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THREE VARIATIONS OF HEADS OR TAILS GAME FOR
BITCOIN

CYRIL GRUNSPAN AND RICARDO PÉREZ-MARCO

Abstract. We present three very simple variants of the classic Heads or Tails game
using chips, each of which contributes to our understanding of the Bitcoin protocol.
The first variant addresses the issue of temporary Bitcoin forks, which occur when
two miners discover blocks simultaneously. We determine the threshold at which
an honest but temporarily “Byzantine” miner persists in mining on their fork to
save his orphaned blocks. The second variant of Heads or Tails game is biased in
favor of the player and helps to explain why the difficulty adjustment formula is
vulnerable to attacks of Nakamoto’s consensus. We derive directly and in a simple
way, without relying on a Markov decision solver as was the case until now, the
threshold beyond which a miner without connectivity finds it advantageous to adopt
a deviant mining strategy on Bitcoin. The third variant of Heads or Tails game is
unbiased and demonstrates that this issue in the Difficulty Adjustment formula can
be fully rectified. Our results are in agreement with the existing literature that we
clarify both qualitatively and quantitatively using very simple models and scripts
that are easy to implement.

1. Introduction

The success of Bitcoin owes much to the simplicity of the Mathematics that explain
its functioning (we refer to [1] for an introduction to the Bitcoin protocol, and to [10]
for some of the Mathematics involved). Drawing repeatedly on the concept of proof
of work, these mathematics are essentially those arising from the game of Heads or
Tails and particularly studied by the French mathematician and physicist of the 19th
century, Siméon Poisson, whose name remains attached to the concept of Poisson pro-
cesses. Thus, Poisson mathematics make it possible to calculate the exact probability
of success of a double-spending attack [7, 18]. They also help understand why the
current difficulty adjustment formula on Bitcoin allows so-called block withholding
attacks [11]. In a way, the first to have thought of using a Heads or Tails game model
to describe Bitcoin is Satoshi Nakamoto in his founding article [16].
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Considering game theory to describe certain aspects of Bitcoin is natural. We refer
the reader to a recent book by M. Warren on Bitcoin and game theory [20].

The goal of the present article is prove by direct and straightforward methods
some results in the literature (including some that are not explicitly found). The
threshold beyond which a miner no longer has an interest in staying honest on Bitcoin
is at most equal to 32.94% (and even less of course if the miner can rely on a non-
zero connectivity parameter). This number is not found in the Bitcoin literature
because most authors prefer to consider the problem where the miner’s connectivity
is by default equal to 1

2
(see Subsection 3.1 for an explanation of connectivity for

non-specialists). Nevertheless, one can in principle obtain it by running a Python
implementation of the algorithm in the article [19] and selecting γ = 0 [15]. Also, it
can be rigorously demonstrated that taking orphan blocks into account always makes
the honest strategy the optimal one [11].

We want to explain that the two problems were related. And indeed, this is easy
to understand in a Heads or Tails game. If one does not always pay the dealer when
the Flip is Heads, there is a bias in favor of the player. Moreover, one can intuitively
understand why such a game can be made fair provided that the player is paid less
in case of victory.

In this article we give a new perspective on certain old problems and we solve them
with elementary tools:

• The first problem considered (Section 2) is that of accidental forks. Such “acci-
dents” still happen on Bitcoin despite a marked improvement in block propagation
that takes only a few seconds to reach at least 50% of the nodes [5]. In this case,
the network is divided until the discovery of a new block unambiguously defines the
official blockchain. However, the creator of the orphaned block, who now has a block
behind the official blockchain, may be tempted to start an attack and continue to
mine on his orphaned block. We understand that there is a threshold in terms of
relative hashing power beyond which this miner has an interest in persisting on his
fork. This problem has been considered and studied in [12] under the name of “The
Immediate-Release Game”. The authors demonstrate two bounds for the threshold
and then give a lower bound for the desired threshold. We show that this problem
can be simply modeled using a Heads or Tails game with chips and can be solved
with just a few lines of code.

