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Abstract
Yield is key to profitability in semiconductor manufacturing and controlling the fabrication process is therefore a key duty
for engineers in silicon foundries. Analyzing the distribution of the defective dies on a wafer is a necessary step to identify
process shifts, and a major step in this analysis takes the form of a classification of these distributions on wafer bitmaps called
wafer maps. Current approaches use large to huge state-of-the-art neural networks to perform this classification. We claim
that given the task at hand, the use of much smaller, purpose defined neural networks is possible without much accuracy
loss, while requiring two orders of magnitude less power than the current solutions. Our work uses actual foundry data from
STMicroelectronics 28 nm fabrication facilities that it aims at classifying in 58 categories. We performed experiments using
different low power boards for which we report accuracy, power consumption and power efficiency. As a result, we show that
to classify 224 x 224 wafer maps at foundry-throughput with an accuracy above 97% using a bit more than 1 W, is feasible.

Keywords Semiconductor manufacturing - Advance process control - Wafer inspection - Convolutional neural networks -
Low-power classification
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Introduction

Yield, defined as the ratio of working dies per wafer over
the total number of dies per wafer, is a fundamental metric
in semiconductor process manufacturing, as it determines
the profitability of a production line. Although the quest for
high yield has been the focus of process engineers since the
infancy of monolithic circuit integration (Murphy, 1964),
today’s process complexity and feature size makes it more
relevant than ever (Park and Simka, 2021).

There are many reasons for which a die might be non
functional and determining the precise cause or chain of
causes can help yield engineers readjust process steps, be they
chemical or mechanical. Early identification of the causes is
very important to ensure proper monitoring of the process,
improve yield, and overall warranty the sustainability of the
fabrication.

Wafer maps are produced by a test equipment during semi-
conductor manufacturing. During front-end, metrology and
defectivity inspections can be used to validate a set of wafers
belonging to a batch under fabrication. On the one hand,
metrology allows the acquisition of precise integrated circuits
measurements, which are analyzed for validating design and
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Fig. 1 Typical wafer map with the notch at the bottom. Black dots
locate defects

manufacturing rules. On the other hand, defectivity inspec-
tion checks for particles or some defects present on each
wafer under evaluation. Specialized inspection equipments,
based on advanced optical or electron beam inspection sys-
tems (Patel et al., 2020), find the position coordinates of each
defect present in the wafer. Then, a scanning system gener-
ates a two dimensional bitmap image in which the position
of the defects is indicated by the black points. The resulting
image, see Fig. 1, is called a binary wafer map (Hansen et
al., 1997).

The orientation of the wafer is known thanks to a tiny
notch used for alignment within the equipment. Defective
wafer maps reveal patterns formed by the distribution of
defects which can be representative of specific machine set-
tings such as alignment, focus, or wafer handling errors such
as scratches or localized trouble spots. These wafer maps are
of utmost interest for the process engineer, as the different
distribution of defects form patterns that denote process dys-
functions root causes (Nag et al., 2022). Coupling defectivity
inspection and review scanning electron microscopy image
analysis (Lopez de la Rosa et al., 2023) allows for accurate
problem identification of these defects.

There has been a lot of work associated to the correct
classification of an open wafer map data set recently (Wu et
al., 2015). Although very useful for research purposes, our
experience has shown that this set of wafer maps has a limited
representation of actual processes. It includes far too few cat-
egories, a total of nine common classes, and the wafer sizes
are taken from different lots, with dimensions varying too
much to be representative of a given production line, which
is normally built around a specific wafer size. This also led
researchers to define various methodologies for reworking
and largely preprocessing the data set, and subsequently to
propose high-precision neural network architectures, at the
expense of the number of parameters. In hardware imple-
mentations, a large number of parameters translates into high
computational costs and memory resources.
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As the test equipment is used 24/7 during semiconductor
manufacturing, we are looking for a small neural network,
a more application-specific solution than the ones published
in the literature, to reduce the cost and energy consumption
of the inference process as much as possible. Thankfully,
our wafer maps are simple one channel images, this means
that we have room for a lot of optimizations, in particular
using quantization methods to reduce the necessary resources
to perform inference. Additionally, the throughput of wafer
production is low enough to give us an extra margin in opti-
mization, trading inference speed for even fewer resources.
Overall, our goal is to be able to run the inference task on a
low-cost industrial board with a few watts of power budget.

This paper is organized as follows. Section2 reviews
the related works in wafer map classification. Given the
huge number of recent contributions to that topic, we focus
on the more original works, and the ones that also target
low resource usage. Section3 introduces our data set, that
includes 58 categories for a well established 28 nm process on
300 mm wafers. The approach we propose to devise an appli-
cation specific network is presented Sect. 4, in which we also
detail the interest of quantization. We report our experiments
Sect. 5, with an emphasis on accuracy and resource usage,
followed by a more detailed analysis of the performance
achieved per second and per watt in Sect. 6. We wrap-up
our work in Sect. 7.

Related works

Although statistical approaches have been used for long to
classify wafer maps in high-volume production (Duvivier,
1999), it is only recently that the use of deep neural networks
has been proposed to that aim. Specifically, Convolutional
Neural Networks (CNN) and supervised methods have been
widely used in manufacturing and factory applications during
the ten last years (Fahle et al., 2020). CNN architectures have
proven to be effective for specific applications such as image
recognition or object detection problems in the semiconduc-
tor industry. Especially because they have shown an increase
of both preprocessing efficiency and accuracy during wafer
map pattern recognition and classification (Theodosiou et
al., 2023). The emergence of such architectures is moti-
vated by two factors: First the breakthrough brought by
AlexNet (Krizhevsky et al., 2012) making deep neural net-
works clearly superior for image recognition, and second
the availability of the WM-811K data set, a public and open
wafer map collection donated to the community by Taiwan
Semiconductor Manufacturing Company (TSMC).

Wu et al. (2015) introduced the WM-811K data set includ-
ing 811,457 wafer maps collected from 46k lots in real-world
fabrication. Although it is a public data set and it has been
subject of many research works, some limitations deserve
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mention. First, it is highly unbalanced, i.e. some defects
appear very often and others rarely. Second, because labeling
by experts is a time and costly consuming process, a large
amount of unlabeled data is available, only approximately
20% of data patterns have been annotated. Third, defects are
classified only in nine categories, which is far from repre-
senting the current sorting process of some production lines.
As a result, this data set has been used as reference in many
researches leading to the proposal of new learning method-
ologies, new image preprocessing and data augmentation
techniques, as well as the introduction of CNN architec-
tures focused on faulty wafer map classification. Recent and
detailed reviews of these works are presented by Kim and
Behdinan (2022) and Theodosiou et al. (2023). A common
feature of the proposed works is their focus on demonstrat-
ing the high level of accuracy achieved by their approaches,
without addressing the impact of high computational costs
on the scalability and deployment of the deep learning solu-
tions at the edge, i.e. in real industrial environments under
time and resources constraints. As far as we know, none of
the previous work targets an accurate and energy-constrained
hardware implementation for wafer map classification, which
is the focus of this paper.

