
HAL Id: hal-04570932
https://hal.science/hal-04570932v1

Submitted on 7 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Categorial Dependency Grammars extended with
barriers (CDGb) yield an Abstract Family of Languages

(AFL)
Denis Béchet, Annie Foret

To cite this version:
Denis Béchet, Annie Foret. Categorial Dependency Grammars extended with barriers (CDGb) yield an
Abstract Family of Languages (AFL). 5th International Conference on Natural Language Processing
and Computational Linguistics (NLPCL 2024), David C. Wyld; Dhinaharan Nagamalai, Sep 2024,
Copenhagen, Denmark. pp.53-66, �10.5121/csit.2024.141706�. �hal-04570932�

https://hal.science/hal-04570932v1
https://hal.archives-ouvertes.fr

Categorial Dependency Grammars extended

with barriers (CDGb) yield an Abstract

Family of Languages (AFL)

Denis Béchet1 and Annie Foret2

1 Nantes University, France
2 Univ. Rennes and IRISA, France

Abstract. We consider the family of Categorial Dependency Grammars (CDG), as computational
grammars for language processing. CDG are a class of categorial grammars defining dependency
structures. They can be viewed as a formal system, where types are attached to words, combining
the classical categorial grammars’ elimination rules with valency pairing rules that are able to
define non-projective (discontinuous) dependencies.
Whereas the problem of closure under iteration is open for the original version of CDG, we define
“CDG extended with barriers”, an extended version of the original CDG, that solves this formal
issue. We provide a rule system and we show that the extended version defines an Abstract Family
of Languages (AFL), while preserving advantages of the original CDG, in terms of expressivity,
parsing and efficiency.

Keywords: Logical approach to natural language, Type calculus, Categorial Gram-
mar, Dependency Grammar, Abstract Family of Languages.

1 Introduction

Categorial Dependency Grammars (CDG) [3] are a class of categorial grammars [1]
that define dependency structures [8]. CDG are a unique class of grammars directly
generating unbounded dependency structures (DS), beyond context-freeness, able
to define non-projective dependency structures, but remain well adapted to real
NLP applications.

CDG can be viewed as a formal system, where types are attached to words,
combining the classical categorial grammars’ elimination rules with valency pair-
ing rules that are able to define non-projective (discontinuous) dependencies. An
overview of this class is provided in [2].

Some closure properties have been shown in [3] for the class of string-languages
generated by CDG (union, etc.), but some closure questions remain open. In par-
ticular, we do not know whether the class of string-languages generated by CDG
is closed for Kleene plus (the conjecture is ”no” in [3]) and whether they are an
Abstract Family of Languages (AFL).

1

AFL closure properties are nice properties expected for standard grammar
classes and have been shown for several grammatical frameworks: we refer in par-
ticular to [9] for multiple context-free grammars. The AFL properties are also nice
as they allow a meta-level modular construction of grammars.

In this paper, we define “CDG extended with barriers” (CDGb), an extended
version of the original CDG. Our contribution is to propose this extended version
CDGb and to show that it defines an Abstract Family of Languages (AFL), while
preserving advantages of the original CDG, in terms of expressivity, parsing and
efficiency. For natural langage modelling, this new version allows to block some
unwanted word links.

The plan of the paper is organized as follows: in Section 2, we give preliminaries
on the notion of Abstract Family of Languages (AFL) ; in Section 3, we introduce
CDG extended with barriers (CDGb); in Section 4, we provide technical properties
on CDGb, related to grammar or derivation equivalences, that are helpful for closure
properties; in Section 5, we deal with the closure properties constituting an AFL.
Section 6 concludes.

2 Preliminaries on Abstract Family of Languages (AFL)

We are interested in closure properties of a family F of languages, as those of AFL.
Before considering such questions for CDG, we give background definitions [6].
Homomorphisms. For finite alphabets V1, V2: a homomorphism3 h from V ∗

1 to
V ∗
2 is ϵ-free if h(w) = ϵ implies w = ϵ.
A family F is closed under inverse homomorphism if whenever L ⊆ V ∗

1 is in F
and h is a homomorphism from V ∗

2 to V ∗
1 , then h−1(L) is also in F , where:

h−1(L) = {w ∈ V ∗
2 | h(w) ∈ L}

Substitutions. A substitution is a mapping f from V1 to P(V ∗
2), it is naturally

extended to strings in V ∗
1 (by concatenation) and to sets of strings (by union)4.

A family F is closed under substitution if whenever L ∈ V ∗
1 is in F and f is a

substitution from V1 such that f(a) ∈ F for all a ∈ V1, then f(L) is also in F .
AFL. F is an Abstract Family of Languages (AFL) if it is closed under union,
concatenation, Kleene plus, ϵ-free homomorphism, inverse homomorphism and in-
tersection with regular sets. A full AFL is defined similarly, with Kleene star (not
just Kleene plus) and arbitrary homomorphisms (not just ϵ-free).

For example, the class of multiple context-free grammars yields an AFL [7].
Simpler classes such as regular languages and context-free languages are AFL
too. The class of string languages generated by abstract categorial grammars is
a substitution-closed full AFL, as shown in [6].