• The second problem addressed (Section 3) is the search for the highest hashrate
for which the best mining strategy is the honest one when the connectivity is zero.
In the general case, this problem is modeled as a Markov decision problem where the
different states of the network are modeled by a triplet (a, h, f) [19]. However, when
the connectivity is zero, the third parameter is irrelevant. States are described by
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just two parameters, exactly as in a modified Heads or Tails game with chips. The
two parameters represent a number of chips for the player and the bank, which can
eventually be converted into cash. The problem is easily solved if we require that
the game end after a finite number of actions, which opens the way to a recurrence
treatment for the search for the maximum expected gain under condition. In this
game, the cost paid by the player-miner is proportional to the increase in the height
of the official blockchain. So, the player-miner pays nothing if the result is favorable
to him and he simply adds a new block to his secretly held fork. It is therefore easy
to understand why the game is biased.

• However, if we take into account the production of orphan blocks in the difficulty
adjustment formula (Section 4), which means for the player-miner having to pay
each time the so-called “difficulty” function increases (which consists of the sum of
official blocks and listed orphan blocks), the game is more balanced. Every time the
player-miner wins, he must indeed pay for all the chips he crushes.

2. Temporarily Byzantine by “force of circumstance”

When analyzing the security of certain systems, it is common practice in com-
puter science to consider two very distinct categories of actors: honest participants,
who respectfully follow the rules of protocol, and attackers. Following the termi-
nology introduced by [14] in the study of distributed systems, the latter are called
“Byzantines”. In general, we don’t change categories. Nevertheless, depending on
the circumstances, we may occasionally be led to do so, such as a person who is
fundamentally honest but finds a large sum of money on the street and decides to
keep it for himself, without any effort to find the rightful owner. We consider a
simple situation where an honest miner on the Bitcoin network can be tricked into
not respecting the rules of the protocol: the creation of a temporary fork. This is
a relatively rare occurrence, but not an extremely rare one. According to statistical
analyses carried out between 18/03/2014 and 14/06/2017, the rate of orphan block
creation was 0.31% for this period, and it is likely that this rate is even lower today
thanks to the new versions of Bitcoin Core [4, 5]. We consider the case where two
“honest” miners, each mining on the official blockchain, find a block at almost the
same time. “Honest” means here, as elsewhere in the article, that the miner always
mines on the last block of the official blockchain and always immediately makes his
discoveries public. In general, the first block discovered takes precedence and the
second is considered “orphaned”, although its terminology is imprecise. The Bitcoin
wiki site prefers to speak of a “stale block” [3]. The miner who mined the second
block is then drawn into a deviant posture. It is clearly in his interest to mine his
orphan block rather than the last official block, because if he manages to mine a new
block before the rest of the network, he will earn the reward contained in two blocks
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rather than just one. But then imagine that the other miners discover a block before
he does. He must now not only catch up with the official blockchain, but also mine
an additional block to gain the upper hand. Should he continue mining on his fork,
or return to mining on the last block of the official blockchain, as stipulated by the
Bitcoin protocol? This is an unprecedented situation for the miner, who eventually
becomes “Byzantine” by “force of circumstances”. The situation is indeed unprece-
dented, since it is perhaps the first time that it has been imposed on the miner, and it
is unlikely that he will find himself in the same situation twice in a row in the future
in the course of his activity. Furthermore, being fundamentally “honest”, the miner,
if he manages to catch up with and surpass the official blockchain, will benefit im-
mediately. In particular, he will not engage in a block-witholding attack. The miner
may become temporarily byzantine. His attack starts when he is one block behind
the official blockchain and ends as soon as he gives up or manages to catch up and
exceed the official blockchain by one block. In both cases, he resumes his position
as an honest miner. The natural question is: Is it in his interest to continue mining
on his fork, or should he abandon it and return to mining on the official blockchain?
What is the threshold in terms of relative hash power at which an a priori “honest”
miner has an interest in stubbornly mining on his fork when he is one block behind
on the official blockchain? This question can be resolved using a simple classic coin
toss, which we’ll now describe.

