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ABSTRACT: A cooperative NHC/nickel catalytic methodology has been developed for the synthesis of ketones employing aromatic 
aldehydes and tertiary alkyl iodides. All key steps of the postulated catalytic cycle were validated with comprehensive stoichiometric 
and electrochemical studies, including reduction of NiII by the deprotonated Breslow intermediate, Ni0 promoted halogen-atom 
abstraction to generate transient tertiary alkyl radicals and coupling between the latter with the persistent acyl thiazolium radical 
intermediate. Such broadly proposed and accepted, yet elusive, acyl thiazolium radical intermediate has been isolated and studied 
by a single-crystal X-ray diffraction study.

N-heterocyclic carbenes (NHC)1 are long-known organocatalysts, which can promote the umpolung of aldehydes through the formation of 
enaminols AH, so-called Breslow intermediates.2,3 Recently, the field witnessed an exciting revival with numerous reports of NHC-catalyzed 
radical transformations of aldehyde derivatives.4 The key step of these processes usually involves the reductive activation of a substrate 
by single electron transfer (SET) from electron-rich enolates A–,5 which can feature reducing potentials as low as -2 V vs SCE (Figure 1a).6 
In line with this order of magnitude, the reductive activation of substrates through simple NHC-catalysis has culminated to date with io-
doarenes (Ered(PhI) ca. -2 V vs SCE7).8-10 Very recently, primary and secondary unactivated alkyl iodides and bromides (Ered < -2 V) have been 
acylated via NHC organocatalysis.11,12 Note that in the case of these substrates, an SN2 reaction with Breslow intermediates is also possible 
and it is likely that both ionic and radical pathways co-exist. In any case, tertiary alkyl halides remain out of reach and therefore represent 
the new redox frontier for NHC-catalyzed radical activation of electrophiles.13-15 
We considered to run cooperative catalysis employing Ni0 complexes16 that can advantageously activate tertiary alkyl iodides to perform 
radical transformations.17 In these cases, closure of the catalytic cycle requires the reduction of the oxidized Ni complex with a stoichio-
metric sacrificial electron donor.18 Herein, we considered that the latter could be replaced by catalytically generated enolates A-. In situ 
generated persistent radical A• would then cross-couple with transient radical R• (Figure 1b).19 Metal cooperative catalysis have already 
been used to extend the scope of NHC organocatalysis, but most transformations involve either two-electron processes with metals,20,21 
or successive SET events.22,23 Evidences for NHC-catalyzed SET from Breslow derivatives to metals that trigger pertinent radical formations  
are limited to few photocatalyzed transformations,24-26 and the  recent report of a cooperative NHC/Pd catalyzed alkylation of aldehydes 
with tertiary alkyl bromides.27,28 We are not aware of any catalytic system for the direct formation of ketones from tertiary alkyl iodides 
and aldehydes.  

 
Figure 1. (a) Electrochemical series in NHC radical catalysis and (b) the working hypothesis of a cooperative NHC/M redox system. 
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We first examined the ability of the ubiquitous [NiBr2(dtbpy)] (dtbpy = 4,4'-di-tert-butyl-2,2'-bipyridine) system17 to activate tert-butyl 
iodide (2a). Cyclic voltammograms (CV) of the Ni complex featured intertwined reversible reductions between -1 and -1.5 V and a catalytic 
wave was observed in this range in presence of 2a (Figure 2a). As the ligand plays a major role on the redox properties of nickel complexes,29 
we also considered a readily accessible phenyl substituted Xantphos ligand.30,31 As shown in Figure 2b-d, the cyclic voltammogram of 
[NiBr2(Xantphos)] showed two well-separated reversible reductions at ENi(I)/Ni(II) = -0.4 V vs SCE and ENi(0)/Ni(I) = -0.9 V, respectively. In the 
presence of tBuI a catalytic wave at the Ni0/NiI reversible reduction wave was clearly observed. It is likely that a halogen-atom abstraction 
event proceeds with the release of tBu•.17,31,32 In any case, both systems showed promising catalytic activity (vide infra). 
 