3 each character is replaced by a single string, with h(uv) = h(u)h(v) and h(ϵ) = ϵ
4 f(ϵ) = {ϵ}, f(ws) = f(w)f(s), f({w}) = f(w), f(

⋃
i Li) =

⋃
i f(Li)

2

CDG-languages are closed under the following AFL-operations: union, concate-
nation, ϵ-free homomorphism, inverse homomorphism and intersection with regular
sets. The CDG family is thus a trio (closed under ϵ-free homomorphism, inverse
homomorphism, and intersection with regular language) and also a semi-AFL (a
trio closed under union). However the AFL question is open for CDG-languages as
we do not know if they are closed for Kleene plus (the conjecture is “no” in [3]).
In [4] it is shown that the mmCDG class, extending CDG with a multimodal rule,
defines an AFL.

Note that these closure properties are established for string-languages. Some
other works consider structure-languages: in [6] closure properties for ACG tree-
languages are also shown. In the case of CDG, such closure questions could be
addressed at the level of dependency structures too. This paper provides closure
properties for string-languages.

3 CDG extended with barriers: CDGb

As for other categorial grammars, a CDG or a CDGb defines a lexicon and the
rules used in the calculus are fixed. The lexicon maps each word or symbol to one
or several types. For instance, the following CDG lexicon gives a unique type to
the words John, ran, fast and yesterday:

John 7→ [N] ran 7→ [N \S/A∗] fast, yesterday 7→ [A]
where types are built from the following primitive types: A for adverbs,N for nouns,
and S for sentences, using categorial / \ operators in Lambek notation. Moreover,
the type of ran has an iterated dependency type A∗ that can introduce several
projective dependencies A with the same governor ran. The string John ran fast
yesterday is recognized by the CDG. A proof is given by the derivation in Figure 1.
In this derivation, the words are written just above the type that has been chosen
for it in the lexicon. The derivation ends by the axiom S. Each node corresponds to
the application of one of the rules of the calculus of dependency types. Most rules
in a derivation create a new dependency in the dependency structure as examplified
in Figure 1. This example involves only basic rules, for more complex constructs
see next sections.

3.1 CDGb: types, proofs and derivations

CDGb are extensions of CDG where barriers ↣ may be added to types. Some rules
are modified in CDGb to take into account the barriers in potentials.

3

John
[N]

ran
[N \ S / A∗]

fast
[A]

Ir

[N \ S / A∗]
yesterday

[A]
Ir

[N \ S / A∗]
Ωr

[N \ S]
Ll

[S]

Fig. 1. A derivation (on the left) and its dependency structure (on the right)

Definition 1 (CDGb Types). Let C be a set of local dependency names 5 and
V be a set of valency names. A CDGb dependency type is an expression BP in
which B is a basic dependency type and P is a b-potential, using next definitions.
CATb(C,V) will denote the set of all CDGb dependency types over C and V.

1. An expression of the form d∗ where d ∈ C, is called an iterated dependency
type.

2. Local dependency names and iterated dependency types are primitive types.
3. An expression of the form

t = [lm \ . . . \ l1 \ H / r1 / . . . / rn]
in which m,n ≥ 0, l1, . . . , lm, r1, . . . , rn are primitive types
and H is either a local dependency name (in C) or is empty (written ε),

is called a basic dependency type;
l1, . . . , lm and r1, . . . , rn are left and right argument types of t;
H is called the head type of t.

4. The expressions of the form ↙v,↖v, ↘v, ↗v, where v ∈ V, are called polar-
ized valencies, with characteristics as follows:
polarized valency polarity arrow direction dual left / right bracket

↗v positive left-to-right ↘v left
↘v negative left-to-right ↗v right

↙v negative right-to-left ↖v left
↖v positive right-to-left ↙v right

5. A (possibly empty) string P of polarized valencies is called a potential.
6. The expressions of the form ↙v, ↖v, ↘v, ↗v and ↣, where v ∈ V, are called

b-extended polarized valencies.
7. A (possibly empty) string P of b-extended polarized valencies is called a b-

potential.

Basic dependency types can also be viewed as CDGb types with empty b-potential,
as [N \S/A∗] in Figure 1. In this figure, the primitive types A, N , S are local

5 called elementary (dependency) categories in [3] ; several terminologies have been used, the
version in this article does not use the term anchors but they are seen as particular local
dependencies

4

dependency names and A∗ is both an iterated dependency type and a primitive
type. Section 3.2 provides examples with potentials generating another kind of
dependencies displayed as dashed arrows in the dependency structures.

Restriction to CDG. The difference between a CDG type and a CDGb type lies in
the polarity part, where barriers are not allowed in CDG.

A dependency type (CDG Type) is an expression BP in which B is a basic depen-
dency type and P is a potential. CAT(C,V) will denote the set of all dependency
types over C and V.

Local Dependency names, iterated dependency types, primitive types are defined
for CDGb as for CDG, as well as basic dependency types and their argument types
and head types. Polarized valencies are defined for CDGb as for CDG, but we now
add barriers ↣.