The class-imbalanced issue has long been addressed.
Saqlain et al. (2020) implement a data augmentation method
to increase the size of minority defect classes. They use ran-
dom rotations, horizontal flipping, width and height shifts,
shearing range, channel shifting, and zooming. For model
regularization, authors apply batch normalization and spatial
dropout methods. Using a fully-balanced data set and a dedi-
cated CNN architecture, they reach an average classification
accuracy of 96.2%. Alawieh et al. (2020) propose a data aug-
mentation scheme built around a convolutional auto-encoder
to manage under-represented classes and then integrate selec-
tive learning during the classification process. They introduce
a rejection option where the model chooses to abstain from
predicting a class label when misclassification risk is high,
then they achieve 99% of accuracy. Kahng and Kim (2021)
demonstrated that the choice of data augmentation is a crit-
ical factor governing model performance. Authors expose
that augmentation must be chosen carefully regarding the
downstream application.

The label uncertainty issue has also been the focus of
several researchers. Park et al. (2021) propose a method-
ology, based on discriminative feature learning and class
label reconstruction (using Gaussian means clustering), for
creating a new class for defect samples that cannot be cate-
gorized into known classes and detecting unknown defects.
The average accuracy classifying these unknown defects was
improved on 7.8%. Shim et al. (2020) use active learning for
decreasing labeling costs. They propose a classification sys-
tem based on four steps: A LeNet-5-like CNN architecture is
trained using the initial labeled data set, an uncertainty pre-

diction in the unlabeled wafer maps is calculated, and using
top-K selection methods, a new set of wafers is extracted to be
manually inspected by experts and merged with the original
data set. Despite the proposed classification system involves a
light-parameters CNN architecture, authors evoke that better
trade-off between classification accuracy and labeling costs
needs to be explored.

Limitations regarding the number of classes of public data
set are addressed by Tsai and Lee (2020). They propose a
CNN encoder-decoder for data augmentation and a classifi-
cation method based on depthwise separable convolutions.
This work, in addition to the WM-811K data set, uses a 21-
defect data set with 16388 real-world maps collected from a
Taiwanese company. After data augmentation the classifica-
tion method reaches an accuracy of 97.01% and 95.09% in
the two last data sets respectively.

In our research, we use real wafer data set from a French
foundry company, composed of raw data coming from test
equipment. Classes are defined by experts and fully-balanced
by means of a simulator tool. This data set, including more
defect classes than other data sets (58 classes), allows us to
train and to fine-tune a light-parameter CNN architecture for
an efficient-energy wafer map classification. Our architecture
is also tested on the WM-811K data set.

As far as CNN architectures are concerned, the main focus
remains on providing high-accuracy models. Nakazawa and
Kulkarni (2018) propose a CNN model for image classifi-
cation and retrieval which, based on synthetic wafer maps,
achieves an accuracy of 98.2%. Kyeong and Kim (2018)
introduce a CNN architecture composed of a number of
individual classification models equivalent to the number
of defect classes or patterns that can be detected. This
architecture tackles the detection of mixed-type defects, by
combining the results of individual classification models, but
it entails high computational and storage costs in terms of
scalability. Saqlain et al. (2020), introduced above for their
data augmentation method, propose a CNN with 2.7 mil-
lions of parameters, which has been optimized compared to
the reference VGG-16 model (with 134.2 millions of param-
eters). Wang et al. (2020) and Tsai and Lee (2020) also
propose reduced CNN architectures with 2.3 and 1.6 mil-
lions of parameters respectively. Although the number of
parameters has considerably reduced, these architectures are
still too large to be implemented in low-power hardware
devices. Andrade et al. (2021) presents experimentations
with simplified AlexNet, MobiletNetV1, and VGG, so as
to limit the number of parameters they require. This latter
architecture leads to the best accuracy while requiring the
least parameters. To reduce the number of parameters, other
approaches tackle quantization on deep learning models. Nag
et al. (2022) performs INTS8 quantization on their encoder-
decoder architecture, which can perform both classification
and segmentation with 98.2% of accuracy. Zhang et al. (2022)
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propose a framework based on a binarized neural network.
It reaches a classification accuracy of 94.83% and reduces
memory requirements by 29.70x. Despite being focused on
model size and runtime reductions, none of them refer to
power reduction techniques or power/accuracy trade-offs for
neural network inference. Only Tsai and Lee (2020) evokes
power efficiency in a short paragraph, saying simply that the
network fits in an NVidia Jetson Nano board (= 10 W) and
performs 5 frames per second inference on 64x64 images.
In our research, energy efficiency is the first criterion taken
into consideration. Our model was chosen ad-hoc and after
experimenting with various architectures based mostly on
convolution layers. The analysis of aforementioned work and
predefined neural networks led us to converge on a small, pre-
cise model that remains largely efficient in terms of power
consumption. The model has been specifically developed for
our data set, and then tested on the WM-811K data. We
focused on CNNs, as these particular architectures remain
fascinating for their ability to learn and progressively reduce
data. A high accuracy, that is our second criterion, can be
achieved by going deeper through the learning kernels.

Data set

Data collection is the starting point of any work making use
of neural network. The quality and quantity of the data play a
key role in reaching high accuracy during inference (Cortes
et al., 1995; Dodge and Karam, 2016). In general, simple
problems require a range of thousands of samples, and for
more complex problems they can reach several million. To
address the problem of data imbalance, the data set must be
representative and have a good preponderance of observa-
tions (samples) for each type of category (class).
Data collection

The raw wafer data come from STMicroelectronics plant
located in Crolles, France, which targets the 28 nm node
on 300mm wafers. An extensive analysis of the faults that
can occur during manufacture led to the definition of 58
defect classes. Collecting raw wafers representing all classes
is a difficult process, particularly for classes related to rare
events during production. To deal with data imbalance, ST
uses a drawer tool that can generate synthetic images only
to balance the number of samples per class. This process
is supervised by process engineers who select the generated
images that are the most realistic to ensure that no false cases
are included in the training data. Each class is represented
by about 2,000-3,000 black and white images resulting in a
complete data set of 121,550 400 x400 pixel images. Figure 2
shows an example of six of these classes.
Resizing images