2.1. A first classic variation of Heads or Tails. This game pits a player against
a bank. Over time, the player and the bank gain or lose chips (corresponding to
mined blocks) and can exchange them for euros (corresponding to bitcoins). At any
given moment, the player has three possible actions, as described below.

Toss: A croupier tosses a coin rigged in favor of the bank. The probability of
getting Tails is q. This action costs the player q euros whatever the result.

• If the result is Heads, the bank wins a chip.
• If the result is Tails, the player wins a chip.

Crush: This action is only possible if the player (resp. the bank) has a (resp.
h) chips with a > h. In this case, the bank loses all its chips, the player loses
h+ 1 chips but gains h+ 1 euros. This action costs the player nothing.

Abandon: The bank and the player lose all their chips. This action costs the
player nothing.

In addition, the player has only a finite number n of possible actions, and the game
ends immediately as soon as the player uses either the Crush action or the Abandon
action. The number of actions available to the player is therefore essentially the
number of Toss actions, and the game ends as soon as the player gives up or takes
advantage of the bank, corresponding to a = h+1. This is not an attack on bitcoin’s
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difficulty adjustment formula, as a block-witholding attack might be. The player-
miner is profoundly ”honest”. We therefore consider that we always have a priori
n ≤ 2016 (since a difficulty adjustment takes place every 2016 blocks on Bitcoin).
Let’s describe each action.

• The Toss action corresponds to the fact that the miner persists in mining on
his fork despite a delay on the official blockchain.

• The Crush action corresponds to the fact that the miner has a secret fork
enabling him to gain an advantage over the official blockchain. He then decides
to make it public and pocket all the rewards it contains; he then naturally
resumes his position as an honest miner.

• The Abandon action means that the miner returns to mining on the last block
of the official blockchain, like any honest miner.

In the temporary fork situation we’re considering, a mining strategy is just the
stopping time ξ (bounded by 2016) that specifies the first instant when the miner
returns to mine on the official blockchain. We denote R(ξ) the income earned by the
miner following this strategy. We need to compare R(ξ) with the income the miner
would have earned in ξ if he had mined honestly all along. Given that the miner’s

relative hashing power is q, the latter quantity is worth on average qbE[ξ]
τ0

with τ0 = 10

minutes and b = 3.125 BTC (current value of a coinbase) plus the average value of
transaction fees present in a block. So the key quantity for choosing the ξ strategy

over the honest one is E[R(ξ)] − qbE[ξ]
τ0

. The ξ strategy is preferable to the honest

strategy if E[R(ξ)] − qbE[ξ]
τ0

> 0. The second term −qbE[ξ]
τ0

is then interpreted as a
cost. In this expression, everything happens as if the miner were paying qb every
time a block is discovered. Hence the fact that the player-miner pays a fixed cost to
the croupier, which is q whatever the result of the coin toss. The parameter q is the
probability that the coin will land on Tails, which corresponds to the miner finding a
block before the honest miners.

Definition 2.1. Let JM1(a, h) be the Heads or Tails game described above, where the
player starts from an initial situation in which he has a chip against the bank, which
has h chips. Note also E1(a, h, n, q), the maximum expected pay-off for a player with
a maximum of n possible actions.

Proposition 2.2. The game JM1(0, 0) is a fair game.

