ + |2[1*7) fo (dx) < oo for some r > 0. Define
m(0) := [ga zfo (dz) € RY, denote mo = |m(0)|, and suppose that mg > 0. Let the coagulation
kernel K S(Etisfy the assumptions , (@, , @ with) <~v <1, and 0 <~v+p< 1.
Then there exists a weak solution f € C ([0,00) ; 4 (RZ)) to , such that f(-,0) = fo

with the following properties. This solution is mass-conserving: [pqxf (x,t)dz = m(0) for
all t > 0, and in addition it satisfies

[t e < et ez, (1.13)
R¢

for some k > 1 and Cy > 0. Moreover, there exists a function ¢ () € C ([0,00)) such that
d(t) >0 forte[l,00) and lims_o d (t) = 0 and for which

lim / x| f (x,t)dx —mg| =0 1.14
t—ro0 {E(t)tllnglg(é(t))ltllv}m{)@—%lgé(t)}| | ( ) 0 ( )
where f o
TJol(x)dadx
0o = e Y . |60 =1. (1.15)
mo

Remark 1.2 The crucial information about the function 0 (t) is that it converges to zero.
Therefore, implies that the mass is localized along a particular direction in distances |x|
of order T for all the large times t as t — oo, i.e., localization of the measure |x| f (x,t) dx
takes place ast — oco. Notice that the vector 6y defined in only depends on the conserved
quantities, just as was discussed in the Introduction.



We remark that a discrete version of Theorem [I.1] will be presented in Section

Notice that Theorem yields localization for a particular weak solution of the initial
value problem , with initial value f(0,.) = fo. The reason why the localization
result is not stated for every weak solution is due to the lack of a uniqueness theory. Indeed,
the arguments used in the proof of Theorem rely on the results of [4] that only ensure
existence of a weak solution to , satisfying with initial value fy, but no
uniqueness is proved in [4]. A theory of uniqueness of weak solutions combined with Theorem
would then imply localization for all weak solutions of , . The derivation of
such results for weak solutions is not the goal of this paper. Uniqueness results in the one-
component case d = 1, for some kernels satisfying the upper bound withy <landp=20
as well as additional regularity conditions have been obtained in [12]. The condition
ensures that most of the mass of the solution remains in the self-similar region. We expect
the estimate to hold for all weak solutions to , which decay sufficiently fast
for large |x| and for the physically relevant kernels with homogeneity smaller than 1. It turns
out that it is possible to obtain a slightly weaker localization result for all solutions to ,
satisfying the moment estimate for a more general class of kernels than the one
considered in Theorem More precisely we have the following result.

Theorem 1.3 Suppose that f € C ([O, ) ; M (Rf)) is a weak solution of such that
0< ng |z| f (z,t) dz = my < oo and such that the assumptions (L.5), , , hold
with v, p satisfying (@ Assume that there are a > 1 and Cy > 0 such that [ satisfies
for all k € [1/a,a]. Then, there exists a function 6 (-) € C (]0,00)) such that ¢ (t) > 0
fort € [1,00) and limy_, 0 (t) = 0 as well as a Borel set I C [0,00) with the property that
limyp_y oo % =0 such that

lim sup |z| f (z,t)dz —mo| | =0 (1.16)

T—o0 \ te[r,2T)\I /{6(1‘,)7&117 <Ja|<(5(t)) 4T }m{ ) ﬁfeo‘gé(t)}

where Oy is as in .

Notice that the main difference between Theorems [I.1] and [[.3] is that in the first case we
assume a more restricted set of parameters v and p. On the other hand, we obtain stronger
localization results in the case of Theorem In we allow for the existence of a set
of times I C (1,00) whose density converges to zero for large values of ¢ and for which the
localization property could fail. We do not know if it is possible to have solutions of
for which localization does not take place for a small set of large times. Most likely such a
type of behaviour does not take place for any solution of . However, only the estimate
(1.16)) can be obtained from the assumptions on the solutions to considered in Theorem

In fact, estimates ensuring that the mapping t — (1 + t)%f((t + l)ﬁ-, t) is uniformly
continuous in the weak-* topology would yield the stronger localization result , but this
would require analysis going much beyond the currently available well posedness results.

We will discuss in Sections 4] and |5| sufficient conditions for the moment estimates
to be satisfied for the range of parameters 0 < v < 1, 0 < v+ p < 1, which in particular is
contained in the range defined by . In the case of moments k£ > 1 we need to assume
suitable conditions on the initial data fy.



We will also study localization properties for the self-similar solutions of (1.1]) with d > 1.
The mass conserving self-similar solutions are solutions of ((1.1)) with the form:

fx,t) = ()" T9F (wey) , E=uwer , e = (t+ 1)_ﬁ. (1.17)

The existence of solutions of ((1.1)) with the form (1.17) under the assumptions (|1.6]), (1.7]),

(11.8), (1.9), (1.11) and for 0 < v < 1, 0 < v+ p < 1 has been proved in the case d = 1
in [3, 4] 11I]. Using these results it is possible to prove the existence of self-similar solutions

in the multicomponent case d > 1 under analogous assumptions on the collision kernels and
having the particular form

= R es (£ o) (118)

where 6y € A1 § € 4, (A1) is supported at 6y and Fy is a self-similar profile for a
suitable one-dimensional coagulation equation. The existence of self-similar profiles with the
form will be seen in Section .

It turns out that all the solutions of with the form and satisfying suitable
integrability conditions for both small and large |£|, have the form . This result can be
interpreted as a localization result analogous to the Theorems for solutions of .
The precise localization result for self-similar solutions that we will prove in this paper is the
following.

F(§)

Theorem 1.4 Suppose that the kernel K satisfies the assumptions (|1.5), @), , @,
, as well as the homogeneity condition (1.11)). Suppose that F € 4 (Rf) is a self-

similar profile with finite mass for in the sense of Definition . Then, there exists
0y € AL such that F has the form where Fy is a self-similar profile associated to
the one component coagulation equation (i.e. d = 1) and coagulation kernel Ky, (s,7) =

K (sbp,r0y), s,r € R,.

An interesting consequence of the localization results contained in Theorem is that
they allow to characterize the long time asymptotics for a class of coagulation kernels for
which it does not seem feasible to obtain an explicit representation formula for the solutions.
We recall that in the case of one component systems a complete characterization of the long
time asymptotics for arbitrary initial data has been obtained only for coagulation kernels with
homogeneity smaller than one for which it is possible to obtain representation formulas of the
solutions using Laplace transform methods (cf. [I7, [I8]), or for kernels K which are close to
the constant kernel (cf. [24]).

We will combine the localization results obtained in this paper (cf. Theorem with
the characterization of the long time asymptotics obtained in [17, [I§] to characterize the long
time behaviour of the solutions of coagulation equations with kernels that are constant along
each ray that passes through the origin. This is due to the fact that the localization of the
solutions along a ray allows to approximate the behaviour of the solutions by a one-component
coagulation equation with a constant kernel. It does not seem feasible to derive an explicit
formula using Laplace transform methods for the class of kernels with the form below,
except for some very particular choices of the function ). We have the following result.



Theorem 1.5 Suppose that the kernel K satisfies (1.5)) and has the form
K(ro,s0) =Q(0) (1.19)

for any r,s > 0 and for any 0 = (61,0s,...,04) € AL Here Q is a continuous function
defined on AT and 0 < ¢1 < Q(A) < co. Let fo € Lt (Rf) be a nonnegative function
satisfying

— /Rd | fo () da > 0 (1.20)

and also

/ |z]* fo () dr < oo (1.21)
R¢

for some a > 1. Then there exists a function f € C ([0,00); L' (R?)) N C' ((0,00); L* (RY))
that solves in the classical sense, satisfying f (x,0) = fo (x) and

/ xf(x,t)de =m := / zfo(x)dx, t > 0.
RY R¢

Moreover, using the variable £ = 3, we have
i £ (16,0) = Fo (€] 603 (1 00
t—0o0 ‘€|

where the convergence takes place in the weak—x* topology of . (Rf) and where

m
Oy := — € A1 and
mo

WE_ L (o)
(Q00)Zmo =T P\ Qoymo )

Notice that the class of kernels considered here satisfies the growth bounds ((1.6})-(1.7)
with v = p = 0. Notice also that the mass vector [pq f (2,t) zdz = m remains constant for

arbitrary values of ¢ > 0. Theorem states that for each value of m € R? there exists a
unique self-similar solution of the form 1) l) with 6y = mﬂo which is a global attractor
for the solutions of 1) satisfying m = [p4 fo (z) zdz as well as the moment estimate .

