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Abstract. A marginal snowpack is a recent concept that refers to snow cover that is 17

relatively shallow and transient but still has important environmental and socioeconomic 18

functions.  This class of snow cover influences environments over large areas of the world 19

and is very common in the Mediterranean climates, but also in the transition zone between 20

persistent seasonal and ephemeral snowpacks all over the world. However, a globally-21

accepted definition to identify these environments has not been reached yet. Most of the 22

modelling and monitoring tools for snow have been developed in cold and alpine areas 23

with persistent snowpacks. The study and modelling of shallower snowpacks in milder 24

environments are complicated by their high temporal variability, frequently patchy nature 25

and typical coexistence with shrubs and forest. However, in recent years new remote 26

sensing tools and more complex modelling approaches and specific parametrizations are 27

facilitating their study. This paper provides a definition for marginal snowpacks, 28

identifying them as those with: (i) seasonal peak depths that only occasionally surpass 1.5 29

meters in favorable deposition zones such as wind drifts, ii) having typical seasonal 30

durations ranging from 60 to 120 days, and (iii) that are predominantly in an isothermal 31

state (on more than 75% of days) with high densification rates and several cycles of 32

accumulation-ablation during each snow season. We review the main existing research 33

challenges to improve scientific capabilities for their study and we discuss their 34

hydrological and environmental relevance at different spatial scales. 35
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 Keywords: Marginal snowpacks; remote sensing; snow simulation; environmental 36

impacts. 37

 38

1. Introduction 39

Snow is listed as one of the essential climate variables to be monitored and studied to 40

support the work of the United Nations Framework Convention on Climate Change and 41

the Intergovernmental Panel on Climate Change (Bojinski et al., 2014). This is because 42

snow tightly controls the hydrology and seasonal cycles of ecosystems (plants and 43

animals) in mountain regions of mid and high latitudes (Musselman et al., 2021). In 44

addition, snow – its occurrence, quantity, spatial and temporal variability – has important 45

implications for land management and the economy of both mountains and downstream 46

areas through its major role in water resources, food production systems and 47

transportation (Qin et al., 2020). Hazard management challenges include heavy snowfall 48

events, avalanches and floods from rain-on-snow events (Haeberli and Whiteman, 2021; 49

McGowan et al., 2021; Musselman et al., 2018). Furthermore, winter tourism is becoming 50

one of the main income sources in mountain regions, with high vulnerability to this 51

section from interannual fluctuations that snow generally shows (Steiger et al., 2019).  52

Snow science has typically focused on cold, continental areas with well-developed and 53

seasonally persistent snowpacks. The main existing snow datasets, energy and mass 54

balance models, and snow parametrizations have been developed and tested in Canada, 55

Western United States, the European Alps and the former Soviet Union. In the last few 56

years there has been an increasing recognition of the need to understand and properly 57

monitor shallower and milder snowpacks composed of ephemeral and marginal snow 58

environments, like the ones developed in many areas under Mediterranean-type or mild 59

oceanic climates (Bilish et al., 2018; Fayad et al., 2017; López-Moreno et al., 2017; 60

Petersky and Harpold, 2018a). Ephemeral snowpacks are typically defined as those that 61
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persist for less than 60 consecutive days, are less than 50-100 cm in depth (depending on62

different classifications), and have less than three different snow layers (Hatchett, 2021; 63

Petersky and Harpold, 2018b; Siirila-Woodburn et al., 2021; Sturm et al., 1995). The 64

concept of a marginal snow environment is more recent, having been introduced to 65

describe snow cover in the Australian Alps (Bilish et al., 2018, 2019; Schwartz et al., 66

2020). Following earlier work (Bormann et al., 2013; Sanecki et al., 2006) that found that 67

the Australian snowpack did not sit within the ranges for any of the snow cover types in 68

the classification system of Sturm et al. (1995), these more recent studies showed that this 69

environment commonly has elements of both persistent and ephemeral snowpack 70

dynamics. While snow cover is typically continuous for several months, at the catchment 71

scale the snowpack lacks a stable accumulation season and melt takes place throughout 72

winter (Bilish et al., 2020, 2019). The term has since been applied to snow-affected 73

regions in other countries that are considered to lie between ephemeral and seasonal 74

persistent snowpacks but are so far lacking an accepted, well-defined classification.  75

Although the duration and depth of snow in environments with marginal snowpacks is 76

moderate, several studies have provided evidence of their impact on natural processes, 77

such as: water availability to montane and downstream areas (Huning and AghaKouchak, 78