Definition 2 (Set of rules). In this set of rules on lists of types, the symbol C
stands for a local dependency name. The symbol α is a basic dependency type. The
symbol β ranges over expressions of the form lm \ . . . \ l1 \ H / r1 / . . . / rn

Ll [C]P [C \ β]Q ⊢ [β]PQ Lr [β / C]P [C]Q ⊢ [β]PQ

Ll
ε [ε]P [β]Q ⊢ [β]PQ Lr

ε [β]P [ε]Q ⊢ [β]PQ

Il [C]P [C∗ \ β]Q ⊢ [C∗ \ β]PQ Ir [β / C∗]P [C]Q ⊢ [β / C∗]PQ

Ωl [C∗ \ β]P ⊢ [β]P Ωr [β / C∗]P ⊢ [β]P

Dl αP1↙vP↖vP2 ⊢ αP1PP2 Dr αP1↗vP↘vP2 ⊢ αP1PP2

In Dl, the potential P1↙vP↖vP2 satisfies the pairing rule FAb:

FAb (First Available between barriers): P has no occurrence of ↙v or ↖v
and no barrier.
In Dr, the potential P1↗vP↘vP2 satisfies the pairing rule FAb:

FAb (First Available between barriers): P has no occurrence of ↗v or ↘v
and no barrier.

The calculus defines the immediate provability relation ⊢b on strings of CDGb

types. Its transitive closure ⊢∗
b defines a derivation when the right part is reduced

to a type [S] ↣ ↣··· ↣ where S is an axiom.

In the CDG case. The set of rules is the same, the original pairing rules are:
In Dl, the potential P1↙vP↖vP2 satisfies the pairing rule FA:

FA (First Available): P has no occurrence of ↙v or ↖v.
In Dr, the potential P1↗vP↘vP2 satisfies the pairing rule FA:

FA (First Available): P has no occurrence of ↗v or ↘v.
The CDG pairing rules eliminate dual dependencies. In fact, we may use the new
pairing rules for CDG, with the same effect (as CDG involves no barrier).

5

Definition 3 (CDGb grammar and language). A categorial dependency gram-
mar extended with barriers (CDGb) is a system G = (W,C, V, S, λ), where W is
a finite set of words, C is a finite set of local dependency names containing the se-
lected name S (an axiom), V is a finite set of valency names, and λ, called lexicon,
is a finite substitution such that λ(a) ⊂ CATb(C,V) for each word a ∈ W .
A string x = w1w2 · · ·wn ∈ W ∗ is generated by G iff there exists a proof Γ ⊢∗

b [S]P

where Γ ∈ λ(x) = λ(w1) · · ·λ(w2) · · ·λ(wn) and P = ↣ ↣ · · · ↣ (P is empty or con-
tains only barriers).
The language L(G) is the set of strings of W ∗ that are generated by G. L(CDGb)
will denote the family of languages generated by these grammars.

A CDG is also a CDGb that defines the same string-language.

3.2 Expressive power of CDG

Example 1. CDG are used to model complex sentences of a natural language where
dependencies are usually projective but may be sometimes non-projective, see Fig-
ure 2. Normal projective dependencies appear as black plain arrows (there is an

Fig. 2. An example in French meaning “he washed them well with the soap”

arrow between an anchor and the main word of the sentence est which denotes the
root node). Black dashed arrows represent non-projective dependencies that can
cross other dependencies. The “host” projective dependencies #↙clit-a-obj and
#↙reflex below the diagram are complementary to the non-projective dependen-
cies. They fix the position of the dependent of a non-projective dependency. A red
arrow @fs above the diagram introduces a “punctuation” projective dependency.
Each projective dependency (normal, punctuation or host) corresponds to a step of
one of the rules Lr, Ll, Ir and Il in a derivation. The non-projective dependencies
correspond to rules Dr and Dl.

Example 2. Let G1 = ({a, b, c}, {S,B,C}, {X}, S, λ1) where λ1 is defined by:
a 7→ [S / C / S]

[S / C / B]
b 7→ [B / B]↙X

[B]↙X
c 7→ [C]↖X

G1 generates the language L1 = {anbncn | n > 0}. The derivation and the depen-
dency structure for aabbcc are as follows:

6

a
[S / C / S]

a
[S / C / B]

b
[B / B]↙X

b
[B]↙X

Lr

[B]↙X↙X

Lr

[S / C]↙X↙X
c

[C]↖X

Lr

[S]↙X↙X↖X

Dl

[S]↙X

Lr

[S / C]↙X
c

[C]↖X

Lr

[S]↙X↖X

Dl

[S]

For formal languages, we only use one kind of projective dependencies (corre-
sponding to rules Lr, Ll, Ir and Il) and non-projective dependencies (corresponding
to rules Dr and Dl). There isn’t any distinction between normal, “punctuation”
and “host” dependencies. A special arrow that starts from an anchor marks the
root node of the structure (it is not a real dependency). In a dependency structure,
rules Lr

ε, L
l
ε, Ω

r and Ωl don’t introduce a dependency.

Example 3. The grammar G1 (Example 2) viewed as a CDGb defines obviously
the same language L1 = {anbncn | n > 0}. We don’t know if the language L+

1 can
be generated by a CDG but it is possible with barriers to define a CDGb for it. As
it is shown later, it is possible to transform G1 into a CDGb that generates L

+
1 . We

start by transforming G1 into G2 which has an “independent main category” (see
Lemma 1) then into G3 that has a barrier on the rightmost types of a derivation (see
Theorem 3) and into G4 using the construction for Kleene plus (see Theorem 6).
Let G2 = ({a, b, c}, {S,A,B,C}, {X}, S, λ2) where λ2 is defined by:

a 7→ [S / C / A] [A / C / A]
[S / C / B] [A / C / B]

b 7→ [B / B]↙X

[B]↙X c 7→ [C]↖X

G2 is equivalent to G1 but the axiom S is not used as argument of a type. G2 is
also a CDG.
Then, let G3 = ({a, b, c}, {S,A,B,C,C ′}, {X}, S, λ3) where λ3 is defined by:

a 7→ [S / C ′ / A] [A / C / A]
[S / C ′ / B] [A / C / B]

b 7→ [B / B]↙X

[B]↙X

c 7→ [C]↖X

[C ′]
↖X ↣

G3 is equivalent to G2 but, in a derivation, the rightmost type is always a type with

a barrier (it is the type [C ′]
↖X ↣).