Scaling has a major impact on the size of the network
and should have no impact on the quality of our data. To
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determine the optimum scaling rate, we carried out a few
experiments. By training a neural network with images of
different sizes, we compare the performance of the model.
The convergence rate indicates the learning capacity of the
network, which in turn depends on the quality of the data.
Figure 3 shows the validation accuracy for different images
scales. For each scenario, the model is trained on 50-pixel
resized images, starting with a 300x300 px data set. We
can observe that best performance is clearly achieved for
images with higher resolutions, such as 300x300 px and
250%250 px. The smaller the images, the lower the qual-
ity and, consequently, the longer it takes to learn the same
model. We resized our images to 224 x 224 px for compari-
son purposes, as quite a few existing CNN models (VGG16,
MobileNetV1, GoogLeNet, etc) use this data size. Figure 3
shows that training the neural network with 224 x224 px
images leads to high performance and therefore fast learn-
ing, converging at almost the same speed as for higher image
resolutions. With this size, we ensure that there is no loss
of information and that each image subsequently retains the
characteristics corresponding to its own failure category. For
the resizing method, we applied the nearest neighbor inter-
polation algorithm McLain (1976).

Building an application specific neural
network classifier

Our goal is to build a neural network architecture that is
specifically designed and optimized for our classification
task. This not necessarily allows us to increase the accu-
racy but rather gives us a better control on the memory size
and computations required at inference time. The first step
is to find a suitable architecture and optimize it to get an
acceptable accuracy while minimizing storage and comput-
ing needs. The second step is to optimize it further by using
quantization to reduce weights to 8-bit integers.

Finding a suitable architecture

Our constraints

As we target small hardware devices, we have to find the
right balance between resources and accuracy. We perform
the search for the appropriate network architecture using
floating-point representation, keeping in mind that the param-
eters size will be reduced by quantization. Our approach is
mostly empirical, as the current network architecture search
(NAS) approaches are mainly intended for very complex
problems and huge networks (Ren et al., 2021).
Motivation and base architecture

Convolutional neural networks (CNNs) have been con-
ceived for high dimensional data. These architectures are
notable by their ability to learn spatial features from input
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Fig.2 Examples of wafer map
defect patterns. The first line
shows the classes
"CLUSTER-BIG",
"DONUT-EOW-DENSE",
"FINGERPRINT", and on the
second line "FULL-WAFER",
"HORIZONTAL-MULTI" and
"MATRIX" classes are shown

images, such as shapes and textures, while gradually reducing
their size. As per traditional approach and matter of com-
parison, we applied some predefined CNNs models such
as AlexNet, VGG16, ResNet, GoogLeNet (Szegedy et al.,
2015) on our data set. We obtained a good predictive accu-
racy, the only issue is that the size of these models is simply
not appropriate for inference on small electronic devices.
When trying to optimize these networks by reducing their
size, or by using much smaller networks such as Lenet-5,
the accuracy drops at 95.5%. This led us to look for other
approaches. Our attention was drawn to the strength of the
AlexNet and GoogLeNet architectures. The challenge was
to leverage the advantages of these architectures, and to pro-
pose a new, less complex neural network for our multi-class
classification problem.

AlexNet is among the first networks to adopt an architec-
ture with consecutive convolution layers. A convolution layer
transforms the input image into a sequence of feature maps.
The deeper the layers, the more feature maps obtained and
therefore the more relevant the information obtained. Rele-
vant features from images are basically learned by kernels.
The number of kernels should be sufficiently representa-
tive for a useful learning. The first convolution layer of the
AlexNet architecture starts with large 11x 11 kernels, to spot
spatial features of the image from a global perspective. These
convolutions are interesting but expensive, so we’re decided
to follow this approach with slightly smaller 7x 7 filters and
with a stride (displacement between two consecutive con-
volutions) of 2, instead of 4 used in AlexNet. Taking into
consideration that the number of parameters of one convolu-
tional map is determined by the size of the kernel (ky, ky),
for one channel image (n = 1) and m convolutional maps
(kernels) there are m x (ky x ky x n) + m (last m being for
biases) parameters. For example, the first convolution layer

0.9
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Fig.3 Comparison of classification performances selecting data sets at
different scales. The red curve represents the retained 224 x 224 resolu-
tion

of AlexNet starts with 96 kernels (or neurons) making a total
of 17,712 parameters (96 x (11 x 11) 4 96), in comparison
to 1,600 parameters of our proposed first layer (32 kernels
with a size of 7x 7, and 32 biases).

On the other hand, GoogleNet presents an interesting
trick for analyzing feature maps in depth: different kernels are
applied at the same time to the same input data. It introduces
the notion of inception module within which there are convo-
lution and maxpooling layers (see Fig. 4). Instead of choosing
the size of the filter to apply (1x 1, 3x 3 or 5x 5) an incep-
tion module gives the possibility to use all of them together.
To offset the number of parameters, the pointwise convolu-
tions are introduced. The 1x 1 kernels placed before each
3x 3 and 5x 5 convolutions are meant to reduce the num-
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Fig.4 Inception module diagram

ber of parameters and thus the computational cost. By using
multiple kernels, the network learns better by freely applying
filters in spatial correlations, which ultimately results in bet-
ter accuracy. The final volume of all feature maps is due to
the end concatenation operation, so the size of feature maps
from each lane should remain the same (we do not use any
padding).

Method: what modifications we do and why

Searching for a suitable architecture usually follows an
empirical way. In our research, we did some intermediate
experiments before arriving at the final model. From the
beginning, we tried to adapt the AlexNet architecture and
reduce the number of parameters (see Table 1). To do this,
we completely avoided fully connected layers (FC) and pro-
ceeded with a model based only on convolution layers (Test
1). To lighten the topology of our network, we reduced the
amount of filters for each layer (Test 2), the introduction of
one inception block has improved the predictive accuracy of
our model. The path to our final architecture and the above
described experiments are summarized in Table 1. For each
architecture we show the number of trainable parameters,
FLOPs, the accuracy mean and standard deviation for 5 iter-
ations.

Our model architecture

Comparing with AlexNet, which has almost 60 million
parameters, and GoogLeNet with 6 million, our ad-hoc neural
network has less than half a millon, or 478,150 parameters
to be precise. A graphical view of the final architecture is
shown Fig. 5.

There are 17 network layers (convolution, subsampling
and fully connected layers) of which 10 are learnable layers.
The input shapeis a224 x 224 x 1image whichis subsampled
across the entire architecture into a 7x 7x 116 dimensional
vector.

