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Abstract

Hyperbolic conservation equations for polydisperse, high-speed, compressible, fluid–particle flows with added mass
and fluid-phase pseudoturbulence are derived. First, the kinetic-based model for monodisperse particles that accounts
for collisional and frictional pressure, as well as added mass and internal energy, is reviewed. Then, a kinetic-based
model for polydisperse particles is formulated in terms of the moments of the particle size distribution, and velocity
moments conditioned on the particle mass or size. Transport equations for velocity moments up to second order (or
total kinetic energy) are closed using the hyperbolic quadrature method of moments. In the numerical implementation
for the spatial fluxes and source terms, the particle mass distribution is treated using the generalized quadrature
method of moments and the size-conditioned moments are found with the conditional quadrature method of moments.
Example results for spatially 1-D test cases demonstrate the ability of the polydisperse model to capture a wide range
of particle-size-dependent multiphase flow physics.

Keywords: fluid–particle flow, polydispersity, kinetic theory of granular flow, quadrature-based moment methods,
added mass, pseudoturbulence

1. Introduction

Compressible polydisperse multiphase flows are ubiquitous in nature and important to many industrial applica-
tions. Particle size distributions are required to describe the dynamics of volcanic ash plumes and pyroclastic flows
[23], triboelectric charging [8], cloud formation and precipitation [4], the dispersal of dust layers by shock waves [20],
and the ignition and combustion explosively dispersed powders [25]. Experimentation of these multiphase flows are
challenging due to their extreme conditions and high optical thicknesses hindering modern diagnostic techniques. As
a result, numerical simulations are often required to obtain a detailed understanding of these flows. Lagrangian point-
particle methods can naturally handle polydisperse flows, but are limited to systems where the number of particles is
computationally feasible. This presents a barrier to practical scenarios that can involve many trillions of particles.

Eulerian multiphase flow models can naturally handle large numbers of particles, but are typically limited to
monodisperse size distributions [2, 5, 6, 18]. Recently developed Eulerian models have included polydisperse size
distributions using binning approaches [20]. These approaches require a large number of bins to accurately recon-
struct realistic size distributions, which is impractical for many realistic scenarios. Quadrature-based moment meth-
ods (QBMM) have recently been adapted to incompressible polydisperse multiphase flows [19]. The number of
transported quantities is significantly reduced for QBMM relative to binning. Nevertheless, thus far polydisperse
multiphase flows have only been applied to low-speed incompressible flows. Extending the QBMM to high-speed,
compressible, polydisperse flows is the main objective of this work.

In this work, we derive the hyperbolic conservation equations for polydisperse, high-speed, collisional particle
flows with added mass and internal energy starting from a kinetic model for granular flows. These equations are
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Figure 1: Energy flow in fluid–particle macroscale model from [6]. Random particle motion is measured by Θp, while particle-scale, fluid-phase,
fluctuating kinetic energy is measured by k f . The internal energies e f and ep define by the thermodynamic temperatures Tp and T f (◦K). Inelastic
collisions transform Θp into an increase in ep. Pseudoturbulent dissipation εpt transform k f into an increase in e f . At each scale, the phases are
coupled through drag or heat transfer. Compression in the particle phase increases αp, while in the fluid phase it increases ρ f .

coupled with modified Euler equations for the fluid phase, including pseudoturbulent kinetic energy (PTKE). Details
for the monodisperse case can be found in prior work [6]. The fluid phase is treated as ideal and inviscid with coupling
terms discussed in [14]. The particle phase is treated as inviscid with inelastic collisions, and a frictional-pressure term
is added to handle dense cases. Particle velocity moments up to second order (total kinetic energy) are included. The
diagram in fig. 1 provides a schematic on how kinetic energy is distributed in the compressible fluid–particle flow.
Given that most of the physical models have been described in detail for monodisperse particles in [6], the main focus
of this work is on how polydispersity in particle mass is handled using QBMM.

2. Macroscale model for monodisperse, high-speed, fluid–particle flows

In this section, the macroscale model for monodisperse particles derived in [6] and applied in [5] to model shock–
particle-curtain experiments is reviewed. Here, macroscale refers to the Euler–Euler model found from the moments
of a kinetic-based mesoscale model. The latter is related to an Euler–Lagrange description such as the one proposed
in [7]. The principal objective of this section is to remind the reader how added mass, internal energy, and PTKE are
treated, and to introduce the notation used in the rest of the paper. The monodisperse model equations for the nine
conserved variables are summarized in tables 1 and 2, and example parameter values for fluid–particle flow are given
in table 3.

The variable fluid density is denoted by ρ f , and the constant solid density by ρp, both have units kg/m3. The fluid-
and particle-phase velocities are u f and up, respectively, with units m/s. The total energies of the fluid and particle
phases are denoted as E f and Ep, respectively. The total energy is the sum of kinetic and internal energies. We denote
the former for each phase as K f and Kp, and the latter as e f and ep. (All energy variables have units of m2/s2.) The
phasic total energies are thus E f = K f + e f and Ep = Kp + ep. The total kinetic energy is divided into mean and
fluctuating components (see fig. 1):

K f =
1
2

u2
f + k f and Kp =

1
2

u2
p +

3
2
Θp. (1)

Here, u2 = u · u, k f is the PTKE and Θp is the granular “temperature”. For the fluid phase, it is convenient to
solve transport equations for E f and k f . In contrast, for the particle phase, the kinetic description leads naturally to
transport equations for Kp and ep. In any case, the thermodynamic temperatures T f and Tp (units ◦K) are found from
the internal energies e f and ep, respectively, using the heat capacities for each phase [18]. The equation for PTKE has
production terms due to drag and turbulent dissipation (term with C f ) at the length scale of the particle diameter [27].

In our modeling approach, added mass is handled by assigning a fraction of the fluid phase surrounding a particle
to move with the velocity up of the particle phase [14]. In the context of two-fluid models, we define α⋆p = αp + αa
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Table 1: Nine-equation macroscale model for monodisperse fluid–particle flow derived in [6] and written in conservative form. Gravity g is included
in the model for completeness. The pfp-pressure tensor Pp f p appears as flux in the particle-phase momentum balance and a work term in the energy
balances. Alternatively, it can be written as a force in the momentum balances [14].
Mass balances:

∂tαp + ∂x · αpup = 0
∂tρ fα

⋆
f + ∂x · ρ fα

⋆
f u f = − S a

∂tρeα
⋆
p + ∂x · ρeα

⋆
p up = S a

Momentum balances:

∂tρ fα
⋆
f u f + ∂x · (ρ fα

⋆
f u f ⊗ u f + p̂ f I) = α⋆p (∂x p̂ f + Fp f ) +

ρeα
⋆
p

τp
up f − S f p + ρ fα

⋆
f g

∂tρeα
⋆
p up + ∂x · ρeα

⋆
p (up ⊗ up + ΘpI + PpI + Pp f p) = − α⋆p (∂x p̂ f + Fp f ) −

ρeα
⋆
p

τp
up f + S f p + ρeα

⋆
p g

Fluid-phase energy balances (total and PTKE):

∂tρ fα
⋆
f E f + ∂x · [ρ fα

⋆
f u f E f + (α⋆f u f + α

⋆
p up) p̂ f ] = − Pp f p : ∂xup + α

⋆
p up · (∂x p̂ f + Fp f )

+
ρeα

⋆
p

τp
[3aΘp − 2(1 − a)k f + up f · up] + Hp f − S E + ρ fα

⋆
f u f · g

∂tρ fα
⋆
f k f + ∂x · ρ fα

⋆
f u f k f +

2
3
ρ fα

⋆
f k f∂x · u f =

ρeα
⋆
p

τp
[3aΘp − 2(1 − a)k f + u2

p f −C f k f ]

Particle-phase energy balances (kinetic and internal):

∂tρeα
⋆
p Kp + ∂x · [ρeα

⋆
p up(Kp + Θp + Pp) + Pp f p · up] = Pp f p : ∂xup − α

⋆
p up · (∂x p̂ f + Fp f )

−
ρeα

⋆
p

τp
[3aΘp − 2(1 − a)k f + up f · up] − Hp + S K + ρeα

⋆
p up · g

∂tρeα
⋆
p ep + ∂x · ρeα

⋆
p epup = Hp − Hp f + S e
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Table 2: Parameters appearing in macroscale model in table 1. In the definition of R, the parameters must satisfy 3B1 + B2 > 0 so that tr(R) = u2
p f

and Cp f p > 0. The correlations for B1 and B2 come from [30], and are valid for a limited range of Rep and αp > 0.01. For smaller αp, B1 can be
taken as constant. The thermodynamic temperatures T f and Tp are found from the internal energies of their respective phases. λ f is the fluid-phase
thermal conductivity.

κ =
ρeα

⋆
p − ρpαp

ρ fα
⋆
f

α f = 1 − αp αa =
κ

1 + κ
α f α⋆p = αp + αa α⋆f = α f − αa up f = up − u f

R =
B1u2

p f I + B2up f ⊗ up f

3B1 + B2
Pp f p = Cp f pρ fα

⋆
p R Fp f = R · ∂xρ f − (γ f − 1)ρ f (∂x · u f )up f +Cl ρ f up f × (∂x × u f )

S a =
ρ f

τa
(c⋆mα fαp − αa) S f p = max(S a, 0) u f +min(S a, 0) up S E = max(S a, 0) E f +min(S a, 0) Ep

S K = max(S a, 0) K f +min(S a, 0) Kp S e = max(S a, 0) e f +min(S a, 0) ep Hp f =
6α⋆pλ f Nu

d2
p

(Tp − T f )

Rep =
dpvp f

ν f
Pr f =

ρ f Cp, f ν f

λ f
Nu = (7 − 10α f + 5α2

f )(1 + 0.7Re0.2
p Pr1/3

f ) + (1.33 − 2.4α f + 1.2α2
f )Re0.7

p Pr1/3
f

vp f =
α⋆f

α f
up f c⋆m =

1
2

min(1 + 2αp, 2) τa = Caτp τp =
4ρed2

p

3µ f CDRep
CD =

24
Rep

(
1 + 0.15Re0.687

p

)
α−2.65

f

τc =
dp
√
π

12αpg0Θ
1/2
p

τ f r =
c f r

h f r(αp) max(|∂x · up|, 1/τc)
g0 =

1 + α f

2α3
f

h f r(αp) =
1
2

[
1 + tanh

(
αp − αmax

∆ f r

)]

p f = (γ f − 1) ρ f e f − γ f p∞, f e f = E f −
1
2

u2
f − k f Θp =

2
3

Kp −
1
3

u2
p Hp = ρeα

⋆
p

[
1
τc

(1 − e2
c) +

1
τ f r

]
Θp

p̂ f = p f +
2
3
ρ f k f Pp = Pc + P f r Pc = 2(1 + ec)αpg0Θp P f r =

p f rαpg0

ρeα
⋆
p

h f r(αp)

T f =
γ f e f

Cp, f
Tp =

ep

Cp,p
C−1

f = αp[1 + 1.25α3
f exp(−αpα

1/2
f Re1/2

p )]
1 − a

1 − amin
=

ρ f

ρpK + ρ f
Cp f p = c⋆m

Table 3: Default model constants for fluid–particle flow examples.

B1 = max(1.0915 − 0.95Re0.02
p + 0.01 lnαp,−B2) B2 = −max(0.4046Re−0.3

p − 0.042, 0)

amin = 0.5 K = 0.06 Cl = 0.5 Ca = 1 c f r = 0.01 αmax = 0.63 ∆ f r = 0.01 p f r = 533, 333 kg/m/s2

ec = 0.9 ν f = 1.48 × 10−5 m2/s γ f = 1.4 λ f = 0.026 kg m/s3/K Cp, f = 1005 m2/s2/K Cp,p = 840 m2/s2/K
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where αa is the volume fraction of the added-mass phase while αp is the particle-phase volume fraction. It then
follows that α⋆f = α f − αa where α f is the fluid-phase volume fraction. The mass of the fluid, excluding added mass,
is then ρ fα

⋆
f , while for the particle phase, including the added mass, it is ρeα

⋆
p . The mass of the particle + added-mass

phase can be expressed as
ρeα

⋆
p = ρpαp + ρ fαa = (ρp − ρ f )αp + ρ fα

⋆
p , (2)

which defines the effective density ρe. In the mass balances, S a is the mass-transfer rate from the fluid phase to the
added-mass phase with timescale τa, and S f p and S E are the corresponding rates for momentum and energy. Notice
that the velocity of the fluid phase (including the added mass) is v f = (α⋆f u f + αaup)/α f [14]. Thus, the slip velocity
without added mass vp f = (α⋆f /α f )(up − u f ) is always smaller than the slip velocity denoted by up f = up − u f . This
difference must be taken into account when applying drag (or other) correlations from the literature that depend on
vp f (e.g., through the particle Reynolds number Rep).

In the momentum and energy balances, p̂ f = p f +
2
3ρ f k f is the modified fluid pressure, and D, DPT , and DE

represent drag exchange with the particle phase with timescale τp. The fluid pressure p f is found from the pure
fluid-phase equation of state (i.e., it does not depend on αp). In the total energy balance, Hp f represents convective
heat transfer from the particle phase due to the temperature (and velocity) difference [18]. The slip-pressure tensor R
and exchange term Fp f arise due to finite-size particles [14], and are the same as when added mass is neglected. The
particle–fluid–particle pressure tensor Pp f p modifies the particle-phase pressure tensor and ensures hyperbolicity [14].
Because it scales with the fluid density, Pp f p is less important for heavy particles (ρ f ≪ ρp); however, it can produce a
significant pressure in the particle phase in high-speed flows with very large up f [5]. In the energy balances, the term
Pp f p : ∂xup represents the work done by the fluid on the particles to lower the particle-phase volume fraction.

In the model, ρp is constant, but ρ f changes due to compression/expansion of the fluid. Thus, given αp from the
particle-phase mass balance and the conserved variables ρeα

⋆
p and ρ fα

⋆
f , αa is found from

αa =
κ

1 + κ
(1 − αp) with κ =

ρeα
⋆
p − ρpαp

ρ fα
⋆
f

=
αa

α⋆f
(3)

and α f = 1 − αp. Then α⋆p = αp + αa and α⋆f = α f − αa, so that ρ f is found from the conserved variable ρ fα
⋆
f . The

detailed derivation of the monodisperse two-fluid model is available in [6], and follows the same procedure employed
for polydisperse particles described below. An extended discussion of the physical meaning of each term in the nine-
equation macroscale model in table 2, and a robust numerical solution algorithm for the balance equations can be
found in [6] and references cited therein (e.g., [10, 14]).

In any case, summing together the balance equations for the two phases, it is straightforward to show that mass
(ρ fα

⋆
f + ρeα

⋆
p ), momentum (ρ fα

⋆
f u f + ρeα

⋆
p up) and total energy (ρ fα

⋆
f E f + ρeα

⋆
p Ep) are conserved.1 Compared

to “standard” multi-fluid models, the spatial fluxes reflect the mesoscale physics incorporated in the kinetic-based
description of the disperse phase (e.g., the particle-phase pressures Pp and Pp f p and the fluid pressure p f seen by the
particles). Thus, the most important terms in the two-fluid model are closed at the level of the kinetic description,
and no additional information need be introduced (e.g., the mixture equation of state) as is the case for multi-fluid
models derived using phase averages [17]. More importantly, as shown next, the kinetic-based description developed
for monodisperse particles extends naturally to polydisperse particles.

3. Kinetic-based model for polydisperse particles

In this section, a 1-D size space and 3-D velocity space kinetic model is developed for polydisperse particles with
added mass. The principal objective is to demonstrate how polydisperse particles are treated using QBMM [19]. A
key assumption made in the following equations is that ρe is the same for all particles at the same location. This
essentially amounts to assuming that αa is proportional to the volume fraction of each particle size: αp =

∫
α(ξ) dξ

where α(ξ) dξ is the volume fraction of particles of mass ξ.2 This assumption implies that the added-mass factor

1For constant ρ f , conservation of mixture volume leads to the constraint ∂x · (α⋆f u f + α
⋆
p up) = 0, which determines the fluid pressure p f .

2α(ξ) = Vp(ξ)n(ξ) where Vp(ξ) is the volume of a particle with mass ξ and n(ξ) is their number concentration. Here, particles are approximated
by spheres with diameter dp(ξ).
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β(t, x), defined by (cm is related to the added-mass constant [6])

β =
ρeα

⋆
p

ρpαp
= 1 +

ρ fαa

ρpαp
= 1 + cmα f

ρ f

ρp
, (4)

which does not depend on ξ. In words, if mp is the particle mass, then m⋆p = βmp with β ≥ 1 is its effective mass (i.e.,
including the added mass). Thus, when ξ = mp is a distributed variable as in the polydisperse model, its local effective
mass m⋆p = β(t, x)ξ is also a distributed variable that is linearly proportional to ξ. As shown below, the kinetic model
for the polydisperse case will be expressed in terms of the particle mass ξ, instead of the effective mass.