It seems possible to extend Theorem to initial values fy in some measure spaces. A
technical problem which arises if we try to replace the space L! (]Rff) by the space . (]Rff)
is that the kernels K with the form are not necessarily continuous at x = y = 0 and
therefore it is not possible to define the products K (z,y) f (dx) f (dy) . In order to avoid these
technicalities we prefer to use the space L' (Rf) .

Fo (I¢]560) :=

1.4 Plan of the paper

The plan of this paper is the following. In Section [2, we introduce several definitions and
notation that will be used in the rest of the paper. In Section [3| we prove the localization
results for the time dependent solutions and for the self-similar solutions. Specifically, we
prove Theorems and The proof of these results is based on the use of particular
test functions that allow to measure the dispersion of the solutions around the localization



line. Similar test functions have also been used to obtain localization results for stationary
solutions in [9]. A difference with the stationary case is that time-dependent solutions exhibit
an additional localization property. Besides concentrating around a ray in the composition

1
space, time-dependent solutions also concentrate around the self-similar region |z| ~ tT-7.
This requires the derivation of new estimates to ensure that the contribution of the regions

lz| < 7 and |z| > 77 s negligible. On the contrary, in the stationary solutions treated
in [9] there is no characteristic cluster size in which most of the mass of the solutions is
concentrated.

Section [4] collects several well posedness results and moment estimates for the solution of
the coagulation equation . These results are well known in the case of one component
coagulation systems and their proof can be readily adapted to the multicomponent case. The
results in Section [4] ensure the existence of solutions with the properties required in Theorems
and for a suitable set of parameters v and p and a large class of initial data. We
also prove in this section that the measures with the form yield self-similar solutions of
the multicomponent coagulation equation, obtained in terms of a self-similar solution Fj of a
suitable one-component coagulation equation. Section [5]contains the proof of certain moment
estimates which provide some of the key properties of the time-dependent solutions necessary
to prove the localization results. In particular, these estimates ensure that the mass of the

solutions remains within the self-similar region, |z| ~ tﬁ as t — oo, for a large class of initial
data. Although they are well known in the case of one-component coagulation systems, these
estimates play a crucial role in the proof of our localization results, and we have written in
detail a generalization of their proof to the multicomponent coagulation case. In Section [6] we
study the long time asymptotics to the solutions of the multicomponent coagulation equation
with kernels satisfying . In particular, the proof of Theorem is given in this section.
In Section [7] we present an application of the results obtained in this paper to the case of
discrete systems, which are more commonly found in the applied literature. More precisely,
we formulate a discrete version of Theorem [1.3] The results for the discrete equation ([7.1))
are of interest to several applications, for instance, in the study of aerosol growth [13].

2 Definitions and auxiliary results

In this section we provide the definition of weak solutions and self-similar profiles that will be
used in the following. We also collect, without proof, several results for the multicomponent
coagulation equation that are well known for one-component coagulation systems and
can be proved for multicomponent coagulation systems by means of simple adaptations of the
methods used to derive them in the one-component case.

We now introduce the definitions of solutions to , . We formulate the definition
of solution in the continuous case since the discrete case can be considered as a
particular case of solutions f having the form (7.2).

Definition 2.1 Let K be as in and satisfy the upper bound (L.7)), (L.8)). Let fo €

M (RE). A function f € C([0,00);.41(R%)) is called a weak solution to (1.1 with initial
value fo if f(0,-) = fo(-) and for each 1 <T < 0o

+ 1-
sup ][/ﬂwl}\xn pf(da:,t)+/ [P F(da, £)] < oo, (2.1)

tel/T,T {la|<1}

10



/arf(d:c,t)—/ zfo(dx), t>0, (2.2)
Rd Rd

and, for all test functions ¢ € CL(R% x (0,00)) the following identity holds
0 —/ f(dx,t)0p(x, t)dt
Rd
oy [ L L K@ 0r e 00 - oo - el @3
Remark 2.2 Notice that the condition is equivalent to

sup | / ([P F(da, 1) + / [P f(da, 1)] < oo, (2.4)
{e|za} {e]<a)

te[1/T,T)

for any a > 0. In order to define the solutions it would be enough to impose an integrability
condition in t and x. However we decided to stick to the stronger condition (2.1)) as it allows
us to use estimates derived in []).

Note that in Definition we allow only solutions with finite mass that is conserved
over time for each component due to condition . The assumption ensures that all
the integrals appearing in are well-defined for kernels satisfying the upper bound .
Indeed, the last term in (2.3]) can be estimated by splitting the domain of integration into two
regions defined by {|y| < |z|} and {|z| > |y|}. Using a symmetrization argument, the integral
over the second region can be estimated by the integral over the first region and therefore,

can be estimated as
[ [ os@n oo o - oo - e@old 25)
0 Hlyl<|=l}

Since ¢ € CL(R%x (0,00)), there exists a function ¢ € C.(RY) such that |g0(;z: +y,t) —
o(x,t)] < (x)|y|. Given a positive constant L > 1, let supp (-, t) C {x € RY| 1 < |z| < L},
for any ¢ € (0,00), and suppy C {z € R? | 1 < |:L'| < L}. We can then rewrite the integrals
using a smaller integration region, yielding,

/ / K () £ (der, 1) f(dy, D)ol + 9, 1) — ()]
{ly|<]z|}

K(x, dx,t dy,t )] =

+ / /{ oy K@ 010 (1)

B /{;smgL} /{y|s|m|} b /{isng} /{IySIx} ¢)
K Z, x d{L’, d ’

= /{i<|m|<L} /{y|<|x|} (z,y)b(x)|y|f(dx,t) f(dy, t)+

K(zx, dx,t)f(dy, ,
ey sy K000 a0 01000

Using now the upper bound (|1.10) with A = p and using the property that Radon measures
are locally finite, we obtain that there is a positive constant C, depending on L, ¢a, v,p, ¢

11



and 1, such that

/1 / K (@, y)¢(z)lylf(dx, 1) f(dy, 1)+
{ £ <lel<L} J{lyl<|zl}

K(x, dzx,t) f(dy, 7
+/{£S|y|§L}/{i§|x|} (z,y) f(dz, 1) f(dy, )] o(y, 1)|

<C (yl Pyl + [y Plyl) f(dy,t) + 0/ (J&["*P + |z|7P) f(dx,t)
{lyl<L} {1<l=

<c | f(dy,t) + C / 2P f(da 1) < o
{ly|<L} {£<l=l}

The finiteness of the integrals follows from the assumption (more precisely it follows
from with a = 1/L,a = L). This concludes the proof that the coagulation term in ({2.3])
is well-defined.

We remark that using a standard limit argument, we obtain that implies that the
following identity holds for test functions ¢ € C}(R? x [0, 00)),

0= [ foldz)p(z,0) / f(dz, t)Opp(x, t)dt
Rd Rd
/ /]Rd RdK x,y) f(dx,t) f(dy, t)[p(x + y,t) — o(z,t) — p(y, t)]dt. (2.6)

The localization result in Theorem [[.4] concerns self-similar solutions. In the next defini-
tion we collect the properties required for the self similar solutions, and more specifically for
the self-similar profiles F' (cf. (1.17)) which we need in order to derive the localization result.

Definition 2.3 Let the kernel K satisfy (1.5)), @, , (@, @ as well as the homo-

geneity condition (m We say that a measure F € .#,(R%) satisfying
[ errrag s [ e+ [ 1R < oc (27)
{1g1>1} {lgl<1} R¢
s a self-similar profile to if the following identity holds
1
5 [ [ FE@F@nR v -+m - v - v
re JRY
1
+ 1 [ P [ —&- 0y (2:8)
Y JRd

for all ¢ € CL(RY).

The finiteness of the integrals in provide the integrability required to ensure that the
integrals in are well defined. On the other hand, the finiteness of the last integral in
implies that the total number of monomers associated to the function f defined by means of
is finite. Notice that a self-similar profile can be interpreted as a weak solution of the

equation

K[F] + —g O F + @F 0, ceRrd (2.9)

12



with K[F] as in (1.2). Equation (2.9) may be obtained formally from the coagulation equation
(1.1) using the change of variables ([1.17)). This change of variables can be made precise by

noticing that given a self-similar profile F' in the sense of Definition [2.3] we can obtain a weak
solution f of ([L.1)) in the sense of Definition by requiring

/ / F, (e, t)dadt = / / o F (€) o(€(e)\ dedt,  (2.10)
R4 x [0,00) R4 x [0,00)

for any ¢ € C.(R? x [0,00)) and where &; = (1 + t)fﬁ. We have the following result.