Proof. Suppose the player has chosen a strategy and let J1 (resp. J2) be the number
of average chips received in total by the player (resp. the bank) by participating in
the game. The coin toss by the croupier is biased in favor of the bank, we have on
average: J1 = qJ and J = J1+J2. Now qJ is the total cost paid by the player in euros
and J1 is the maximum sum in euros received by the player (in the ultra-favorable
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case where he succeeds in converting all his chips into euros). Therefore, the player’s
maximum net pay-off is zero. □

However, the JM1(a, h) game with a > 0 may be biased. By assumption, we have:

E1(a, h, 0, q) = 0(1)

and for all n ∈ N∗ and a > h,

E1(a, h, n, q) = a(2)

On the other hand, if a ⩽ h, the player-miner has the choice of continuing mining
(action Toss) or giving up (action Abandon). So, for any n ∈ N∗ and a ⩽ h,

E1(a, h, n) = max{0, q · E1(a+ 1, h, n− 1, q) + (1− q) · E1(a, h+ 1, n− 1, q)− q}
(3)

Below is a simple pseudo-code that accurately gives the average maximum gain
E1(a, h, n, q). We use the memoization principle for the sake of efficiency.

function E1(a, h, n, q, memo):

if (a, h, n) in memo:

return memo[(a, h, n)]

if n == 0:

return 0

if a > h:

return a

memo[(a, h, n)] = max(0, q * E1(a + 1, h, n - 1, q, memo) + (1 - q)

* E1(a, h + 1, n - 1, q, memo) - q)

return memo[(a, h, n)]

(maximum average net income E1)

We observe that E1(1, 2, 75, 0.429056) = 4.050134694288943× 10−8 > 0. However,
we are unable to find n such that E1(1, 2, n, 0.429055) > 0. In other words, if q >
42, 91%, the game JM1(1, 2, n) is in favor of the player for n large enough. Therefore,
in the case of a temporary fork, the minimum threshold beyond which a miner a
priori honest miner to insist on mining on his fork even though he’s one block behind
on the blockchain is about 42, 91%. The result is in line with the 36.1% and 45.5%
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bounds obtained in [12] with calculus in their section “The immediate-Release Game”.
Moreover, in a presentation of this article given at the University of Crete in 2019 the
speaker (who is also one of the authors of the article) is more precise and states that
the threshold lies between 42% and 43% (the lower bound 42% is also in the paper)
[12, 13].

3. To be or not to be totally Byzantine?

We now consider another mining problem. At what relative hash power q does it
no longer make sense for a miner to be honest? For a miner, being honest means
always mining on the last block of the official blockchain and always making any
blocks discovered public. Not being honest means the opposite: keeping discovered
blocks secret or not mining on the last block of the official blockchain. The problem
under consideration is fundamentally different from the one previously considered.
The miner is not an honest miner who momentarily becomes “Byzantine” by force
of circumstances. On the contrary, he chooses his camp from the outset (honest or
Byzantine) and never leaves it. What’s more, his mining strategy is not limited in
time. On the contrary, it is unlimited and repetitive. This problem has certainly
already been solved in the general case [19]. The authors recognize a Markov decision
problem which they solve using a solver. They are then confronted with technical
issues, as a priori such a solver can only be used in the case where the number of
system states is finite. We show that it is possible to simplify this problem in the
case where the connectivity of the miner is zero, and that it then resembles a simple
Heads or Tails problem that we solve simply without using a solver. Recall that miner
connectivity is a parameter introduced by [6] and picked up by many authors since
then. For non-specialists, let’s describe the connectivity parameter here.

3.1. Connectivity. Let’s imagine that a miner (an attacker) with a relative hash
power q has already mined a block A of height H, but is keeping it secret because
he is following a deviant mining strategy of block withholding. If the miner learns
from one of his neighboring nodes that a block B of the same height H has just been
discovered, he can retaliate by immediately making his hidden block A public. In
this case, part of the network will learn of A’s existence before B’s, and vice versa.
The network will be divided, with some honest miners looking for a block above A
and others above B.