7

Finally, let G4 = ({a, b, c}, {S,A,B,C,C ′}, {X}, S, λ4) where λ4 is defined by:
a 7→ [S / S / C ′ / A] [S / C ′ / A] [A / C / A]

[S / S / C ′ / B] [S / C ′ / B] [A / C / B]

b 7→ [B / B]↙X

[B]↙X

c 7→ [C]↖X

[C ′]
↖X ↣

Note that λ4 is obtained from λ3 by adding the types where S is replaced by S / S.
G4 generates the language L+

1 .

a
[S / S / C′ / B]

b
[B]↙X

Lr

[S / S / C′]↙X

c

[C′]
↖X ↣

Lr

[S / S]
↙X↖X ↣

Dl

[S / S] ↣

a
[S / C′ / A]

a
[A / C / B]

b
[B / B]↙X

b
[B]↙X

Lr

[B]↙X↙X

Lr

[A / C]↙X↙X
c

[C]↖X

Lr

[A]↙X↙X↖X

Dl

[A]↙X

Lr

[S / C′]↙X

c

[C′]
↖X ↣

Lr

[S]
↙X↖X ↣

Dl

[S] ↣

Lr

[S] ↣ ↣

Fig. 3. A derivation for abcaabbcc using G4

The barrier on type [C ′]
↖X ↣ for c is important to limit non-projective depen-

dencies between b and c: If the type for c is [C ′]↖X rather than [C ′]
↖X ↣, it is

possible to generate words that aren’t in L+
1 . For instance abbcaabcc has a deriva-

tion where the rightmost c is linked to the leftmost b. In the following derivation,
the last step using Dl is possible if the barriers don’t exist but the derivation isn’t
correct if the barriers are present:

3.3 Subclasses of CDGb

We distinguish the subclasses of CDGb where the number of valency names is bound.
Let Lk(CDGb) denote the subclass of L(CDGb) where the number of different
valency names is bound by k. For a CDGb G = (W,C, V, S, λ), it means that
|V| ≤ k.

Our results show that each subclass Lk(CDGb), for each k, defines an AFL.

8

a
[S / S / C′ / B]

b
[B / B]↙X

b
[B]↙X

Lr

[B]↙X↙X

Lr

[S / S / C′]↙X↙X

c

[C′]
↖X ↣

Lr

[S / S]
↙X↙X↖X ↣

Dl

[S / S]
↙X ↣

a
[S / C′ / A]

a
[A / C / B]

b
[B]↙X

Lr

[A / C]↙X
c

[C]↖X

Lr

[A]↙X↖X

Dl

[A]
Lr

[S / C′]

c

[C′]
↖X ↣

Lr

[S]
↖X ↣

Lr

[S]
↙X ↣↖X ↣

��Dl (enabled without ↣)

�
��[S] ↣ ↣

Fig. 4. A forbidden proof for abbcaabcc using G4, enabled if barriers are dropped

4 Technical properties

4.1 Balancable and balanced potentials of CDGb

Some definitions of [3] need modifications in order to take into account the addition
of barriers. [3] shows that in a derivation, projective rules (on basic type) and non-
projective rules (on polarized valencies) are independent. This property is also
true for CDGb. It means that the calculus can be done independently on the local
projection and the valency projection of a string of types.

Definition 4. The local projection ∥γ∥l of a string of dependency types γ is defined
as follows: ∥ε∥l = ε and ∥CP α∥l = C ∥α∥l
The valency projection ∥γ∥v of a string of dependency types γ is defined as follows:
∥ε∥v = ε and ∥CP α∥v = P ∥α∥v

For instance ∥[B \ C]↘A∥l = [B \ C] and ∥[B \ C]↘A∥v = ↘A. With CDGb, the
valency projection in a derivation must satisfy a new “well-bracketing” criterion. In
fact, barriers divide a valency projection in sub-parts that contain no barrier and
must satisfy the original “well-bracketing” defined in [3].

Definition 5. A left bracket valency is a valency of the form ↙v or ↗v, a right
bracket valency is a valency of the form ↖v or ↘v. For a polarized valency v and
a potential P , |P |v denotes the number of occurrences of v in P .
For a potential P , a left bracket valency v and its dual right bracket valency v′:
∆v(P) = max{|P ′|v − |P ′|v′ : P ′ is a suffix of P and P ′ has no barrier }
∆v′(P) = max{|P ′|v′ − |P ′|v : P ′ is a prefix of P and P ′ has no barrier }

For instance, ∆↙A(↙B ↙A ↣ ↖A ↙A ↙B ↙A ↖A ↙A) = 2 and ∆↖A(↙B ↙A ↣ ↖A ↙A ↙
B ↙A ↖A ↙A) = 0. For a left bracket valency like ↙A, we only look at the suffixes of

9

the right part of the potential that contains no bracket ↖A ↙A ↙B ↙A ↖A ↙A. For a
right bracket valency like ↖A, we only look at the prefixes of the left part or the
potential that contains no bracket ↙B ↙A. These numbers are always positive or
zero (ε is a prefix or a suffix).