Table 2 summarizes the description of our architecture.
The model starts with a 7x 7 convolution layer, followed
by a max-pooling layer and an inception block. Next, the

@ Springer

pooling layer maximizes the response of each feature map
and reduces the space exploration of feature maps. The 1x
1 convolutions reduce the number of parameters, and the
last two consecutive 3x 3 convolution layers take the role
of increasing the search space exploration of feature maps,
before being flattened and passed to logistic regression.

For simplicity sake, we use Relu (The Rectified Linear
Unit function) as activation function, setting at zero nega-
tive values and keeping positive values as they are, for all
layers but the last one. Since we are facing a multi-class
classification problem, the last layer is a dense layer and
its activation function is the Sof tmax regression. Softmax
produces a probability score for each class and predicts the
class with the highest estimated score. For fast convergence
the categorical_crosentroppy is the loss function
used as a feedback signal, the adjustment of weights param-
eters is carried out by the Adam optimizer. These parameters
refer to the compilation step.

For the learning algorithm an important aspect is the

tuning of hyperparameters. By varying the batch size and
learning rate, the accuracy is remarkably improved. The
regularization of hyperparameters is directly related to the
control of the optimisation function during the training. For
our model, we started with a batch size of 512 and a learning
rate of 1073, which was successively reduced to 256, 128 till
32 by decaying the learning rate to 10~°. The choice of hyper-
parameters remains empirical, to the best of our knowledge,
there is no exact approach automating the learning process.
The hyperparameters are selected according to the specificity
of the network architecture and the type of data.
Model evaluation For a better evaluation of our model, we
show the results on both our data set and the WM-811K
industrial one. Our aim is simply to obtain a better archi-
tecture comparison for two valuable data sets, taking into
account that the WM-811K wafer maps were taken as-is.
The only pre-processing was the resizing of wafers to a res-
olution of 64 x64 pixels, the most common size in the data
set, which in fact represents over 90% of all images.

STMicroelectronics Data Set

Figure 6 shows the performance of the model on a bal-
anced subset of 116,000 images. We have chosen 2,000
images per class, representing 95% of the original data set.
This balanced subset was then divided into training data
(80%) and test data (20%). The subset of 5% of unused orig-
inal images was kept as validation data. We may observe that
starting by the 10™ epoch onwards, the loss function on eval-
uation (test) data stops decreasing. In the field of machine
learning, this case is called overfitting. Overfitting or over-
generalization is the situation in which the model learns well
on the training data, but does not generalize well on the test
data. To avoid it, we early stop the training of the model and
continue with the tuning of hyperparameters, in our case,
by setting the mini-batch size and learning rate to smaller
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Table 1 Performances obtained
for the ST Microelectronics data
set, and for different neural
network architectures

(7x7), s=2

32
Max
1 pooling

Layer AlexNet Test 1 Test 2 Our model
Conv2D 96, (11x 11),s4 96, (11x 11), s4 32, (7x 7),s2 32,(7x 7),s2
MaxPool2D (3x 3),s2 (3x 3),s2 2x 2) 2x2)
Conv2D 256, (5x 5) 256, (5% 5) - 1 Inception
MaxPool2D (3x 3),s2 (3% 3),s2 (3x 3),s2 (3x 3),s2
Conv2D 384, (3x 3) 384, (3x 3) 12, (1x 1) 12, (1x 1)
Conv2D 384, (3x 3) 384, (3x 3) 116, 3% 3), s2 116, (3% 3),s2
Conv2D 256, (3x 3) 256, (3x 3) 116, (3% 3),s2 116, (3% 3),s2
MaxPool2D (3% 3),s2 (3% 3),s2 - -
FC/Dropout 4096 /0.5 - - -
FC/Dropout 4096 /0.5 - - -
FC 58 58 58 58
# params 58,495,738 4,258,554 465,590 478,150
# FLOPs 2,126,591,932 2,018,125,756 56,258,108 125,518,940
Accuracy mean (%) 97.16 96.94 95.09 99.89
Std. Dev. (£) 0.07 0.07 0.11 0.01
Concatenate
54
(1x1, Dense
3x3), s=2 XV
(uy (3x3).

128

Fig.5 Proposed neural network architecture

Table 2 Description of the
model architecture

Max
pooling

Flatten

58

7 (3x3), s=2
(3x3), s=2
—>—> Y
128 12 116 116

Layer k (n x n) means k kernels of sizen x n

Conv2D 32 (7x 17), stride of 2, no padding

MaxPool2D (2x 2), stride of 2

Inception Block 32 (1x 1),8 (1x 1),8 (I1x 1), MaxPool (3x 3)
32(3x 3),32(5x 5),32(1x 1)

MaxPool2D (3% 3), stride of 2

Conv2D 12(1x 1)

Conv2D 116 (3x 3), stride of 2, padding with zeros

Conv2D 116 (3x 3), stride of 2, padding with zeros

FC/Softmax 58

Number of parameters

478,150
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Table 3 Top-1 Accuracy on the STMicroelectronics data set (testing
and validation data)

Testing Data Validation Data
Nb of images 116,000 5,550
Top-1 accuracy (%) 99.922 99.935
Loss 0.0049 0.0051

values. In both graphs, we observe that from the 20™ epoch
onwards, the model learns well again and the evaluation on
the test data increases in accuracy. Moreover, the descent of
the loss functions decreases continuously until the end of the
learning phase. We reach a testing accuracy of our model of
99.92%.

Table 3 shows the performance of our model on testing
and validation subsets.
WM-811K Data Set

The WM-811K data set has a total of 811,457 wafer maps,
with 172,950 labeled wafers: 25,519 are raw wafer maps with
areal pattern belonging to 8 categories Center (4294 images),
Donut (555 images), Edge-Loc (5189 images), Edge-Ring
(9680 images), Loc (3593 images), Random (866 images),
Scratch (1193 images) and Near-full class (149 images); and
147,431 mixed-type failure wafers, labeled as class ‘None’.
Each one of these wafer maps was collected from areal-world
fabrication line.

In our experiments, all wafer maps were resized to 64 x 64
pixels and the data set was set to 32,891 samples (all samples
of the 8 classes and 5% of samples from class ‘None’). For
this experiment, we consider the following method: for the
first convolution layer it makes sense to take a stride of 1
(instead of 2, as applied for our wafer maps). As we are
using much smaller input wafers (64 x 64), there is no need
to reduce relevant information, especially when it comes to
the first layer. The rest of the architecture remains intact and is
applied as described in Table 2. With this method and for this
data set, the testing accuracy is 96.63%. Another experiment
was carried out on the collection of 25,519 wafers belonging
to all 8 classes. Each wafer map has a single defect, and each
wafer corresponds to a single class, which explains why the
testing accuracy of our model is higher, at around 99.53%.