Connectivity, denoted γ, is a measure of the amount of computing power the at-
tacker diverts to mine his block A. Mathematically, it is defined as the probability
that block A will find its way onto the official blockchain, knowing that honest miners
will find a block of height H + 1. This is a conditional probability.
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In concrete terms, in the situation described above, following the discovery of a
block of height H + 1, following on from blocks A and B, we find ourselves in one of
the following three cases:

• the attacker is the first to discover a block of height H + 1 ;
• the rest of the network discovers a block of height H + 1 above A before the
attacker;

• the rest of the network discovers a block of height H + 1 above B, before the
attacker.

Note that in the second case, block A is somehow saved by the honest miners who
received A before B. The probability of occurrence of the first event is q, that of the
second is γp and that of the third is (1− γ)p with p = 1− q.

The parameter γ measures the attacker’s ability to react. If he is well connected,
he will quickly learn of the existence of a new block before the others and announce
the existence of his own hidden block to the rest of the network. This is a measure
of his ability to create confusion in the network.

Since the network is constantly evolving, it’s an illusion to believe that γ remains
constant over time. However, this is an assumption often made when assessing the
profitability of mining strategies.

3.2. A simplified problem when connectivity is zero. In itself, connectivity
is an attack vector that was not imagined by Satoshi Nakamoto, since it does not
feature in his founding paper. With γ = 1, a miner has no incentive to be honest.
He has no interest in publishing a block he has just discovered. He can simply wait
for another block to be discovered and react then. It is interesting to pose γ = 0
to understand how Nakamoto’s consensus can naturally be faulted without adding
this attack vector. We therefore formulate this hypothesis (γ = 0) and, within this
framework, we seek to find out whether a miner has an incentive to behave honestly
or whether there is a more profitable mining strategy. A mining strategy specifies
the action to be taken by the miner depending on the state of the network. The
chosen mining strategy, whether honest or not, is repetitive. In due course, the miner
will almost certainly return to his starting point and mine on the last block of the
official blockchain. When this happens, the miner is said to have completed a cycle.
During this cycle, we note R the number of blocks added by the attacker to the
official blockchain and H the progression of the height of the official blockchain. In
concrete terms, at any given moment, the attacker has the choice between mining on
his secret fork, overriding the official blockchain when he has the means to do so, or
giving up and returning to mine on the last block of the official blockchain. In reality,
in the general case, he has an additional action at his disposal: the action noted as
“Match” by the authors [19], which consists in revealing a block already mined but
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kept secret by the attacker. However, under our assumption γ = 0, this action is
not possible. Furthermore, the state of the network is normally modeled by a triplet
(a, h, f) where a (resp. h) designates the number of blocks mined by the attacker
(resp. honest miners) on the last fork created and f designates the possibility of
using the Match action or the fact that it is already activated. In the case of γ = 0,
the latter parameter is irrelevant. The state of the network is simply modeled by a
pair (a, h).

3.3. The effect of the difficulty adjustment formula. PnL (Profit and Loss) per
unit of time is the only quantity that makes economic sense. The cost of mining per
unit of time is independent of the mining strategy chosen (keeping blocks secret may
have an impact on the miner’s income, but not on his cost of mining). So, the quantity
that allows us to compare different full time mining strategies is the revenue per unit
of time. This key observation was made in [8], before only the relative proportion of
mined blocks in the official blockchain was used, without justification, as a benchmark
of profitability of the strategy. Only in the long run, after difficulty adjustments these
are equivalent. A difficulty adjustment formula occurs when the official blockchain
grows by 2016 blocks. This has the effect of maintaining an average duration of 10
minutes each time the height function of the official blockchain increases by 1. In these
circumstances, only in the long run, the percentage of blocks mined by the attacker
present in the official blockchain gives the Revenue in the long run. In concrete terms,
when a given mining strategy, or “minning policy”, is modeled by a Markov chain as
in [19], only when the interblock time stabilizes, the measure of revenue per unit of

time is given by E[R]
E[H]

for integrable strategies, i.e. those with finite time expectations

for the cycles for which E[H] < ∞. When the miner mines honestly, this quantity is
equal to the miner’s relative hash power, which we have always denoted q. This leads
to the following proposition (Corollary 10.1 of [19], which is a Corollary of the more
general Proposition 3.6 of [8]).