2020); plant and animal phenology (Kelsey et al., 2021); the exchange of gases between 79

soils and atmosphere as well as the nutrient cycle (Tucker et al., 2016) among others. 80

However, how and to what extent a marginal snowpack actually affects those processes 81

is not yet well understood. In fact, there is no sound and spatially transferable knowledge 82

about snowpack properties (e.g., snow depth, water content, duration, etc.) that allow 83

consistent and repeatable characterization and evaluation of when a marginal snowpack 84

will have a significant influence on the aforementioned natural processes, and when its 85

presence and impact may be rather negligible.  86
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Marginal snowpacks are acutely vulnerable to climate warming due to their isothermal87

characteristics and the mild temperatures in the environments where they develop (López-88

Moreno et al., 2020) .We suggest that many of the current marginal snowpacks will 89

disappear or shift to an ephemeral state in the coming decades (Huss et al., 2017; Siirila-90

Woodburn et al., 2021). Likewise, large areas currently occupied by persistent and cold 91

snowpacks will transition to marginal snowpacks. An exception could be sites where 92

precipitation patterns change sufficiently to overcome the general on-going warming 93

(López-Moreno et al., 2017).In addition, these environments are commonly located in 94

sub-tropical to mid-latitude locations, frequently in areas coexisting with vegetation (trees 95

and shrubs), and prone to receiving Light Absorbing Particles (LAP, such as dust) 96

transported by wind from snow-free areas. Episodes of LAP deposition on the snow 97

surface reduce its albedo, increasing energy inputs from solar radiation (Skiles et al., 98

2018). 99

The combined effect of vegetation, increasing temperatures, and snow impurities may 100

interact, boosting the rapid changes experienced by marginal snowpacks within and 101

between snow seasons (accumulation-ablation cycles). Nevertheless, our current 102

understanding of these dynamics needs further research. There is current uncertainty as 103

to whether marginal snowpacks might exhibit certain specific responses to climate 104

forcing that differ from those of seasonal snowpacks. For example, while the melting of 105

persistent snowpacks occurs later in the season, under higher radiation inputs (Musselman 106

et al., 2017; Revuelto et al., 2014; Wu et al., 2018), marginal snowpacks develop and 107

ablate during the colder months when incoming solar radiation is still low (Bilish et al., 108

2020). This suggests a lower sensitivity to changes in albedo (e.g., induced by LAPs) and 109

to increases in air temperature. This characteristic was suggested as an explanation for 110

the long-term series of snow duration and snow depth in the Pyrenees Mountains only 111
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exhibiting a statistically significant decrease at elevations over 2100 m a.s.l., where a112

persistent snowpack develops. At lower elevations where snow only develops in mid-113

winter months, trends have remained almost stationary (López-Moreno et al., 2020b).   114

These challenges frame the need to better understand the characteristics and behaviour of 115

these marginal snowpacks in regions between seasonal and ephemeral snow. In the 116

subsequent sections we review the existing literature and then provide our perspective on 117

the research challenges, with the aim of: i) framing the concept of marginal snowpacks 118

with reference to previous definitions of snow type or snow environments with 119

comparable characteristics; ii) setting the basis for a global definition of marginal 120

snowpacks;  iii) defining optimal monitoring needs to study marginal snowpacks and their 121

dynamics; and iv) tailoring modelling approaches to the specific characteristics of 122

marginal snowpacks. 123

 124

2. Toward a global definition of marginal snowpacks  125

Even if the concept of a marginal snowpack already exists and its use is starting to become 126

more common in the scientific literature (Bilish et al., 2018; 2019; 2020; López-Moreno 127

et al., 2020; Schwartz et al., 2020; Kraft et al., 2022) there is not yet a definitive and 128

accurate definition to provide clarity to used it in a consistent way globally (Bilish et al., 129

2019). In fact, marginal snow has not been explicitly listed in the main existing snow 130

classification types, unlike ephemeral snowpacks (Sturm et al., 1995; Sturm and Liston, 131