After manipulating the mass balances for ρeα
⋆
p and ρpαp from table 1, we find the transport equation for the

added-mass factor:
∂tβ + up · ∂xβ =

1
τa

(β⋆ − β) (5)

where β⋆ = 1 + c⋆mα fρ f /ρp is the local equilibrium value of β. For β to be independent of ξ, τa must be independent
of ξ. In the dilute limit (α f → 1), c⋆m is the added-mass constant. In practice, τa is small enough that β ≈ β⋆ in most
regions of the flow [14]. In summary, the effective particle density ρe(t, x) defined in eq. (2) and the added-mass factor
β(t, x) defined by eq. (4) do not depend on the particle size in the polydisperse macroscale model derived below. This
is equivalent to taking the size-dependent added volume to be αa(ξ) = c⋆mα fα(ξ). As done in the monodisperse model,
in the polydisperse model we solve a transport equations for ρeα

⋆
p and αp, which is equivalent to solving for β using

eq. (5).

3.1. Definitions
For polydisperse particles, we must extend the velocity distribution function used in [6] to include the particle

mass. Let ξ be the particle mass and u be its particular velocity in the sense of kinetic theory [10]. As in [6], e is
the particle internal energy. Dropping the space and time variables, the number-based distribution function for the
particles is denoted by n(ξ,u, e). Then, in order to account for added mass in the momentum balance, we multiply the
NDF for the particles by β(t, x) to define the joint NDF for mass, velocity and internal energy: 3

f (ξ,u, e) = β n(ξ,u, e). (6)

For convenience, we define lower-order distributions functions by integrating over certain variables. For example, the
joint mass–velocity NDF, the joint mass–internal-energy NDF, and the mass NDF are, respectively,

f (ξ,u) =
∫

f (ξ,u, e) de, f (ξ, e) =
∫

f (ξ,u, e) du, n(ξ) =
1
β

∫
f (ξ,u, e) du de =

∫
n(ξ,u, e) du de. (7)

Thus, if only f appears, then we mean f (ξ,u, e). Otherwise, the arguments of f will be included. Notice that the mass
NDF n(ξ) does not include the added-mass factor. However, if it did, all of the mass moments would be multiplied by
β. If these moments were normalized by the zero-order moment, the normalized moments would not depend on β.

In addition to the distributions in eq. (7), we will make use for mass-conditioned variables defined using con-
ditional distributions. For example, n(ξ,u, e) = p(u, e|ξ)n(ξ) introduces the conditional probability density func-
tion (PDF) p(u, e|ξ) of velocity and internal energy given particles with fixed mass ξ, which has the property 1 =∫

p(u, e|ξ) du de. In this manner, we can define mass-conditioned statistics such as velocity, kinetic energy and inter-
nal energy:

up(ξ) =
∫

up(u, e|ξ) du de, Kp(ξ) =
∫

1
2

u2 p(u, e|ξ) du de, ep(ξ) =
∫

ep(u, e|ξ) du de, (8)

respectively. Similarly, we can define the mass-conditioned velocity PDF p(u|ξ) =
∫

p(u, e|ξ) de and the mass-
conditioned internal-energy PDF p(e|ξ) =

∫
p(u, e|ξ) du.

3Since ξ is an independent variable, another alternative is to derive the kinetic model using the mass-density function f (ξ,u, e) = βξn(ξ,u, e)
[6]. In either case, β is a multiplicative factor that does not depend on the independent variables (ξ,u, e).
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The conserved particle-phase variables (i.e., mass, momentum, internal energy, kinetic energy) that are coupled to
the fluid phase are defined by

ρeα
⋆
p = β

∫
ξn(ξ) dξ, ρeα

⋆
p up =

∫
ξu f (ξ,u) dξ du = β

∫
ξup(ξ)n(ξ) dξ,

ρeα
⋆
p ep =

∫
ξe f (ξ, e) dξ de = β

∫
ξep(ξ)n(ξ) dξ, ρeα

⋆
p Kp =

∫
ξ

1
2

u2 f (ξ,u) dξ du = β
∫
ξKp(ξ)n(ξ) dξ

(9)

where we have made use of the distributions defined in eqs. (7) and (8). In addition, to account for the particle mass
NDF and to compute the mass-conditioned moments, we will make use of the following higher-order moments in ξ:4

Ms/3 = β

∫
ξs/3n(ξ) dξ, Ms/2 = β

∫
ξs/2n(ξ) dξ, Ms = β

∫
ξsn(ξ) dξ,

U
1
s =

∫
ξsu f (ξ,u) dξ du = β

∫
ξsup(ξ)n(ξ) dξ,

Es =

∫
ξse f (ξ, e) dξ de = β

∫
ξsep(ξ)n(ξ) dξ, Ks =

∫
ξs 1

2
u2 f (ξ,u) dξ du = β

∫
ξsKp(ξ)n(ξ) dξ

(10)

where s is a non-negative integer. Notice that the particle-phase conserved variables in the monodisperse model are
related to the above integrals by ρeα

⋆
p =M1, ρeα

⋆
p up =U

1
1, ρeα

⋆
p ep = E1, and ρeα

⋆
p Kp = K1. Comparing with eq. (9),

we see that the monodisperse model uses s = 1 for all moments including the massM1. Our principal objective in the
remainder of this section is to derive transport equations for the conserved moments in eq. (10) starting from a kinetic
model for f (ξ,u, e).5

3.2. Kinetic model for polydisperse particles
The generalized population balance equation (GPBE) [22] for the joint mass–velocity–internal-energy number

density function (NDF) f (ξ,u, e) is written as

∂t f + ∂x ·

(
u f − Pp

∂ f
∂u

)
+
∂

∂u
·

[
1
τp(ξ)

(u f − u) f −
1
ρe

(∂x p̂ f + Fp f ) f −
1
ρeα

⋆
p

(∂x · Pp f p) f
]
+
∂

∂e
[Ae(ξ) f ] =

∂2

∂u∂u
: [Bu(ξ) f ] +C + F + S . (11)

This GPBE is the same as for the monodisperse case in [6], except that now some of the physical processes depend
on the particle mass ξ. As in [6], the particles are assumed to not change mass so that terms involving gradients in
ξ phase space are absent in eq. (11). (Numerous examples of a GPBE containing such terms can be found in [22].)
The term involving the spatial derivative ∂x contains free-transport and particle pressure Pp. The terms inside of ∂u
represent particle acceleration due to surface forces (e.g., fluid drag, buoyancy, pfp-pressure). Here, the drag time
scale τp(ξ) depends on the particle diameter, while the other forces have the same form as for the monodisperse case.
Likewise, the heat-transfer rate Ae(ξ) depends on ξ through the particle diameter.

On the right-hand side, the fluctuation source term for the particle velocity has the form [6]

Bu(ξ) =
1 − a
τp(ξ)

[
(u − up(ξ)) ⊗ (u − up(ξ)) +

2
3

k f I
]
. (12)

The trace of Bu(ξ) can be conditionally averaged with respect to mass to find∫
tr(Bu)p(u|ξ) du =

1 − a
τp(ξ)

[3Θp(ξ) + 2k f ] (13)

4Fractional moments with s/3 and integer s correspond to a NDF based on a characteristic length [22].
5We use f (ξ,u, e) instead of n(ξ,u, e) because the particle acceleration depends on the added mass through β(t, x). Nevertheless, using a change

of variables, it is straightforward to find the transport equation for n(ξ,u, e) that can be somewhat simplified using eq. (5). In either case, since no
processes that change ξ are included, the form of eq. (11) will be the same.
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where Θp(ξ) is the mass-conditioned granular temperature. This second form will be needed to solve for the mass-
conditioned particle-phase kinetic energy Kp(ξ). The remaining terms (C, F, S ) corresponding to point processes [22]
are defined below. For example, C represents particle–particle collisions and considers inelastic collisions between
particles with different masses (see Appendix A for details).

The GPBE in eq. (11) has the same form as the kinetic equation in [6]. If the particle mass were evolving in time,
then there would be additional terms to account for such physics. Hereinafter, we assume that the individual particle
masses (in a Lagrangian sense) remain constant. Finally, for simplicity, we take Fp f and Pp f p to be the same as in the
monodisperse model (i.e., they do not depend on ξ). An easy generalization for Fp f would be to replace up with the
mass-conditioned mean velocity; however, we anticipate that the effect will be small compared to the size-dependent
fluid-drag term.

In the monodisperse limit considered in [6], the NDF can be written as f (ξ,u, e) = β δ(ξ − ξm)g(u, e) where ξm is
the mass (not including added mass) of the particles and g(u, e) is proportional to the average number of particles with
velocity u and internal energy e per unit volume. Its relationship with the monodisperse f (u, e) is thus (by integrating
ξ f first over ξ, and then over u and e)

f (u, e) =
∫
ξ f (ξ,u, e) dξ = β ξmg(u, e) → ρeα

⋆
p = β ξmM0 (14)

where M0 is the number concentration of monodisperse particles. This result also illustrates that when the particles
masses do not change, the mass moments of a monodisperse NDF can all be found from M0 and β ξm.

When particles with different chemical composition (and hence different ρp) are of interest, eq. (11) is written for
each particle type. In addition, collision terms involving different particles types are included. Here, for simplicity,
only a single type of particle is considered with constant ρp. In a moment approach, the GPBE in eq. (11) is used to
derive balances equations for the joint mass–velocity–internal-energy moments of interest. For a polydisperse system,
we need a GPBE to account for correlations between mass and velocity, which arise due to the physics contained in
eq. (11), e.g., size-dependent fluid drag and heat transfer.

3.3. Size-dependent terms in the GPBE
The particle diameter dp(ξ) is defined by the relation

ξ = ρpkvd3
p (15)

with volume shape factor kv =
π
6 for spheres. In eq. (11), τp(ξ) is the size-dependent drag timescale with the fluid

phase, C is the source term due to particle–particle collisions [10], and the source term due to friction is modeled as

F =
1
τ f

[
β n(ξ)δ(u − up)δ[e − ep(ξ) − Q(ξ)] − f (ξ,u, e)

]
(16)

with τ f defined in table 2. Here, Q is defined such that the particle-phase kinetic energy loss due to friction is
transferred to internal energy (see F 2

s in eqs. (32), (36) and (38)) at a rate proportional to the particle mass. For clarity,
and except for added mass, we neglect processes that change the particle mass, such as mass transfer between phases,
and aggregation and breakage due to compression. However, such terms are treated in the kinetic formulation similar
to added mass.

For simplicity, the particle-phase pressures Pp = Pc + P f r and Pp f p are assumed to not depend explicitly on
the distributed variables (ξ,u, e). As a first approximation, this choice is reasonable because Pp f p is mainly needed
to ensure global hyperbolicity in extreme cases such as zero granular temperature. Under ‘normal’ conditions, it is
small compared to the particle pressure and can be modeled using the average slip velocity. Likewise, P f r controls
the eigenvalues for dense granular flows and will have the same qualitative effects as for monodisperse particles. In
principle, it is possible to allow the collisional pressure Pc to be size dependent; however, this must be done with
care to ensure the correct behavior in limiting cases (e.g., monodisperse limit). For simplicity, here we employ a
polydisperse collisional pressure of the form

Pc =
β

ρp

∫
ξpc(ξ)n(ξ) dξ (17)
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where a closed expression for pc(ξ) has been derived from kinetic theory [10, 19] and is given in eq. (A.18). Alter-
natively, one can employ the size-dependent collisional pressure described in Appendix A.3, which is well suited for
the QBMM introduced in section 4.

3.4. Source term for mass exchange in the GPBE

Unlike C and F, S changes the added mass, momentum, and internal energy of the particles due to exchanges
with the fluid phase; however, it does not change n(ξ). The integral constraints, similar to those introduced in [6] for
monodisperse particles, are thus ∫

ξS dξ = S (u, e) (18)

and ∫
ξS dξ du de = S a,

∫
ξeS dξ du de = S e,

∫
ξuS dξ du de = S f p,

∫
ξ

1
2

u2S dξ du de = S K (19)

where the right-hand sides (S a, S e,S f p, S K) are given in table 2. The simplest model for S that satisfies these con-
straints, while keeping the particle size distribution unchanged, is

S = Cξ f +Cu
∂

∂e
[(e − e f ) f ] +Cu

∂

∂u
· [(u − u f ) f ] +

1
2

Cu
∂2

∂u∂u
: [Du f ] (20)

where the parameters (Cξ,Cu) are the same as in table 2. The velocity diffusion matrix is defined by

Du = (u − u f ) ⊗ (u − u f ) +
2
3

k f I (21)

where the final term represents an isotropic model for the PTKE Reynolds stresses [6]. In the polydisperse two-fluid
model, only the trace of Du will be needed to determine Ks:∫

tr(Du)p(u|ξ) du = 3Θp(ξ) + (up(ξ) − u f )2 + 2k f . (22)

Aside from the definition of f , eq. (20) is the same as for the monodisperse case in [6].
In the moment equations that include the particle mass, we will need closed expressions for the following inte-

grals:6

S0
s =

∫
ξsS dξ du de =

∫
ξsCξ f dξ du de, (23)

Se
s =

∫
ξseS dξ du de =

∫
ξse

(
Cξ f +Cu

∂

∂e
[(e − e f ) f ]

)
dξ du de, (24)

SSS
1
s =

∫
ξsuS dξ du de =

∫
ξsu

(
Cξ f +Cu

∂

∂u
· [(u − u f ) f ]

)
dξ du de, (25)

and (including the factor of 1/2 in Ks)

S2
s =

∫
ξs 1

2
u2S dξ du de =

∫
ξs 1

2
u2

(
Cξ f +Cu

∂

∂u
· [(u − u f ) f ] +

1
2

Cu
∂2

∂u∂u
: [Du f ]

)
dξ du de (26)

for 0 ≤ s. Applying integration by parts yields the definitions of the added-mass source terms:

S0
s = CξMs, S

e
s = (Cξ −Cu)Es +CuMse f ,

SSS
1
s = (Cξ −Cu)U1

s +CuMsu f , S
2
s = (Cξ −Cu)Ks +CuMsK f

(27)

6For clarity, in the final form on the right-hand side found by inserting eq. (20), only the non-zero parts are retained.
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where S0
s , Se

s, and S2
s are scalars and SSS1

s is a vector. For s = 1, these results satisfy eq. (19). Note that the definition
of S0

s is applicable to non-integer values of s.

3.5. Particular limiting cases

For monodisperse particles with mass ξ1 and number concentration n1, the NDF reduces to f = g1(u, e)βn1δ(ξ−ξ1)
where δ(ξ) is the Dirac delta function. Integrating eq. (11) over ξ-space yields the kinetic equation for g(u, e). More
generally, a binary system with fixed (unequal) masses ξ1 and ξ2 has

f = g1(u, e)βn1δ(ξ − ξ1) + g2(u, e)βn2δ(ξ − ξ2). (28)

Thus, integration over mass phase space yields two coupled kinetic equations. More generally, ni with fixed ξi can be
found from N mass moments [22]:

Ms =

∫
ξs f dξ du de =

N∑
i=1

βniξ
s
i for s = 0, 1, . . . ,N − 1; (29)

so that solving for moments is equivalent to solving N kinetic equations. The binary case is a difficult numerical test
case for moment methods [19]. During spatial transport of the moments, the masses must remain constant, which will
be true only if the numerical fluxes are correctly defined. Consistent with our treatment of the monodisperse case, the
conditional velocity distribution function will be assumed to be Maxwellian, but with a different mean velocity up(ξ),
granular temperature Θp(ξ), and internal energy ep(ξ) for each mass ξ.

3.6. Definition of particle-phase moments needed for spatial fluxes

In section 3.1, we have defined some of the particle-phase moments needed to derive mass, momentum, and energy
balances from eq. (11). In addition, to compute the spatial fluxes, we will need the following moments for i+ j+ k = l
with orders l = 1, 2, 3 and s ≥ 0:

U
e
s =

∫
ξseu f (ξ,u, e) dξ du de, Ul

s,i, j,k =

∫
ξsuiv jwk f (ξ,u) dξ du. (30)

In words, the vectorU1
s = (U1

s,1,0,0,U
1
s,0,1,0,U

1
s,0,0,1)t is the ξs-mass-weighted flux of number concentration,Ue

s is the
ξs-mass-weighted flux of internal energy, U2

s,i, j,k are the components of the ξs-mass-weighted kinetic-energy tensor,
and U3

s,i, j,k yields the ξs-mass-weighted flux of kinetic energy. In the polydisperse model, the set of mass-weighted
moments in eq. (10) are the conserved variables, and their spatial fluxes depend on the moments in eq. (30).