Proposition 3.1. An admissible mining strategy is more profitable than the honest
strategy if and only if E[R− qH] > 0.

As in the previous section, we can interpret the second term (here -qH) as a cost.
But unlike in the previous section, the miner no longer pays q each time a block
is discovered (by him or the rest of the network), but only each time the official
blockchain progresses. This leads us to consider another version of the Heads or Tails
game.

3.4. Another Heads or Tails game. During the course of the game, the player
regularly accumulates chips and can, under certain constraints, convert them into
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cash (euros, let’s say). At any given moment, the player has a maximum of three
possible actions.

Toss: A croupier tosses a coin rigged in favor of the bank. The probability of
getting Tails is q.

• If the result is Tails, the player wins a chip and pays nothing.
• If the result is Heads, the bank wins a chip and the player pays q to the
dealer.

Crush: This action is only possible if the player (resp. the bank) has a (resp.
h) chips with a > h. In this case, the bank loses all its chips, the player loses
h+ 1 chips but wins h+ 1 euros and also gives q euros to the dealer. His net
result is therefore h+ 1− q euros.

Abandon: The bank and the player lose all their chips. This action costs the
player nothing.

There are several differences with the game studied in the previous section. Firstly,
the Crush and Abandon actions do not end the game. The player can use them and
continue playing if he has enough actions available. Secondly, the Crush action does
not earn exactly h+1 euros as before, but h+1−q euros. Last but not least, the player
doesn’t always pay the dealer! This is only the case when the toss is unfavorable, i.e.
when the result is Heads and the banker wins a chip. If the result is Tails, he wins a
chip as before, but gives nothing!

Here again, a few comments are in order.

• A coin toss by the dealer is equivalent to the discovery of a block by the honest
miner or miners.

• The Toss action is equivalent to the miner choosing to mine secretly and wait
for a block to be discovered. If the result is Heads, then the official blockchain
advances by one block. The height function therefore increases by 1, resulting
in a cost q paid by the player in this case. If, on the other hand, the result
is Tails, the block discovered by the miner is kept secret. The height of the
official blockchain does not increase. Hence a zero cost.

• The Crush action means that the miner replaces the last h blocks of the
official blockchain with his own. For this action to be possible, the miner
must reveal one more block (h + 1 in all), which increases the height of the
official blockchain by 1. The miner then gains the reward contained in h + 1
blocks, and at the same time, the height of the official blockchain increases by
1. Hence a net gain of h+ 1− q.

• The Abandon action is equivalent to the miner dropping his secret fork and
returning to mine on the last block of the official blockchain. He neither gains
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nor loses anything with this action, as the height of the official blockchain
remains unchanged.

Definition 3.2. Let JM2(a, h) denote the previous game in which the player starts
from a situation in which he owns a chips against the bank, which owns h chips. Let
E2(a, h, n, q) also be the maximum payoff expectation of the player starting from an
initial situation in which he has a chips and the bank has h, under the assumption
that he has at most n possible actions.

Proposition 3.1 can be reinterpreted.

Proposition 3.3. There is a more profitable strategy than the honest one if and only
if the JM2(0, 0) game is biased in the player’s favor.

We have the following relations (a, h) ∈ N2 and q ∈ [0, 0.5[,

E2(a, h, 0, q) = 0(4)

For any n ∈ N∗ and a > h, if the player decides to use the to use the Crush action,
then the state of the network changes from (a, h) to (a − h − 1, 0) and the game
continues. Thus,

E2(a, h, n, q) = max

{
(h+ 1)− q + E2(a− h− 1, 0, n− 1, q),

q · E2(a+ 1, h, n− 1, q) + (1− q) · (E2(a, h+ 1, n− 1, q)− q)