Some potentials cannot appear in a derivation because some part ot it (delimited
by barriers) does not verify a “well-bracketing” criterion. For instance, ↙B ↙A ↣ ↖
A ↙A ↙B ↙A ↖A ↙A can never appear in a derivation that ends with only barriers
because the right part after the barrier ↖A ↙A ↙B ↙A ↖A ↙A starts with ↖A
whose reduction is blocked by the barrier. More generally, in a potential P1 ↣P2 that
contains a barrier, the left part P1 mustn’t have “pending” left bracket valencies:
∆v(P1) must be zero for any left bracket v. Similarly, ∆v′(P2) must be zero for any
right bracket v′.

Definition 6. A potential P is balancable iff for every partition of P = P1 ↣P2,
for every left bracket valency v and for every right bracket valency v′, ∆v(P1) =
∆v′(P2) = 0. A potential P is balanced iff it is balancable and for every valency v
(left or right bracket), ∆v(P) = 0.

Theorem 1. Let ⊢∗
l be the CDGb restricted to the local rules Ll,Lr,Ll

ε,L
r
ε, I

l, Ir,
Ωl,Ωr. Let G = (W,C,V, S, λ) be a CDGb. x ∈ L(G) iff there is a string of
categories γ ∈ λ(x) such that ∥γ∥l ⊢∗

l S and ∥γ∥v is balanced.

Proof. The theorem and its proof are similar to the original ones for CDG (see
Theorem 1 in [3]). This amounts to postpone rules Dl and Dr.

4.2 CDGb without empty head

The CDG and CDGb calculus enable the use of types with an empty head like
[A \ ε / B / C]↙B. The rules Ll

ε and Lr
ε that are close to Ll and Lr can cancel

such types in the presence of another type (which is not transformed). However,
these types are not essential. In fact, it is possible to transform a grammar using
types with an “empty head” into an equivalent grammar without such types by
replacing the rules Ll

ε and Lr
ε by other local rules applied to a specific head type

that mimics an empty head.

Theorem 2. Let ⊢∗
H be the CDGb calculus restricted to rules Ll,Lr, Il, Ir,Ωl, Ωr,

Dl, Dr (the rules with no empty head). Let G ∈ Lk(CDGb). There exists an equiv-
alent grammar in Lk(CDGb) using only types without empty head where proofs are
based on ⊢∗

H rather that ⊢∗
b .

Proof. See Annex A.1

10

4.3 CDGb with a barrier on the rightmost type

Barriers may be used to prevent using Dl and Dr rules in a CDGb language. This
is useful for the concatenation of two languages or the Kleene plus of a single
language. Because CDGb are lexicalized, these barriers are added on the right6 of
the potential of certain types of the lexicon. This is correct only when we can be
sure that the modified types are always used as the rightmost type of any derivation
(the type given to the rightmost symbol in a derivation) and when the other types
are never used as the rightmost type of any derivation (the types given to the other
symbols). Technically, in the following theorem, the initial lexicon is transformed
into an equivalent one for which we are sure that each type in the lexicon is always
or never used as the rightmost type (but not both). A barrier is then added on the
types that always appear on the rightmost type of any derivation.

Theorem 3. Let G be a CDGb. There exists an equivalent grammar (without empty
head) G′ = (W,C,V, S, λ) such that for every string w1 · · ·wn ∈ W ∗ and every
proof γ1 · · · γn ⊢∗

b [S]Q where γ1 ∈ λ(w1), . . . γn ∈ λ(wn), then the rightmost type

γn = B
P ↣, where B is a basic dependency type and P is a potential.

The proof uses Theorem 2.

4.4 Context-free grammars and CDG extended with barriers

On the one hand, we consider CF as in Definition 10 in [3] applied to build a context-
free grammar from a CDGb. On the other hand, we can extend the definition of
CDG in [3] (Definition 12, unchanged) to the case with barriers. We then get
context-free lemmas with corollaries that are useful to show some AFL properties:

Corollary 1. Let G = (W,C,V, S, λ) be a CDGb with CF (G) = (Σ1, N1, S1,P1),
S1 = S: w1...wn ∈ L(G) iff ∃P1...∃Pn : wP1

1 ...wPn
n ∈ L(CF (G)) and P1...Pn is

balanced.

Corollary 2. Let G1 = (Σ1, N1, S1,P1) be a cf-grammar in Greibach normal form,
where the elements of Σ1 are of the form wP (where P in wP is a CDGb potential)
with CDG(G1) = (W ′, C ′, V ′, S′, λ′), S′ = S1:

w1...wn ∈ L(CDG(G1)) iff ∃P1...∃Pn : wP1
1 ...wPn

n ∈ L(G1) and P1...Pn is bal-
anced.

4.5 Main category lemma

Lemma 1. For every G = (W,C,V, S, λ) in CDGb, there exists G′ = (W,C ∪
{S′},V, S′, λ′) which has ”independent main category” and such as G and G′ are
equivalent (same languages).
6 Here, a barrier is added on the right of the potential of types of the lexicon but symmetricaly
it is also possible to add it on the left of potential

11

5 AFL Closure Properties

We first group some properties that can be shown following the approach in [3].