 
Figure 2. Cyclic voltammograms (CV) of (a) [NiBr2(dtbpy)] and (b) [NiBr2(Xantphos)] in the absence (in black) and in the presence (in red) 
of tert-butyl iodide. The CV of tBuI is shown in green. For clarity CVs of [NiBr2(Xantphos)] without tBuI are also shown (c and d). In all cases, 
1 mM solution of [Ni] employing 0.1 M of nBu4NPF6 in acetonitrile electrolyte; 100 mV/s rate (except for (d) where CVs at different scan 
rates are shown). 
 
We chose thiazol-2-ylidene NHC1, an efficient organocatalyst for a plethora of radical NHC-catalyzed transformations of aldehydes.14,15 

Indeed, we showed that it yields Breslow-type enolates with oxidation potentials ca. -1.4 V vs SCE,6 a largely sufficient value for the reduc-
tion of the targeted NiI complex at ENi(0)/Ni(I) = -0.9 V. Thus, optimized reaction conditions for the coupling between 4-chlorobenzaldehyde 
(1a) and tBuI (2a) leading to 3aa in 78% NMR yield were found employing 25 mol% of thiazol-2-ylidene precursor NHC1-HPF6,33 5 mol% of 
in situ generated nickel Xantphos complex and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as base in THF at 45 °C (Table 1, entry 1). 
 
Table 1. Optimization of the reaction conditions.a 

 
Entry Variation from the standard conditionsb Yieldc 

1 None 78% 
2 Table S1: 15 mol% NHC1, 30 °C 57% 
3 Table S1: 15 mol% NHC1, 30 °C, solvents 3-36% 
4 Table S1: 15 mol% NHC1 52% 
5 Table S2: In the absence of NHC1 or Ni 0% 
6 Table S3: 15 mol% NHC1, N- or P- ligands 13-56% 
7 Table S4: Different ratios of reagents 24-71% 
8 Table S5: Carbenes NHC2-8 I/O NHC1 0-50% 
9 Table S6: Different [Ni] I/O NiBr2(DME) 34-70% 
10 Table S7: Different bases I/O DBU 0-65% 

aStandard reaction conditions: 1a (0.3 mmol), 2a (0.25 mmol), NHC1-HPF6 (0.0625 mmol), NiBr2(DME) (0.0125 mmol), Xantphos (0.0125 mmol) and DBU 
(0.3 mmol) in 1 mL of dry THF under argon atmosphere for 16 h at 45 °C. bSee Table S1-S7 in SI. cNMR yields for 3aa are given employing 1,3,5-trimethox-
ybenzene (TMB) as internal standard.  
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The screening of the reaction conditions started employing 15 mol% of NHC1 at 30 °C with an encouraging NMR yield of 57% of the desired 
ketone 3aa (entry 2 and SI for further details). The use of other solvents such as dichloromethane, acetonitrile, 1,4-dioxane or dimethyl-
sulfoxide did not lead to higher yields (entry 3). Rising the temperature to 45 °C gave a similar NMR yield (entry 4: 52 vs 57%); however, 
the formation of other side products (such as benzoin and/or benzil) was avoided (see SI). As expected, both the NHC and the nickel 
complex are required to obtain the desired ketone (entry 5). Working at 45 °C the screening of different N- and P-donor ligands was 
accomplished (entry 6). 2,2’-Bipyridine-based ligands (including dtbpy) are less efficient than phosphine ligands, Xantphos being optimal. 
The use of NHC1 as ligand did not lead to a higher yield (Table S3, entry 8). The ratio between reagents 1a and 2a was also studied with an 
optimal ratio of 1.2/1 (entry 1 vs 7). An increase of the NHC loading to 25 mol% had a significant impact in the yield, in contrast to [Ni] 
loading, suggesting that the formation of the enolate is a limiting step. Among the different NHCs tested the most efficient is NHC1, a 
thiazol-2-ylidene which possesses a seven-member ring in the backbone and 2,6-diisopropylphenyl (Dipp) N-substitution (entry 1 vs 8). 
Several nickel sources were also tested (entry 9). The in situ formation of the precatalyst remained superior to the isolated one (60%) and 
a Ni0 source such as Ni(COD)2 was also fairly active34 as expected from cyclic voltammetry. We also found that cesium and potassium 
carbonates afford 63-65% yields, while almost no reaction was observed with the sodium or lithium salts (entry 10). This is in line with 
previous studies, which indicated that the oxidation potential of Breslow enolates increases with the hardness of the counter-cation.6,35 
Note that, DBU which was found optimal for our reaction, leads to H-bond stabilized enolates with Eox ca. -1 V vs SCE, a value that still 
matches with the reduction of NiI species at -0.9 V. 
 