In both cases, we obtain a small model with 163,276
parameters for the 8 classes, and 165,133 parameters for a
9-class classification.

Figure 7 shows the confusion matrix with predicted scores
for (a) 9 classes (32,891 samples), and (b) 8 classes (25,519
samples). We can see that the model’s performance is not
so much affected by the number of samples per class (the
"Near-full’ class is an under-represented class, with only
149 samples), but rather by the spatial textures of the
defects, which either have a similar or a less defined cri-
terion. Classes with an exact defect shape such as ’Donut’,
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"Center’, ’Edge-Ring’, ’Near-Full’ are the classes for which
the model classified best. In this experiment, we can also
observe the difference in model prediction when considering
single-label classes (one-to-one correspondence), and data
including samples of undefined failure type (such as the type
of class ‘None’). This class can be considered for multi-label
classification task, as it contains wafer maps with similar
defects to other classes. For example, 141 images from the
’None’ class were misclassified in the *Scratch’ class, 89
images in the "Loc’ class and 96 in the *Edge-loc’ class. On
the other hand, the introduction of the ’None’ label in the
training set allows the model to learn better about outliers.
This may be of considerable practical interest when, dur-
ing wafer production, new defect patterns may emerge and
it would be useful to lead the model to generalize better on
these test data.

Now that we have a model with high predictive accuracy,
we will proceed with optimization techniques regarding com-
putational and memory requirements necessary to enable the
execution of our model on small edge devices.

Quantization principles

Quantization consists of reducing the number of bits nec-
essary to represent a value. Its use in neural networks is
not new (Dundar and Rose, 1995; Hoskins et al., 1995),
but using it on deep convolutional neural network raises
new challenges. There are now many different quantization
approaches, ranging from quantizing only the parameters,
quantizing both parameters (often only weights, not biases)
and activations, quantizing on 16, 8, or even 2 or 1 bit, etc.
The approaches using the smallest bit sizes are meaning-
ful for hardware implementations only (Andri et al., 2016;
Umuroglu et al., 2017; Zhao et al., 2017; Prost-Boucle et
al., 2018) to name a few. For the sake of this work, which
targets of-the-shelf micro-controller based boards, we will
restrict ourselves to an 8-bit quantization of the weights that
is well suited to byte based computation in software, or with
existing hardware accelerators (either ad-hoc or performing
matrix—vector or matrix-matrix multiplications). As a result,
the most demanding part of the neuron output computation
(v; = Y720 x;w;;) uses only 8-bit integer multiplications.
This is key because the area and power complexity of a mul-
tiplier is in O (b%) where b is the number of bits of the inputs.
Each multiplication produces a 2b-bit result, that is accumu-
lated with the adder to produce a (2b + log, n)-bit result, n
being the number of inputs of the neuron. Using a 32-bit addi-
tion is a safe guess here, as there are very few chances that the
accumulation takes place with more than 2'® inputs. It is also
safe to have a bias b; on 32-bit, as this is a single addition
performed after all integer multiplications (0; = v; + b;).
As Tensorflow has been the first widely available frame-
work to provide fine-tuned 8-bit integer arithmetic imple-
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Fig.6 Model scores: the evolution of testing accuracy and loss during the learning phase (STMicroelectronics data set)
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Fig.7 Confusion matrix for WM-811K data set based on (a) 9 classes and (b) 8 classes

mentations for micro-controllers (using e.g. SIMD instruc-
tions) and Google TPU (Jouppi et al., 2021), we opted for
using it given our high power-efficiency goal. We briefly
summarize here the quantization approach that is advocated
by and implemented in this framework, which is thoroughly
detailed in (Jacob et al., 2018). For a given convolution layer,
the quantization process produces in addition an offset (called
zero-point, zp), and for each output channel of the layer a
scale under the form of an integer multiplicand M and a
shift s. The scale factor and offset must be applied before
the activation function, leading (roughly, as the idea is to

divide by 2° which is not a raw shift for negative values) to
yj = ((0j x M) > s) + zp. These operations, done only
once per kernel, typically fit on 32-bit, and the final result is
saturated to —128 or 127.

From a practical perspective, there are two main ways for
quantizing a network: Post-training quantization (PTQ) and
quantization-aware training (QAT). PTQ consists of finding
offsets and scale values to approximate the weights of an
already trained network. Post-training works quite well on
large networks, especially when lowering weight size to 8 bits
or above. To further reduce bit size without incurring high
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accuracy losses, it is usually necessary to use QAT. This con-
sists of training the network by taking into account the low
precision behavior during the process.

Google’s TensorFlow-Lite (TF-Lite) open source frame-
work provides an API to convert and interpret quantized
networks. Given our target that is micro-controllers possi-
bly backed by an accelerator, for which lower than 8-bit
precision is useless, we use the post-training quantization
method. It produces weights and biases quantized to a fixed-
point precision of 8-bit using the approach mentioned above,
and required by integer-only accelerators. PTQ takes a fully
trained model and doesn’t require additional modifications
for conversion into a quantized model. Nevertheless, an
important point for the conversion process is to provide a
representative data set, i.e. a small subset of the original data
set which covers the entire value space. This gives the quanti-
zation process the range of inputs values and it can then find
the most appropriate 8-bit representation (multiplicand M
and shift s) for each weight and activation value. To achieve
the best possible performance, i.e. ensure that all computa-
tions are done using SIMD instructions or outsourced to the
TPU, it is recommended to strictly stick to the 8-bit data type.
For this purpose, we perform a full integer optimization with
the TF-Lite converter, i.e. the inputs and the outputs use 8
bits.

The accuracy with the quantization process activated is
given in Table 4.

Experiments

The experiments are divided into three sections. The first
one focuses on accuracy, validating the accuracy stability
and analyzing the confusion matrix to identify problematic
classes. The second one shows an analysis of the perfor-
mances both on float and integer implementations over a
representative panel of low-cost development boards. Finally,
the third section details the power efficiency analysis of our
board panel, comparing possible use-case minimizing the
power footprint.