For polydisperse particles, the quadrature-based reconstruction developed in section 4 uses s = 0, 1, 2, 3. By
construction, the mixture mass, momentum and total energy defined, respectively, by ρ fα

⋆
f +M1, ρ fα

⋆
f u f +M1U

1
1,

and ρ fα
⋆
f E f +M1Ep, are conserved quantities. When the particle mass NDF does not change (as is the case with

inert particles), we shall see that the source terms in the transport equations are most easily evaluated using the mass-
conditioned moments introduced in section 4. In general, operator splitting can be employed to separate source terms
into two groups: those that do and do not change n(ξ). Specifically adapted numerical methods are then used for each
group to ensure that the moments remain realizable at every time step [22].

3.7. Transport equations for the particle-phase moments

Using integration over phase space, the GPBE in eq. (11) yields the generic transport equations for the mass-
weighted moments in eq. (10). The derivation methodology follows exactly as is done for monodisperse particles in
[6], the only difference being the integration over mass phase space. Thus, in the following, we provide only the final
expressions without the intermediate mathematical steps. For the mass moments, the resulting governing equation is

∂tMs + ∂x · U
1
s = S

0
s (31)
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where exponent s can take on non-negative values. Similarly, the internal-energy moments are governed by

∂tEs + ∂x · U
e
s = A

e
s −

1
2
C2

s −
1
2
F 2

s + S
e
s (32)

with

Ae
s = β

∫
ξsAe(ξ) n(ξ) dξ, Ae(ξ) =

6λ f Nu
ρed2

p(ξ)
[T f − Tp(ξ)], (33)

and where C2
s+F

2
s ≤ 0 is the kinetic energy lost due to inelastic particle–particle contacts (see Appendix A). The final

terms on the right-hand sides of eqs. (31) and (32) are due to added-mass exchange, and Ae
s represents heat transfer

from the fluid phase. Here, the conditional particle temperature Tp(ξ) is computed from the corresponding conditional
internal energy ep(ξ) found as described in section 4. The standard Nusselt number Nu (see table 2) depends on the
particle Reynolds number Rep, but not on a particle Reynolds number based on the RMS velocity Reθ = dpΘ

1/2
p /ν f .

In cases where Rep ≪ Reθ, this Nu definition will likely underestimate the heat-transfer rate.
It is important to note that for a particle phase with αp > αmax (i.e., under close-packed conditions) conductive

heat transfer between particles with different sizes can be significant and, therefore, should be accounted for in the
polydisperse model. In practice, this would be modeled by an additional term on the right-hand size of eq. (32) that
causes the mass-conditioned internal energies to reach equilibrium while keeping E1 constant, e.g.,

A
p
s = β

∫
ξsAp

e (ξ) n(ξ) dξ, Ap
e (ξ) =

∫
h(ξ, ζ)[Tp(ζ) − Tp(ξ)]α(ζ) dζ (34)

where h(ξ, ζ) = h(ζ, ξ) is a size-dependent heat-transfer coefficient that must be specified [3]. Such a term corresponds
to particle–particle heat transfer between particles in sustained contact with different temperatures.

For the mass–velocity moments (in Cartesian coordinates), the first-order governing equations are

∂tU
1
s,1,0,0 + ∂x(U2

s,2,0,0 +MsPp) + ∂yU
2
s,1,1,0 + ∂zU

2
s,1,0,1 = −

Ms

ρe
(∂x p̂ f + Fp f ,x) −

Ms

ρeα
⋆
p

(∂x · Pp f p)x

−A1
s,1,0,0 + C

1
s,1,0,0 + F

1
s,1,0,0 + S

1
s,1,0,0,

∂tU
1
s,0,1,0 + ∂xU

2
s,1,1,0 + ∂y(U2

s,0,2,0 +MsPp) + ∂zU
2
s,0,1,1 = −

Ms

ρe
(∂y p̂ f + Fp f ,y) −

Ms

ρeα
⋆
p

(∂y · Pp f p)y

−A1
s,0,1,0 + C

1
s,0,1,0 + F

1
s,0,1,0 + S

1
s,0,1,0,

∂tU
1
s,0,0,1 + ∂xU

2
s,1,0,1 + ∂yU

2
s,0,1,1 + ∂z(U2

s,0,0,2 +MsPp) = −
Ms

ρe
(∂z p̂ f + Fp f ,z) −

Ms

ρeα
⋆
p

(∂y · Pp f p)z

−A1
s,0,0,1 + C

1
s,0,0,1 + F

1
s,0,0,1 + S

1
s,0,0,1,

(35)

and (for kinetic energy)

∂tKs + ∂x · (U3
s +U

1
s Pp) = −

1
ρe
U

1
s · (∂x p̂ f + Fp f ) −

1
ρeα

⋆
p
U

1
s · (∂x · Pp f p) −A2

s + B
2
s +

1
2
C2

s +
1
2
F 2

s + S
2
s (36)

where 2Ks = U
2
s,2,0,0 +U

2
s,0,2,0 +U

2
s,0,0,2, andU3

s is the free-transport spatial flux of kinetic energy. These equations
have the same mathematical structure as in the monodisperse case. The only difference is the dependence on s,
whereas for monodisperse particles we have s = 1. Physically, with s = 1, eq. (31) represents a mass balance,
eq. (32) an internal-energy balance, eq. (35) a momentum balance, and eq. (36) a kinetic-energy balance. Additional
values of s are required to account for polydispersity. Notice that these balance equations are not yet closed. For
example, we must provide a closure for the free-transport momentum fluxU2

s,i, j,k in terms of the conserved variables
(Ms,U

1
s ,Ks,Es).
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3.8. Definition of fluxes and source terms in the moment transport equations
The governing equations for the moments have spatial fluxes and source terms that depend on the underlying

physics. The particle-phase pressure is again modeled by Pp = Pc + P f r where the collisional and frictional pressures
are given in table 2. The acceleration source term from the fluid-phase drag has the monodisperse form, but averaged
over the sizes. For example, the fluid-drag vector for the mean velocity is

A
1
s = β

∫
ξs 1
τp(ξ)

[up(ξ) − u f ] n(ξ) dξ with τp (ξ) =
4ρed2

p(ξ)

3µ f CD (ξ) Rep (ξ)
. (37)

Rep (ξ) is the particle Reynolds number for particles with mass ξ and CD (ξ) is the corresponding drag coefficient.
In this work, we will mainly consider very small particles near the Stokes regime where CD (ξ) Rep (ξ) = 24. Thus,
τp(ξ) ∝ ξ2/3. Nonetheless, any appropriate model for the drag coefficient can be easily accommodated [24].

The multi-component frictional source terms are

F 1
s =

1
τ f r

(Msup −U
1
s), F 2

s =
1
τ f r

(Msu2
p − 2Ks). (38)

Due to conservation of momentum, we have F 1
1 = 0. Momentum and energy exchange between particles of different

sizes are captured by F 1
s and F 2

s , respectively. In addition, friction results in a loss of total granular energy (F 2
1 < 0),

which is transferred to internal energy (see Appendix C.5 for details).
The multi-component particle–particle collision term can be written as (see Appendix A for details)

C1
s = β

∫
ξsC1(ξ) n(ξ) dξ, C2

s = β

∫
ξsC2(ξ) n(ξ) dξ (39)

with
C1(ξ) =

∫
ηα(ζ)

2τc (ξ, ζ)
[up(ζ) − up(ξ)] dζ (40)

and
C2(ξ) =

∫
ηα(ζ)

2τc (ξ, ζ)

[
Θp(ξ) −

ηµξ,ζ

2
E (ξ, ζ) + up(ξ) · (up(ξ) − up(ζ))

]
dζ. (41)

The collision timescale7 is

τc(ξ, ζ) :=
[dp(ζ) + dp(ξ)]

√
2π

12g0 (ξ, ζ)Vξ,ζ
√

E (ξ, ζ)
. (42)

The volume fraction of particles with mass ζ is related to the NDF by

α(ζ) =
ζ

ρp
n(ζ). (43)

The particle–particle collision restitution coefficient ec, and hence η = 1
2 (1 + ec), are assumed to be independent of

particle size. The hard-sphere collision parameters are8 [10]

Vξ,ζ =
[dp(ζ) + dp(ξ)]3

d3
p(ξ) + d3

p(ζ)
, µξ,ζ =

2d3
p(ζ)

d3
p(ξ) + d3

p(ζ)
, (44)

and the energy function is

E(ξ, ζ) = Θp(ξ) + Θp(ζ) +
1
3

[up(ξ) − up(ζ)]2. (45)

7For the monodisperse case, τc include the volume fraction of collision partners αp. Here, this volume fraction is α(ζ) in eq. (41). The factor of
2 multiplying π comes from the definition of E in eq. (45).

8These parameters are defined for particles with the same density ρp. More generally, collisions between particles with different densities can
be easily accommodated (e.g., the definition of µξ,ζ uses the particle masses instead of the volumes).
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The radial distribution function for polydisperse particles is [26]

g0(ξ, ζ) =
1
α f
+

(
g0(α f ) −

1
α f

)
⟨d2

p⟩

⟨d3
p⟩

2dp(ξ)dp(ζ)
dp(ξ) + dp(ζ)

(46)

where ⟨dn
p⟩ =

∫
dn

p(ξ) n(ξ) dξ is the number-averaged value of dn
p(ξ). For monodisperse particles, this formula reduces

to g0.
Due to conservation of momentum, C1

1 = 0. For elastic collisions (η = 1
2 (1 + ec) = 1), the collision term C2

1 = 0
due to conservation of energy. Otherwise, particle–particle collisions result in a loss of total granular energy (C2

1 < 0),
which is transferred to internal energy. By applying QBMM (see section 4), the integrals over mass phase space
will become weighted sums over mass abscissae. Thus, eq. (39) yields a double summation over all possible binary
collision partners.

3.9. Transport equations for polydisperse granular flow: Final form

The moment-conservation equations written in tensor notation that will be used in this work to describe a poly-
disperse flow are summarized in table 4. For the mass moments, we have eq. (31). Likewise, for internal energy, we
have eq. (32), and for kinetic energy eq. (36). Finally, the velocity moments are governed by

∂tU
1
s + ∂x · (U2

s +MsPpI) = −
Ms

ρe
(∂x p̂ f + Fp f ) −

Ms

ρeα
⋆
p

(∂x · Pp f p) −A1
s + C

1
s + F

1
s +SSS

1
s (47)

where U2
s is the (unclosed) second-order velocity covariance tensor. With s = 1, the four equations found from

eqs. (31), (32) and (47) + (36) correspond, respectively, to mass, momentum and total energy.
As described in the next section, quadrature-based moment methods (QBMM) are used to close the integrals

appearing in the definitions of the source terms, and to defineU1
s for non-integer values of s. As done in the monodis-

perse case [6], HyQMOM [11] is applied to the mass-conditioned velocity moments to close the flux vector U3
s in

eq. (36), andU2
s in eq. (47) by assuming that the mass-conditioned velocity moments are Maxwellian. The particle-

phase governing equations correspond to Euler equations (left-hand side) for each value of s coupled with the fluid
phase and other values of s (right-hand side). It is important to keep in mind that the closures used for the veloc-
ity moments require that the particle-phase volume fraction be large enough to allow for significant particle–particle
collisions. If this is not the case, then higher-order velocity moments will be needed to accurately model the spatial
fluxes [13].

At this point, the system of conservation equations that must be solved to describe polydisperse, high-speed, fluid–
particle flows is complete. However, in order to formulate a numerical method to solve them, we must provide a robust
algorithm to find mass-conditioned moments from the conserved moments.

4. Quadrature-based moment methods

The transport equations for the particle-phase moments have the form of nonlinear hyperbolic conservation laws
[28]. Due to the non-linearity, care must be taken to ensure that the moments remain realizable when solving the
system numerically. For polydisperse particles, a powerful approach for ensuring realizability is to design numerical
algorithms using QBMM [22]. In the following, we provide an overview of QBMM that specifically addresses the
salient points arising for polydisperse fluid–particle flows. A more comprehensive discussion can be found in [22]. In
Appendix F, we provide an extension of QBMM to allow for the number of mass quadrature points (Ng) to be larger
than the number of mass-conditioned velocities (N). This extension may be useful for cases where the mass NDF has
a complex shape requiring large Ng [22], but the coupling with velocity requires only a small value for N (e.g., fine
particles with small Stokes number require only N = 1).

4.1. Overview of QBMM

In the previous section, we derived unclosed transport equations for the conserved variables for the particle phase
(see table 4):Ms,U1

s ,Ks, and Es. In order to close the spatial fluxes and source terms (see table 5), we must associate
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Table 4: Polydisperse model for high-speed fluid–particle flow with added mass, internal energy, and PTKE. See tables 2 and 5 for definitions of the
model parameters. For s = 1, conservation of mass, momentum and total energy (whereM1 = ρeα

⋆
p ,U1

1 = ρeα
⋆
p up, and U2

1 = ρeα
⋆
p Kp) for the

sum of the two phases defines the exchange terms. The free-transport spatial fluxes for the particle phase are computed using QBMM as described
in section 4. The collisional/frictional terms are discussed in detail in Appendix C. The particle-phase balances are written with the fluxes on the
left and the sources on the right and gravity g is included for completeness. Finally, note that αp is used in place of β to define the added mass.

Mass balances:
∂tαp + ∂x · αpup = 0

∂tρ fα
⋆
f + ∂x · ρ fα

⋆
f u f = −S

0
1

∂tMs + ∂x · U
1
s = S

0
s

Momentum balances:

∂tρ fα
⋆
f u f + ∂x · (ρ fα

⋆
f u f u f + p̂ f I) = α⋆p (∂x p̂ f + Fp f ) +A1

1 −SSS
1
1 + ρ fα

⋆
f g

∂tU
1
s + ∂x · (U2

s +MsPpI) = −
Ms

M1
[∂x · Pp f p + α

⋆
p (∂x p̂ f + Fp f )] −A1

s + C
1
s + F

1
s +SSS

1
s +Msg

Fluid-phase energy balances (total and PTKE):

∂tρ fα
⋆
f E f + ∂x · [ρ fα

⋆
f u f E f + (α⋆f u f + α

⋆
p up) p̂ f + Pp f p · up] = up · [∂x · Pp f p + α

⋆
p (∂x p̂ f + Fp f )]

+A2
1 − (1 − a)B2

1 −A
e
1 − S

2
1 − S

e
1 + ρ fα

⋆
f u f · g

∂tρ fα
⋆
f k f + ∂x · ρ fα

⋆
f u f k f +

2
3
ρ fα

⋆
f k f∂x · u f = A

f
1 − (2 − 2a +Cg)B f

1 k f

Particle-phase energy balances (kinetic and internal):

∂tKs + ∂x · (U3
s +U

1
s Pp) = −

U
1
s

M1
· [∂x · Pp f p + α

⋆
p (∂x p̂ f + Fp f )] −A2

s + (1 − a)B2
s +

1
2
C2

s +
1
2
F 2

s + S
2
s +U

1
s · g

∂tEs + ∂x · U
e
s = A

e
s −

1
2
C2

s −
1
2
F 2

s + S
e
s

Table 5: Terms in the polydisperse model for high-speed, fluid–particle flow in table 4. All other terms are in table 2 and Cξ = S a/M1. up(ξ), Kp(ξ),
and Θp(ξ) are the velocity moments conditioned on mass ξ, and ep(ξ) and Tp(ξ) are the mass-conditioned internal energy and the corresponding
thermodynamic temperature. Source terms and spatial fluxes are closed using GQMOM with N weights wβ and N mass abscissae ξβ.