2021).  Marginal snowpacks have a longer duration and more significant environmental 132

influence than ephemeral snowpacks, but do not reach the temporal duration and the “one133

peak” niveograph pattern generally exhibited by the other snow types defined in previous134

snow classifications. The most widely-accepted classification of snow types, published 135

by Sturm et al. (1995) and revisited by Sturm and Liston (2021), clearly describes the 136
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characteristics of ephemeral snow not exceeding 100 cm, generally associated with a137

single storm event, wet and heavy snow lacking of stratigraphy due to high dominant 138

temperatures, and generally lasting less than 60 days over the ground; the rest of the 139

classifications refer to specific cold biomes (tundra, taiga) or to deeper and longer lasting 140

snowpacks like alpine and maritime snow.  141

The classes labelled in Sturm and Liston (2021) as “prairie” and “montane forest” share142

some common characteristics with marginal snowpacks. However, these types are 143

geographically restricted to large plains and forested areas generally at latitudes over 144

50ºN, while similar snow characteristics can also be observed at lower elevations or on 145

midlatitude mountains with rugged topography, and in both in open terrain and in shrub- 146

or forest areas. The “mountain” snow type is mentioned only briefly in the classification 147

of Sturm et al. (1995), as a special class, and few details are provided: “A highly variable 148

snow cover, depending on solar radiation effects and local wind patterns. Usually deeper 149

than associated type of snow cover from the adjacent low-lands”. While these properties 150

occur frequently in the environments referred to in the present work, they also feature in 151

colder mountainous environments and, in the absence of further information, do not 152

sufficiently describe the physical and dynamical characteristics of marginal snow. 153

Hammond et al. (2018) used the concept of “intermittent snow zones” to distinguish from154

seasonal snowpacks using a threshold for annual snow persistence (SP, the fraction of 155

time that snow is present on ground) of 30%. Such a threshold could also envelope 156

marginal snowpacks, but it also includes ephemeral zones as there is no minimal SP limit. 157

A more precise separation was provided by Moore et al. (2015), who used the term 158

“transitional snow zone (TSZ)” as a class between the persistent snow zone (PSZ,159

January-July SP>0.75) and the intermittent snow zone (ISZ, January-July SP<0.5) in the 160

Western US. Their results showed that the TSZ occupies almost the same extent as the 161
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persistent snow zone. Despite this importance of the transitional snow zone, existing162

literature overwhelmingly focuses on the persistent (seasonal) zones, while giving 163

increasing importance to ephemeral (intermittent) zones (Hatchett, 2021; Petersky and 164

Harpold, 2018a).  165

Another interesting concept that reflects the process of marginalization of persistent 166

seasonal snowpacks is the recently termed low-to-no-snow winters (Rhoades et al., 2022; 167

Siirila-Woodburn et al., 2021). These are defined statistically as years below the 30th 168

percentile in snow depth with respect to a baseline climate; but as occurred with the term 169

intermittent snow zone of Hammond et al. (2018), there is no minimal boundary to 170

capture the transition from seasonal persistent to ephemeral that represent the marginal 171

snowpacks. 172

Definitions only based on snow duration or snow probability as presented above may 173

present problems if applied globally. Sites with cold but relatively dry winters (e.g., arctic 174

snowpacks), or sites where short snowy and cold winters followed by a rapid increase in 175

spring temperature and/or radiation may host snowpacks with durations or depths that 176

exclude them from persistent seasonal snow zones, yet lack the dynamic nature (melting 177

events throughout the whole season) of marginal and ephemeral snowpacks. For this 178

reason, some definitions of snowpacks have included an air temperature criterion.  179

Concepts such as “at-risk snow” and “warm winters”, with temperatures above -2 ºC and 180

0 ºC respectively for any one of the core winter months (December-February/June-August 181

for N/S hemisphere respectively), have been suggested to identify snow areas that are 182

vulnerable to climate warming (Nolin et al., 2021; Nolin and Daly, 2006). Marginal 183

snowpacks likely develop between these temperature thresholds, but an accurate climatic 184

definition to complement snow metrics to define marginal snowpacks still needs specific 185

research. 186
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We suggest that the definition of a marginal snowpack should include the following187

characteristics: (i) with seasonal peak depths only occasionally surpass 1.5 meters in 188

favorable deposition zones such as wind drifts, ii) having durations ranging from 60 to 189

120 days, and (iii) that are predominantly in an isothermal state with high densification 190

rates and several cycles of accumulation-ablation during each snow season.  191

Simulated snow series in 24 mountain areas of the world reveal that marginal snowpacks 192

are predominantly found near the +2 /-1 ºC isotherm at sites with precipitation ≥600 mm,193

or at colder (-2/-4 ºC) but drier sites. No marginal snowpacks would be found where 194

winter precipitation is less than 400 mm (Figure 1). Series were obtained using FSM2 195

model (Essery, 2015) driven by ERA5-Land data scaled to fixed winter (DJFM Northern 196