Accuracy results and analysis

We first evaluate the accuracy of our CNN architecture in a
classical floating-point representation. To that aim, we use
the statistical K-fold cross validation method. The method
consists of dividing the data set into k batches of equal size
and use at each iteration k-/ batches as training data and
only one batch as test data. The division into k batches (folds)
means that we have k evaluations. Figure 8§ shows an example
of applying this method by setting k = 3. For each evaluation
the training set (blue color) is iteratively represented by k-/
batches and one batch is retained for the testing (green color).
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All Shuffled Dataset
K=1 K=2 K=3
Fold 1 Train #1 Train #2 Test #3
Fold 2 Train #1 Test #2 Train #3
Fold 3 Test #1 Train #2 Train #3

Fig.8 Example of K-Fold cross validation method

Table 5 shows the performance obtained by the model for
5 iterations. For each iteration, the network was trained on
training data and evaluated on validation data. An average
score is given at the end of each iteration to provide a better
comparison of accuracy when evaluating the model.

Confusion matrix

K-fold cross-validation is an efficient and reliable way to
evaluate our approach by varying the distribution of the data
at each iteration and obtaining different scores. Neverthe-
less, the confusion matrix is the ideal tool to visualize the
performance of our classifier for each class separately. As
the confusion matrix for ST data set has a large size, we
represent the results of the classifier as a graph.

Figure 9 shows the distribution of only incorrectly clas-
sified images among the 58 classes. Per 2,000 images
representing each class, we show in orange the number of
images that are classified differently from the actual class
(False negatives, FN), in green the images that were classi-
fied as the actual class while they actually belong to other
classes (False positives, FP). In the graph, the FN and FP
data are given for each class (from 1 to 58) and at the same
scale.

To understand where the classifier fails, let’s examine the
most wrongly predicted classes: 19, 20, 32, 35, 54 and 56.
Classes 19 "EOW-EXTREME" and 20 "EOW-EXTREME-
LIGHT" are very close in terms of defects; they are almost the
same class with a more or less important degree of repetition
of failures. In addition, a number of 19 "EOW-EXTREME-
LIGHT" images were classified as class 32 "RANDOM".
This is the class (see Fig.9, class 32) with a rather trivial
failure type, i.e., a random distribution of failure patterns,
reason for which the classifier confused with classes repre-
senting similar defects. In the graph, 33 images (FP shown
in green colour) were found as "RANDOM" class by the
classification algorithm. Classes 54 and 56 represent vertical
failures with different location spots: 54 "VERTICAL-3H"
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Table 4 Inference accuracy of
the quantized model before

Quantization-aware Training

Post-training Quantization

(QAT) and after (PTQ) training Accuracy (%)

97.63

97.35

Table 5 K-Fold cross validation
method for validation data set

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

% Loss Acc Loss Acc Loss Acc Loss Acc Loss Acc
Fold1 0.0065 99.88 0.0056 99.87 0.0045 9991 0.0066 99.88 0.0048  99.93
Fold2 0.0054 99.87 0.0057 99.89 0.0063 99.89 0.007 99.88  0.0053 9991
Fold3 0.0058 99.89 0.0057 99.89 0.0058 99.93 0.0039 9993 0.0065 99.87
Avg 0.0059 99.88 0.0058 99.88 0.0057 99.89 0.0057 99.89  0.0057 99.89
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Number of false negatives (FN) and false positives (FP) images for all 58 classes.

Fig.9 Confusion graph for 58 classes. The false negatives images are shown in orange color and the false positives in green

(right side), and 56 "VERTICAL-9 H"(left side). To our sur-
prise, the model has actually classified these images very
precisely. The rotation method used to increase the data set
led to an accidental misslabelization of these samples, clas-
sifying them in the opposite class

A detailed analysis is presented in Table 6, where we show
the performance metrics of our model, such as precision,
recall and F1-Score for each class of the STMicroelectronics
data set. Classes with the highest number of classification
errors are marked in Bold.

Time and power evaluation of the model

With an accurate model in our hands, we must validate that
the throughput yield on low-cost hardware is high enough
to follow the pace of a wafer production line. Typically, we
aim at 1 inference per second, a high enough throughput to
follow modern line paces within a comfortable margin.

These experiments are conducted using software imple-
mentation of our quantized neural network model 4.2 as well
as the unquantized version. They are each using the avail-
able kernel implementation provided with their development
kit without neither modification nor optimization from our
side. Further optimization is surely possible, though we show
that solely optimizing the neural network model is enough
to deliver the required performances using general purpose
hardware.

Experiments are conducted on the following hardware tar-
gets:

X86 Desktop CPU 48 cores / 96 threads (float and int)
Google Coral CPU quad Cortex-A53 (int and float)
Google Coral TPU V1 coprocessor 4 TOPS (int)
Jetson CPU Quad Cortex-a53 (int and float)

Jetson Maxwell GPU, 128 CUDA cores (float)
STM32MP1 CPU Cortex-A7 (int and float)

Figure 10 describes the workflow to create a Tensor-
flow Lite model for inference on the above mentioned edge
devices. Our conversion focuses on creating a quantized
model that can be realized either using floating-point values
which target CPU and GPU, or an 8-bit fixed point model,
for CPU and TPU acceleration. For optimal use of Coral’s
TPU, the tflite model must be compiled at the end with the
edgetpu compiler to check the compatibility of the quantized
operations and then map them onto the TPU.

Once we have the models, we analyse the real-time perfor-
mance of our model for different systems. The experiments
target the number of inferences our model can perform
per second, by measuring the latency for different scenar-
ios: unquantized tensorflow model (binary32"), tflite model

' The binary{256/128/64/32/16) types correspond to the floating point
representations defined in the IEEE 754-2008 standard on the number
of bit indicated in their name.
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Table 6 Performance metrics for STMicroelectronics data set

Class Precision (%) Recall (%) F-Measure (%) Class Precision (%) Recall (%) F-Measure (%)
1 100 100 100 30 100 100 100
2 100 100 100 31 100 100 100
3 99.95 99.95 99.95 32 99.60 98.37 98.98
4 99.95 99.85 99.90 33 100 100 100
5 100 99.95 99.98 34 99.95 100 99.97
6 99.85 99.95 99.90 35 99.55 99.95 99.75
7 99.90 99.85 99.88 36 100 100 100
8 99.85 99.90 99.87 37 100 100 100
9 100 100 100 38 100 100 100
10 100 100 100 39 99.90 99.95 99.92
11 100 100 100 40 100 99.95 99.98
12 100 100 100 41 100 100 100
13 100 100 100 42 99.90 99.85 99.88
14 100 100 100 43 99.75 99.85 99.80
15 100 99.95 99.98 44 100 99.90 99.95
16 100 100 100 45 100 100 100
17 100 100 100 46 100 100 100
18 100 100 100 47 100 100 100
19 99.55 99.95 99.75 48 99.85 99.95 99.90
20 99.35 99.25 99.30 49 100 100 100
21 100 100 100 50 100 100 100
22 99.95 100 99.97 51 99.90 100 99.95
23 100 100 100 52 100 100 100
24 99.70 100 99.85 53 99.95 100 99.97
25 100 100 100 54 99.50 99.55 99.52
26 100 100 100 55 100 100 100
27 100 100 100 56 99.60 99.60 99.60
28 100 100 100 57 100 100 100
29 100 100 100 58 100 100 100