S0
s = CξMs SSS

1
s = CuMsu f + (Cξ −Cu)U1

s S2
s = CuMsK f + (Cξ −Cu)Ks Se

s = CuMse f + (Cξ −Cu)Es

A
1
s =

N∑
β=1

wβξs
β

1
τp(ξβ)

[up(ξβ) − u f ] A2
s =

N∑
β=1

wβξs
β

1
τp(ξβ)

[3Θp(ξβ) + (up(ξβ) − u f ) · up(ξβ)]

A
f
s =

N∑
β=1

wβξs
β

1
τp(ξβ)

[3aΘp(ξβ) + (up(ξβ) − u f )2] Ae
s =

N∑
β=1

wβξs
β

6λ f Nu
ρed2

p(ξβ)
[T f − Tp(ξβ)]

B
f
s =

N∑
β=1

wβξs
β

1
τp(ξβ)

B2
s =

N∑
β=1

wβξs
β

1
τp(ξβ)

[3Θp(ξβ) + 2k f ] U
1
s/3 =

N∑
β=1

wβξ
s/3
β up(ξβ)

U
2
s =

N∑
β=1

wβξs
β [up(ξβ) ⊗ up(ξβ) + Θp(ξβ)I] U

3
s =

N∑
β=1

wβξs
β[Kp(ξβ) + Θp(ξβ)]up(ξβ) U

e
s =

N∑
β=1

wβξs
βep(ξβ)up(ξβ)
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a distribution function to a given set of mass moments (i.e., given choices for s). In QBMM, this is accomplished using
the generalized quadrature method of moments (GQMOM) such that the mass NDF is approximated by a summation
of N ≥ 1 Dirac delta functions [12]:

β n(ξ) ≈
N∑
β=1

wβδ(ξ − ξβ) (48)

with mass abscissae ξβ and number concentrations wβ. The mass momentsMs are related to the weights and abscissae
by

Ms =

N∑
β=1

wβξs
β, s ∈ (0, 1, . . . ,Ns) (49)

where Ns ≤ 2N − 1 fixes the number of moments required for the polydisperse model: (M0,M1, . . . ,MNs ). Given
these moments, wβ and ξβ are found using a moment-inversion algorithm [12, 15]. By definition, Gaussian quadrature
weights are always non-negative if the moments used to construct them are realizable [15, 16]. Except in degenerate
cases where the moments correspond to a mass NDF composed of less than N Dirac delta functions, the abscissae are
distinct and the weights positive. In the degenerate case, some weights are zero.

The value of N in eq. (48) fixes the number of particle types used to represent the mass NDF. As we will show
below in section 4.2, it also fixes the number of momentum and energy balances that must be solved. Based on
accumulated experience with QBMM, a value of N = 3 or N = 4 usually suffices [22]. Variations of GQMOM
wherein one of the abscissae is fixed (i.e., Gauss–Radau quadrature) are also available [12]. For example, very small
particles can be treated as following the fluid with zero slip (i.e., up(ξ0) = u f ), and hence we can assign them to have
mass ξ0 = 0 with concentration w0 (i.e., the dusty gas model).

For solid particles, it is often preferable to use the particle-size NDF instead of the mass NDF, which makes use
of non-integer moments:

Ms/3 =

N∑
β=1

wβξ
s/3
β , s ∈ (0, 1, . . . ,Ns). (50)

Another viable option is to use an NDF with half-order moments

Ms/2 =

N∑
β=1

wβξ
s/2
β , s ∈ (0, 1, . . . ,Ns). (51)

Note that when non-integer mass moments are used, the weights and abscissae will usually be different than those in
eq. (49). However, the procedure in section 4.2 for finding the mass-conditioned moments is exactly the same. For
clarity, the mass abscissae for the size moments are defined by ξβ = ζ3

β where the ζβ satisfy

Ms/3 =

N∑
β=1

wβζ s
β, s ∈ (0, 1, . . . ,Ns), (52)

and for half-order moments as ξβ = ς2
β. The units of ζβ and ςβ are kg1/3 and kg1/2, respectively. Generally speaking, the

moment-inversion algorithm (which returns ζβ or ςβ, depending on the input moment set) is better conditioned when
size moments are used. This is because the higher-order mass moments depend strongly on the tail of the mass NDF
(i.e., very heavy particles), which usually represents a very small fraction of the total mass. Nonetheless, to satisfy
mass conservation, the mass momentM1 must always be included as a conserved variable. Thus, size moments are
used only when Ns ≥ 3, and half-order moments when Ns ≥ 2.

With GQMOM, the unknown higher-order moments (e.g.,Ms with s > Ns) are fitted to a particular distribution
function (e.g., lognormal, gamma, beta). In our numerical implementation, we use either beta-GQMOM or lognormal-
GQMOM with N = 4 to approximate the unclosed terms in the particle-phase transport equation. The half-order-
moment set for Ns = 6 is thus (M0,M1/2,M1,M3/2,M2,M5/2,M3), which can capture an NDF with three modes
[12]. This choice of N and Ns, and use of the half-order moments, is motivated by the definition of the mass-
conditioned moments described in section 4.2. There we show that Ns = 2(N − 1) with half-order moments provides
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consistency with the orders of the mass-weighted velocity and energy moments. Nonetheless, using a smaller Ns with
mass moments is also an option when the mass NDF is known a priori to be uni-modal.

For example, a noteworthy special case is to use beta-GQMOM with Ns = 2, and the mass moments (M0,M1,M2).
Using three mass moments is the minimal number for capturing mass polydispersity for a uni-modal NDF. Beta-
GQMOM allows one to specific an upper/lower bound on the largest/smallest particle, while keeping N > Ns abscis-
sas. Finally, the simplest case is Ns = 1 and N = 1 that solves for two mass moments: (M0,M1). QBMM for this
case has a single Dirac delta function with number concentration w1 = M0 and mean particle mass ξ1 = M1/M0.
This representation of the mass NDF (with zero variance) may be useful for obtaining rough information on the spatial
distribution of the particle size for very small particles that nearly follow the fluid. However, it will not be able to
capture size segregation due to fluid drag (or other size-dependent physics).

4.2. Mass-conditioned moments

Finding a property (e.g., velocity or internal energy) of particles with a given mass can be accomplished using the
conditional quadrature method of moments (CQMOM) [31]. As described above, GQMOM provides the N weights
wβ and N mass abscissae ξβ, computed from the mass (size, or half-order) moments.9 For example, the mass-weighted
internal-energy moments Es are related to the mass-conditioned internal-energy moments Me

β = Me(ξβ) = wβep(ξβ)
by

Es =

N∑
β=1

ξs
βM

e
β. (53)

For N ≥ 1, the Me
β for β = 1, 2, . . . ,N are found by solving a linear system:

1 1 · · · 1
ξ1 ξ2 · · · ξN
...

...
. . .

...
ξN−1

1 ξN−1
2 · · · ξN−1

N




Me
1

Me
2

...
Me

N

 =

E0
E1
...
EN−1

 (54)

where the moments (E0, . . . ,EN−1) are found from the polydisperse model in table 4. To avoid ill-conditioning of the
linear system, each side of eq. (53) can be divided by ξs

r where 0 < ξr is a reference mass. For example, the Euclidean
norm of the vector of abscissae can be used for ξr. As the internal energy is positive, the realizability constraint on the
mass-conditioned internal energies is ep(ξβ) > 0. The same procedure is applied to find the mass-conditioned kinetic
energies wβKp(ξβ) from the mass-weighted kinetic-energy moments (K0, . . . ,KN−1).

Likewise, using CQMOM, the mass-weighted velocity momentsU1
s are related to the mass-conditioned velocity

M1
β = wβup(ξβ) by

U
1
s =

N∑
β=1

ξs
βM

1
β. (55)

For N ≥ 1, using eq. (55) for the known conserved moments on the left-hand side, the M1
β for β = 1, 2, . . . ,N are

found by solving the linear system: 
1 1 · · · 1
ξ1 ξ2 · · · ξN
...

...
. . .

...
ξN−1

1 ξN−1
2 · · · ξN−1

N



M1

1
M1

2
...

M1
N

 =

U

1
0

U
1
1

...
U

1
N−1

 . (56)

Again, to avoid ill-conditioning of this linear system, each side of eq. (55) can be divided by ξs
r where 0 < ξr is a

reference mass.

9If mass moments are input to GQMOM, then the N abscissae ξβ are returned. Otherwise, for size or half-order moments, ζβ and ςβ, respectively,
are returned, from which the ξβ are computed.
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In summary, for N = 4, the polydisperse model must provide the velocity moments (U1
0,U

1
1,U

1
2,U

1
3) in order to

determine the four mass-conditioned velocities (up(ξ1),up(ξ2),up(ξ3),up(ξ4) ). Then, the mass-conditioned granular
temperatures are found from 3Θp(ξβ) = 2Kp(ξβ)−u2

p(ξβ) and must be non-negative. As mentioned earlier, this velocity
moment set is consistent with using the half-order moments with Ns = 6 (or mass moments with Ns = 3), because the
highest-order mass moment needed isM3, which has the same order in mass asU1

3,K3 and E3. Once the variables wβ,
ξβ, up(ξβ), Θp(ξβ), and ep(ξβ) are calculated from the conserved moments, they can be used to close the source terms
appearing in the transport equations as shown in table 5. Because binary collisions were assumed in the kinetic-theory
derivation, double sums over all abscissae arise due to particle–particle collisions (see Appendix A). It is important
to notice that the half-order-moment fluxesU1

s/2 for s = (1, 3, 5) are found from

U
1
s/2 =

4∑
β=1

wβξ
s/2
β up(ξβ). (57)

For a system wherein the abscissae are uniform in space and time, this specification of the half-order-moment fluxes
ensures that the abscissae remain constant.

4.3. Realizability of conditional moments

The realizability constraints on the mass-conditioned energy moments (Kp(ξβ), Θp(ξβ), ep(ξβ)) must be satisfied at
each time step; however, mass-conditioned moments found with CQMOM are not guaranteed to be realizable [31].
In particular, one or more mass-conditioned granular temperatures can be negative. The simplest correction is to set
a negative granular temperature to zero. However, this change will increase the kinetic-energy moment K1 such that
the total energy is not conserved. In practice, this can cause the simulation to abort. Another situation that can arise
is that a mass-conditioned granular temperature becomes nonphysically too large. This is usually associated with
the corresponding wβ tending towards zero. As done in [13], a physics-based upper bound can be applied for the
mass-conditioned granular temperature, provided that it does not change K1.

To enforce conservation of total energy, it is imperative to keep K1 and E1 conserved when finding the mass-
conditioned particle energies. In our code, in each grid cell, this is done for N = 4 as follows:

1. Find Kp(ξβ) for β = 1, 2, 3, 4 given (K0,K1,K2,K3) using CQMOM.
2. Correct the Kp(ξβ) as needed so that Θp(ξβ) is non-negative (or less than a physics-based upper limit).
3. Using the corrected Kp(ξβ), compute K∗1 =

∑4
β=1 wβξβKp(ξβ), which may be different than K1.

4. Replace the Kp(ξβ) with Kp(ξβ)K1/K
∗
1 , thereby ensuring that K1 is conserved.

5. Using the new Kp(ξβ), compute the corrected K0, K2 and K3.

Note that this algorithm conserves K1, while modifying K0, K2 and K3. Our numerical tests, requiring only that
Θp(ξβ) ≥ 0, indicate that the resulting simulations are robust and do not show any spurious behavior. We anticipate
that this correction algorithm can be applied successfully for larger N.

The above algorithm can be used with other conditional variables, such as the mass-conditioned particle velocity
and the mass-conditioned internal energy. For the former, as has been previously observed with QBMM [13], the
magnitude of a mass-conditioned velocity may diverge as its number density tends towards zero (i.e., the overall
contribution to U1

1 is negligible). The main issue is then to establish an upper limit on the magnitude of the mass-
conditioned velocity based on the local variables that is compatible with U1

1. Notice that the velocity-correction
step must be done before computing Θp(ξβ) and correcting the mass-conditioned kinetic energies. Likewise, for the
mass-conditioned internal energy, physics-based upper/lower bounds must be determined that are consistent with E1.

5. Application to 1-D polydisperse, high-speed, fluid–particle flows

In this section, we first present the 1-D model equations for N = 4 and Ns = 6 using half-order mass moments,
and then describe the numerical method used to solve them. The section ends with a description of the two example
applications.
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5.1. 1-D model equations

The 1-D conservation equations for the fluid phase are

∂tρ fα
⋆
f + ∂xρ fα

⋆
f u f = −S

0
1,

∂tρ fα
⋆
f u f + ∂x(ρ fα

⋆
f u2

f + p̂ f ) − α⋆p (∂x p̂ f + Fp f ) = A1
1 − S

1
1,

∂tρ fα
⋆
f k f + ∂xρ fα

⋆
f u f k f +

2
3
ρ fα

⋆
f k f∂xu f = A

f
1 − (2 − 2a +Cg)B f

1 k f ,

∂tρ fα
⋆
f E f + ∂x[ρ fα

⋆
f u f E f + (α⋆f u f + α

⋆
p up) p̂ f ] + Pp f p∂xup − α

⋆
p up(∂x p̂ f + Fp f ) = A2

1 − (1 − a)B2
1 −A

e
1 − S

2
1 − S

e
1.

(58)
The formulas for the source terms on the right-hand side are provided in table 5.

To account for added mass, we solve for the particle-phase volume fraction:

∂tαp + ∂xαpup = 0 (59)

where up = U
1
1/M1 is found from the polydisperse moments with s = 1. Given αp, the formulas in eq. (3) are used for

find αa. We use GQMOM for the half-order moments with Ns = 6. The 19 conserved variables for the polydisperse
particle phase are (M0,M1/2,M1,M3/2,M2,M5/2,M3), (U1

0 , U1
1 , U1

2 , U1
3), (K0, K1, K2, K3), and (Ee

0, Ee
1, Ee

2,
Ee

3). The system of seven 1/2-order-moment conservation equations is

∂tM0 + ∂xU
1
0 = S

0
0,

∂tM1/2 + ∂xU
1
1/2 = S

0
1/2,

∂tM1 + ∂xU
1
1 = S

0
1,

∂tM3/2 + ∂xU
1
3/2 = S

0
3/2,

∂tM2 + ∂xU
1
2 = S

0
2,

∂tM5/2 + ∂xU
1
5/2 = S

0
5/2,

∂tM3 + ∂xU
1
3 = S

0
3.

(60)

For the mass-velocity moments, the conservation equations for momentum are

∂tU
1
0 + ∂x(U2

0 + PpM0) +
M0

M1
∂xPp f p +

1
ρe

(∂x p̂ f + Fp f )M0 = −A
1
0 + C

1
0 + F

1
0 + S

1
0,

∂tU
1
1 + ∂x(U2

1 + PpM1) + ∂xPp f p +
1
ρe

(∂x p̂ f + Fp f )M1 = −A
1
1 + S

1
1,

∂tU
1
2 + ∂x(U2

2 + PpM2) +
M2

M1
∂xPp f p +

1
ρe

(∂x p̂ f + Fp f )M2 = −A
1
2 + C

1
2 + F

1
2 + S

1
2,

∂tU
1
3 + ∂x(U2

3 + PpM3) +
M3

M1
∂xPp f p +

1
ρe

(∂x p̂ f + Fp f )M3 = −A
1
3 + C

1
3 + F

1
3 + S

1
3.

(61)

The balance equations for kinetic energy are

∂tK0 + ∂x

(
U3

0 + PpU
1
0

)
+

1
M1
U1

0∂xPp f p +
1
ρe

(∂x p̂ f + Fp f )U1
0 = −A

2
0 +

1
2
C2

0 +
1
2
F 2

0 + S
2
0,

∂tK1 + ∂x

(
U3

1 + PpU
1
1

)
+

1
M1
U1

1∂xPp f p +
1
ρe

(∂x p̂ f + Fp f )U1
1 = −A

2
1 +

1
2
C2

1 +
1
2
F 2

1 + S
2
1,

∂tK2 + ∂x

(
U3

2 + PpU
1
2

)
+

1
M1
U1

2∂xPp f p +
1
ρe

(∂x p̂ f + Fp f )U1
2 = −A

2
2 +

1
2
C2

2 +
1
2
F 2

2 + S
2
2,

∂tK3 + ∂x

(
U3

3 + PpU
1
3

)
+

1
M1
U1

3∂xPp f p +
1
ρe

(∂x p̂ f + Fp f )U1
3 = −A

2
3 +

1
2
C2

3 +
1
2
F 2

3 + S
2
3.

(62)
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For the mass-internal-energy moments, the conservation equations are

∂tE0 + ∂xU
e
0 = A

e
0 −

1
2
C2

0 −
1
2
F 2

0 + S
e
0,

∂tE1 + ∂xU
e
1 = A

e
1 −

1
2
C2

1 −
1
2
F 2

1 + S
e
1,

∂tE2 + ∂xU
e
2 = A

e
2 −

1
2
C2

2 −
1
2
F 2

2 + S
e
2,

∂tE3 + ∂xU
e
3 = A

e
3 −

1
2
C2

3 −
1
2
F 2

3 + S
e
3.

(63)

The collisional and frictional source terms on the right-hand sides are given in section 3.8. The formulae for the spatial
fluxes and source terms are provided in table 5. The 1-D polydisperse model has a total of 24 conserved variables.