Proposition 2.4 Suppose that K satisfies , (@, , @, @ as well as the
homogeneity condition (m Let us assume also that F € .4, (RY) is a self-similar profile

in the sense of Definition . We define [ fort >0 as in (cf. also (2.10)). Then, f
is a weak solution of in the sense of Definition with initial value fo = F', satisfying

the moment bounds for all T > 0

sup [/{x|>1} |z|7*P £ (dx, t) —|—/ |z|' P f(dx,t)] < .

te(0,T] {lxl<1}
Moreover, f is invariant under the following group of transformations:
Ao t) = T e, N7 (¢ +1) 1), A>0. (2.11)

Remark 2.5 We notice that f\ and f are measures and (2.11)) should be interpreted as
follows, for any ¢ € C.(RY x [0, 0)),

1
JL neosnaa=x [ e (.55 1) e
R x [0,00) R x [0,00) ATATY

Proof: Given that f is defined in ([1.17]) it follows from ({2.7]) that (2.1]) holds. We now compute
the right-hand side of (2.6)). Notice that ((1.17) implies that fy (x) = F (). Then

[ fodyetw.0)+ | T e o)

RY 0 Jrd

+;/O /Rg RgK(w,y)f(dxat)f(dy,t)w(x+y7t)—w(w,t)—w(y, t)]dt
- /R , Pl 0) + /0 /R e, Dtz

*3 /ooo /Rg o K@) D]y, Oliple+9,1) = (@, t) = oy, O)dt
= J.

Given a test function ¢ € CH(R? x [0,00)) we define 9 (£, 7) by means of

p(x,t) = (e0) W (& 7) (2.12)

where 1
E=uwey , T=log(t+1) , eg=(1+1t) .
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Then, using also 1) as well as the homogeneity condition and dr = m we obtain
= d d d a T~ ¢. ,
7= [ Fague0+ [Tar [ pag o s - o] 6o
by [ [ ] K € FAOF @I + 1.~ 6(€m) ~ (a7
0 Rd JRE

Employing ([2.8)), we then find

:/Rd (d&)w(&,0) /dT/ (d€)ory = / (d€)p(€,0) /Fd§ (€,0) =0

and the result follows. O

3 Proof of the localization results (Theorems (1.1}, (1.3, [1.4))

3.1 Mass localization along a ray in time-dependent solutions

In this subsection we prove Theorems [T.1] and To this end, it is convenient to rewrite the
function f in the theorems using the set of self-similar variables

Flat) = ()R (€,7), E=wey, T=logt+1), &= (t+1) T (3.1)

where f is a weak solution of (l.1) in the sense of definition In order to prove the
localization results it will be convenient to further define a set of simplicial coordinates

(p,0) = <|§] |£|> with pe R, , 6e A%! (3.2)

where A%l is as in (1.12)). A similar system of coordinates has been used also in [9]. We
denote as dv () the (d — 1) dimensional Hausdorff measure restricted to A?~!. We thus have

that d§ = %dpdl/ (0) (cf. [9]). We can then define measures G(7) € . (R, x A1) by

requiring that
/ W(p. )G (p, 8, 7)o" dpdu (6) = / B €/I€NF (€, 7)de (3.3)
RixAd-1 R4

for all test functions 1) € C.(R. x A?1) and with F defined by (3.1). Notice that in the
case in which F'(-,7) is absolutely continuous this implies that G (-,-,7) is also absolutely
continuous and we have the following relation between the corresponding densities

F (&) =VdG (¢, ¢/I¢]7) -

We then use (3.3) and the property ¢t + 1 = €™ and follow an argument similar to that in
the proof of Proposition This allows us to rewrite (2.3)) as

0—/ dT/ G(p,0,71) 1/}
R, xAd—1

R +— - pﬁpw (p,0,7)d2
+ = / dT/ / f((p, 0,r,0,7)G(p,0,7)G (r,o,7)¥(p,r,0,0, T)deQ (3.4)
2 Jo FXAd=1 JR, x Ad—1

14



with

K(p,0,r,0,7) = efﬁTK(eﬁTpH, eﬁTTU) (3.5)
dQ = p¥Ydpdv(0), dQ = rtdrdv(o),
U(p,r,0,0,7) = <p o i ~0 + p i ~o, T) —(p,0,7) — P(r,0,T) (3.6)

where we write ¥(p, 0, 7) = ¥(&,t) with 1 defined in [212), ¢ =pb, n=ro and
Go (p,0) pdpdv (0) = fo(dx) for each 0, o € Ad~L.

Notice that (1.6]), (1.7) imply the estimate

p - p
alp+ ), (L) < Kipo.rnor) < calp 7, (L) 5.7)

where ®,, is as in (1.8).
The following lemma, which will be used to obtain Theorem has been proved in [9].

For this reason, we will just state the result and refer to [9] for the proof.

Lemma 3.1 There is a constant Cq > 0 which depends only on the dimension d > 1 such
that, for any probability measure \ € My (Ad_l) and any pair of parameters £,6 € (0,1) at
least one of the following alternatives holds true:

(i) There exists a measurable set A C A1 with diam (A) < e such that [, A(df) > 1 —4.
(1) [na1 A(dO) [aas A(do) (|0 — o||> > Cade®™ where ||| is the Euclidean distance.

A corollary of Lemma [3.I] that will be used in the proof of Theorem [I.4] is the following
result.

Lemma 3.2 Suppose that \ € 4+ (Ad_l) is a probability measure such that

/ A (d@)/ Ado) [0 — o] = 0. (3.8)
Ad—1 Ad—1
Then, there exists 6 € A1 such that

A=dg. (3.9)

Proof: We apply Lemma for a sequence of values ¢, = §,, = 27" with n € N. Due to
we have that the alternative (ii) in Lemma (3.1 does not take place. Therefore (i) holds, and
for each n, we can pick a point 6,, from the corresponding set A. By compactness of A?~1,
we can find a convergent subsequence with a limit point § € A%"!, and it can be checked that

then also (3.9) holds. O

We can now prove Theorem
Proof of Theorem . The conservation of the total number of monomers (2.2)), combined
with the definition of F' in (3.1)) and the definition of G in (3.3]) implies that

/ pG(p,0,7)dQ =mg := / pGo (p,0)dQ2 > 0. (3.10)
R, xAd—1 Ry xAd—1
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We recall that the moment estimate ([1.13) holds for ¢ > 1. Since 7 = log(t+1) we will assume
7 > In 2 throughout the proof.
On the other hand, the assumption ([1.13)) with ( - 3)) yields

/ p"G(p,0,7)dQ < C, k€ [l/a,a] for some a > 1, (3.11)
R, xAd—1
where C' > 0. In addition, using again (3.1)), (3.3]) as well as the estimate (2.1)) we obtain

/ p PG (p, 0, T)dQ+ / P PG(p,0,7)dQY< C(T), m2<7<T
[R.xAd=1]n{p>1} [R.xAd=1]n{p<1}
(3.12)
for any given T' > 1, with C(T') a constant that depends on T'.
In the definition of weak solution (cf. Deﬁnition we have assumed that the mass vector
is conserved. Using the measure G we then obtain the following form of the conservation of

mass

1
— G(p,0,T)p0dS2 = 6y, (3.13)
R xAd-1
with )
90 = / Go(p, Q)pedQ (3.14)
mo Jr,xAd—1

Using (3.11) and (3.12) we can readily see that all the terms appearing in (3.4) are
well defined for any ¢ € C} (R* x Ad=1 x (O,oo)). Moreover, using an approximation ar-

gument as well as (3.11) and (3.12) it follows that (3.4) holds true for any test function
¢ € C!(Ry x A% x [log(2),00)) whose support is contained in {7 : 7 € [log(2),7*]}, for
some 7* € (log(2), 00), and satisfying

(0. 0.7)| + 0|0, 8. 7)| +

Orb(p, 0,7)| + |Voilp,0,7)| <Cp . (3.15)

for any p € R,, 8 € A% ! and 7 € [log(2), 7*], and for some C' > 0. Indeed, we can consider a
sequence of compactly supported test functions ¢, (p, 0,7) = Cu (p) ¥ (p, 0, 7) with ¢ satisfying

(B:15), ¢, € C™ (0, 00) such that

|0 for O<p§ﬁ and p>2n
Cn(p)_{l for pe[i n]

and 0 < ¢,/ (p ) <dnfor p € [5,1] and 0 < g’n (p) < 2 for p € [n,2n]. By assumption
the 1dent1ty ) holds with the test funct10ns %Z)n We con31der the limit as n — oo of
this sequence of 1dent1tles Notice that (| combined with the properties of (,, imply the

estimate

Ot +

Y 1 .
i <
T 1_Wp3;ﬂ/1n <Cp

with C independent of n. We can then take the limit as n — oo of the first term on the
right-hand side of (with 1 replaced by LZNJn) due to Lebesgue’s dominated convergence
Theorem as well as . On the other hand, using and the properties of (,, we can
estimate the functions W, (p,r, 60,0, 7) that are defined using ¢ = 1, as