}
In the case where n ∈ N∗ and a ⩽ h, the player has the choice between continuing

to mine (action Launch) or abandoning (action Abandon). This latter action does not
end the game but leads the player to the state (0, 0) with one less action. Therefore,
for all n ∈ N∗ and a ⩽ h,

E2(a, h, n, q) = max

{
E2(0, 0, n− 1, q),

q · E2(a+ 1, h, n− 1, q) + (1− q) · (E2(a, h+ 1, n− 1, q)− q)

}
The advantage of this approach is that we can avoid relying on a Markov deci-

sion solver. Below is a very simple pseudo-code that precisely provides the maximal
expected gain E2(a, h, n, q) through memoization.
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function E2(a, h, n, q, memo):

if (a, h, n) in memo:

return memo[(a, h, n)]

if n == 0:

memo[(a, h, n)] = 0

return 0

if a > h:

memo[(a, h, n)] = max((h + 1) - q + E2(a - h - 1, 0, n - 1, q, memo),

q * E2(a + 1, h, n - 1, q, memo) + (1 - q) * (E2(a, h + 1, n - 1, q,

memo) - q))

else:

memo[(a, h, n)] = max(E2(0, 0, n - 1, q, memo),

q * E2(a + 1, h, n - 1, q, memo) + (1 - q) * (E2(a, h + 1, n - 1, q,

memo) - q))

return memo[(a, h, n)]

(Maximum average net income E2)

Note that E2(0, 0, 146, 0.329393) = 4.4530581139179404 × 10−8 > 0. However, it
is impossible to find an integer n such that E2(0, 0, n, 0.329392) > 0. Therefore, the
threshold beyond which a miner with zero connectivity is incentivized to choose a
deviant strategy is approximately 32.94%. This result coincides with that obtained
with the Python implementation of the article [19], see [15]. Note that this threshold
is not far from the 1

3
threshold for the classical selfish mining strategy. This also

suggests that the selfish mining strategy is not far from the optimal strategy for low
q even if it doesn’t highlight the fact that sometimes the miner may have to continue
his attack while lagging behind the official blockchain, see [17] and [9] for the analysis
of these Stubborn mining strategies.

4. Honesty is the best policy.

In this section, we consider the case where the Bitcoin difficulty adjustment formula
has been modified, and we theoretically demonstrate, based on a variation of the
Heads or Tails game, that the best strategy is still the honest strategy when γ = 0.
The general result without assumptions on γ has also been proven in [11]
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4.1. A new difficulty adjustment formula. Today, the nodes in the Bitcoin net-
work do not transmit orphaned blocks. But let’s imagine that they could. Let’s even
imagine that miners are incentivized to do so by modifying the rule that governs the
official blockchain. In the event of a tie between two blockchains, we should select
the one that contains the most proof of work, taking into account orphaned blocks as
well, provided that they have an ancestor in the considered blockchain. This would
be a kind of reinforcement of Satoshi Nakamoto’s rule. In case of another tie between
two blockchains with the same characteristics, a node would select, as it does today,
the one that was transmitted to it first.

In this case, the key quantity for comparing two mining strategies would no longer

be E[R]
E[H]

but E[R]
E[D]

whereR would still represent the number of blocks added to the official

blockchain by the miner during a cycle and D would represent the progression of the
so-called difficulty function during the same period (authors in [2] introduced the
concept of “difficulty function”). We would have D = H +U where U is the number
of orphan blocks mined during a cycle. The effect of the new difficulty adjustment
algorithm would be to impose a duration of 10 minutes on each progression of the
difficulty function (instead of the height function as now). As before, this would mean
that a mining strategy would be more profitable than the honest strategy if and only
if E[R − qD] > 0 where D here represents the progression of the difficulty function
over a cycle, which leads us to consider another game of Heads or Tails.

4.2. A third Coin Toss game. During this game, the player regularly accumulates
chips that, under certain constraints, they can convert into cold hard cash (let’s say
euros). At any given moment, the player has at most three possible actions:

Toss: A croupier tosses a coin rigged in favor of the bank. The probability of
getting Tails is q.