5.2. Numerical implementation

As done for monodisperse cases in [6], the coupled fluid–particle moment equations have been implemented in
a 1-D flow solver. Given that the overall system of equations is hyperbolic, the extension to three dimensions on
a structured Cartesian grid would use the same approach with directional splitting [18]. Details on the numerical
algorithms are provided in the indicted appendices, and in [6].

Fluid and added-mass phases. The following items have been implemented for the fluid phase:

1. The buoyancy and Fp f terms coupled to the particle phase.
2. The drag terms, including PTKE, coupled to the particle phase.
3. The convective heat-transfer term coupled to the particle phase.
4. The added-mass source terms coupled to the particle phase.

Particle phase. The following items have been implemented for the particle phase:

1. The moment-inversion algorithm GQMOM to compute the abscissae.
2. The moment-inversion algorithm CQMOM to compute the mass-conditioned velocity, kinetic energy, and in-

ternal energy.
3. The collisional and frictional particle pressures.
4. The buoyancy, Fp f , and Pp f p terms coupled to the fluid phase (see Appendix D).
5. The collision source terms, including internal energy (see Appendix C).
6. The friction source terms, including internal energy (see Appendix C).
7. The drag terms, including PTKE, coupled to the fluid phase (see Appendix B).
8. The convective heat-transfer term (see Appendix B).
9. The added-mass source terms (see Appendix E).

An operator-splitting approach is employed to solve the coupled moment equations (i.e., for fluid and particles)
separately for each item listed above. In the first step, a first order in space and time HLL scheme [14] is used
to advance the coupled moment system due to the spatial fluxes. The eigenvalues for the spatial flux are found
numerically using a subroutine for the Jacobian matrix that was generated symbolically. These eigenvalues are used
to define the numerical fluxes in HLL, and to set the overall time step [14]. After advancing the moments due to
the spatial fluxes, the changes due to buoyancy, Fp f , and Pp f p are computed using an Euler scheme with central
differences [14]. Next, the changes in the moments due to the collisional and frictional source terms are computed.
Finally, the changes in the moments due to drag and heat transfer are computed. The collisions, friction, drag, and
heat transfer are handled with semi-analytical solutions (see Appendix B for an example). Since these source terms
do not change the mass abscissas, the solver uses the mass-conditioned velocity moments instead of the mass–velocity
moments. Then, GQMOM is used to find the latter from the updated mass-conditioned moments.

When the velocity variance is extremely small (or negative due to round-off error), application of HyQMOM to
find M3 is ill-conditioned. Thus, realizability is checked after each sub-step and the velocity moments are corrected
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Figure 2: Initial beta PDF of particle diameters scaled by the maximum value (blue curve). The four GQMOM scaled abscissas for diameter dp(ξβ)
are shown by red symbols. These abscissae are used to compute the mass abscissae ξβ via eq. (15). The scaled weights are multiplied by a constant
to achieve the desired αp.

if needed. Based on numerical experiments, corrections are rarely applied and when they are it usually occurs at the
interface with ‘particle-free’ regions. In the simulations, to avoid division by zero, such regions are initialized with a
tiny particle number density. Thus, applying the realizability corrections has no impact on the observable quantities.

The Jacobian matrix needed for the HLL solver can be computed symbolically for N = 2, but not with N = 3.
In any case, the number of eigenvalues becomes quite large for N > 2, and only the magnitudes of the largest and
smallest eigenvalues are required to define the numerical fluxes. From numerical experiments, it was determined that
the latter are well approximated by the nine eigenvalues found for the monodisperse system,10 i.e., using the added
mass and fluid+particle-phase moments. We should emphasize that the intermediate eigenvalues are not available
using this approach, but that has no importance for the HLL solver. In general, unless the particle phase is very dense,
the largest/smallest eigenvalues correspond to the fluid phase, albeit modified by the presence of the particles.

5.3. Numerical test problems
Two test problems are used to demonstrate the polydisperse model. In the first problem, a shock wave impinging

on a dense particle curtain is simulated. As shown in fig. 2, the particle diameter distribution in the particle curtain is
initialized as a beta PDF with a mean of 100 µm and maximum of 1000 µm. In the second problem, two particle-laden
jets impinge at the center of the domain. We use again a beta PDF with mean size of 100 ηm on the left side and 200 µm
on the right side. Simulations have also been run using a lognormal distribution and the results are qualitatively very
similar. For both cases, a 1-D computational domain is discretized with 2000 computational cells. In the simulations,
we solve for the half-order mass moments (M0,M1/2,M1,M3/2,M2,M5/2,M3) and use beta-GQMOM to find ς1,
ς2, ς3 and ς4 at each grid point. In order to account for large particle Reynolds numbers and the volume fraction, the
drag coefficient is modeled using the Schiller–Naumann formula with the Richardson–Zaki correction used to account
for clustering effects [5]:

CD =
24

Rep
(1 + 0.15Re0.687

p )α−2.65
f (64)

where Rep is different for each particle size. The added-mass timescale τa is found from the drag timescales using

1
τa
=

1
ρeα

⋆
p

4∑
β=1

wβξβ
τp(ξβ)

. (65)

The reference value for the frictional pressure constant has been set at p f = 533, 333 Pa. The initial thermodynamic
temperatures of the particles is set equal to the fluid, and ρp = 2500 kg/m3. (Results for monodisperse particles with a
wide range of ρ f /ρp are presented in [6].) The default model parameters are given in table 3. Unless stated otherwise,
these parameters will be used below. For all cases, the 1-D computational domain extends from -0.2 m to 0.2 m.

10In fact, only the seven eigenvalues found with kg = ep = 0 suffice since these variables are advected with the mean phase velocities.
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6. Numerical results

Quantitative examples of shock–particle-curtain interactions using the monodisperse model are available in [6],
along with details on the initial conditions and experimental setup used for validation. Here, we focus on qualitative
comparisons with emphasis on the effect of polydisperse particles.

6.1. Results for polydisperse particle curtain

The initial number concentrations of the four types of particles inside the curtain are larger than 105 1/m3 due to
the small particle diameters. Outside the curtain, relatively smaller values of number concentration are used to avoid
division by zero. The fluid density and temperature before the shock (right side) are ρ f = 1.18 kg/m3 and 300 ◦K,
respectively. Behind the shock (left side), they are ρ f = 2.476 kg/m3 and 429 ◦K, respectively. Different temperatures
are used to illustrate the effect of heat transfer. The initial phase velocities are null, and inside the curtain αp is uniform
and three cases are simulated αp = (0.01, 0.2, 0.6). In order to test the robustness of the code, we use ec = 1 so that
the particle collisions are elastic. In general, we found that elastic particles are most sensitive to numerical errors that
can lead to numerical instabilities. Simulations with inelastic particles were also carried out and are qualitatively very
similar.

The space–time contour plots in fig. 3 for the three cases with different initial values of αp illustrate the qualitative
behavior of the model variables. The initial shock, located just to the left of the particle curtain (x < 0), is partially
reflected, depending on the curtain density. For 0.01, the reflection is very weak, while for 0.6 it is very strong.
This creates jumps in density ρg and temperature Tg upstream from the curtain. The particle curtain (i.e., αp) is first
compacted due to the shock, before beginning to spread and move to the right. In doing so, the particles exhibit strong
size segregation (see d21 = (M2/M1)1/3) with small particles accelerating faster than large particles. For 0.01, there
are very few particle–particle collisions so that the segregation occurs faster. At αp = 0.2, the frictional pressure
P f plays no role, but the collisional pressure Pc is significant. This causes the larger particles to move to the left of
their original position, which shows up in the variable Tp. Due to thermal inertia, the particle temperatures do not
change much from their initial values. Thus, the lower Tp on the left side is caused be particles bouncing back due to
collisions. Finally, for initial value αp = 0.6, the frictional pressure is very large at short times due to particle packing.
The larger mass of the particle curtain at 0.6 slows its acceleration, generating a large drop in pg across the curtain.

In fig. 4, the weights (number concentration) and mass abscissae at the end of the simulation (2 × 10−3 s) are
plotted. Notice that the extreme values (left and right of domain) correspond to the initial values, and that for the
abscissae these values are the same for all cases. From the abscissae, it is clear that inside the curtain the particle mass
decreases continuously from left to right. Moreover, because GQMOM represents a continuous NDF, the largest (ξ4)
is larger than the initial size. As mentioned above, the size segregation is largest for αp = 0.01 due to the relative
lack of collisions. In fig. 5, the contributions to the particle pressure are shown for each case. Aside from the kinetic
pressure (ρeα

⋆
pΘp), the pfp pressure is dominant for 0.01, while the collisional component plays a more significant

role for 0.2 and 0.6. Notice that the frictional component is null in fig. 5 because αp is everywhere below αmax. Finally,
notice in fig. 4 that the strong segregation for 0.01 leads to two abscissae very close to the mean mass near x = 0.125.
In fact, for this case the mean mass for x > 0.125 is very close to the smallest abscissa, indicating that the variance
of the mass NDF is very small due to segregation. For 0.2 and 0.6, similar behavior is observed, but to a lesser extent
because the gas velocity is lower so that the spreading rate is lower for these cases.

In fig. 6 the mass-conditioned velocities and temperatures, as well as the gas velocity ug and mean particle values
up and Tp are plotted at the end of the simulation (t = 2 × 10−3 s). For all cases, the particle velocities lag behind
the gas velocity due to particle inertia. The same is true for the particle temperatures due to thermal inertia. As
expected, the smaller particles approach the gas values faster than the larger particles. More interesting is the effect
of collisions on momentum transfer between different particle masses. For 0.01 where collisions are weak, the mass-
conditioned particle velocities inside the curtain remain well separated. On the other hand, for 0.6 where collisions are
strong, the mass-conditioned particle velocities inside the curtain are nearly the same. This effect leads to the particle
temperatures being nearly equal inside the curtain. Finally, notice that for 0.01 some of the conditional velocities
exhibit large variations near x = 0.125 where up ≈ up(ξ1). The reason for this behavior is that the linear system
in CQMOM becomes poorly conditioned when the variance of the mass NDF is small. One possible solution to
overcome this issue would be to reduce the number of abscissae N in spatial regions where this occurs. Typically,
such regions have very small particle volume fraction and a detailed representation of the mass NDF is not needed.
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Figure 3: Space–time contour plots for the polydisperse particle curtain with initial αp = 0.01 (top), 0.2 (middle), 0.6 (bottom). Left: Gas-phase
variables (ρg, ug, pg, kg, Tg). Right: Particle-phase variables (αp, up, Θp, d21, Tp). The reflected shock is most easily observed from ρg in the
far-left column, while size segregation is seen from the mean particle size d21.
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Figure 4: Model predictions for the polydisperse particle curtain with initial αp = 0.01 (left), 0.2 (middle), 0.6 (right) at t = 2 × 10−3 s. Number
concentrations (top) corresponding to mass abscissae (bottom) with the same color. The green curve (bottom) is the mean particle mass.
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Figure 6: Mass-conditioned velocity (top) and temperature (bottom) for the polydisperse particle curtain with initial αp = 0.01 (left), 0.2 (middle),
0.6 (right) at t = 2×10−3 s. Colors correspond to mass abscissae in fig. 4. The green curve is the gas velocity ug (top) and temperature Tg (bottom).
The black curve is the mean particle velocity up (top) and temperature Tp (bottom).

However, when adapting N to the local conditions, care must be taken to conserve the particle-phase mass, momentum
and energy (which can be accomplished even in the monodisperse limit with N = 1). In practice, reducing N will be
simpler from a computational standpoint than increasing N in regions where the variance of the mass NDF abruptly
increases (e.g., crossing jets).

6.2. Results for polydisperse crossing jets

Crossing jets are often used to test QBMM for the velocity moments in the absence of collisions [9]. It is well
known that collision-less systems require velocity moments up to at least third order to correctly capture trajectory
crossing [11]. Here, however, the polydisperse model is closed at the level of second-order velocity moments because
we assume that αp is large enough that particle–particle collisions cannot be neglected [29]. Thus, for this example,
the initial particle volume fraction is uniform with αp = 0.2. The initial phase velocities are 100 m/s (left) and
−100 m/s (right). The initial fluid and particle temperatures are 300 ◦K. The initial granular temperature is null, but
grows rapidly at x = 0 due to the crossing jets. The collision model is therefore very important, and we shall vary
the restitution coefficient ec to investigate the effect of inelastic collisions and particle heating. For this example,
size segregation is not as important as in the previous example. Nonetheless, to test the transport scheme for mass
moments, we use a mass NDF on each side of x = 0 (see fig. 2) with mean diameters that differ by a factor of two.
Finally, the simulation with ec = 0.9 was ran until t = 2× 10−3 s, while for larger ec the end time was set as 1× 10−3 s
due to the difference in the dynamics.

Space–time contour plots of the variables at the end of the simulation are shown in fig. 7 for ec = (1, 0.999, 0.9).
Due to the balance between the left and right incoming momenta, the fluid and particle velocities are null in the center
region. Otherwise, the behavior of the variables is highly dependent on ec. For elastic collisions, αp never reaches
close-packed conditions (maximum αp ≈ 0.36), which is not the case for ec = 0.999. Indeed, even with a small
amount of in-elasticity, the strong collisions between the crossing jets transforms kinetic to internal energy, which
lowers the collisional pressure (see fig. 8). Once the particles in the center reach close-packed conditions, the granular
temperature goes to zero, leaving only the frictional pressure. With ec = 0.9, this process occurs very early and
only a tiny region with significant collisional pressure is observed. In summary, there are two possible regimes: with
and without a close-packed region, that depend on the inlet αp and, most importantly, on ec. If αp is too small, the
dynamics are driven by the gas phase and particles are pushed out before they can become close-packed. Otherwise,
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Figure 7: Space–time contour plots for the polydisperse crossing jets with ec = 1 (top), 0.999 (middle), 0.9 (bottom). Left: Gas-phase variables
(ρg, ug, pg, kg, Tg). Right: Particle-phase variables (αp, up, Θp, d21, Tp). For elastic collisions (top), αp never reaches close-packed conditions and
the granular temperature remains large along the line x = 0. Otherwise, for inelastic collisions, a close-packed region is formed.
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Figure 9: Model predictions for the polydisperse crossing jets with ec = 1 (left), 0.999 (middle), 0.9 (right) at the end of the simulation. Number
concentrations (top) correspond to mass abscissae (bottom) with the same color. The green curve (bottom) is the mean particle mass. With inelastic
collisions, the particle size distribution are ‘frozen’ in place due to lack of transport.

the dynamics are driven by the particle phase as discussed in more detail below. Finally, note from fig. 8 that the
pfp pressure plays no role in the dynamics for this example, which are dominated by the collisional and/or frictional
pressure.

In fig. 9, it can be observed that the mass abscissae do not change outside the region (-0.05,0.05). This is because
the mass-conditioned velocities are ‘frozen’ to the mean particle velocity due to collisions and friction (see fig. 10).11

On the other hand, the mass-conditioned temperatures depend strongly on the value of ec due to collisional/frictional
heating (Hp). Notice in fig. 10 that the individual temperatures remain separated in the close-packed regime. This is
due to two reasons. First, collisions between the smaller particles are more frequent due to their small mass leading
to a higher granular temperature. This causes them to heat up faster than larger particles. Second, we have neglected
conductive heat transfer between particles in contact (see eq. (34)). This implies that the particle temperatures can
reach equilibrium only due to heat transfer with the fluid phase. Nonetheless, the equilibrium temperature is Tp (black

11Unlike the mass-conditioned velocities, the mass-conditioned granular temperatures in the collisional regime will not be equal because they
depend on the particle mass. At equilibrium, ξβΘp(ξβ) will be the same for all β.
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Figure 10: Mass-conditioned velocity (top) and temperature (bottom) for the polydisperse crossing jets with ec = 1 (left), 0.999 (middle), 0.9
(right) at the end of the simulation. Colors correspond to mass abscissae in fig. 9. The green curve is the gas velocity ug (top) and temperature Tg
(bottom). The black curve is the mean particle velocity up (top) and temperature Tp (bottom). With inelastic collisions, the smallest particles can
have higher temperature than the gas.

curve), whose value is very different for elastic versus inelastic collisions. Finally, it is also interesting to observe how
the gas temperature Tg differs in the collisional (ec = 1, αp ≈ 0.36) versus frictional (ec = 0.9, αp ≈ 0.63) regimes.