Hemisphere-JJAS for the Southern Hemisphere) precipitation (from 100 to 1200 mm) 197

and temperature values (from -6 °C to +6 °C). Thus, marginal snowpacks are likely to be 198

found across the world at moderate elevations and in environments influenced by mild 199

mid-latitude climates with sub-tropical and maritime influences. Mediterranean 200

mountains in particular, have been recognized to often host these snowpack environments 201

(Fayad et al., 2017).  202

The perspective of this paper is that require a robust classification to identify 203

environments dominated by marginal snow should not only be based on subjective fixed 204

thresholds on snow and climate metrics, but also on their impact on local ecosystems. For 205

instance, some previous studies have suggested that ephemeral snowpacks impact the soil 206

and stream hydrology (Harrison et al., 2021; Petersky and Harpold, 2018a); however, it 207

is still unclear to what extent winter liquid precipitation could replace the snowmelt input 208

into the hydrological system without marked differences in the annual hydrograph. We 209

suggest the value of differentiating marginal from ephemeral snowpacks based on the 210

detection of an unequivocal signal of melting snow on the environment. In other words, 211
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marginal snowpacks must be of enough significance to be detectable in the interannual212

variability of the soil and stream hydrology and the plant phenology of affected areas.  213

Additionally, runoff processes and the snowmelt input to soils may change significantly 214

as deeper persistent snowpacks transition to marginal snowpacks (Webb et al., 2020). 215

Previous hydrologic studies have shown that the heterogeneity of a snowpack can 216

strongly influence the hillslope-stream connectivity (Freudiger et al., 2017; Lundquist 217

and Dettinger, 2005), suggesting the spatially patchy nature of marginal snowpacks is 218

hydrologically significant. Snowmelt contribution to total runoff of marginal snowpacks 219

(from the dataset created for Figure 1) occupies an intermediate position between 220

ephemeral and seasonal snowpacks, and the snowmelt peak is clearly delayed with respect 221

to the former (Figure 2). However, it has not yet been clearly demonstrated to which 222

extent these impacts may be masked or replaced by the occurrence of liquid precipitation 223

during winter. The recently developed Snow Storage Index (SSI), representing the 224

temporal phase difference between daily precipitation and surface water inputs, is a 225

promising tool to study this topic (Hale et al., 2023). Monitoring the daily variation and 226

seasonal changes of natural tracers such as isotopes, electrical conductivity and 227

temperature of river flows may also provide clear guidance on the extent to which the 228

hydrology of a given catchment is controlled by snowmelt (López-Moreno et al., 2023; 229

Sprenger et al., 2022).  230

Coulthard et al., (2021) identified a clear snow signal in the yearly fluctuations of forest 231

growth and greenness in a study site that could be considered a marginal snow 232

environment. This is because snow melt provides extra moisture to the soil, soils remain 233

unfrozen due to the insulating effect of the snow, and climate conditions are not too harsh 234

to limit the growth of the trees. Monitoring vegetation phenology and productivity linked 235

to the snow cycles under different snow types is an obvious path to follow to improve our 236
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understanding of snow-vegetation interactions (Jonas et al., 2008; Revuelto et al., 2022;237

Sanmiguel-Vallelado et al., 2022; Trujillo et al., 2012).  238

 239

3. Monitoring needs for the study of marginal snowpacks  240

Marginal snowpacks are more complicated to monitor than well-developed snowpacks. 241

As a snowpack becomes shallower and patchier, its main characteristics and physical 242

properties (depth, density, internal temperature, etc) become more variable and its 243

monitoring is more challenging (Sexstone et al., 2021). Marginal snowpacks have not 244

traditionally been subject to operational monitoring programs, resulting in a lack of 245

comprehensive historical datasets. In addition, errors assumed in deep and long lasting 246

snowpacks may be unacceptable in marginal snowpacks. Marginal snowpacks also need 247

dense observation networks or sampling strategies to deal with their high spatial and 248

temporal variability (Dickinson and Whiteley, 1972; López-Moreno et al., 2020c). An 249

example is given with snow cover derived from satellite optical images, one of the most 250

commonly-used remote sensing product for snow studies (Figure 3). This figure shows 251

the snow cover duration (SCD) in an area dominated by marginal snowpacks in the 252