Theorem 4. [Union] If L1 ∈ Lk(CDGb) and L2 ∈ Lk(CDGb), then L1 ∪ L2 ∈
Lk(CDGb).
[ϵ-free homomorphisms] If L ∈ Lk(CDGb) is a language over W , and h is an ϵ-free
homomorphism from W+ to Σ+, then h(L) ∈ Lk(CDGb).
[Inverses of homomorphisms] If L ∈ Lk(CDGb) and h is an homomorphism from
∆∗ to W ∗, then h−1(L) ∈ Lk(CDGb).
[Intersection with regular sets] If L ∈ Lk(CDGb), and R is a regular language, then
L ∩R ∈ Lk(CDGb).

5.1 Concatenation

The concatenation of languages defined by a CDG extended with barriers is also
a CDG extended with barriers. For CDG (without barrier), [3] needs that the
valency names of the grammars are disjoined. Thus, it isn’t possible to have non-
projective dependencies between the different parts in the concatenation. However,
a consequence is that the valency complexity of the resulting grammar increases. In
contrast, with CDGb, there exists another construction that uses barriers to stop
non-projective dependencies between the different parts of the concatenation. The
construction needs a CDGb with a barrier on the rightmost types as it is explained
in Theorem 3.

Theorem 5. If L1 ∈ Lk(CDGb) and L2 ∈ Lk(CDGb), then L1 · L2 ∈ Lk(CDGb).

Proof. See Annex A.2

5.2 Kleene plus

Kleene plus is an extension of the concatenation to an unlimited number of copies
of the initial language. With CDG without barrier, it is not possible to restrict
non-projective dependencies between the copies thus [3] wasn’t able to propose a
construction (the authors conjecture that Kleene plus isn’t an internal operation in
L(CDG)). However, with barriers, it is possible to limit non-projective dependen-
cies. Similarly with the construction for concatenation, we start with a CDGb with
a barrier on the rightmost type as it is explained in Theorem 3.

Theorem 6. If L ∈ Lk(CDGb), then L+ ∈ Lk(CDGb).

Proof. The proof is close to the proof for the concatenation of two languages. Let
G = (W,C,V, S, λ) ∈ Lk(CDGb). Using Lemma 1 and Theorem 3 we may suppose
that S cannot be used as an argument of a type and that there is a barrier on the

12

right of the rightmost type in every proof ending with the axiom.
Let us define the grammar G′ = (W,C,V, S, λ ∪ λ′) where λ′ is the lexicon λ
where each type [α \ S / β]P is replaced by the type [α \ S/S/β]P . Then, G′ ∈
Lk(CDGb) and L(G′) = L(G)+.

[⇐] L(G)+ ⊆ L(G′) In fact, for n > 0, we can transform n proofs of Γ1 ⊢∗
b

[S]P1 , . . . , Γn ⊢∗
b [S]Pn that generate n strings x1, . . . , xn in G (P1, . . . , Pn are

empty or contain only barriers) into n − 1 proofs of Γ ′
1 ⊢∗

b [S/S]P1 , . . . , Γ ′
n−1 ⊢∗

b

[S/S]Pn−1 with types in λ′
1 (S is replaced by S/S) and an inchanged proof

Γn ⊢∗
b [S]Pn with types in λ. These n proofs can be put together to define a

proof of Γ ′
1 · · ·Γ ′

n−1Γn ⊢∗
b [S]P1···Pn that generates the string x1 · · ·xn in L(G′).

[⇒] L(G′) ⊆ L(G)+ Let x ∈ L(G′). It exists Γ ∈ (λ ∪ λ′)(x) such that Γ ⊢b

[S]P where P = ↣ · · · ↣ (P is empty or contains only barriers). Using Lemma 1,
there exists n > 0 such that there are n types with head S in Γ . Because in
the proof, all the S must be canceled except one, the first n − 1 types must be
[α1 \ S/S/β1]

P1 , . . . , [αn−1 \ S / S/βn−1]
Pn−1 (from λ′) and the last one must

be [αn \ S/βn]
Pn (from λ). Each S on the heads of the types are canceled by

the preceding type. These cancelation steps can be postponed in the proof in
order to be the last steps on basic dependency types and it is possible to post-
pone the steps on potential after the last cancelation of S: it exists a proof of
Γ ⊢∗

b [S/S]P1 · · · [S/S]Pn−1 [S]Pn ⊢∗
b [S]P1···Pn ⊢∗

b [S]P . Now, Γ can be split in
n parts such that Γ1 ⊢∗

b [S/S]P1 , . . . , Γn−1 ⊢∗
b [S/S]Pn−1 and Γn ⊢∗

b [S]Pn that
correspond to n parts x1, . . . , xn of x. When we replace S/S by S everywhere
in the proofs of Γ1 ⊢∗

b [S/S]P1 , . . . , Γn−1 ⊢∗
b [S/S]Pn−1 , we obtain n − 1 proofs

of Γ ′
1 ⊢∗

b [S]P1 , . . . , Γ ′
n−1 ⊢∗

b [S]Pn−1 where Γ ′
1 ∈ λ(x1), . . . , Γ

′
n−1 ∈ λ(xn−1). Us-

ing Theorem 3, it means that P1 = P ′
1 ↣, . . . , Pn−1 = P ′

n−1 ↣. Because P1 · · ·Pn =

P ′
1 ↣ · · ·P ′

n−1 ↣Pn is balanced, P1, . . . , Pn must also be balanced. The proofs Γ ′
1 ⊢∗

b

[S]P1 , . . . , Γn−1 ⊢∗
b [S]Pn−1 and Γn ⊢∗

b [S]Pn can be completed with Dl and

Dr steps such that we have proofs of Γ ′
1 ⊢∗

b [S] ↣··· ↣, . . . , Γ ′
n−1 ⊢∗

b [S] ↣··· ↣ and

Γn ⊢∗
b [S] ↣··· ↣: x1 ∈ L(G), . . . , xn ∈ L(G).