In order to understand the differences in the dynamics, the flux eigenvalues employed in the HLL solver are shown
in fig. 11, along with the maximum/minimum particle-phase eigenvalues found by neglecting the frictional pressure.
Notice that the eigenvalues on the left/right sides of each figure are the same because they correspond to the initial
conditions where the HLL eigenvalues are set by the fluid. For ec = 1, the HLL eigenvalues in the center are set by
the particle-phase collisional pressure, and the corresponding speed of sound is significantly larger than for the fluid.
In contrast, for ec = 0.9 the HLL eigenvalues are set by the frictional pressure. Interestingly, in this case the speed
of sound in the close-packed region matches the values in the fluid at the interface. This is because αp > αmax in the
close-packed region adjusts to match the interface pressures. The case with ec = 0.999 has more complicated behavior.
For the close-packed region in the center, the HLL eigenvalues show the same behavior as ec = 0.9. Likewise for the
collisional region on the outside. However, there is a small transition region between the close-packed and collisional
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Figure 11: Eigenvalues used in HLL for the polydisperse crossing jets with ec = 1 (left), 0.999 (middle), 0.9 (right) at the end of the simulation.
Particle-phase without friction minimum (blue) and maximum (red). HLL minimum (gold) and maximum (purple). The collisional region cor-
responds to the red/blue curves being maximum/minimum. The frictional region corresponds to the center region where the red and blue curves
overlap. A transition region separates the collisional and frictional regions when ec = 0.999.
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regions wherein the HLL eigenvalues are set by the fluid speed of sound. Hyperbolic solvers such as HLL that require
estimates of the maximum/minimum eigenvalues may fail in the transition region if the magnitudes of the eigenvalues
are underestimated.

7. Conclusions

In this work, we have extended the macroscale model developed in [6] to handle particles with different diameters
but with the same solid density using the polydisperse kinetic theory from [19]. The first step was to develop a kinetic
model for the number density function f (ξ,u, e) based on the underlying physics, which includes size-dependent
particle acceleration due to fluid drag, buoyancy, unsteady forces, and the particle–fluid–particle pressure, as well as
particle–particle interactions due to collisions and friction, and heat transfer with the fluid phase. The resulting kinetic
equation is in closed form and contains all of the physical models for the microscale physics. The second step was to
derive balance equations for selected moments of f (ξ,u, e) that ensure mass, momentum and energy conservation as
well as predicting the evolution of the properties of the particle mass distribution. Because they contain integrals with
respect to f (ξ,u, e), these balances equations are not closed given only the selected moments, which represent the
conserved variables. Thus, the third step was to provide moment closures using quadrature-based moment methods.
The final step was to develop a numerical algorithm for solving the system of conserved variables, ensuring that
the moments remain realizable when advanced in time throughout the computational domain. For this purpose, the
hyperbolic conservation equations were solved using an HLL scheme for the spatial fluxes [21, 28] and operator
splitting with semi-analytical solutions for each of the sources terms. The robustness of the numerical scheme was
tested using two examples of 1-D high-speed, gas–particle flows with very different physics. Moreover, the basic
structure of the 1-D solver carries over to 2-D and 3-D spatial domains [18]. Furthermore, as shown in [6], the effect
of added mass is included in the basic two-fluid model, which allows it to handle any particle-to-fluid density ratio
(e.g., polydisperse bubbly flows).

In future work, the polydisperse model can be extended in several different directions. For example, chemical
species can be added in each phase [18] to simulate chemically reacting flows, or multiple particle phases with different
solid properties for each phase can be derived to account for interactions between particles types. Another potential
extension would be to add terms to the kinetic equation that describe changes in the particle mass (e.g., breakage or
aggregation) [22]. In any case, the starting point for deriving such models for the particle phase is a closed kinetic
equation containing all of the relevant microscale physics. In this work we have limited the description of the particle
velocity to the trace of the second-order velocity moments (i.e., the particle-phase kinetic energy). However, it is
well known [9] that crossing jets in the absence of collisions cannot be described by a Maxwellian distribution for
the particle velocity. Thus, a macroscale model that closes at the level of the particle-phase kinetic energy will yield
qualitatively incorrect results for dilute impinging jets. However, if third- and fourth-order velocity moments are
added to the model and closed with HyQMOM [11], the correct behavior will the captured. Starting from the kinetic
model, it is straightforward to derive the additional balance equations for these moments [13]. Finally, to improve
the numerical solution, high-order schemes (such as is done in [5, 6, 18] for monodisperse particles) will need to be
developed for the polydisperse model equations.
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Appendix A. Multi-component, inelastic BGK model

Here, we review the kinetic model proposed in [1] for elastic collisions, and extended in [22] to inelastic collisions.
First, we present the formulas for a binary system with particles of different diameters, and then these expressions are
generalized for a continuous size distribution. By construction, this hard-sphere collision model is exact for velocity
moments up to second order.
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Appendix A.1. Collisional source terms for binary systems

Following the notation in [22], the multi-component BGK model with inelastic collisions yields source terms for
a binary system of the form

Ci
1 = κ11(M0

1Gi
11 − Mi

1) + κ12(M0
1Gi

12 − Mi
1),

Ci
2 = κ21(M0

2Gi
21 − Mi

2) + κ22(M0
2Gi

22 − Mi
2).

(A.1)

Here, Mi
1 (Mi

2) is the mass-weighted velocity moment of order i for a type 1 (2) particle, and Ci
1 (Ci

2) is its collisional
source term. The Gaussian moments Gi

αβ are found from a Gaussian distribution with mean uαβ and covariance matrix
σαβ. For example,

G0
αβ = 1, G1

αβ = uαβ, G2
αβ = uαβ ⊗ uαβ + σαβ. (A.2)

It is the definitions of these means and variances that determine the evolution of the velocity moments.
In terms of notation, we first define the mean velocity and granular temperature for each particle type:

u1 =
M1

1

M0
1

, u2 =
M1

2

M0
2

, 3Θ1 =
M2

1

M0
1

− u1 · u1, 3Θ2 =
M2

2

M0
2

− u2 · u2 (A.3)

where σ1 = Θ1I and σ2 = Θ2I for a Maxwellian distribution (which corresponds to the Euler equation for the particle
phase). Also, αi/αp = ξiM0

i /(ρeα
⋆
p ) defines the component volume fractions. The particle diameters are d1 and d2,

and we define d12 = (d1 + d2)/2 and χαβ = dαβ/dβ. Thus, χ11 = χ22 = 1, χ12 = d12/d2 and χ21 = d12/d1. Finally, let12

µαβ = 2d3
β/(d

3
α + d3

β), so that µ11 = µ22 = 1. For later use, we note that µαβχ3
αβ = 2d3

αβ/(d
3
α + d3

β) = µβαχ
3
βα.

We can now define the means and variances of the Gaussian distributions:

u11 = u1, u12 = u1 +
1
4

(1 + ec)µ12(u2 − u1), u21 = u2 +
1
4

(1 + ec)µ21(u1 − u2), u22 = u2, (A.4)

and

σ11 = σ1 +
1
2

(1 + ec)
[
1
4

(1 + ec)S1 − σ1

]
, σ12 = σ1 +

1
2

(1 + ec)µ12

[
1
4

(1 + ec)µ12S12 − σ1

]
,

σ21 = σ2 +
1
2

(1 + ec)µ21

[
1
4

(1 + ec)µ21S12 − σ2

]
, σ22 = σ2 +

1
2

(1 + ec)
[
1
4

(1 + ec)S2 − σ2

] (A.5)

where (the first equality is for arbitrary distributions, while the second is for a Maxwellian)

S1 = σ1 + Θ1I = 2Θ1I, S12 =
1
2

(σ1 + σ2 + E12I) =
1
2

(Θ1 + Θ2 + E12)I, S2 = σ2 + Θ2I = 2Θ2I, (A.6)

and E12 = Θ1 + Θ2 +
1
3 (u1 − u2)2. The collision rates καβ are defined by

κ11 =
24g11α1Θ

1/2
1

√
πd1

, κ12 =
24g12α2χ

3
12E1/2

12
√

2πd12

, κ22 =
24g22α2Θ

1/2
2

√
πd2

, κ21 =
24g12α1χ

3
21E1/2

12
√

2πd12

, (A.7)

and are inversely proportional to the collision time τc.
Applying the kinetic model to evaluate momentum exchange, we find

C1
1 = ρeα1α2

12g12E1/2
12

√
2π

(1 + ec)d2
12

(d3
1 + d3

2)
(u2 − u1), C1

2 = ρeα1α2
12g12E1/2

12
√

2π

(1 + ec)d2
12

(d3
1 + d3

2)
(u1 − u2) = −C1

1. (A.8)

As it must be, momentum is conserved during collisions, and there is a net exchange of momentum between particle
types with different mean velocities. In the moderately dense regime, momentum exchange will reduce the velocity
difference considerably. In general, the velocity difference decreases faster than the granular-temperature difference.

12The µαβ are mass ratios, but here the densities of both particle types are equal.
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Applying the kinetic model to determine the energy exchange and dissipation, we find

C2
1 = −ρeα

2
1

6g11Θ
1/2
1

√
πd1

(1 − e2
c)Θ1 + ρeα1α2

12g12E1/2
12

√
2π

(1 + ec)d2
12

(d3
1 + d3

2)

[
1
4

(1 + ec)µ12E12 − Θ1 − u1 · (u1 − u2)
]

(A.9)

and

C2
2 = −ρeα

2
2

6g22Θ
1/2
2

√
πd2

(1 − e2
c)Θ2 + ρeα1α2

12g12E1/2
12

√
2π

(1 + ec)d2
12

(d3
1 + d3

2)

[
1
4

(1 + ec)µ21E12 − Θ2 − u2 · (u2 − u1)
]
. (A.10)

The first term on the right-hand side is dissipation of granular energy due to like collisions. The second term is the
exchange/dissipation of kinetic energy due to collisions of unlike particles. At equilibrium (ec = 1), u1 = u2 and
ρed3

1Θ1 = ρed3
2Θ2 as expected. Note that because µ12 + µ21 = 2, the sum C2

1 + C2
2 ≤ 0 where the equality holds for

ec = 1. When ec < 1, the lost kinetic energy increases the internal energy of the particle phase. This provides the
definition of Hp (without friction) for a binary system:

Hp = ρeα
⋆
p (1 − e2

c)
12
αp
√
π

α2
1

g11

d1
Θ3/2

1 + α1α2

√
2g12d2

12

(d3
1 + d3

2)
E3/2

12 + α
2
2

g22

d2
Θ3/2

2

 . (A.11)

Note that if particle types 1 and 2 are identical, then using αp = α1 + α2 reduces the right-hand side to ρeα
⋆
p (1 −

e2
c) 12√
π
αp

g0
dp
Θ3/2

p , which is the expected result for monodisperse particles. This property is referred to as the indiffer-

entiability principle [1], and it follows from the definition of hard-sphere collisions.

Appendix A.2. Collisional source terms for multi-component systems with binary collisions

For a continuous distribution of particle sizes, we can define the collision term by making use of the NDF, denoted
by n(ξ). As in the main text, the moments of the NDF areMi. We will also need to define the mass-conditioned mean
velocity of order i, denoted by Mi(ξ), and the mass-conditioned granular temperature 3Θ(ξ) = M2(ξ) −M1(ξ) ·M1(ξ)
where M1(ξ) is the mass-conditioned velocity vector. Formally, the collision model for momentUi

s is

Ci
s = β

∫
ξsCi(ξ)n(ξ) dξ (A.12)

where, for a given mass ξ, the change in Mi(ξ) is modeled by a mass-conditioned multi-component BGK model:

Ci(ξ) =
∫
κ(ξ, ζ)[Gi(ξ, ζ) − Mi(ξ)] dζ. (A.13)

For a binary system, this model must reproduce the results in Appendix A.1. In particular, eq. (A.12) will have the
form

Ci
s = βξ

s
1M0

1Ci
1 + βξ

s
2M0

2Ci
2 (A.14)

for s = 0, 1; which is the weighted average of the binary collisions terms in eq. (A.1).
The means and variances of the Gaussian distribution function with moments Gi(ξ, ζ) are defined by

u(ξ, ζ) =M1(ξ) +
1
4

(1 + ec)µξ,ζ[M1(ζ) −M1(ξ)],

σ(ξ, ζ) = Θ(ξ)I +
1
2

(1 + ec)µξ,ζ

[
1
8

(1 + ec)µξ,ζ[Θ(ξ) + Θ(ζ) + E(ξ, ζ)] − Θ(ξ)
]

I
(A.15)

where E(ξ, ζ) = Θ(ξ) + Θ(ζ) + 1
3 [M1(ζ) −M1(ξ)]2. Note that when ζ = ξ, these definitions are consistent with self

collisions. For the velocity moments up to second order, the Gaussian moments in eq. (A.13) are

G0(ξ, ζ) = 1, G1(ξ, ζ) = u(ξ, ζ), G2(ξ, ζ) = u(ξ, ζ) ⊗ u(ξ, ζ) + σ(ξ, ζ). (A.16)
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The other parameters in the collision model are generalizations of the binary case:

κ(ξ, ζ) =
24g0(ξ, ζ)α(ζ)χ3

ξ,ζ

√
E(ξ, ζ)

√
2πdξ,ζ

, dξ,ζ =
1
2

[dp(ξ) + dp(ζ)],

µξ,ζ =
2d3

p(ζ)

d3
p(ξ) + d3

p(ζ)
, χξ,ζ =

dξ,ζ
dp(ζ)

, α(ζ) =
ζ

ρp
n(ζ),

(A.17)

and g0(ξ, ζ) is the radial distribution function given in eq. (46). Likewise, the particle diameter dp(ξ) is given by
eq. (15). Note that for multi-component systems, Hp = −C

2
1. In the numerical implementation described in Appendix

C, the integrals in eqs. (A.12) and (A.13) are evaluated using Gaussian quadrature, and thus eq. (A.12) is represented
by a double summation over all binary collision partners.

Appendix A.3. Collisional pressure

For the collisional pressure Pc, the polydisperse version [10, 19] has the form of eq. (17) with the exact expression
for binary hard-sphere collisions given by

pc(ξ) = 2(1 + ec)
∫
α(ζ)g0(ξ, ζ)χ3

ξ,ζµξ,ζyξ,ζE(ξ, ζ) dζ (A.18)

where

yξ,ζ =

 1
2µξ,ζ if ξ ≤ ζ
1
2µζ,ξ if ξ ≥ ζ

=⇒ 0.5 ≤ yξ,ζ ≤ 1. (A.19)

In the monodisperse limit, this expression with eq. (17) yields the monodisperse expression. In general, computing
Pc with GQMOM requires a double summation over the N mass abscissae:

ρeα
⋆
p Pc =

N∑
i=1

wiξi pc(ξi) = 2(1 + ec)
N∑

i=1

N∑
j=1

wiξiα jgi jχ
3
i jµi jyi jEi j (A.20)

where αp =
∑N

i=1 αi and the subscripts i j indicate the masses of the two colliding particles. When all particles have the
same mass, velocity and granular temperature, eq. (A.20) reduces to the definition of Pc for monodisperse particles.

The expression for Pc in (A.20), used in the main text, applies the same collisional pressure to each particle type.
In contrast, the exact treatment with GQMOM based on (A.18) yields

pc,i = 2(1 + ec)
N∑

j=1

α jgi jχ
3
i jµi jyi jEi j = 2(1 + ec)

αigiiΘi +
1
2

∑
j<i

α jg jiχ
3
jiµ

2
jiE ji +

1
2

∑
j>i

α jgi jχ
3
i jµ

2
i jEi j

 (A.21)

where we have made use of the identity χ3
i jµi j = χ

3
jiµ ji. In the last form, the first term corresponds to self-collisions

of type i particles, the second term to collisions with smaller particles, and the third term to collisions with larger
particles. For example, for a binary system we have

pc,1 = 2(1 + ec)
(
α1g11Θ1 +

1
2
α2g12χ

3
12µ

2
12E12

)
, pc,2 = 2(1 + ec)

(
α2g22Θ2 +

1
2
α1g12χ

3
12µ

2
12E12

)
, (A.22)

which satisfy the indifferentiability principle [1]. The exact collisional pressure for particle types 1 and 2 are w1ξ1 pc,1
and w2ξ2 pc,2, respectively, which are different than ρeα

⋆
p Pc.

For an exact treatment, it is straightforward to modify the collisional pressure in the polydisperse kinetic model in
(11) to use (A.21). In the particle-phase momentum and kinetic-energy balances in table 4, the following substitutions
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are required for the collisional pressure (the frictional pressure contribution remains the same):

MsPc →

N∑
β=1

wβξs
βpc,β, UUU

1
s Pc →

N∑
β=1

wβξs
βup(ξβ)pc,β. (A.23)

Note that these expressions are in closed form, depending on the known mass-conditioned moments. However, the
mathematical form of (A.23) (in particular, the energy flux13) makes it more difficult to estimate the eigenvalues of
the polydisperse model and, hence, to show that the model is hyperbolic.