Central Pyrenees derived from a combination of Sentinel-2 at 20 meters grid resolution 253

and Landsat 8, resampled to 20 meters (Gascoin et al., 2019), and MODIS at 500 meters 254

grid resolution. The figure shows that the two products tell different stories about the 255

spatial heterogeneity of the snow cover in these types of environments (see the mean SCD 256

in 4 selected points), and that MODIS may fail to provide adequate spatial resolutions in 257

such environments, as has been shown in previous studies (Bouamri et al., 2021; Pimentel 258

et al., 2017). For small study sites, time lapse cameras may offer very useful information 259

to represent and understand the very dynamic behaviour of shallow snow covers, 260

including their interaction with vegetation (Pimentel et al., 2015). Snow depths can be 261
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11

determined by installing snow poles in the view field (e.g. Bongio et al., 2021), or by262

installing several cameras to accurately map snow depths from photogrammetric 263

reconstructions (Filhol et al., 2019; Liu et al., 2021). Self-recording temperature sensors 264

installed on the ground surface can be also an efficient method to identify snow cover and 265

snow-free periods (Lundquist and Lott, 2008; Navarro-Serrano et al., 2019). 266

Current methods for the measurement by satellite of snow depth in mountains are likely 267

not relevant for shallow and patchy marginal snowpacks as snow depth from satellite 268

photogrammetry has typical errors between 0.5 m and 1 m (e.g., Pléiades, WorldView; 269

Deschamps-Berger et al., 2020; Eberhard et al., 2021) similar to high-resolution altimetry 270

(ICESat-2; Deschamps-Berger et al., 2022; Enderlin et al., 2022). Snow depth retrievals 271

from synthetic aperture radar (Sentinel-1) have a spatial resolution of at best 100 m and 272

are subject to large errors over wet snowpack, a common state of marginal snowpacks 273

(Lievens et al., 2022). Finally, satellite-based passive microwave radiometer data for 274

snow water equivalent estimations are masked over complex terrain (i.e. mountains) and 275

are thus not available for most marginal snowpack environments (Luojus et al., 2021). 276

In the last decade, snow science has benefited from the flourishing of new affordable 277

remote sensing techniques that are suitable for capturing the complex dynamics of 278

marginal snowpacks. Terrestrial Light Detection And Ranging (LIDAR) and Unmanned 279

Aerial Vehicles (UAV) photogrammetry provide centimeter-scale resolution and 280

accuracy to analyse from the plot (100 m²) to the small (104 m²) scales (Bühler et al., 2016; 281

Goetz and Brenning, 2019; Jacobs et al., 2021; Revuelto et al., 2021b). Thus, UAV can 282

provide very detailed patterns of snow distribution (Figure 4), in this case for the area in 283

the vicinity of point 1 in Figure 3. The snow depth maps obtained clearly show that spatial 284

variability is governed by wind redistribution around vegetation with scouring on the 285

windward side and deposition on the lee side. Airborne LIDAR with UAV has also shown 286
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very good capabilities to map shallow snow depths even in the presence of vegetation287

(Harder et al., 2020; Jacobs et al., 2021; King et al., 2023). As mentioned above, for larger 288

scales, high spatial and temporal resolution satellites such as Sentinel-2 have 289

demonstrated high capabilities to monitor very dynamic snowpacks (Gascoin et al., 290

2020), including sparsely forested areas (Muhuri et al., 2021). Promising workflows for 291

marginal snowpacks were recently proposed (Premier et al., 2021; Revuelto et al., 2021a; 292

Richiardi et al., 2023) for the downscaling of MODIS sensor retrievals (500 m grid size, 293

available since 2002) to 20 m resolution, using Sentinel-2 acquisitions starting in 2015. 294

This procedure enables the representation of the spatial variability of marginal snowpacks 295

while taking benefit of the length and revisit times of the MODIS dataset. 296

Remote sensing techniques can also be powerful tools to analyze the relationships 297

between snow depth / persistence and vegetation activity (Revuelto et al., 2022; Thapa et 298

al., 2021; Wang et al., 2022). Thus, multispectral sensors mounted on UAVs and satellites 299

may provide valid assessments of vegetation activity for different spatial scales, while 300

phenocams (Aasen et al., 2020; Julitta et al., 2014) are a promising tool adding sub-hourly 301

information on vegetation activity that improves the capabilities to accurately discern the 302