Top-1 Accuracy: 99.92%

Fig. 10 The workflow for

creating a tflite model (int8 and " ! Fopp—— N pr—
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Table 7 Inference performance and latency measurements for ran-
domly selected images. Experiments were done on x86 standalone
server, Google Coral, STM32P1 and NVIDIA Jetson boards

Performance (inferences/s)

CPU Accel.

binary32 binary16 int8 TPU GPU
x86 52.5 322.5 312.5 - -
Coral - 20 31.8 902 -
MP1 - 4.5 5.5 - -
Jetson 26 38 56 - 47
Latency (ms)

CPU Accel.

binary32 binary16 int8 TPU GPU
x86 19 3.1 32 - -
Coral - 494 314 1.11 -
MP1 - 223 181 - -
Jetson 38.5 26.4 17.8 - 21.2

(binary16 and int8) and edgetpu model (int8). Inference is
performed one image at a time, i.e. the batch size is set to 1.

As shown by the conducted experiments reported Table 7,
all our targets can meet the requirements in terms of pro-
duction line throughput. An x86 CPU desktop machine uses
binary32 floats by default to infer a wafer map. With quan-
tization, there is a gain in memory resources and therefore
a higher inference speed, with no visible loss in precision.
The MP1 board performs faster for integer arithmetic, being
dedicated to real-time low-power tasks, its floating-point unit
implementation favored low power and low area over peak
performance. For the Coral SoC, the best performance is
achieved by the TPU ML accelerator, the performance is
more than 30x higher (902 i/s) than on its CPU. The Jet-
son CPU shows good inference performance for models at
half precision. The binary16 operations are faster than the
binary32 ones, so these quantized models should be preferred
on this device. Regarding the GPU part, a batch size of 1 is
not at all enough to benefit from its computational power.

The following experiments focus on power consumption.
They are performed on a batch size of 100 images and within
the range of 1 to 32 batches processed at a time.

Using coral board

Figure 11 shows the performance achieved by the TPU and
the CPU of the Coral board. We can observe that for large
batch sizes, the TPU hardware accelerator achieves perfor-
mance up to 1600 inferences/s for a power consumption of
4.2 W. Running the tflite model on the CPU (ARM vector
instructions), and without edgetpu optimization, we obtain

a performance of 33 inferences/s (ips) for the int§ model
leading to a power consumption of 4.3 W, and a lower con-
sumption of 3.8 W for the binary32 model, with 21 ips. In the
power curves, we can observe a repetitive power overshoot
of abit less than 1 W per batch. This is due to the cooling fan
that starts when using larger batches. Note that for inferences
at a batch size of 1, the fan was never activated.

Using STM32MP1 board

The STM32 MP1 board targets low power industrial applica-
tions. The throughput of the floating-point model improves
when we increase the batch size, is still lower than the integer
one. For the integer model, there is not much improvement
in performance, see Fig. 12. We can also report that it was
not possible to exceed a batch size of 32 with floats due to
memory limitations. But we were able to go up to batches
of 128 for 8-bit integers due to their much smaller memory
footprint.

Using NVidia Jetson

Figure 13 shows CPU float experiments with two inference
kernels. One is the tensorflow base interpreter, the other is the
tensorflow lite implementation. Both have similar throughput
(a little lower for tflite) but there’s a non negligible change
in power consumption going from 5W to 3.5W. The latter
being close to integers which are even more interesting with
a little more throughput for a little less power consumption.
Note on the little "break" in GPU curve: It occurs at a batch
size of 128 which is the number of cuda core to feed with
images. This is why we lose some throughput at 129 before
slowly catching up the maximum throughput.

The maximum system latencies measured led us to con-
clude that per batch inference is preferable over inferring
wafer maps as they come. In Sect. 6, we confirm these obser-
vations taking into account the performance obtained both
per second and per Watt.

Power efficiency analysis

All boards achieve an accuracy of 97% confirming the
numbers we measured on the host using the Tensorflow
framework. About inference time, the Coral reaches, thanks
to its TPU, a rate of ~ 900 inferences per seconds, while
the Jetson with its GPU plateaus at 250. The MP1, without
hardware support for inference, attains 5.5 inferences per sec-
onds. These results are good regarding our target problem,
and are actually very satisfying considering the size of the
data (224 x 224 pixels per image) and the number of classes
(58). Real-time for wafer manufacturing means that we must
be in line with the throughput of the defect inspection equip-

@ Springer



Journal of Intelligent Manufacturing

1600 -

1400 1

1200 4

1000 4

800 A

Throughput (i/s)

600

400

200 A

— int-TPU
—— int-CPU
—— float-CPU

15 20 25 30
Batch Size

10

Fig. 11 Coral performance and power measurements

o
L

w £ w
L L L

Throughput (i/s)

N
L

—— int-cpu-Throughput
—— float-cpu-Throughput

0 T T T

0 5 10 30

15 20 25
Batch Size

Fig.12 MPI performance and power measurements

250

200
z
5197 — int-CPU
5 —— float-CPU
§ —— float-GPU
¥ 1001 —— float-tflite-CPU

501/
0l— - , ; , ;
0 50 100 150 200 250
Batch Size

Fig. 13 Jetson performance and power measurements

@ Springer

Power(mWw)

1

1

1

Power(mw)

5000 -
4750 A
4500 -
4250 -
4000 -
3750
— int-tpu-PBUS(mW)
3500 - —— int-cpu-PBUS(mW)
—— float-cpu-PBUS(mW)
0% 20% 40% 60% 79% 99%
Testbench progression (%)
400 -
AN AN A I e St SN AN AN N AN o
2007 cnmmsmresirre e
PP A v
000 4
800 4
600 -
400 -
2001 int-cpu-PBUS(MW)
—— float-cpu-PBUS(mW)
0% 23% 45% 68% 91%
Testbench progression (%)
6000 -
5000 -
4000 4
I
|
3000 - r
2000 ~ —— int-cpu-PBUS(MW)
—— float-cpu-PBUS(mW)
—— float-gpu-PBUS(mW)
1000 —— floattflite-cpu-PBUS(mW)
O'I% 17I% 3_‘;% 52|% 76% 87|%

Testbench progression (%)