Appendix B. Numerical treatment of drag-like exchange terms

The fluid–particle coupling terms (e.g., drag, friction, and heat transfer) are advanced over a time step ∆t by
employing operator splitting. Using drag as an example, the model equations in table 4 reduce to the following:

∂tρ fα
⋆
f = 0

∂tMs = 0
∂tαp = 0

∂tρ fα
⋆
f u f =A

1
1

∂tU
1
s = −A

1
s

∂tρ fα
⋆
f E f = A

2
1 − (1 − a)B2

1

∂tρ fα
⋆
f k f = A

f
1 − (2 − 2a +Cg)B f

1 k f

∂tKs = −A
2
s + (1 − a)B2

s

∂tEs = 0

=⇒

ρ fα
⋆
f = constant

Ms = constant

αp = constant

∂tu f =
A1

1

ρ fα
⋆
f

∂tU
1
s = −A

1
s

∂tE f +
∂tK1

ρ fα
⋆
f
= 0

∂tk f =
A

f
1 − (2 − 2a +Cg)B f

1 k f

ρ fα
⋆
f

∂tKs = −A
2
s + (1 − a)B2

s

Es = constant

(B.1)

so that the mass variables and particle-phase internal energies remain constant. The change in the fluid-phase total
energy E f results from conservation of energy.

The non-constant variables can be rewritten using their mass-conditioned versions. Thus, since the momentsMs

are constant, we have wβ and ξβ constant so that for β = 1, . . . ,N the mean velocities obey

∂tup(ξβ) =
1
τp(ξβ)

[u f − up(ξβ)],

∂tu f =

N∑
β=1

wβξβ
ρ fα

⋆
f τp(ξβ)

[up(ξβ) − u f ],
(B.2)

and the fluctuating kinetic energies obey

∂tΘp(ξβ) = −
2a
τp(ξβ)

Θp(ξβ) +
4(1 − a)
3τp(ξβ)

k f ,

∂tk f =

N∑
β=1

wβξβ
ρ fα

⋆
f τp(ξβ)

[
3aΘp(ξβ) − (2 − 2a +Cg)k f

]
+

N∑
β=1

wβξβ
ρ fα

⋆
f τp(ξβ)

(up(ξβ) − u f )2.

(B.3)

13The energy flux does not have the form of the velocity multiplied by the collisional pressure. It may be possible to approximate the energy flux
by such a form, but further work is needed to test such alternatives.
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Over the time step ∆t, we assume that τp(ξβ) is constant. Thus, eq. (B.2) is a linear ODE with N + 1 components and
constant coefficients that can be solved analytically using the matrix exponential.

Likewise, eq. (B.3) is also a linear ODE with constant coefficients and a non-negative inhomogeneous term de-
pending on the squared velocity differences that act to increase k f . The latter are known from solving eq. (B.2). In the
analytical solution of eq. (B.3), the inhomogeneous term yields an integral that we approximate with the mid-point
rule (i.e., at ∆t/2). Finally, given the updated mass-conditioned particle velocities and granular temperatures, we com-
pute K1(t + ∆t) and then E f (t + ∆t) using eq. (B.1). By construction, this method conserves the mixture momentum
and total energy, while increasing the fluid-phase internal energy since amin ≤ a ≤ 1. The treatments of friction and
heat transfer follow the same procedure.

Appendix C. Numerical treatment of particle–particle collisions

We start by considering the binary system in Appendix A.1 and the mass-conditioned velocity moments of types
1 and 2. In particular, the moments (M0

1 ,M
1
1 ,M

2
1) = (w1,w1u1, 2w1K1) and (M0

2 ,M
1
2 ,M

2
2) = (w2,w2u2, 2w2K2), with

volume fractions α1, α2, etc. Using time splitting and keeping the collision parameters καβ constant over the time step,
the change in the moments for each particle type results in a linear ODE system. Most importantly, when extending
the algorithm to more than two particle types, the contribution from each collision pair can be solved separately.

Appendix C.1. N = 2
Here, we use the following identities:

κ21µ21

κ12µ12
=
α1

α2
, µ12 + µ21 = 2, (C.1)

to eliminate κ21 and µ21, respectively. We also have α1 + α2 = αp. During collisions, the number of particles does not
change so that M0

1 and M0
2 are constant. The momentum for each particle type changes by14

1
M0

1

dM1
1

dt
= κ12(u12 − u1) =⇒

du1

dt
= κ12

1
4

(1 + ec)µ12(u2 − u1),

1
M0

2

dM1
2

dt
= κ21(u21 − u2) =⇒

du2

dt
= κ21

1
4

(1 + ec)µ21(u1 − u2),

=⇒
d
dt

[
u1
u2

]
= A

[
u1
u2

]
(C.2)

where u12 and u21 are defined in eq. (A.4), and A is the 2 × 2 coefficient matrix:

A = −
(1 + ec)κ12µ12

4α2

[
α2 −α2
−α1 α1

]
. (C.3)

We can observe that the following identities hold:

A
[
1
1

]
=

[
0
0

]
,

[
α1 α2

]
A =

[
0 0

]
. (C.4)

The first leads to the steady state u1 = u2, while the second is due to momentum conservation. One eigenvalue of A
is null, while the other is the trace:

λ12 = −
(1 + ec)κ12µ12αp

4α2
< 0. (C.5)

The left/right eigenvectors for the zero eigenvalue are given in eq. (C.4).
Taking A as constant during the time step, eq. (C.2) gives[

u1(t)
u2(t)

]
= eAt

[
u1(0)
u2(0)

]
(C.6)

14Each element of ui is multiplied by the same scalar in eq. (C.2), so the vector solution uses the velocity vectors as components.
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where ui(0) is the velocity before the collision step, and the matrix exponential is

eAt =
1
αp

[
α1 + α2eλ12t α2(1 − eλ12t)
α1(1 − eλ12t) α2 + α1eλ12t

]
. (C.7)

In summary, the 2 × 2 exponential matrix exp(At) gives the change in momentum for each particle type.
For the fluctuating energy change due to collisions, the starting equations are

3
dΘ1

dt
= κ11(G2

11 − u1 · u1 − 3Θ1) + κ12(G2
12 − u1 · u1 − 3Θ1) − 2u1 ·

du1

dt
,

3
dΘ2

dt
= κ21(G2

21 − u2 · u2 − 3Θ2) + κ22(G2
22 − u2 · u2 − 3Θ2) − 2u2 ·

du2

dt
,

(C.8)

where the traces of the Gaussian second-order moments are G2
αβ = uαβ · uαβ + tr(σαβ). In particular,

G2
11 − u1 · u1 − 3Θ1 = −

3
4

(1 − e2
c)Θ1,

G2
12 − u1 · u1 − 3Θ1 =

1
2

(1 + ec)µ12[u1 · (u2 − u1) − 3Θ1] +
1
8

(1 + ec)2µ2
12[3Θ1 + 3Θ2 + (u2 − u1)2],

G2
21 − u2 · u2 − 3Θ2 =

1
2

(1 + ec)µ21[u2 · (u1 − u2) − 3Θ2] +
1
8

(1 + ec)2µ2
21[3Θ1 + 3Θ2 + (u2 − u1)2],

G2
22 − u2 · u2 − 3Θ2 = −

3
4

(1 − e2
c)Θ2.

(C.9)

Thus, the linear system for the granular temperatures is

dΘ1

dt
= −κ11

1
4

(1 − e2
c)Θ1 − κ12

1
2

(1 + ec)µ12Θ1 + κ12
1
8

(1 + ec)2µ2
12

[
Θ1 + Θ2 +

1
3

(u2 − u1)2
]
,

dΘ2

dt
= −κ22

1
4

(1 − e2
c)Θ2 − κ21

1
2

(1 + ec)µ21Θ2 + κ21
1
8

(1 + ec)2µ2
21

[
Θ1 + Θ2 +

1
3

(u2 − u1)2
]
.

(C.10)

This system must be solved with initial conditions Θ1(0) and Θ2(0).
Using eq. (C.2), we can write the mean-velocity difference as

|u2(t) − u1(t)|= eλ12t |u2(0) − u1(0)|, (C.11)

which is non-negative and decreases with t. The analytical solution of eq. (C.10) is then[
Θ1(t)
Θ2(t)

]
= eBt

[
Θ1(0)
Θ2(0)

]
+ [e2λ12It − eBt](2λ12I − B)−1D|u2(0) − u1(0)|2 (C.12)

where (treating καβ as constants over the time step) B = Bθ + B12,

Bθ = −
1
4

(1 − e2
c)

[
κ11 0
0 κ22

]
, (C.13)

B12 = −
(1 + ec)κ12µ12

2α2

[
α2 − α2

1+ec
4 µ12 −α2

1+ec
4 µ12

−α1
1+ec

4 µ21 α1 − α1
1+ec

4 µ21

]
, (C.14)

and

D =
(1 + ec)2κ12µ12

24α2

[
α2µ12
α1µ21

]
. (C.15)

When ec < 1, the total energy of the particle phase will decrease, and the lost energy is added to the internal energy.
When ec = 1, B has a null eigenvalue, reflecting the conservation of total granular energy, and the other is equal to the
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trace.

Appendix C.2. N = 3
For N = 3 and larger, the semi-analytical solutions follow the same general pattern, which accounts for all possible

pairwise collisions. For N = 3, the six collision pairs are (1,1), (1,2), (1,3), (2,2), (2,3) and (3,3). Here, we use the
following identities:

κ21µ21

κ12µ12
=
α1

α2
,
κ31µ31

κ13µ13
=
α1

α3
,
κ32µ32

κ23µ23
=
α2

α3
, µ12 + µ21 = 2, µ13 + µ31 = 2, µ23 + µ32 = 2,

to eliminate κ21, κ31, κ32, µ21, µ31, µ32, respectively. For N = 3, the momentum balance yields

d
dt

u1
u2
u3

 = A

u1
u2
u3

 (C.16)

where A = A12 + A13 + A23,

A12 =
(1 + ec)κ12µ12

4α2

−α2 α2 0
α1 −α1 0
0 0 0

 , A13 =
(1 + ec)κ13µ13

4α3

−α3 0 α3
0 0 0
α1 0 −α1

 ,
A23 =

(1 + ec)κ23µ23

4α3

0 0 0
0 −α3 α3
0 α2 −α2

 .
(C.17)

We can observe that the following identities hold:

A

111
 =

000
 , [

α1 α2 α3

]
A =

[
0 0 0

]
. (C.18)

The first leads to the steady state u1 = u2 = u2, while the second represents momentum conservation. Due to
conservation of momentum, one eigenvalue of A is null. Again, the right/left eigenvectors of the zero eigenvalue
appear in eq. (C.18).

Taking A as constant during the time step, eq. (C.16) givesu1(t)
u2(t)
u3(t)

 = eAt

u1(0)
u2(0)
u3(0)

 . (C.19)

In summary, it is necessary to compute the 3× 3 exponential matrix exp(At) to find the change in momentum for each
particle type.

For the velocity differences ∆i j(t) = ui(t) − u j(t), we define the matrices

P =

 1 −1 0
1 0 −1
α1 α2 α3

 ,
X12(t)
X13(t)

C3

 = P

u1(t)
u2(t)
u3(t)

 =
 ∆12(t)

∆13(t)
α1u1(t) + α2u2(t) + α3u3(t)

 (C.20)

where C3 is constant due to conservation of momentum. Using the change of variables and PAP−1 with eq. (C.16)
yields

dX
dt
= ÂX, Â = −

1 + ec

4

[α1+α2
α2
κ12µ12 + κ23µ23 κ13µ13 − κ23µ23

κ12µ12 −
α2
α3
κ23µ23

α1+α3
α3
κ13µ13 +

α2
α3
κ23µ23

]
, (C.21)
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where the two eigenvalues of Â are negative. Thus, the analytical solution is

X(t) =
[
∆12(t)
∆13(t)

]
= eÂt

[
∆12(0)
∆13(0)

]
, (C.22)

and ∆23(t) = ∆12(t) − ∆13(t). In summary, it is necessary to compute the 2 × 2 exponential matrix exp(Ât) to find the
velocity differences, which can be done analytically.

The linear system for the granular temperatures is

d
dt

Θ1
Θ2
Θ3

 = B

Θ1
Θ2
Θ3

 + D12∆
2
12(t) + D13∆

2
13(t) + D23∆

2
23(t) (C.23)

where B = Bθ + B12 + B13 + B23,

Bθ = −
1 − e2

c

4

κ11 0 0
0 κ22 0
0 0 κ33

 , (C.24)

B12 = −
(1 + ec)κ12µ12

2α2

α2 − α2
1+ec

4 µ12 −α2
1+ec

4 µ12 0
−α1

1+ec
4 µ21 α1 − α1

1+ec
4 µ21 0

0 0 0

 , (C.25)

B13 = −
(1 + ec)κ13µ13

2α3

α3 − α3
1+ec

4 µ13 0 −α3
1+ec

4 µ13
0 0 0

−α1
1+ec

4 µ31 0 α1 − α1
1+ec

4 µ31

 , (C.26)

B23 = −
(1 + ec)κ23µ23

2α3


0 0 0
0 α3 − α3

1+ec
4 µ23 −α3

1+ec
4 µ23

0 −α2
1+ec

4 µ32 α2 − α2
1+ec

4 µ32

 , (C.27)

and

D12 =
(1 + ec)2κ12µ12

24α2

α2µ12
α1µ21

0

 , D13 =
(1 + ec)2κ13µ13

24α3

α3µ13
0
α1µ31

 , D23 =
(1 + ec)2κ23µ23

24α3

 0
α3µ23
α2µ32

 . (C.28)

The eigenvalues of B are negative if ec < 1, and, if ec = 1 due to conservation of energy, one of them is null with left
eigenvector [α1 α2 α3].

The analytical solution of eq. (C.23) isΘ1(t)
Θ2(t)
Θ3(t)

 = eBt

Θ1(0)
Θ2(0)
Θ3(0)

 +
∫ t

0
eB(t−s)[D12∆

2
12(s) + D13∆

2
13(s) + D23∆

2
23(s)] ds. (C.29)

Unlike with eq. (C.12), evaluating the source terms in eq. (C.29) is complicated. However, to ensure conservation of
total energy for ec = 1, this evaluation must be exact. The 3 × 3 exponential matrix exp(Bt) is also difficult to find
analytically. Thus, it may be necessary to solve eq. (C.23) numerically. For this purpose, if the time step ∆t is small,
the midpoint formulaΘ1(∆t)

Θ2(∆t)
Θ3(∆t)

 = eB∆t

Θ1(0)
Θ2(0)
Θ3(0)

 + e
1
2 B∆t[D12∆

2
12(∆t/2) + D13∆

2
13(∆t/2) + D23∆

2
23(∆t/2)]∆t (C.30)

may suffice. Numerical tests with ec = 1 show a kinetic energy difference of less than one percent for parameters
representing the target application.
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Appendix C.3. Particle-phase internal energy change due to binary collisions

When ec < 1, particle-phase kinetic energy is transformed to internal energy ep during collisions. Let ei be the
internal energy of type i particles. During binary collisions, we assume ei + 3Θi + u2

i is constant.15 For N = 3, the
governing equation for αiei during binary collisions is

d
dt

α1e1
α2e2
α3e3

 = B̂

Θ1(t)
Θ2(t)
Θ3(t)

 + D̂12∆
2
12(t) + D̂13∆

2
13(t) + D̂23∆

2
23(t) (C.31)

where B̂ = B̂θ + B̂12 + B̂13 + B̂23,

B̂θ =
3(1 − e2

c)
4

α1κ11 0 0
0 α2κ22 0
0 0 α3κ33

 , (C.32)

B̂12 =
3(1 − e2

c)α1κ12µ12

8

µ12 µ12 0
µ21 µ21 0
0 0 0

 , (C.33)

B̂13 =
3(1 − e2

c)α1κ13µ13

8

µ13 0 µ13
0 0 0
µ31 0 µ31

 , (C.34)

B̂23 =
3(1 − e2

c)α2κ23µ23

8

0 0 0
0 µ23 µ23
0 µ32 µ32

 , (C.35)

and

D̂12 =
(1 − e2

c)α1κ12µ12

8

µ12
µ21
0

 , D̂13 =
(1 − e2

c)α1κ13µ13

8

µ13
0
µ31

 , D̂23 =
(1 − e2

c)α2κ23µ23

8

 0
µ23
µ32

 . (C.36)

Note that all matrices are null when ec = 1 as expected, and the matrices B̂i j have two zero and one positive eigenvalue.
Thus, the right-hand side of eq. (C.31) is non-negative, which ensures that the internal energies never decrease. In the
simulation code, over a small time step the solution to eq. (C.31) is approximated byα1e1(∆t)

α2e2(∆t)
α3e3(∆t)

 =
α1e1(0)
α2e2(0)
α3e3(0)

 + 1
2

B̂

Θ1(∆t) + Θ1(0)
Θ2(∆t) + Θ2(0)
Θ3(∆t) + Θ3(0)

∆t + [D̂12∆
2
12(∆t/2) + D̂13∆

2
13(∆t/2) + D̂23∆

2
23(∆t/2)]∆t (C.37)

where eq. (C.30) is used to find Θi(∆t). The increase in the particle-phase internal energy is found from the identity
αpep = α1e1 + α2e2 + α3e3.