[Wn(p,r,0,0,7)] < Cmin{p,r} (3.16)
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where C' is independent of n. To see this we can restrict ourselves to the case in which r < p.
We can then estimate the term 4, (r, 0, 7) in the formula of W, (cf. (3.6)) by Cr and the

difference v (p +r, p—ir@ + p_’;,,_a, 7') — (p,0,7) can be estimated also as Cr using Taylor’s

formula and (3.15). Using (3.7) and (1.8) it then follows that the integrands in the second
term of @ (with ¢» = 1,,) can be estimated by an integrable function independent of n,

due to (3.12)) and (3.13). Indeed, the previous estimate (3.16)) yields the bound

K(p,0,r,0,7)G (p,0,7)G (r,0,7) . (p,7,0,0,7)
< C (PP Y G (p,0,7) G (1, 7)
<C (p7+prl_p + p_pr7+p+1) G(p,0,7)G (r,o,7) (3.17)

where in the last inequality we use that r < p. This inequality gives an estimate for the
integrand of the last term in by means of an integrable function for 0 < r < p <1, due
to the assumption . In order to estimate the regions where 0 < r < 1 < p we use the
fact that v+ p < 1 and p > —1 to obtain the following estimate for this range of values of r
and p

K(p,0,r,0,7)G (p,0,7)G (r,0,7) U, (p,7,0,0,7)
< C(pr' P+ pr"P G (p,0,7) G (r,0,7).

We can then combine the conservation of mass estimate and to obtain that the
integrand is bounded by an uniformly integrable function independent of n for this range of
parameters. It remains to estimate the range of values 1 < r < p. We distinguish the two
cases p > 0 and —1 < p < 0. In the first case, we use to obtain, using also that y+p < 1

and v < 1 (cf. (L.9))

f((p, 0,r, o, T)G (P, 0, T) G (T, g, T) \Ijn(pv r,0,0, T)
< C(pr+p Pr" P G (p,0,7) G (r,0,7)
<C(pr+pr?)G(p,0,7)G(r,0,7)

where in the last inequality we used that rPT! < pP*1. In the case —1 < p < 0 we obtain

K(p,0,r,0,7)G(p,0,7)G(r,0,7) ¥, (p,7,0,0,T)
e <p'ypflp\rlp\r i valplplp\r) G (p,0,7)G (r,0,7)
<C (pvr + 7n—\plp\plpl—\plTlpl) G (p,0,7) G (r,0,7)
<C(P'r+17p)G(p,0,7)G (r,0,7).

The right-hand side of this inequality is uniformly integrable for 1 <7 < p since v < 1.
We can then take the limit in both terms of (3.4) (with ¢» = 1),,). It then follows that

(3.4) holds for any function v satisfying (3.15)). .
We now approximate a test function with the form 1 (p, 0, 7) X7, ) With 72 > 71 > log(2)

and ¢ € Cl (R* x Ad-1 x [log(Z),oo)) by means of a sequence of functions @n(p,G,T) =
U(p,0,7)Cn (T) with ¢, > 0, and ¢, € C}((0,00)), such that ¢, (1) — X7, (T) pointwise
in 7 as n — oo and ¢/, > 0 in a neighborhood of 7; and ¢/, < 0 in a neighborhood of
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To. From (3.4)), it then follows by means of a standard computation that, for any function
P € C!(Ry x A% x [log(2), 00)) satisfying 1)

/ G (p,0,72) D(p, 0, 72)d = / G (p.0,71) D(p, 0, 7)d (3.18)
R.xAd-1 R, x Ad—1

T2
+/ dT/ G(p,0,71)
T1 *XAd71

e _ i
41 / dr / / R(p.0,7,0,7)G (p.0.7) G (r, 0. 7) W(p. 7,0, 0, 7)d
2 /5  xAd-1 JR, xAd-1

¥

Orp + T ﬁp(‘)pw (p,0,7)dS2

where K and ¥ are as in 1D and |D respectively.
We now use the test function ¢(p, ) = p||0||? in (3.18)). Notice that we have

P r Pr 2
0+ o) — ,0) —p(r,o) = — 0 —ol|*.
ot T o) TP d) —elr o) = ——mll6 — ol
Using this identity in (3.18) we obtain

/ G (p. 0,72) pll0]%dS2 = / G(p, 8, 7)p]|6]2d2
R.xAd—1 Ry xAd—1

U(p,r,0,0,7)=(p+r,

1 [ ) )
s [ [ R0 G (0. G o) L0 — ol Pt
2 /7 Ry xAd=1 JR, x Ad—1 p+r
(3.19)
which combined with (3.10|) implies, taking 7; = log(2), 72 = 7, that

/ dT/ / K(p,0,7,0,7)G (p,0,7)G (r,0,7) P 16 — o] [2dQdQ < 2mg
log(2) R, xAd—1 JR, x Ad-1 ptr
(3.20)
for all 7 > log(2).
Using , it follows that for any o > 0 small there exists M > 0 (depending
only on &g, mg and a in ) such that

J

pG(p,0,7)d2 +/ pG(p,0,7)dQ < domyg . (3.21)

)x Ad—1 (M,00)x Ad—1

37

Then

/[1 V]t pG(p,0,7)dQ > mg (1 — dp) . (3.22)
A M Xatm

The lower estimate in (3.7) implies that there exists a constant np; > 0 such that

W > ny for (p,r) € [ﬁ,Mf, (0,0) € (Ad_l)z. Using (|3.20) we then obtain

the estimate

T -2
/ dT/ / G (0, 0.7) G (r,0,7) |0 — 0| Pad < 270 (3.23)
1 [47 M]xAd=1 J] M]xAd-1 v

forall 7 > 1 > In2. For each 7 > 1 and M as above, we define a probability measure on
My (A1) by means of

I[L M]xa PG (p:0,7) dSY
(A, 7) = 1 , 3.24
M( T) f[ﬁ,M]XAd_l pG(paeaT) ds2 ( )
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for each Borel set A € A%"!. Then for each 7 > 1 we have that Ajs (df,7) is a probability
measure and (3.22)) and (3.23) imply, after taking the limit 7 — oo

o] 2m0
dT/ / 0 — o||*Xar (dO, T) Mg (do, ) < < 0. 3.25
L [ o 1ol 7)o 7)< S (3.25)

It then follows that there exists a Borel set Iy, C (1, 00) such that limp_,« |, (Roo)Tar dr =
0 and such that

. ) 2 _
lim [Xu,oo)\zM (7) /A B /A 10— ol A (@87 Mg (do )| =0 (3.26)

T—00

where x; )\ 7,, is the characteristic function of the set (1,00) \Ips. Notice that Iy is the set
of times for which localization does not take place. More precisely, suppose that M > 0 is

given. Our goal is to construct a set Ip; such that
(i) |Tp] < oo,
(i) imp 00 [Tas N (R, 00) | = 0,
(i) limr 00 g (7) X(1,00)\ T s (1) =0

where the function g in item (iii) is such that [ g(7)dT < oo and g(7) > 0. Note that the
function g here corresponds to the function defined by the double integral in .
To make the notation lighter we now drop the M dependence in what follows. Let § > 0
and n > 0, we define
Jn(6) ={r€ (27,27 - g(r) > §}. (3.27)

Notice that
Jn(él) D) Jn(éz) if 91 < 4. (3.28)

We have

2n+l

Sim@ <>y [ otmar= o)< 5

Thus >0 |/ (8)] < & for any & > 0.

We now define a sequence 6, — 0 as n — oo such that Y7 [J,(d,)| < oo. In order to do
this, for each k € N, we choose Ny € N sufficiently large such that 3 7¢ | T (27F)| < 27F,
Note that { N} } is an increasing sequence. Note also that > >\ |J,,(8)| increases if § decreases

due to (3.28).

We set
0p,=1 for n=0,...,N;
1
(5n:§ for n= Ny +1, , Ny
1
5n_27 for n=Ng+1,...,Ngp1
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With this choice of §,, we obtain

00 Ny Ny 1 Noyq 1
ZLAIES SEADIESS ST CYIEEEND SN C3 RN

n=N;+1 n:Nﬁ»l

<C+1+ +1+ <C+§:1<C
>~ Lo 2 2@ >~ Lo k12k_ 1

Therefore S0 |J, (5,) | < C1 < co. We then set T = |72, J, (6,). We finally notice that
I = I satisfies the properties (i), (1), (iii) above and this concludes the argument.