different role of marginal and ephemeral snowpacks on vegetation.  303

 304

4. Tailoring modelling approaches to the specific characteristics of marginal 305

snowpacks. 306

As most existing snow models have been developed with a focus on cold climates and/or 307

seasonal snowpacks, they will likely need updating to include the properties of marginal 308

snowpacks. All of these properties are related to the relatively mild climatological 309

conditions where they develop. Below we describe some of the main identified needs. 310
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4.1 The partitioning of the snow energy balance differs from snowpacks that have been311

studied in colder environments. The heterogeneity of marginal snowpacks can result in 312

increased complexity when examining and modelling their energy balance as localized 313

effects, such as those resulting from bare ground, vegetation, and fine-scale aspect 314

differences, can have significant impacts on fluxes. Marginal snowpacks have relatively 315

low cold content due to climatological conditions and relatively warm snowfall events, 316

which creates highly dynamic ablation characteristics spatiotemporally. Shortwave 317

radiation flux generally contributes the highest amount of energy to these snowpacks 318

(Fayad et al., 2017; Schwartz et al., 2020), similar to snowpacks of other classifications, 319

but the event-driven nature of marginal snowpacks means that specific contributions can 320

depend heavily on a season’s synoptic weather patterns (Schwartz et al. 2020). Turbulent 321

fluxes, particularly sensible heat flux, have more substantial control on marginal 322

snowpack energy balance due to warmer air temperatures in these climates, particularly 323

during the ablation season (Fayad et al., 2017).  Soil heat flux, which is often neglected 324

in cold environments, may represent between 5% and 20% of the total energy inputs, 325

making it necessary to have a good representation of this flux in marginal snow 326

environments. Because a marginal snowpack is relatively thin, transmitted solar radiation 327

may be absorbed by the darker soil substrate and the snowpack can be warmed from 328

below through ground heat flux (Bilish et al., 2018; Knox et al., 2012; van der Valk, 329

2019). Snow mass and energy simulations in these environments also need to carefully 330

consider lateral energy fluxes, especially in areas of patchy snowpack (Harder et al., 2017; 331

Liston, 1995; Mott et al., 2018; van der Valk, 2019). Heat flux from tree trunks has also 332

been shown as a significant source of accelerated snow melt rates in a marginal snowpack 333

(Schwartz et al., 2021, 2020). Rain-on-Snow (RoS) events can cause a particular rapid 334

melt at any time of year due to their increased turbulent fluxes and precipitation flux to 335
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marginal snowpacks (López-Moreno et al., 2021; Schwartz et al., 2021). Therefore, while336

marginal snowpacks do share some energy balance characteristics with those of colder 337

climates (e.g., shortwave radiation being the dominant flux to the snowpack), turbulent 338

fluxes, soil heat flux, and precipitation heat flux for these snowpacks need to be more 339

carefully considered. 340

4.2 Marginal snowpacks are heavily impacted by vegetation. Vegetation affects snow 341

distribution in many environments by: i) intercepting the new fallen snow; ii) acting as 342

an obstacle for wind redistribution creating wind- and leeside patterns; and iii) altering 343

the radiation input through shadow effects for incoming shortwave radiation and through 344

the emission of longwave radiation to the surroundings  (Lundquist et al., 2013; Revuelto 345

et al., 2015; Sanmiguel-Vallelado et al., 2022; Schwartz et al., 2020; Webb, 2017). There 346

is evidence from limited available research to suggest these vegetation effects can become 347

exacerbated in marginal snow zones. Firstly, the mild conditions where marginal 348

snowpacks develop favour the presence of vegetation compared to alpine snowpacks. 349

Also, the redistribution of snow due to snow-vegetation interactions, which can be 350

quantified through an upwind vegetation index (Vx, Bilish et al., 2019), may boost the 351

already high snow variability over terrain typical of medium and low snow depth zones 352

(Sexstone et al., 2021). In addition, as the climate is warmer the emission of longwave 353

radiation is increased meaning that heating dominates the shadow effects (see Figure 5 as 354

example), while the interception by the canopy is reduced (Lundquist et al., 2013). It has 355

also been noted that most of the intercepted snow instead of being unloaded in the 356

subsequent days, is melted and water drops accelerate melting beneath the canopy 357