The extension to an arbitrary number of particle sizes follows the same pattern as for N = 3, i.e., one must
account for binary collisions for each pair of particle sizes. In our code, the algorithm is implemented for four particle
sizes (N = 4). Given the number of particle pairs, the computational cost for collisions increases significantly with
increasing N.

Appendix C.4. Correction algorithm for conservation of particle-phase total energy

Due to numerical errors in eqs. (C.30) and (C.37), the particle-phase total energy will not be exactly conserved.
Thus, at each time step, either the kinetic energies Θi(∆t) or the internal energies ei(∆t) are multiplied by a correction
factor to ensure total-energy conservation. Specifically, if the total energy has increased during the time step, then the
kinetic energies are decreased; otherwise, if the total energy has decreased, then the internal energies are increased to

15This assumption is sufficient, but not necessary since the lost kinetic energy could be distributed differently, depending on the particle mass.
Here, we assume that the kinetic energy lost by type i stays with type i in the form of internal energy.
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ensure conservation. Numerical tests with ec = 1 (i.e., no change is internal energies) have shown that this correction
scheme performs as expected, i.e., the total energy at the end of the time step is always too large so that the kinetic
energies are decreased. In any case, this scheme ensures that the internal energies can never decrease during collisions.
Moreover, without a correction scheme, the kinetic energies can increase nonphysically with time and eventually can
cause a simulation to fail.

Appendix C.5. Treatment of frictional collisions

For frictional collisions, the kinetic energy lost by particles is redistributed as internal energy proportional to the
mass of each particle type. The increase in particle-phase internal energy due to friction is found from

dep

dt
= −

dKp

dt
=

1
τ f

3
2
Θp. (C.38)

Since the particle density is constant, the mass fraction is proportional to the volume fraction. Thus, if ∆Es is the
change of Es over the time step, then ∆Es = −Ms∆Kp where ∆Kp ≤ 0 is the change in particle-phase kinetic energy.

Appendix D. Numerical treatment of buoyancy-like exchange terms

Time splitting is used to update the buoyancy-like exchange terms in the momentum and energy balances. For a
monodisperse particle phase, this amounts to solving the system

∂tρeα
⋆
p = 0,

∂tρeα
⋆
p up = −B,

∂tρeα
⋆
p Kp = −B · up

∂tρeα
⋆
p ep = 0

(D.1)

where the vector
B = α⋆p (∂x p̂ f + Fp f ) + ∂x · Pp f p (D.2)

is held constant over the time step. Given that ρeα
⋆
p is constant and Kp =

1
2 (3Θp + u2

p), we can observe that the
second-order central moment Θp is also constant over the time step. The same is true for higher-order central velocity
moments, i.e., they remain constant when only the buoyancy-like exchange terms are included. This observation has
important implications on the numerical integration because only the mean velocity, and not the central moments, will
change over a time step.

Using a Euler time step, and denoting the value at the end of the time step as (·)∗, we find (in conservative form)

(ρeα
⋆
p )∗ = ρeα

⋆
p ,

(ρeα
⋆
p up)∗ = ρeα

⋆
p up − B∆t,

(ρeα
⋆
p Kp)∗ = ρeα

⋆
p Kp +

1
2
ρeα

⋆
p

(
u∗p · u

∗
p − up · up

)
,

(ρeα
⋆
p ep)∗ = ρeα

⋆
p ep,

(D.3)

which conserves the central moment Θp for arbitrary ∆t. For the fluid phase, the corresponding equations are

∂t ρ fα
⋆
f = 0,

∂t ρ fα
⋆
f u f = B,

∂t ρ fα
⋆
f E f = B · up,

=⇒

(ρ fα
⋆
f )∗ = ρ fα

⋆
f ,

(ρ fα
⋆
f u f )∗ = ρ fα

⋆
f u f + ρeα

⋆
p (up − u∗p),

(ρ fα
⋆
f E f )∗ = ρ fα

⋆
f E f + ρeα

⋆
p (Kp − K∗p),

(D.4)

which conserve the mass, momentum and total energy of the two phases. Note that with higher-order time accuracy
beyond Euler, only the formula for the updated velocity u∗p will change.
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For the polydisperse case, the integration formulas for mass-conditioned velocity moments are analogous to
eq. (D.3). Defining the second-order central moment 3MsΘs = 2Ks − U

1
s · U

1
s/Ms, this can be shown for s =

0, 1, . . . ,N − 1 starting from

∂tMs = 0,

∂tU
1
s = −

Ms

M1
B,

∂tKs = −
1
M1

B · U1
s ,

=⇒

M∗s =Ms,

U
1∗
s =U

1
s −
Ms

M1
B∆t,

K∗s = Ks +
1

2Ms

(
U

1∗
s · U

1∗
s −U

1
s · U

1
s

)
.

(D.5)

Note that the central moment Θs is constant over the time step. For the fluid phase, eq. (D.4) again conserves the
overall mass, momentum and energy.

More generally, by defining the vector

Cs =
1
Ms

(U1∗
s −U

1
s) ⇐⇒ U

1∗
s =U

1
s +MsCs, (D.6)

we can write
1
Ms

(
U

1∗
s · U

1∗
s −U

1
s · U

1
s

)
= 2U1

s · Cs +MsCs · Cs (D.7)

so that
K∗s = K

2
s +U

1
s · Cs +

1
2
MsCs · Cs; (D.8)

or, for the full second-order velocity tensor,

U
2∗
s =U

2
s +U

1
s ⊗ Cs + Cs ⊗U

1
s +MsCs ⊗ Cs. (D.9)

Similar formulas can be derived for higher-order moments, and preserve the central-moment velocity tensors during
the time step for arbitrary ∆t.

Appendix E. Numerical treatment of added-mass source terms

Time splitting is used to update the added-mass source terms. For the particle phase, this amounts to solving a
linear system of ODEs:

∂tMs = CξMs

∂tEs = Cue fMs + (Cξ −Cu)Es

∂tUUU
1
s = Cuu fMs + (Cξ −Cu)U1

s

∂tKs = CuK fMs + (Cξ −Cu)Ks

=⇒

∂tMs = CξMs

∂t

(
Es

Ms

)
= Cue f −Cu

(
Es

Ms

)
∂t

UUU1
s

Ms

 = Cuu f −Cu

UUU1
s

Ms


∂t

(
Ks

Ms

)
= CuK f −Cu

(
Ks

Ms

)
(E.1)

with e f , u f , K f , Cξ, and Cu held constant. The analytical solution for the size moments at time t is

Ms(t) =Ms(0) eCξ t (E.2)

with s = 0, 1
2 , 1,

3
2 , 2,

5
2 , 3. As expected, since all size moments change by the same factor, this step leaves the mass

abscissae unchanged. The change of mass in the fluid phase over the time step ∆t is thenM1(0) −M1(∆t).
For the internal energy, momentum, and kinetic energy (s = 0, 1, 2, 3), the analytical solutions are

Es(t)
Ms(t)

=
Es(0)
Ms(0)

e−Cut + e f

(
1 − e−Cut

)
, (E.3)
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UUU
1
s(t)

Ms(t)
=
UUU

1
s(0)

Ms(0)
e−Cut + u f

(
1 − e−Cut

)
(E.4)

and
Ks(t)
Ms(t)

=
Ks(0)
Ms(0)

e−Cut + K f

(
1 − e−Cut

)
. (E.5)

The change in momentum and total energy in the fluid phase are computed in the same manner as for mass with s = 1.

Appendix F. Generalized CQMOM

Roughly speaking, generalized CQMOM (GCQMOM) is employed when Ng > N quadrature nodes are used to
find mass-conditioned moments from N mass-weighted moments. In this case, we must find an interpolation scheme
in mass phase space that satisfies the N mass-weighted moments appearing on the right-hand side of the linear system
used with CQMOM. Because Ng > N, the direct application of CQMOM is under determined (more conditional
moments than constraints); however, we can obtain a fully determined linear system by interpolating between the N
mass-conditioned moments found at the N quadrature-method-of-moments (QMOM) nodes. Recall that QMOM uses
2N moments that satisfy [22]

Ms =

N∑
α=1

ŵαξ̂s
α, s ∈ (0, 1, . . . , 2N − 1) (F.1)

for the mass moments (or equivalent equations for the half-order moments). Hereinafter, we will describe the method
using the conserved mass moments (M0,M1, . . . ,MNs ) with Ns ≥ 2N; however, it is straightforward to use size or
half-order moments. Given the conserved moments, GQMOM provides Ng > N quadrature nodes. In the following,
we use a hat to indicate the weights and abscissae found with QMOM, and those from GQMOM are shown without a
hat. Keeping this goal in mind, the basic idea behind GCQMOM is as follows.

Appendix F.1. Definition of GCQMOM

For arbitrary Ng > N, the GQMOM representation for mass ξ can be combined with CQMOM for a fixed number
N of QMOM mass abscissas. (Recall that N fixes the number of velocity moments needed for the polydisperse model.)
We assume that the mass moments, denoted here by ⟨ξk⟩ =Mk, are known for k = 0, 1, . . . , 2N−1. Applying QMOM
with these mass moments gives the N weights ŵα and N mass abscissae ξ̂α. Let ϕ denote a particle property other than
mass (e.g., velocity, internal energy, etc.). As described in the main text, for mass conditioning CQMOM uses the joint
moments, denoted here by ⟨ϕξk⟩, to find an approximation for the conditional expected value of ϕ given ξ, denoted by
⟨ϕ|ξ⟩. Finally, we assume that ϕ0 = ⟨ϕ|ξ = 0⟩ is known (e.g., smallest particles have properties in equilibrium with
fluid phase), while ϕα = ⟨ϕ|ξ = ξ̂α⟩ for α = 1, . . . ,N must be found from the N mass-weighted moments ⟨ϕξk⟩ with
k = 0, 1, . . . ,N − 1.

The main difference between CQMOM and GCQMOM is that the latter provides values for ⟨ϕ|ξ⟩ in between
the QMOM quadrature nodes, i.e., at the GQMOM quadrature nodes. By definition, we have the following relation
between the conditional moments and the GQMOM quadrature:

⟨ϕξk⟩ =

Ng∑
α=0

wαξkα⟨ϕ|ξ = ξα⟩ =
Ng∑
α=0

wαξkαϕ(ξα) (F.2)

where we define ξ0 = 0. Analogous to eq. (56), this formula provides a set of N constraints, one for each value of k.
If Ng = N, then the problem reduces to CQMOM since ξα = ξ̂α. Otherwise, we will use an interpolation formula to
represent the function ϕ(ξ) = ⟨ϕ|ξ⟩ given the data (ξ̂α, ϕα) for α = 0, 1, . . . ,N. The constraints in eq. (F.2) will be used
to compute the unknowns, i.e., ϕα.

Let the interpolation formula have the form

ϕ(ξ) =
N∑
β=0

fβ(ξ)ϕβ (F.3)
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with the property ϕα = ϕ(ξ̂α), which implies that fβ(ξ̂α) = δα,β. The interpolation functions fα(ξ) depend on the type
of interpolation, and on the QMOM abscissae. For example, we can use a linear interpolation between the QMOM
nodes. In any case, the important point is that eq. (F.3) is linear in the unknowns ϕβ. Thus, for example, when ϕ
is independent of ξ, the interpolation functions must have the property

∑N
β=0 fβ(ξ) = 1 for all ξ. Using eq. (F.3) in

eq. (F.2) gives the joint-moment constraints in terms of the unknowns:

⟨ϕξk⟩ =

Ng∑
α=0

wαξkα
N∑
β=0

fβ(ξα)ϕβ =
N∑
β=0

⟨ξk fβ⟩ϕβ = ⟨ξk f0⟩ϕ0 +

N∑
β=1

⟨ξk fβ⟩ϕβ (F.4)

where we have introduced the notation

⟨ξk fβ⟩ =
Ng∑
α=0

wαξkα fβ(ξα). (F.5)

Note that after the interpolation method has been chosen ⟨ξk fβ⟩ can be computed using GQMOM. In other words,
⟨ξk fβ⟩ does not depend on the moments involving ϕ. In the case where Ng = N, we have ⟨ξk fβ⟩ = ŵβξ̂kβ, which
corresponds to QMOM.

The linear system for GCQMOM is found from eq. (F.4) by setting k = 0, 1, . . . ,N − 1:
⟨ f1⟩ ⟨ f2⟩ . . . ⟨ fN⟩

⟨ξ f1⟩ ⟨ξ f2⟩ . . . ⟨ξ fN⟩

...
...

...
⟨ξN−1 f1⟩ ⟨ξN−1 f2⟩ . . . ⟨ξN−1 fN⟩



ϕ1
ϕ2
...
ϕN

 =


⟨ϕ⟩ − ⟨ f0⟩ϕ0
⟨ϕξ⟩ − ⟨ξ f0⟩ϕ0

...
⟨ϕξN−1⟩ − ⟨ξN−1 f0⟩ϕ0

 (F.6)

where ϕ0 is known. Given that the abscissae coming from a Gaussian quadrature are distinct, the coefficient matrix
is non-singular, in which case the solution to the linear system is unique. Thus, the interpolation function ϕ(ξ) found
from eq. (F.3) is well defined and satisfies the joint-moment constraints.

Appendix F.2. Example of piece-wise linear interpolation with N = 3
In this case, the interpolation function is

ϕ(ξ) = f0(ξ)ϕ0 + f1(ξ)ϕ1 + f2(ξ)ϕ2 + f3(ξ)ϕ3 (F.7)

for the interval ξ ∈ [0,∞), and ϕ0 is known. For piece-wise linear interpolation based on the mass, we have

f0(ξ) = I[0,ξ̂0)(ξ) +
ξ̂1 − ξ

ξ̂1 − ξ̂0
I[ξ̂0,ξ̂1)(ξ),

f1(ξ) =
ξ − ξ̂0

ξ̂1 − ξ̂0
I[ξ̂0,ξ̂1)(ξ) +

ξ̂2 − ξ

ξ̂2 − ξ̂1
I[ξ̂1,ξ̂2)(ξ),

f2(ξ) =
ξ − ξ̂1

ξ̂2 − ξ̂1
I[ξ̂1,ξ̂2)(ξ) +

ξ̂3 − ξ

ξ̂3 − ξ̂2
I[ξ̂2,ξ̂3)(ξ),

f3(ξ) =
ξ − ξ̂2

ξ̂3 − ξ̂2
I[ξ̂2,ξ̂3)(ξ) + I[ξ̂3,∞)(ξ)

(F.8)

where we set ξ̂0 = 0 in our code. Notice (i.e., final term in f3(ξ)) that extrapolation with a constant value is used
for this example. Another choice would be constant-slope extrapolation. The indicator function I[a,b)(x) is unity for
x ∈ [a, b) and zero otherwise. The functions in eq. (F.8) can be averaged using GQMOM to compute the coefficient
matrices in eq. (F.6). In practice, interpolation based on the size (i.e., ζ = ξ1/3) or half-order mass (i.e., ς = ξ1/2) may
be preferred.

For other interpolation schemes (e.g., cubic splines), the interpolation functions are more complex than in eq. (F.8).
Nonetheless, the computational algorithm for finding ϕα from ⟨ξk⟩ and ⟨ϕξk⟩ remains the same. It is important to note
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that Ng can be made larger than N without changing the number of moment transport equations that must be solved
in the polydisperse model. Thus, in theory at least, it would be possible to approximate more closely the mass NDF
by increasing Ng without a significant increase in the computational cost. However, based on our experience with
GQMOM [12], since the exact form of the mass NDF is unknown, the value of N, and not Ng, controls the accuracy
of the approximation in most cases. Thus, choosing Ng > 2N + 1 usually will not lead to any further improvements.
Likewise, setting the number of mass moments Ns > 2N is only useful when the Stokes numbers of the particles are
small such that the mass-conditioned particle velocities are close to the fluid velocity.
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