We can then apply Lemma to prove that there exists 7 ps sufficiently large such that,
for any 7 € (70,11, 00) \Ips there exists a Borel set Ay (1) € A%! such that the function
defined by means of

fM(T):{

diam (A (7)) for 7 € (10,m,00) \fM
0 for 7€l

satisfies lim_,o fas (7) = 0 and, in addition, the function

au (7) = fA}u(T) Ay (dO,7) for T € (To.0,00) \ I\
1 for 7€y

satisfies
li_}rn gu (T) = 1. (3.29)

On the other hand, the conservation law (3.13), (3.14) combined with the fact that
diam (Aps (7)) becomes arbitrarily small for any 7 € (79,ar,00) \Ias and combined also with
the estimate (3.22)), implies that for L > 7 ps large enough it holds

U Apn (T) C 3650 (00) . (330)
TE(L,OO)\EV]

Indeed, we have for each 7 € (10,17, 00) \Ias

0o = / P0G (p, 0, 7)d
mo R, xAd—1

1 1
= / P0G (p,0,7)dQ2 + /
mo J[ L M]xadt Mo J(R.\[77,M])xAd-1

S / pG (p,8,7)d2 / OAnr (dO, T)
mo | J[4 M]xAd=1 Ad=1

1
+— pOG(p, 0, 7)dS2.

o /<R*\[;I,M]>wl

p0G(p, 0, 7)d

Defining mo ar(7) := f[i M]x A1 pG (p,0,7)dQ we obtain
M7

6o = T0(7) / O (d6, 7) + 702 (7) / OAnr(d6, 7)
Anm(7) Ad=I\Ap (1)

mo mo
1
+ -

/ pOG(p,8,7)dd. (3.31)
mo J(R.\[77,M])xAd-1
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We can write the third term on the right-hand side as (1— mOTMO(T)), which can be estimated by

dp, using 1| Therefore, using 1' (3.31)), we obtain for 7 € (79, 00) \f v sufficiently

large,

/ Ou (0, 7) — 00| <
Apn ()

< (1 - mOM(T)> /AM(T) 10/ Aar (d6,7) + (1 — gar(7)) + <1 _ mOM<T)>

mo mo

<200 + (1 — gu(7)).

Thus using (3.29)) we obtain, for 7 sufficiently large, the estimate

/ OAp (dO, 1) — O
Ap(T)

Then, since diam (Aps (7)) — 0 as 7 — oo, and A\jf (df, 7) is a probability measure for
each 7 > 7, satisfying (3.29), it follows that for 7 > L and L sufficiently large and
T € (10,M,00) \Ipr we have

< 3dp.

(
409, for T € (70,31, 00) \ Iy sufficiently large. We have also Ay (1) C Bliam (A (r))+60 (é (1)) C
Bos, (6(7)), if 7 > L and L sufficiently large. In addition we obtain Aps (1) C Bes, (6o) for

any 7 € (L,0) \fM, hence the claim ([3.30)) follows.
In order to conclude the proof we consider a sequence of values dg = %, n € N, the

corresponding sequence M, — oo, the sets I M, and a sequence of increasing values 7 az, ,
starting at 7 = 719 ar,, such that ‘(7’07Mn, 00) N INMn‘ < 27" for n € N with limy, 0 70,01, = 00

and also diam (Ayy, (7)) < 27" for 7 € (T(),MH,TO,Mn*_l] \an and

/ AN, (d@,T) >1—-2"forTe€ (TO,MnaTO,Mn+1] \[NMn (332)
Ay, (7)

Then, if we define I = [r9p,00) \ Unen <(T0’MH,TO7MTL+1] \an) or, equivalently, I =

Unen [INMn N (TO,MH,TO,M"HH it follows that limy,_, f[L,oo)mf dr =0, ie. |[IN[L,o0)| =0
as L — oo.
We now define the sets, with n fixed

Alr) = Ad-1 for 7€ [1,70,n,]
AMn (7’) for 7€ (TU,anTO,Mn+1] \IMn .

We have also that the function defined as

[ diam (A(7)) for 7€ (1,00)\I
f(T)_{ 0 for Tel
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satisfies lim_,o f (7) = 0. Moreover, the function g defined as

(r) = fA (df,r) for T € (ToyMn,TO,MnH] \.an
g 1 for 7€1

satisfies lim,_,o, g (7) = 1.

It then follows from limr o f(7) = 0 that (y;>qy Ure(L,oo)\fA(T) = {6y} . On the
other hand, the definition of the function g (-), as well as the definition of the measures
A, (et (3:24)), imply (L.16) for some function & (¢) such that limy o0 (£) = 0. Using
the fact that dr = T it follows that if we define the set I C (0,00) as the image of I by
means of the mapping 7 — (e” — 1), it then follows from [, L,00)N ;dr — 0 as L — oo that

limy,_oo %LM” = 0. This concludes the proof of Theorem O
We now prove Theorem [I.1]

Proof of Theorem[1.1] The proof is similar to the one of Theorem The main difference is

that under the assumptions in Theorem [L.1{we can prove that the measure Ays (df, 7) changes

continuously in the weak—x* topology as 7 varies. More precisely, it turns out that if 0 <~ < 1

and 0 < v+ p < 1 the following estimate holds

/ G(p,0,7)p?d2<Cy , T7>1 (3.33)
R, xAd—1

where o =~ if p > 0 and o = v+ § with § > 0 arbitrarily small if p < 0. The constant Cjy on
the right-hand side of @ is independent of 7.

The estimate @ has been proved in [4] in the case of one-component coagulation
equations (i.e. d = 1) under the assumption fy € L}, (]Rf). The proofs can be adapted to
the case in which fy € .1 (R%). A sketch of the ideas required to prove this estimate in the
multicomponent coagulation case d > 1 are collected in Section |5 (cf. Proposition [5.1)).

On the other hand we also have the conservation of mass identity (cf. (3.10))

/ G(p,0,7)pdd=mg , 7> 1. (3.34)
Ad—1

Using (3.33) and (3.34)), as well as the fact that for the range of parameters under consid-
eration we have v < 1 — p it follows that

/ Glp, 0, 7)p" PO + / Glp,0,7)p PA0<Cy , T>1  (3.35)
{p=1}xAd=1 {p<1}xAd—1

where C depends on Cp and mg but it is independent of 7. Using (3.18) we obtain that, for
any smooth test function 1 satisfying 1} and any T» > 71 > 0 we have

/ G(p79a7_—2) @Z(pa 977_—2)(19_/ G(p79 Tl TZ) 979 Tl)dQ
R, x Ad—1 R, xAd—1

/ dT/ G (p,0,71) 7/)
R xAd-1

/ dT/*XAdl/RxAdl K(p.0,r,0,7)G (p,0,7) G (r,0,7) ¥(p, 7,0, 0,7)dQ).
(3.36)

R

]p,HT
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We now argue as in the proof of Theorem Given §g > 0 arbitrarily small we select
M > 0 sufficiently large such that (3.21)), (3.22)) hold. We then define A\ys (df, 7) by means of

(3.24)). Then (3.25) holds.
Suppose that (-, -, 7) € Who (R x Ad_l) such that supp (1[1) is compact and ¢(p, 0, -) €

C1(0,00). Then, using (3.7), (3.34) and (3.35)), we obtain from ([3.36]) the following estimate

/ G(p7977_—2) @Z(pa 077_—2)619 _/ G(p7977_—1)77/~)(p7077_—1)d9‘ S
Ry, xAd—1

Ry xAd—1

o [ 7)ys y } 20

for 71,72 > 1, where Cy depends on mg and Cj. It then follows that the mapping 7 € [1,00) —
G (p,0,7) € M (Ry x Ad_l) is continuous in the weak—x topology of .#; (R, x Ad_l) . In
particular, this implies that the mapping 7 — || [ 0] i) Ad-1 PG (p,0,7)dQ is continuous in
7 > 1 and that the mapping 7 € [1,00) — Ay (d,7) € A+ (Adil) with Ays asin is also
continuous in the weak—x topology of .# (Ad_l) . Moreover, the mapping from . (Ad_l)
to [0, 00) defined by means of Ays — a1 [pa-1 |0 — o[|*Anr (d8) Ars (do) is continuous if the
topology of . (Ad_l) is given by the weak—x* topology. This follows from the fact that the
tensor product is a continuous mapping in the weak—= topology. We now claim that
implies that

T—00

lirn/ / 10 — ol|*Aar (d0, ) Aas (do, 7) = 0. (3.37)
Ad—1 JAd—1

Indeed, suppose that limsup, o [xa-1 [aa—1 |0 — |[*Aar (d6,7) Aas (do, 7) > 0. Then, there
exist an increasing sequence {Tn}neN with lim,,_, o 7, = 00 and 1 > 0 such that

o o 10— ol (@0, A (a0 > 1

for n large enough. We can assume without loss of generality that 7,41 — 7, > 1. Then, the
uniform continuity of the mapping 7 — [xa—1 [ra—1 10 — ol Aar (d6, 7) Aas (do, 7) implies
that there exists g > 0 small such that