• If the result is Tails, the player wins a chip and pays nothing.
• If the result is Heads, the bank wins a chip and the player pays q to the
dealer.

Crush: This action is only possible if the player (or the bank) has a (or h) chips
with a > h. In this case, the bank loses h chips, the player loses h + 1 chips
and wins h+ 1 euros, but he must also give the dealer q (h+ 1). Hence, their
net result is (1− q).(h+ 1) euros.

Abandon: The bank and the player lose all their chips. This action costs the
player nothing.

Definition 4.1. We denote by JM3(a, h) the game described above, where the player
starts from a situation where they have a chips against h for the bank, (a, h) ∈ N2,
and let E3(a, h, n) be the maximal net income of the player playing JM3(a, h) and
having at most n actions available.
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The only difference between JM2 and JM3 is the consequence of the Crush action.
In JM3, the player earns less than in JM2. Indeed, in JM3, the player must pay
for the official blockchain to advance by 1 as in JM2, but he must also pay for the
creation of h orphan blocks (the h blocks of honest miners that have been replaced
and made visible to all). Hence a cost equal to q.(h+1) as a result of this action and
therefore the fact that the gain is now only (1− q).(h+ 1) euros which is clearly less
than h+ 1− q euros as in the previous game.

Proposition 4.2. The JM3(0, 0) game is a fair game.

Proof. Suppose the player has chosen a strategy and let J1 (resp. J2) be the average
number of chips received in total by the player (resp. the bank) while participating
in the game. As the coin tossed regularly by the dealer is biased in favor of the bank,
we have on average: J1 = qJ and J2 = pJ with p = 1− q and J = J1+J2. Therefore,
pJ1 = qJ2. Now, pJ1 is the maximum sum received by the player in euros (i.e. the
most he wins in the ultra-favorable case where he manages to convert all his chips
into euros) and qJ2 is the cost in euros paid by the player. Therefore, the player’s
maximum net gain expectation is zero. □

We can be more precise and show the following result.

Theorem 4.3. For all integers a, h, n, we have E3(a, h, n) ⩽ p · a with p = 1− q.

Proof. The result is true if n = 0. Assume it to be true at rank n− 1 ⩾ 0. Then,

qE3(a+1, h, n− 1) + p · (E3(a, h+1, n− 1)− q) ⩽ q · p · (a+1)+ p · (p · a− q) = p · a

So, if a > h,

E3(a, h, n) = max

{
(h+ 1) · (1− q) + E3(a− h− 1, 0, n− 1),

qE3(a+ 1, h, n− 1) + (1− q) · (E3(a, h+ 1, n− 1)− q)

}
⩽ max{p(h+ 1) + p(a− h− 1), pa} = pa
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and if a ⩽ h,

E3(a, h, n) = max

{
E3(0, 0, n− 1),

qE3(a+ 1, h, n− 1) + (1− q) · (E3(a, h+ 1, n− 1)− q)

}
⩽ max{0, pa} = pa

Hence we get the result. □

Hence the corollary which confirms the previous result

Corollary 4.4. For all n ∈ N, E3(0, 0, n, q) = 0.

Thus, the game of JM3(0, 0) modified mining is unbiased, corresponding to the fact
that the best mining strategy is the honest one. The result has been demonstrated
for γ = 0 but can also be demonstrated for any γ using more powerful tools with
martingales [11].

5. Conclusion

In this article, we aim to calculate different thresholds in terms of relative hash
power, beyond which a miner might be tempted to engage in a deviant mining strat-
egy. In each case, we use a simple coin-toss model. Each time, we calculate the
player’s maximum expected payoff under the constraint of a limited number of pos-
sible actions, using a very simple script. The results are classic. This approach also
allows us to qualitatively understand why the current difficulty adjustment formula
in Bitcoin is flawed and opens the door to potential attacks. It also demonstrates
how this problem can be corrected.
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