6 Conclusion and open questions

In this paper we have considered the framework of categorial dependency grammars
used in the field of natural language processing, with an interest in their formal
properties. Whereas the problem of closure under iteration is open for the original
version of CDG, our approach is to propose an extension that fullfills the closure
properties, without an increase in parsing complexity (for lack of space, our parsing
algorithm for CDGb is not provided here). In that perspective, we have added a
barrier mechanism, reflected essentially in types (attached to words) and rules that
govern the parsing derivations. We have shown that the new class yields an Abstract

13

Family of Languages, which is of interest for modular grammar constructs. Our AFL
results also hold for each subclass Lk(CDGb) where the number of valency names
is bound by k. As compared to a former extension of CDG that yields an AFL,
called multimodal (mmCDG) [4, 5], our proposal is closer to CDG, and avoids a
complexity issue.

We also do not know how to characterize the expressive power of the extended
version. We leave these open questions for future work.

References

1. Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase structure grammars. Bull.
Res. Council Israel 9F, 1–16 (1960)

2. Béchet, D., Foret, A.: Categorial dependency grammars: Analysis and learning. In: Loukanova,
R., Lumsdaine, P.L., Muskens, R. (eds.) Logic and Algorithms in Computational Linguistics
2021 (LACompLing2021), Studies in Computational Intelligence, vol. 1081, pp. 31–56. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-21780-7 2, edited results of LACompLing2021

3. Dekhtyar, M., Dikovsky, A., Karlov, B.: Categorial dependency grammars. Theoretical Com-
puter Science 579, 33–63 (2015), https://doi.org/10.1016/j.tcs.2015.01.043

4. Dekhtyar, M.I., Dikovsky, A.J., Karlov, B.: Iterated dependencies and kleene iteration. In:
de Groote, P., Nederhof, M. (eds.) Formal Grammar - 15th and 16th International Conferences,
FG 2010, Copenhagen, Denmark, August 2010, FG 2011, Ljubljana, Slovenia, August 2011,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 7395, pp. 66–81. Springer
(2010), https://doi.org/10.1007/978-3-642-32024-8\ 5

5. Dikovsky, A.: Multimodal categorial dependency grammars. In: Proc. of the 12th Conference
on Formal Grammar. pp. 1–12. Dublin, Ireland (2007)

6. Kanazawa, M.: Abstract families of abstract categorial languages. Electron. Notes Theor. Com-
put. Sci. 165, 65–80 (2006), https://doi.org/10.1016/j.entcs.2006.05.037

7. Matsumura, T., Seki, H., Fujii, M., Kasami, T.: The generative power of multiple context-
free grammars and head grammars. Systems and Computers in Japan 22(4), 41–56 (1991),
https://doi.org/10.1002/scj.4690220405

8. Mel’čuk, I.: Dependency Syntax. SUNY Press, Albany, NY (1988)
9. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoret-

ical Computer Science 88(2), 191–229 (1991). https://doi.org/10.1016/0304-3975(91)90374-B,
https://www.sciencedirect.com/science/article/pii/030439759190374B

14

ANNEX

A Details of proof

A.1 Proof of Theorem 2

Proof. Let G = (W,C,V, S, λ) be a CDGb. Let us consider the grammar G′ =
(W,C ∪C′ ∪ {E},V, S, λ′) where C′ = {d′ : d ∈ C} (we suppose that C ∩C′ = ∅
and E ̸∈ C ∪C′) and λ′ is defined as follows:
- if λ : w 7→ [lm \ · · · \ l1 \ ε / r1 / · · · / rn]

P (empty head), then
λ′ : w 7→ [E∗\Lm\E∗\· · ·\E∗\L1\E∗\E/E∗/r1/E

∗/ · · ·/E∗/Rn/E
∗]P

and for each h′ ∈ C′,
λ′ : w 7→ [E∗\Lm\E∗\· · ·E∗\L1\E∗\h′/E∗/R1/E

∗/ · · ·/E∗/Rn/E
∗]P

where for i = 1, . . .m, Li = li if li isn’t iterated or Li = d′∗ if li = d∗ (similarly for
Rj , 1 ≤ j ≤ n).
- if λ : w 7→ [lm \ · · · \ l1 \ h / r1 / · · · / rn]