/ / 160 — o || Aoz (0, 7) Aps (do, 7) > D for r € (Th — €0, Tn + €0) -
Ad—1 JAd—1 2

However, this contradicts (3.25) and implies (3.37). We can then apply Lemma
to show that there exists a family of Borel sets {An (7)},5; with Ay (7) C A1 and

lim,_, o diam (Aps (7)) = 0 such that

lim Ay (dO,T) = 1. (3.38)

T J A (1)

Notice that this result is similar to the claim in the proof of Theorem with
the only difference that in the case of there is a set of “exceptional” times with small
measure for which fAM(T) Au (dB, T) might not be close to 1. We can now take §y = %, n €N,
select the corresponding values of the sequence M,, — oo as it was made in the proof of
Theorem and argue exactly as it was made there in order to prove . Hence the
result follows. O
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3.2 Complete localization along a ray in self-similar solutions

We now prove Theorem
Proof of Theorem . Using the change of variables (3.2)), (3.3)) with F' and G independent
of time, we can rewrite (2.8) as

/ / K(p,0,7,0)G (p,0) G (r,0) ¥ (p,r,0,0)dQd (3.39)
R. ><Ad 1 JR, xAd-1

TR G (p.0) [ = p0y| (p,0)d2 = 0

I =75 Jr,xad-1

where due to the homogeneity of the kernel K we have
K(p,0,r,0) = K(pb,ro) , p,rel0,00), 0,0ecA!

and

U(p,r,0,0) =1 <p + 7 0> —(p,0) — D(r,0). (3.40)

p r
p+r p+r
Notice that 1 (p,0) = v (€) with & = pb.

Arguing as in the proof of Theorem-we can prove that (3.39) - ) holds for any test function

1/)( ,0) satisfying (cf. -

o

90,0 + 0|5 (0.0)| + [Voip,0)| < Cp . pel0o0), b€ at

We can then choose the test function 9 (p,6) = p||0]|* in (3.39). Then

/ / K(p,0,r,0)G (p,0) G (r,0) L1 — o||2dd = 0. (3.41)
«XAd=1 JR, xAd—1 p+r
This identity implies that G has the form

G (p,0) = Go (p) 3 (0 — o) (3.42)

where G € 1 (Ry).
This can be seen defining for each M sufficiently large the probability measures on A4~!

by
A (A) = f[M7 ]X ! (79) 3.43
M( ) f[MvM]XAd*lpG(p’g)dQ ( )

for each Borel set A C ., (A4~1).
These probability measures are well defined for M large enough since G is not identically

zero. Then (3.41)) implies

/ / a1 (d6) At (do) 1|6 — o2 = 0.
Ad—1 JAd—1

We can then apply Lemma with € and § arbitrarily small to prove that

A\ = gy, (3.44)
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with 6y € A%"1. We now use that, since -, [77, M] x A4"E =R?
/ G (p,0) pdQ — my as M — oo.
ERY PN

Hence, combining the previous limit with (3.44)) and using the change of variables (3.2)),
(3.3)), the definition of 0y in (1.15) and Lebesgue dominated convergence Theorem, we obtain

1

lim Oy (dO) = — / G (p,6) 0pdQ2 = 6.
M—o0 JAd—1 mo JR,xAd—-1

Therefore, from (3.44) we obtain that limy;_,o 03y = 6p. Notice that (3.43)) and (3.44)
imply that there exists a measure Go s € # (R,) such that

G (p.0) X1 1) (P) = Goar (p) 8 (0 — Onr).

M

This implies that the measure G (p,0) is supported along the line {# = 0y,} . Therefore
Oy is independent of M and we have 0y = 6. This gives (3.42)).

Plugging (3.42)) into (3.39) we obtain that G satisfies
1 > d—1 d—1
5 K(p,00,7,00)Go (p) Go (1) ¥(p, 7,00, 60)r" " p" dpdr
* R*
1 7 7 d—1
+1—= [ Golp) [w - papw} (p;00)p™ "dp =0
-7 JR.

for each ¢ € C} ((0,00) x A1) . In particular, defining Fy := p%~'Go and Ky, (p,r) =
f((p, o, 7,6p), we obtain

5 [ Ko (o) Bo 1) [3Go ) = 00) = 9(0)] dpar
« o Ry
+ 1_17 5 Fy (p) [1,!3 - papﬂ (p)dp =0

for any 1; € C1(0,00), i.e. Fp is a self-similar profile for the one-dimensional coagulation
equation with coagulation kernel Ky, (p, 7). This concludes the proof of Theorem |1.4
O

4 Global existence and self-similar solutions for the multicom-
ponent problem

In this section we show that the assumptions of Theorems [L.1]| and are satisfied for some
ranges of exponents v, p as well as for some choices of initial values fo € .#;(R%). The
global existence of weak solutions in the sense of Definition which in addition satisfy
the conservation of mass condition has been proved (cf. [II, 4, 12l 20]) in the case of
one-component coagulation equations (i.e. d = 1) for product kernels of the form YAy~ 4
27y~ with —A <44+ A < 1 and v < 1. These results can be easily extended to the class

of kernels considered here satisfying (|1.5)), (1.7)), (1.8)), (1.9), with d > 1.
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On the other hand, the existence of self-similar profiles has been proved for one-component
coagulation kernels which in addition to the previously stated conditions (cf. , , ,
(1.5)) satisfy also and the homogeneity condition . These results can be used to
prove the existence of self-similar solutions with the form in the multicomponent case
(i.e. d > 1). We will explain in this section how this can be achieved.

We first notice that the following global existence result holds.

Theorem 4.1 Suppose that K is as in and satisfies the homogeneity property
and the upper and lower bounds @, (1.7) with v, p € R such that v,v+p € [0,1). Suppose
that fo € #1(R%) satisfies

(e + [ fo(d) < oo (11)

R¢

for some r > 0. Then, there exists a weak solution f € C([0,00),.#,(R%)) to (L.1]) in the
sense of Deﬁm’tion with f(0,-) = fo. Moreover, this solution f has the following property.
For any k satisfying k € (v,1+7r] if p <0 ork € (—oo,1+ 7] if p > 0, there is a constant
c > 0 that may depend on the initial data such that

/d 2| f(da,t) < ct1=, > 1. (4.2)

The existence of a solution under the conditions of Theorem can be obtained by
adapting to the multicomponent setting the results proved in [4] (see also [I]). Those results
have been obtained for locally integrable initial data fy € Llloc(Rff), but they can be adapted
to the case of more general initial data fy € .#1(R%). In [22] an existence result for measure-
valued solutions was obtained for d = 1 for a larger class of non-homogeneous kernels. The
moment estimate has been derived in [4] for d = 1 (cf. Theorem 2.4 and Lemma 3.1 in [4]).
We will present in Section [5] the ideas that allow to generalize the proof to multicomponent
coagulation equations.

On the other hand, the existence of self-similar profiles is well known for a large class
of homogeneous kernels K in one component (i.e. d = 1) coagulation systems. Using the
results obtained for the one component system in [3, 4, 1I] we can immediately prove the
existence of self-similar profiles for the multicomponent system in terms of the solution to the
one-component equation, having the form . Moreover, Theorem E guarantees that all
self-similar profiles of in the sense of Definition have the form @D We have the
following result.

Theorem 4.2 Suppose that K : (RY)? — R, is as in and satisfies the homogeneity

property and the upper and lower bounds , (1.7) with v,v+p€[0,1). Letm € R¢
with the form m = (mk)Z:1 with my, > 0 for any k = 1,2,...,d and satisfying |m| > 0. Let

Oy = ﬁ € Al There exists at least one measure Fy € .#\(R,) such that the measure

F € #,(R%) defined in is a self-similar profile to (1.1)) in the sense of Definition .

Moreover, we have

5 EF(dE) =my , k=1,2,..d. (4.3)

Proof: Suppose that F' has the form (1.18) with Fy € .#;(R.) a solution to the one-
dimensional problem. We then have, using the variables (p, 6), that

F(d§) = Fo (p) 6 (6 — o) dpdv (0) .
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Hence, (2.7)) holds if and only if

/(1 )p7+pF0 (p)dp + /(0 ; p PRy (p)dp + / pEy (p) dp < 0 (4.4)

*

and (2.8) holds if and only if the following identity is satisfied
/ K (pbo, o) plo(p +1,60) — ©(p, 00)] Fo (p) Fo (r) dpdr (4.5)
* R*

1 dp 2
- F -
1_7/& 0 (p) ap(pvﬁo)p dp
=0

with (&) = pp(p, ), € = pf and ¢ € CH(R?) is an arbitrary test function. Notice that since
holds, then using the definition of 6y, is automatically satisfied.