(Sanmiguel-Vallelado et al., 2020). Thus, warmer winter temperatures exacerbate the 358

differences in snow depth when forest stands and surrounding opening areas are 359

compared (Lundquist et al., 2013; Sanmiguel-Vallelado et al., 2022).  360
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Shrubs have a great impact on shallow snowpacks, affecting snow accumulation and361

ablation patterns at very fine spatial scales (Figure 6). While the effect of forests on snow 362

has been intensively researched worldwide and very advanced observing and modelling 363

capabilities have been developed (Krogh et al., 2020; Mazzotti et al., 2022, 2021; 364

Musselman et al., 2015; Webster et al., 2016a, 2016b), there are no studies yet, to the 365

authors’ knowledge, about how shrubs interact with snow in these mild climates. We 366

suggest that many of the shrubs may act as young and dense trees in a similar manner to 367

the studied Snow Gum forests in the Australian Alps after bushfires, with reduced 368

interception capacity and high emission of energy to surrounding snowpacks (Schwartz 369

et al., 2021, 2020). There are types of shrubs typical of Mediterranean environments of 370

low height and high density that might create small cold pools at the base protecting the 371

snowpack from the ground heat flux, a question that deserves focused research. Thus, 372

new parametrization schemes designed for terrain covered by shrubs depending on their 373

type and structure (species, density and height) have great potential to improve snow 374

modelling capabilities in these ecosystems. 375

4.3 The uncertain effect of snow impurities on melt rates.  376

The effect of LAP on melting rates of marginal snowpacks should not differ from reported 377

impacts on other snow types (Skiles et al., 2018), but for isothermal snowpacks the 378

response should be translated to  more rapid melt of the isothermal marginal snowpack. 379

Namely, the combined effect of reduced albedo and increased absorption of solar 380

radiation by the impurities such as leaves, soot and dust should translate to increase 381

heating of the snow surface thereby enhancing melt relative to cold snowpacks (Bilish et 382

al., 2018; Schwartz et al., 2020). However, as marginal snowpacks do not develop late in 383

spring and incoming radiation in winter is relatively low, the total impact on the radiative 384

budget could be moderate (Dumont et al., 2020). This is observed in a simulation of the 385
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snowpack for a marginal-type and a long lasting-type snow year in the Atlas Mountains386

(Morocco) with three different albedo parametrizations (Figure 7A). The figure shows 387

that under colder conditions the simulations provide very different outcomes, while 388

simulations in milder climatic conditions suggest that the marginal snowpack is the least 389

sensitive to albedo parametrization. Nonetheless, the balance between these two potential 390

opposing drivers of melt requires further research. 391

4.5) Uncertainty in the phase of precipitation.  392

Given that marginal snowpacks often develop close to the 0ºC winter isotherm, much of 393

the precipitation falls at the boundary of the rain and snow phases (Alonso-González et 394

al., 2021). In addition, the total snow accumulated in these environments in a whole 395

season often relies on a few larger snowfall events, so misrepresenting the phase in even 396

a few precipitation events may lead to large errors in the simulation of snowpack 397

compared to seasonal and colder snowpacks. Similar to the analysis made while exploring 398

the sensitivity to changes in albedo (Section 4.4), the simulated snow series in the Sierra 399

Nevada mountains in Spain, using various temperature thresholds and precipitation phase 400

determination methods, indicate that during a colder year with a persistent snowpack, the 401

simulated snow series exhibit almost identical values (Figure 7B). Under a milder year 402

with a shallower and shorter-duration snowpack (marginal snow conditions), the different 403

approaches to estimating precipitation phase produced markedly different snow depth 404

time series. 405

 406

5. Conclusions and outlook 407

The aim of this paper has been to present the current gaps in knowledge, the challenges 408

and suggest focus areas to advance our understanding of marginal snowpacks. We outline 409
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the importance and a case for marginal snowpacks to be considered as a unique type of410

snow, that lies at the transition between ephemeral and longer-lasting seasonal 411

snowpacks. In this paper we propose that a marginal snowpack must include the following 412

characteristics: (i) with seasonal peak depths only occasionally surpass 1.5 meters in 413

favorable deposition zones such as wind drifts, ii) having durations ranging from 60 to 414