P (h not empty), then
λ′ : w 7→ [E∗\Lm\E∗\· · ·\E∗\L1\E∗\h/E∗/r1/E

∗/ · · ·/E∗/rn/E
∗]P

and
λ : w 7→ [E∗\Lm\E∗\· · ·\E∗\L1\E∗\h′/E∗/r1/E

∗/ · · ·/E∗/rn/E
∗]P

where for i = 1, . . .m, Li = li if li isn’t iterated or Li = d′∗ if li = d∗ (similarly for
Rj , 1 ≤ j ≤ n).
G′ is a CDGb without empty head. A derivation using its types cannot use rules
Ll
ε,L

r
ε: it is a derivation in ⊢∗

H .
Let us prove that L(G) = L(G′). A derivation ρ of Γ ⊢∗ [S]P for the generation
of a string x ∈ L(G) can be transformed into a derivation ρ′ of Γ ′ ⊢∗

H [S]P for the
same string in L(G′) and conversely.
In ρ each step corresponding to rule Ll

ε (or rule L
r
ε) is replaced by a step using rule

Ll (or rule Lr) when the step occurs outside the scope of an iterated type. If the
step is inside cancelations of several types by the same iterated type d, the step
is replaced by a step of rule Il (or rule Ir) on type d′. Each step corresponding to
rule Il (or rule Ir) on type d is replaced by a step of rule Il (or rule Ir) on type
d′. Steps corresponding to rules Ωl and Ωr are added in order to eliminate the E∗

arguments.
In the other direction, if we start with a derivation ρ′ of Γ ′ ⊢∗

H [S]P for the same
string in L(G′), we apply a reverse transformation. In this case, the added steps
that eliminate the E∗ arguments simply disappear.

A.2 Proof of Theorem 5

Proof. Let G1 = (W,C1,V, S1, λ1) ∈ Lk(CDGb) and G2 = (W,C1,V, S2, λ2) ∈
Lk(CDGb). We may suppose that the set of symbols W , and the set of valency
names V are the same for both grammars. We also may suppose that C1∩C2 = ∅.
Finally, using Lemma 1 and Theorem 3 we may suppose that S1 and S2 cannot be

15

used as an argument of a (iterated or not) type and that for G1, there is a barrier
on the right of the rightmost type in every derivation of a string of W ∗ ending in
[S1]

P .
Let us consider the grammar G = (W,C1 ∪ C2,V, S1, λ

′
1 ∪ λ2) where the lexi-

con λ′
1 is the lexicon λ1 where each type [α \ S1 / β]P is replaced by the type

[α \ S1 / S2 / β]P . Then, G ∈ Lk(CDGb) and L(G) = L(G1) · L(G2).
[⇐] L(G1) · L(G2) ⊆ L(G)
In fact, a proof Γ1 ⊢∗

b [S1]
P1 that generates a string x1 in L(G1) can be transformed

into a proof of Γ ′
1 ⊢∗

b [S1 / S2]
P1 with types of λ′

1 (S1 is replaced by S1 / S2). With
a proof of Γ2 ⊢∗

b [S2]
P2 that generates a string x2 in L(G2), we can define a proof

of Γ ′
1Γ2 ⊢∗

b [S1 / S2]
P1 [S2]

P2 ⊢b S
P1P2
1 that generates x1x2 in G.

[⇒] L(G) ⊆ L(G1) · L(G2)
Let x∈L(G). It exists Γ ∈(λ′

1 ∪ λ2)(x) such that Γ ⊢∗
b [S1]

P where P = ↣ · · · ↣ (P
is empty or contains only barriers). Using Lemma 1, in Γ , there is exactly one type
with head S1 (from λ′

1). The type is of the form [α \ S1 / S2 / β]P . Thus there
is also exactly one type with head S2 (from λ2). These are the only occurences
of S1 and S2 in Γ (as head or argument). The type of head S2 must be on the
right of the type [α \ S1 / S2 / β]P in Γ . In the proof S2 must be canceled by
a subtype of this type. This step can be postponed in the proof to be the last
step on basic dependency types: there exists two potentials P1 and P2 such that
Γ ⊢∗

b [S1 / S2]
P1 [S2]

P2 ⊢b [S1]
P1P2 ⊢∗

b [S1]
P . Moreover, it is also possible to post-

pone the steps on potential after the cancelation of S2: We can suppose that the
proof Γ ⊢∗

b [S1 / S2]
P1 [S2]

P2 ⊢b [S1]
P1P2 doesn’t use Dl or Dr. Γ can be split in

two parts such that Γ1 ⊢∗
b [S1 / S2]

P1 and Γ2 ⊢∗
b [S2]

P2 that correspond to two
parts x1 and x2 of x. We can prove that the types of Γ1 must come from λ′

1 (be-
cause it ends with [S1 / S2]

P1) and the types of Γ2 must come from λ2 (because
it ends with [S2]

P2). Now, when we replace S1 / S2 by S1 everywhere in the proof
Γ1 ⊢∗

b [S1 / S2]
P1 , we obtain a proof Γ ′

1 ⊢∗
b [S1]

P1 where Γ ′
1 ∈ λ1(x1). Using Theo-

rem 3, it means that P1 = P ′
1 ↣. Because P1P2 = P ′

1 ↣P2 is balanced, P1 and P2 must

also be balanced. The proofs Γ ′
1 ⊢∗

b [S1]
P1 and Γ2 ⊢∗

b [S2]
P2 can be completed with

Dl and Dr steps such that we have proofs of Γ ′
1 ⊢∗

b [S1]

↣··· ↣ and Γ2 ⊢∗
b [S2]

↣··· ↣:
x1 ∈ L(G1) and x2 ∈ L(G2).

16