We define Ky, (p,r) = K (pbo,76p). Notice that the kernel Ky, is homogeneous with
homogeneity v and continuous. Due to , we have that Ky, satisfies

P
p+r

ci(p+r)®, ( ) < Ky, (p,7) < CQ(pH)vq)p( > , preR,.  (46)

p+r
The existence of measures Fy € .#1(R,) satisfying (4.5)), (4.4]) for kernels satisfying (4.6)) with

v, p satisfying v,y + p € [0,1) is ensured by the results in [3, 4, [I1]. Then the result follows.
]

5 Moment estimates

A crucial step in the proof of the existence of self-similar solutions for one-dimensional coag-
ulation equations is the derivation of some estimates for the moments of f which guarantee
that the mass of the monomers of the solutions of the coagulation equations remain in the
self-similar region = ~ tﬁ for arbitrary long times. Since these estimates are a crucial in-
gredient in the proof of Theorem we will describe in this section how these estimates are
derived for the solutions of the multicomponent coagulation equation .

Proposition 5.1 Suppose that K : (RY)? — R, is a coagulation kernel satisfying ,

the homogeneity property as well as the the upper and lower bounds (@, with
v,y +p € [0,1). Let f be a solution satisfying f(0,-) = fo and whose existence was
stated in Theorem. Then, for any k € R satisfying k € (v,1+7r] if p <0 ork € (—oo, 147]
if p > 0, there is a constant ¢ > 0 that may depend on the initial data such that, for allt > 1,

/]Rd |lz|* f(dx, t) < 1= (5.1)

*

The proof of Proposition follows directly from the next two lemmas, each of which
provides bounds for the moments £ > 1 and k£ < 1 respectively, of a solution F' to the
coagulation equation in self-similar variables. More precisely, let f be a weak solution
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to (1.1)) constructed in Theorem Using the self-similar variables (3.1]), we obtain that
f(x,t) = (e))'T9F (¢, 7) where F satisfies

d 1 .
o /Rg F(dg, m)y(€,7) = /M F(d¢, ) [aﬂp - d 1_71/,] (€,7)

+ % / K (&0, 7) F(d€, 7)F(di, 7)o (€ + 1, 7) — (&, 7) — (1, 7)]
R4 JRY
(5.2)

for all 1 € CH(R? x (0,00)), and with K (&n,7) = e TATK (eﬁTf,eﬁTn) Notice that
this identity is satisfied for a.e. 7 € (0, 00) as it might be seen using ([2.3)) and the self-similar
variables defined in (3.1]).

Lemma 5.2 Let ,p and the kernel K satisfy the conditions of Proposition [5.1 Let Fy €
M1 (RY) satisfy

/ Fo(y)lyldy = mq.
R¢

There is a weak solution F to the coagulation equation in self-similar variables (5.2)) with
initial condition F(-,0) = Fy. Then, for allk € (v,1) there is a positive constant wy, depending
on k such that

/ F(d¢, 7)min{|¢|, 1}* < wy, for all 7> 1.
RY

Proof: We generalize the proof of Lemma 3.1 in [4] to the multicomponent setting.

We can replace the initial value Fyy by F o that is supported in the region {|x| > ¢} such
that in this region Fy.(dx) = Fy(dr). Similarly, we can use an e—truncated coagulation
operator such that each solution F. to remains supported away from the origin in
{lz| > e} for all times ¢ > 0. All computations that we do in this proof are then fully
justified for the regularized problem. As we will see, the moment estimates derived next will
be uniform in the parameter € which allows to conclude their validity for the original problem
taking the limit ¢ — 0 at the end of the argument. Since this argument is standard in the
study of coagulation equations we will not reproduce it here. For simplicity we write in the
following F' instead of Fy.

Define the time-independent test functions ¥(&,7) = w4(€) = min(A4, [¢])¢, with A > 0

and £ € (v,1], and $a(§,1) = pa(§ +1) — pa(§) — ¢a(n). Computing $4(§,n) yields

&+l =g = |nf*, for [¢]+1n <A

AL — [l = nlt, for [€]+ Il > A, €], In] < A
@a&,m) = —[¢l, for [¢ <A, In>A

—[nlf, for |y <A, ¢ >A

—At, for €], In| > A.

Note that ¢4(&,n) < 0. Moreover, the following estimate holds

Ga(&n) < —A"Lyg >y (5.3)
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We also have the following bound for the first terms on the right-hand side of equation

(5-2)

1 1 1
— . < . 4
[ € Oepa+ 1_7¢A] © < 1= pal®) (5.4)
On the other hand, any kernel in the class considered satisfies the lower bound
K(&n) = (€))7, (5.5)

This follows from the lower bound

c A4\l )
w6 et () (o)

= ca([é] + ) P (Iellnl) ™ = ea(€linl) /(€] + Inl) ™2 (el lnl) P2

and from the fact that (|€|+[n])722(|¢||n])~P~7/2 > 22P+7 > 1. To obtain the latter inequality
we use that, due to the Young inequality, |¢|Y/2|n|'/2 < L(|¢| + |n]), as well as the fact that
742 > 0 (see (L)),

Using (5.3)), (5.4) and (5.5)) it follows from (5.2)) that, for all A > 0,

¢ 2
[ Pl rea©) < F(dg,ﬂmé)—“;( / \517/2F<d5,7>) . 659)
{l§1=A}

dr Jpd -7 Jre

The strategy now is to obtain a differential inequality for the moment min(1,|¢|)**® with
0<d<l—n.
Define ¢(y) = min(1,y)?/?>9. Using integration by parts we may write

2pge ) = [ o V2R(de. T
/Rﬁ(lf)lﬁ\ F(de,7) /0 #(A) (/m  Jenere >)dA

and from Cauchy-Schwarz inequality, we obtain the estimate

2
(/ ¢(4) (/ Ifl”/zF(df,T))dA> <
0 |€]>A
0o 2
c / §(A) A7 (/ rsw/?F(ds,T)) dA,
0 [€|>A

00 1
c ::/ ¢ (A)AT2dA :/ ATIHA < 0.
0 0

Using now (j5.6) it follows

/2 T o [ ayan V2R(de,T) | dA
</M¢<\sr>\§r Fd, >) < / #(A) (/|€ e >) d

. 20/000 ¢/(A)A’Y/2A—€ <11 /Rd F(d¢, m)pa(§) — CZ’/]ZW F(df,T)(pA(f)>

with

-7
d

1
-2 (1—7 [ paemwe - 5 [ F(dﬁﬁ)@b(é)) 6.7
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with (&) defined by
b(E) = /0 oA ()6 (A) AT,

Since ¢4(¢) = min(A4, [£])*, then for the choice £ = v + 2§ < 1, one easily concludes that v
satisfies the bounds

& min(L €))7 < p(€) < Cmin(1, ¢+ 53)

for some positive constant C'. Then (5.7) together with (5.8) imply an inequality for the
moment min(1, |¢])7+9,

2
[ Fag 7y min(1 )7 + (/ F(dfvT)min(1,|§’)V+5> <
R

dT Ril

o [ PG T min(1, )

for some positive constants k1, ko. Integrating this inequality in time yields the desired
uniform in e estimate for F; and 7 > 1. ]

Lemma 5.3 Let v,p and the kernel K satisfy the conditions of Proposition [5.1 Let Fy €
M1 (RY) satisfy

M, = /Rd Fo(w)lylFdy < C

and F be the weak solution to the coagulation equation in self-similar variables (5.2)) with
initial condition F(-,0) = Fy obtained in Lemmal[5.4 Then, for all k € (1,14 §) there is a
positive constant wy, depending on k such that

sup [ F(y,t)|y|*dy < max{wy, My}.
>0 JRd

The idea of the proof is to use the test function ¢(z) = |z|* and to obtain an estimate
in terms of the lower order moments. This idea has been widely used in the analysis of one
component coagulation equation (see for instance [4] Lemma 3.4 and the book [1]), and it
can be immediately adapted to the multicomponent case. The use of this test function allows
to reduce the estimate for the moment fREf F(t,y)|y|*dy to the estimate of moments with an
exponent smaller than k. We can then use the estimate obtained in Lemma Since the
argument is by now standard, we will not give more details here.

6 Long time asymptotics for kernels which are constant along
any direction

In this section we prove Theorem We need a preliminary result yielding well-posedness
for (L.1]) with kernels satisfying ((1.19)).