120 days, and (iii) that are predominantly in an isothermal state (on more than 75% of 415

days) with high densification rates and several cycles of accumulation-ablation during 416

each snow season. We have shown evidence that a marginal snowpack can develop in a 417

relatively wide variety of climatic conditions, mostly where the mean winter temperature 418

ranges from -4 to +2 ºC and precipitation is greater than 400 mm. Thus, they can occupy 419

large areas not only in Mediterranean-type climates, but also extending across the mid-420

latitudes and fringing the sub-tropical regions across the world. Performing large scale 421

simulations of snowpack under current and future climatic conditions is a critical area for 422

the future research. Related to this task to determine which areas under climate change 423

scenarios will likely shift to ephemeral snowpacks, and which consolidated seasonal 424

snowpacks may transition into marginal snowpacks. Such simulations will provide 425

insight about their degree of sensitivity to climate change and presence of LAP on their 426

surface that at this time is still unclear. Resolving this likely requires advances in our 427

understanding of sources of heat flux (ground and trees) and the role of vegetation in 428

modulating processes of accumulation and ablation. Representing the present and future 429

distribution of marginal snowpacks also needs to use the best observational and modelling 430

approaches tailored to deal with the very high temporal and spatial variability that they 431

exhibit, and to capture some specific conditions of their energy and mass balance, as well 432

as the interaction with vegetation and shrubs that have not been considered in the 433

scientific literature yet. This proposed work will greatly benefit from the establishment 434
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of more experimental sites to study snowpacks and their environmental consequences in435

mild mountain areas, and in doing so will contribute to a more complete representation 436

of the whole continuum from ephemeral to cold and persistent seasonal snow 437

environments.  438
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 816

Figure 1. Probability of finding seasonal, marginal (depth peak is lower than 1.5 meters, 817
snow duration ranges between 60 and 120 days and snowpack is isothermal on more than 818
75% of days) and ephemeral among 24 locations of the world (right plot) for different 819
mean winter precipitation and temperature values (DJFM (JJAS) in Northern (Southern) 820
Hemisphere). Results were obtained by simulating (with FSM2 model (Essery, 2015)) 821
snow series driven by ERA5-Land data scaled to fixed winter (DJFM (JJAS) in Northern 822
(Southern) Hemisphere) precipitation (from 100 to 1200 mm) and temperature values 823
(from -6 to +6). 824
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 835
 836
Figure 2. Probability of finding different ratios of cumulative snowmelt over cumulative 837
runoff during winter and spring period -January to June Northern Hemisphere, July to 838
December Southern Hemisphere-(left) and probability distribution of snow melt-out date 839
(right) among the 25 sites simulated locations shown in Figure 1. 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857

 1 
 2 
3

 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



29

 858
Figure 3. Average annual snow cover duration (SCD) for the period 2017-2021 for a 859

typical marginal snowpack site in the Pyrenees derived from MODIS (500 m grid size) 860

and a composite of Sentinel-2 and Landsat 8 (30 meters). Numbers in the left plot inform 861

of the number of days with snow duration derived from MODIS/Sentinel2&Landsat8 for 862

4 selected points. 863
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 884
 885

Figure 4. Snow depth and vegetation height for two different dates mapped with structure 886
from motion technique based on photos from unmanned aerial vehicle in the plot 1 of this 887
figure.  888
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 891

Figure 5. Thermal emissivity from vegetation in a Snow Gum forest in the Snowy 892
Mountains (Australia). Polar plots show average snow temperature around a monitored 893
tree (from Schwartz et al., 2021) at 10 AM (mean air temperature -0.4 ºC) and 2 PM 894
(mean air temperature 0.7 ºC) Australian Eastern Standard Time (AEST) showing how 895
thermal emission increases as the local environment warms. 896
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 900

Figure 6. A: Snowpack interacting with Mediterranean shrubs (Buxus sempervivens, 901
Juniperus comunis and Echinospartum horridum) in the Spanish Pyrenees. There is no 902
precedent literature on how these species affect snowpack dynamics. B: Preferential melt 903
around the shrubs that were poking through the snow surface (~1 m snowpack) in Jemez 904
mountains in New Mexico. C: Emergent shrubs interacting with snow accumulation in 905
the Snowy Mountains Australia. 906
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 908

Figure 7. Simulated snowpack for two contrasted years with the Cold Region 909
Hydrological Model Pomeroy et al., 2022) using A: Richard Albedo module in the high 910
Atlas of Morocco using three levels of minimum albedo (0.2, 0.3 and 0.4) and three 911
constant albedo decay time for melting snow (0.05, 0.07 and 0.09 day-1); and B: different 912
temperature thresholds and methods to determine precipitation phase in the Sierra Nevada 913
mountains (Spain). Under colder conditions the simulations provide similar snow depth 914
time series, in contrast to simulations in milder climatic conditions. 915
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