Table 2. Scope of the reaction.a 

 
aStandard reaction conditions: 1a (1.2 mmol), 2a (1 mmol), NHC1-HPF6 (0.25 mmol), NiBr2(DME) (0.05 mmol), Xantphos (0.05 mmol) and DBU (1.2 mmol) in 
4 mL of dry THF under argon atmosphere for 16 h at 45 °C. bIsolated yield. cNMR yields are given employing TMB as internal standard; in these cases, the 
scale was 0.25 mmol for 2a.  
 
Under these optimized conditions, aromatic aldehydes led to a variety of ketones in moderate yields (Table 2). Ortho-substitution is detri-
mental in comparison to meta and para positions (3ca vs 3aa & 3ba) likely due to steric effects. Hydrogen, ester, fluoro, trifluoromethyl 
and cyano containing substrates reacted smoothly leaving little starting material unreacted (3da-ha). Exceptions were the nitro group (3ia) 
and bromo (3ja), probably due to incompatibility with nickel catalysis. Electron donating groups such as methyl (3ka) or methoxy (3la) gave 
lower yields. 2-Naphthyl (3ma) and thiophenyl (3na) are compatible, while pyridyl (3oa and 3pa) derivatives are not due probably to nickel 
poisoning (note that they are preferred substrates in NHC/Pd catalysis).26 Cinnamaldehyde (3qa) and aliphatic (3ra) aldehydes did not lead 
to ketones. Then, tertiary alkyl iodides were screened. Relatively low hindered dimethyl substituted alkyl iodides led in moderate yields to 
the corresponding ketones 3ab-ad. In the case of 2c and 2d, their respective elimination olefin products were observed during 1H NMR 
analysis, suggesting a competing decomposition reaction of tertiary alkyl iodides which is a clear limitation of this methodology. In order 
to discard a putative mechanism via olefin intermediates we confirmed that methyl citronellate (7) did not lead to ketone 3af under stand-
ard conditions (Scheme 1c, vide infra). In the same line, more sterically encumbered substrates such as 2e and 2f gave poor results (9% 
3ae and 0% 3af, respectively). Also, iodocyclohexane (2g) and 1-iodobutane (2i) were tested. In both cases, they were consumed leading 
to complex mixtures where the corresponding ketones 3ag and 3ah were not present. In fact, the CVs of [NiBr2(Xantphos)] in their presence 
showed catalytic waves followed by EC processes (see SI), suggesting further transformations and avoiding cooperative catalysis. Finally, 
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tert-butyl bromide gave only traces of 3aa even if tBuBr is not activated by Ni0 as observed by CV. Overall, the scope of the reaction seems 
to be limited to meta- and para-substituted aromatic aldehydes and sterically unhindered substituted tertiary dimethyl-iodomethanes. 
To shed light on the mechanism, we run a couple experiments to proof the generation of transient radicals. Addition of TEMPO led to the 
formation of 4a, but trapping of transient tBu• leading to 4b did not take place (Scheme 1a). The reduction of TEMPO by enolate A-36 is 
probably faster than the reduction of nickel avoiding its cycle to turn. In contrast, addition of styrene (5) led to the corresponding radical 
relay product 6 which was isolated in moderate yield, supporting the generation of tBu• (Scheme 1b).15b  
 

 
Scheme 1. Indirect investigations on transient radicals: (a) reaction in the presence of TEMPO; (b) radical relay with styrene; and (c) control 
test with olefin 7. 
 