Lemma 6.1 Suppose that the kernel K is as in . Then, for any fy € L (Rf) satisfying
1.2d) and 41.21) there exists a unique solution f € C* ((0,00); L' (RY))NC ([0,00) ; L' (RY))
tL‘o 7.1) -

in the classical sense with initial value f (-,0) = fo (-). The function f is also a weak

solution to in the sense of Definition .
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Proof: Due to the boundedness of the kernel K we can prove the existence and uniqueness of
a solution f just reformulating as an integral equation and using a fixed point argument
in the space C ([0,00) Lt (Rff)) The fact that f is also a weak solution in the sense of
Definition follows by multiplying by a test function ¢ (z,t) and using integration by
parts in the variable ¢t as well as Fubini’s Theorem. These computations are standard, we
refer to the book [I] for further details. O

We now prove Theorem

Proof of Theorem . For kernels with the form and for initial data fy € L* (Rf) with
the properties stated in Theorem the conditions in Theorem are satisfied. Indeed,
we can apply Lemma and Theorem with v = p = 0 with initial data fy € L'(R%)
satisfying the moment bound to obtain a solution f € C ((0,00),.#; ((0,00) x A4~1))
to . Moreover, since the kernel is bounded, one can show that the solution f is unique
using a standard fixed-point argument. We then define G € C ((O, 00) , A ((0, o0) X Adil))
by means of , , with an initial condition G € L' ((O, o0) X Ad_l). We will later
assume that the initial datum G belongs to a more restrictive set. Due to the uniqueness of
f (and G), we can define the semigroup, S(7), for the evolution of G. We will then write
G(7)=S8(7)G(-,-). Notice that (or Proposition implies the estimate

1
/ o"G(p,0,T)dQ < C1, ke [,a] for some a > 1. (6.1)
R xAd—1 a

We recall that 7 = log(t + 1) with ¢ > 1, and again we assume 7 > In 2 throughout.
Let mg = |[m|. We denote as 4" (6p; mo; C1) the subset of .2, ((0,00) x A4~1) that con-
sists in the measures G supported along the line {6 = 6y} and satisfying the estimate

/R N 1pké(p, 0)dQ < C, (6.2)
* X -

(cf. (6.1)) and having the mass [ . ja—1 pG(p,0)d2 = mg. Notice that 4" (fo;mo; C1) is
a compact subset of .# ((0,00) x A471) in the weak—x topology of .#; ((0,00) x A4~1).
We will denote as dist (-,-) a metric which characterizes the weak—# topology of bounded
measures in .41 ((O, 00) X Adil) . We can then apply Theorem u that implies that

dist (G(p,0,7), A (Bo;mp;C1)) =0 as 7 — oo. (6.3)
We denote now as Gy (p, 0; 6p, mg) the measure in .2 ((0,00) x A%"1) defined by

4 1 ox <_ 2p
Q) mo 1 P\ Q(00)mo

Then Gy € A (0g;mp; C1). Given G € A (6y;mp; C1) we can characterize the evolution
semigroup S(7) in terms of the corresponding evolution semigroup for the one-dimensional
coagulation evolution. More precisely, we can obtain S (7) G as the element of

C ((0,00) , 41 ((0,00) x A1) given by T — G (p,7) 6 (0 — 6y) where G (p, 7) is the solution
of the one-component coagulation equation with constant kernel K = @ (6p) and initial value
Go(p) = G(p,bp). The existence and uniqueness of G (p,7) is given in [I7]. The results in
[17] also provide the long-time behaviour of the solutions to the one-component equation.
In particular, they imply that for any measure G' € A (6y; mg; C1) we have that S (7) G —

GO (p76;907m0) = > 6(0_60)
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Go(+,+;6p,mp) as 7 — oo in the weak—x* topology of .#; ((0,00) X Adil). Moreover, the
compactness of A (6y;mo; C1) implies that the convergence is uniform. More precisely, for
any € > 0 there exists T =T (&) > 0 such that

dist (S (1) G (p,0) , Go (p, 0; 60, m0)) < ; for any G € A" (0p;mo; C1) and 7>T (6.4)

On the other hand, the evolution equation yields an evolution semigroup that is continuous
in the weak—x* topology of measures with respect to the initial value. We can then argue
as follows in order to prove that the solution G(p,0,7) is at a distance smaller than ¢ from
Go (p; 00, mo) for sufficiently large times.

Let € > 0 be an arbitrarily small number. Note that, from , there exists T = T (¢)
such that

dist (S (T) G, Go (p, 05 60, mo)) < % for any G € A (Bo;mo: C1) - (6.5)

On the other hand, the continuity of the semigroup S (7) implies that there exists § =
d(e,T) > 0, that we can assume to satisfy § < 5 such that, for any G € .1 ((O, o0) X Adil)
satisfying dist (G1(p,0), A (0o; mo; C1)) < 6, then the following inequality holds

dist (S (T) G1 (p,0) , S (T) G (p,0)) < % for any G € N (Bp;mo;C1). (6.6

In particular, notice that this continuity estimate on the evolution semigroup is uniform in the
class of measures (G satisfying the moment bound . From it follows that there exists
Ty =Ty (e, T) = T (¢) such that for any 7 > T7 we have dist (G(p,0,7), A (6p;mg; C1)) < 0.
Then, given any 7 > T7 + T we can write 7 = 7 4+ T', which ensures that 7 > T7. From
and , taking G1(p,0) = G (p,0,T), we finally obtain

dist (G (p,0,7), Go (p, 0; 00, m0))
= dist (S (T) G (p,0,7),Go (p, 0; 00,m0))
< dist (S (T) G (p,0,7), S (T) G (p,0)) + dist (S (T) G (p,0) , Go (p, 05 60, m0))

< = + f= €
2 2
Since € is arbitrary, the result follows. O

Remark 6.2 Combining the methods used in the previous proof with the ones used in [2,[2])]
it would be possible to prove convergence to a self-similar solution supported along a particular
direction for coagulation kernels that are near constant along each particular direction of the
space of cluster compositions.

7 Application to discrete systems

In this section we are concerned with the discrete version of the multicomponent Smoluchowski
coagulation equation . In the discrete case, clusters are characterized by the composition
vector a = (a1, az,...,a4) € Nd\{O} consisting of d different monomer types, where Ny =
{0,1,2,3,...} and O = (0,0, ...,0). The concentration n,(t) of particles of composition « at
time ¢ > 0 is governed by the following equation

1
e = Kd[Nal, Kd[na] = B Z Ko—Bgna—png — ng Z Ko png. (7.1)
B<a B>0
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Given o = (a1, a9,...,0q4) and 8 = (B4, B2, ..., Bq) we write < « to indicate that S < ay
for all k =1,2,...,d, and in addition a # 3. The collision kernel K, g, which we assume to
satisfy the symmetry condition K, g = Kg 4, describes the coagulation rate between clusters
with compositions a and . Equation was first proposed in [23] in the case of particles
described by a single component, corresponding here to the case d = 1.

Notice that can be considered a particular case of for measure solutions of

with the form
f(z,t)= Z nad (x — a). (7.2)
aGNg\{O}

In this case, f in (7.2) solves (1.1 if (na)a solves (7.1)) with the kernel K, 3 = K (o, §).
We will assume that the kernel K, g can be written as

Kuop = K(a,B) for a, 8 € NI\ {O} (7.3)

for some K (z,y) satisfying the conditions (L.5))-(1.8). Notice that if K, s is a kernel for which

there are c1,c5 such that ci(ja] + [8])p(1/257) < Kas < calla] + [B])7®p (15125 for all

la|+|3
a,B € Nd\ {0}, we may find a function K (z,y) of the required type so that holds
(changing, if needed, the values of the constants ¢y, ¢2).

We notice that, since the solutions of can be interpreted as particular solutions of
with the form , the localization results for will follow from the corresponding
results for (1.1).

More precisely we can formulate the following discrete version of Theorem

Theorem 7.1 Suppose that K.y : (N§\ {O})2 — [0,00) is a mapping that can be written
in the form for some function K : (R%)? — [0,00) satisfying as well as the bounds
(1.6)—(1.8) for some v € [0,1) and p € R such that 0 <y +p < 1. Let {na,O}aeNg\{O} satisfy
0< ZaeNg\{O} |1 ng0 < 0o for some r > 0. Then there is a solution {n, (')}aeNg\{o} of
(1.1) such that no(0) = nao and, for each t >0,

Yo adna®) = D alnao =mg € (0,00).
aeN§\ {0} aeN\{0}

Moreover, it satisfies the following localization property. There exists a positive function
0 € C(0,00) such that limy_,~ 6(t) = 0 and with the property that

tlgrolo 1 Z |a| g, (8) —mo| =0 (7.4)

{1 <lal<o) ™07 jnd]gr-o0|<o0))

where 0y € A1 is defined by means of

2 aelg\{0} A0
0y := .

(7.5)

mo
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