Journal of Intelligent Manufacturing

6
400 A 5
b et RS i e
y e
= /I PPN S et o MIMAMAAIAAAASARMAAA
% 300 A % 4
E — inttpui ES
3 Int-tpu(i/s/W) 5 —— int-cpuli/s/W)
o —— int-cpu(i/s/W) o3 B
S K c —— float-cpu(i/s/W)
e 200 + —— float-cpu(i/s/W) g
s S
€ ‘£
& £ 21
100 -
1 -
°1 0
0:%; Zd% 40|% 60|% 80I% 99|% O‘I% 23|% 45l% 68|% 91I%
Testbench progression (%) Testbench progression (%)
(a) Coral (b) MP1
60 1
50 4 /\/\/\A_A /I\ A | Aﬂ |
% 40
E’ —— int-cpu(i/s/W)
E —— float-cpu(i/s/W)
< 30 A —— float-gpu(i/s/W)
1S —— floattflite-cpu(i/s/W)
£
& 20 -
— A
10
0 T T T T T T
0% 20% 40% 60% 79% 99%

Testbench progression (%)

(c) Jetson

Fig. 14 Power/throughput measures

ment, which needs between 90 s and 5 min to inspect a wafer.
Making a minimum of around 5 inferences per seconds for
the MP1 is thus well enough and gives a margin of progres-
sion both on production line speed and data complexity. For
instance, it gives room for higher resolution wafer maps or
more classes.

The power measures we have made show that the Coral
board has an idling power of 3.3 W, the one of the Jetson Nano
is around 1.5 W, while the MP1 stays at 1 W. This of course
is due to the internal hardware: the Coral embeds a higher
grade processor and a hardware tensor processing unit. The
Coral board has a cooling fan which might add to its over-
head (the MP1 being a fanless board), although the fan never
actually ran during our experiments. Although it has a GPU,
the Jetson performs quite well on this metric. We measure

the whole board components, including DRAM, peripheral
accesses and the Linux kernel running on their cores, not
specifically the coprocessor making the inference (Sze et al.,
2020). We thus are in a realistic use case, giving figures of
merit as they could be measured on an actual device attached
to a machine in the production line.

Figure 14 plots the actual measures we did use a power
meter on the power supplies of the boards. We run inference
at the maximum batch size for a given board on our data set
to obtain power efficiency results, in inference per second
per watt (i/s/W).

Table 8 summarizes the numbers we get for each board.
Results show without surprise that the Coral with its TPU is
over 6 x faster that the Jetson and around 300 x faster than the
MP1. When it comes to inferences per second per watt, the
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Table 8 Performance and

power efficiency summary for Board PU Type ;nference . Power Performar}c#
all boards erformance (i/s) W) per Watt (i/s/W)
Coral TPU 1600 5.0 320
CPU-float 21 39 5.4
CPU-int 33 4.3 7.7
STM32MP1 CPU-float 53 1.3 4
CPU-int 5.6 1.2 4.7
Jetson GPU 255 5.8 44
CPU-float 66 4.8 13.8
CPU-tflite 34 33 10.5
CPU-int 56 29 19

Coral performs better with 320, against 44 for the Jetson and 4
for the MP1. This gives a much better power-efficiency for the
Coral board, which is easily explained by the dedicated ASIC
for neural network acceleration. The GPU is also well suited
to these kinds of workloads, while pure CPU computation is
overall less efficient. We can note that there is roughly one
order of magnitude in power efficiency between an ASIC and
a GPU, and again one order of magnitude between a GPU and
a CPU, which is, for dedicated workloads, common wisdom.

However, the real matter is energy, i.e. the power con-
sumed over time. Indeed, the total consumed energy would
be actually higher with more power-hungry and fast hardware
because of the nature of how batches of wafer maps are gen-
erated by test equipments. Faster devices would actually stay
inactive most of the time, wasting their idle power waiting
the next data batch. Thus, deliberately getting less through-
put still delivers the required throughput for the industrial
semiconductor use case we consider, while being among the
lowest power consumption solution we can get for this type of
classification problem. A good future improvement of such
a solution would be to better tune hardware performances
to either downclock, standby or even shutdown the infer-
ence platform at the right moment to save even more power.
Finally, the market cost of small boards such as the one used
in these experiments are well under GPU solutions, making
them even more attractive considering both the cost of the
initial purchase, the exploitation, and the maintenance and
replacement cost.

Conclusion and future work

Wafer map classification is an important step in semicon-
ductor process control. While the throughput of the test
equipment is low compared to, e.g. video rates, it runs around
the clock. Therefore, having a low footprint accurate power-
efficient solution usable directly on the industrial machines
is of interest. To that end, we present in this paper a pur-
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pose defined neural network architecture that features a low
parameter count that we further quantize to limit the compu-
tation and memory resources necessary to perform inference.
We implement this network on micro-controller boards with
and without hardware inference accelerator, and show that it
can perform inference in real-time, at a 4 inference per sec-
ond per watt on a small microcontroller and at over 300 i/s/W
using an embedded TPU accelerator.

We proposed an approach centered on neural network
model optimization, demonstrating that it is a good approach
toward low-power deep learning solutions. This approach
can be applied to other industrial use-cases sharing the same
data set features. In particular, data sets with low interfer-
ences such as our black and white wafer maps generated by a
consistent test equipment are well suited. For instance, indus-
tries such as railway or photovoltaic manufacturing have test
equipment generating very similar data with small changes
between them. In the end, AlexNet and GoogLeNet are very
effective also with much more complex data such as 24-bit
real life photographs, but they are overkill solutions when
applied to very specific industrial applications. As promis-
ing as this seems, one of the most important aspects is the
training data set. A clean training data set is the absolute
necessity before applying any sort of deep learning approach
and must be the very first priority. This means that it must
be large enough, well labeled and well balanced. Only that
prerequisite enables efficient model optimization eventually
allowing to downscale inference platforms.

With an appropriate model, further optimization can be
made by focusing on the actual inference implementation.
First, kernel implementation can be optimized with power
usage in mind. For instance, some instructions are by nature
more power consuming than others, such as memory load
and stores. Using works focusing on instruction-level power
consumption optimization could thus be used to trade more
power efficiency against performance, e.g. by redoing com-
putation rather than storing and then loading an intermediate
results. Secondly, hardware implementation solutions allow
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to even further optimize inference power efficiency. In that
situation model quantization can be further pushed toward
ternary or binary models, as demonstrated in other applica-
tion domains (De Vita et al., 2020). This allows very power
efficient computations and minimizes memory needs, saving
even more power while accuracy is only slightly degraded.
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