In situ EPR analysis of a catalytic run proved the accumulation of persistent radical A• in the medium (Scheme 2a). Its experimental X-band 
EPR spectrum matches well with the one found after bulk electrolysis in our previous work.6 Encouraged by its persistency, [A+][PF6

-] was 
reduced employing half equiv. of TDAE and radical A• was isolated as a dark red powder and characterized by EPR (Schemes 2b-c). We 
obtained suitable single-crystals of radical A• for an X-ray diffraction study (Scheme 2d). N1, C1, C2, and O1 atoms are coplanar (dihedral 
angle of 3.8°). Besides, the relatively short C1-C2 (1.424(2) Å), long N1-C1 (1.380(1) Å) and C2-O1 (1.251(1) Å) bonds suggest delocalization 
of the electron along the 𝜋-system, which is reminiscent of related analogues.5,9,37,38 DFT calculations at the M06/6-311g++(d,p) level con-
firmed the planar structure and the SOMO along the 𝜋-system (Scheme 2e). With radical A• in hands, we attempted the cross-coupling 
reaction of radicals. Satisfyingly, reaction of A• with Ni(COD)2/Xantphos34 in the presence of 2a led to 3da in 30% yield (Scheme 2b). 
 

 
Scheme 2. Mechanistic studies with persistent radicals: (a) in situ EPR analysis of a catalytic test; (b) synthesis of A• and trapping with tBu•; 
and analysis of A• by (c) EPR; (d) single-crystal X-ray diffraction; and (e) DFT. 
 
Finally, we considered the missing pieces of the catalytic puzzle: the two SET events for the generation of Ni0 from NiII and NiI complexes. 
Catalytically relevant enolate [DBUH+][A-] was prepared in the electrochemical cell via bulk electrolysis upon reducing [A+][PF6

-] and con-
secutive addition of [DBUH+][PF6

-].6 [DBUH+][A-] has a characteristic absorption band at 390 nm (Figure 3, spectrum in blue). After addition 
of excess of [NiBr2(Xantphos)] (Figure 3a) the UV-visible spectrum instantaneously changed showing two bands corresponding to radical 
A• (575 nm), and excess of [NiII] complex (410 nm). Addition of a sub-stoichiometric amount of [NiII] (Figure 3b) led to some unreacted 
[DBUH+][A-] (390 nm), A• (575 nm) and formation of a light brown powder (tentatively a [Ni0] complex).39 In addition, A- is also able to 
reduce electrochemically generated NiI leading to Ni0 and A• (see Figure S12 in the SI). These results suggest that two equivalents of 
[DBUH+][A-] (Eox = -1 V vs SCE)6 are able to reduce NiII to Ni0 and generate two equiv. of A•.40   
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Figure 3. Spectroscopic studies for disclosing SET events: (a) NiII reduction by A-; and (b) NiI reduction by A-. 
 
In conclusion, a catalytic cooperative NHC/Ni radical strategy has been developed for the unprecedented coupling between aryl aldehydes 
and tertiary alkyl iodides leading directly to ketones. Importantly, the combination of reactivity (including the isolation of the omnipresent, 
yet elusive, Breslow-type radical), electrochemical and spectroscopic studies fully validated the conceptual mechanism and demonstrate 
that, indeed, NHC and nickel catalytic cycles merge via SET events. We plan to apply this rational approach to other cooperative strategies. 
On the basis of solid electrochemical data, on-going work is focusing on the activation of more challenging redox non-accessible substrates, 
beyond the intrinsic limitations of NHC radical catalysis. 
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