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Abstract We report improved protocols for the synthesis of thiazolium precatalysts from primary amines, carbon 
disulfide and a-halogenoketones. For N-alkyl subs=tuted deriva=ves, yields for the corresponding 
thiazolethiones can be drama=cally improved when isola=ng the intermediate dithiocarbamates. In most cases, 
meta-chloroperbenzoic acid can replace advantageously H202 in ace=c acid for the oxida=on of thiazolethiones 
into thiazoliums. This approach was applied to the synthesis of a thiazolium featuring a 2-adamantyl N-
subs=tuent, the corresponding persistent carbene and its dimer. 
 
Thiazolium salts,1 including thiamine, an important biological co-factor, are acidic forms of thiazol-2-ylidene N-
heterocyclic carbenes (NHC). As such, they are precursors of efficient organic catalysts for a variety of reac=ons 
involving the umpolung of aldehydes and their deriva=ves.2-4 They can be obtained through two main synthe=c 
routes.5,6 Small N-alkyl subs=tuents can be introduced by quaterniza=on of thiazoles. However, this requires 
harsh condi=ons and strong electrophilic alkyla=ng agents, due to the low nucleophilicity of thiazoles.7 
Alterna=vely, bulkier alkyl groups and aryl N-subs=tuents are available through a variant of the Hanztsch 
synthesis8 of thiazoles. It consists in the condensa=on of �-halogeno ketones with in situ formed sodium 
dithiocarbamates, followed by oxida=on of the resul=ng thiazoline-2-thione (Scheme 1). This is the classical 
approach for popular precatalysts with N-Aryl subs=tuents, such as 2,6-bis(diisopropyl)phenyl (Dipp) or 2,4,6-
trimethylphenyl.  Reported overall yields are usually low to moderate.9,10  

 

 

Scheme 1: Reported overall yields for the two-step synthesis of typical thiazolium precatalysts: one-pot reac9on of primary 
amines, a-halogenoketones and CS2 to afford N-heterocyclic dithiocarbamates, followed by H2O2 oxida9on and anion 
metathesis. 
 
 
In turn, we faced the limita=ons of this synthe=c route in the course of our study of redox intermediates in NHC-
catalysis.11 Among other targets, we were interested in deriva=ves stemming from a thiazolium featuring a 
neopentyl N-subs=tuent (Np), which was recently introduced by the group of Ohmiya as a privileged organic pre-
catalyst for the synthesis of dialkylketones from alipha=c aldehydes.12,13 This thiazolium was available from 
neopentylamine following the classical two-steps “Hantzsch” approach, but in only 12% overall yield.12a Although 
sufficient for cataly=c uses, such a low yield presented a challenge for further deriva=za=on of this compound 
on the gram scale. Herein, we report an improved protocol. It includes the isola=on of the intermediate 
dithiocarbamate salt and a modified oxida=on step, which affords this compound in a rewarding overall yield of 
56%. Furthermore, other thiazoliums are usually obtained in similar or beaer yields than previously reported in 
the literature. Our approach was also applied to the synthesis of a previously undisclosed thiazolium salt 
featuring a 2-adamantyl N-subs=tuent, the corresponding persistent NHC and its dimer.  
The reported one-pot procedure afforded thiazoline-2-thione 2a in 20% yield from neopentylamine, CS2 and 2-
bromocycloheptanone9d in presence of sodium hydroxide, via the transient forma=on of dithiocarbamate 1a. 
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Oxida=on of 2a with H2O2 in ace=c acid, followed by anion metathesis, yielded thiazolium 3a in 61% yield. Thus, 
we tried to improve both steps, hoping of increasing the low 12% overall yield (Scheme 2). 
First, we considered that the known instability of the in-situ formed dithiocarbamate salts 1a in basic media14 
could be the reason for the low yield of the one-pot synthesis of 2a. Therefore, we prepared the 
triethylammonium salt of 1a, which was isolated from the reac=on of neopentylamine with CS2 in the presence 
of Et3N in diethyl ether in a nearly quan=ta=ve yield (Scheme 2).15 Treatment of this salt with 2-
bromocycloheptanone in the presence of hydrochloric acid yielded the thiazoline-2-thione 2a in 86% yield. 
Second, we looked for an alterna=ve to H2O2 in ace=c acid for the oxida=on of 2a and considered to adapt a 
reported procedure for the oxida=on of imidazole-based thiones with metachloroperbenzoic acid (m-CPBA).9a,16 
Whereas very poor yields were obtained in presence of perchloric or tetrafluoboric acids, addi=on of m-CPBA to 
a solu=on of 2a and hexafluorophosphoric acid in THF at -78°C led efficiently to the forma=on of the 
hexafluorophosphate salt of thiazolium 3a, which was isolated in 69% yield. Although this procedure only 
allowed for a slight improvement of the yield in this case, it was found more convenient and safer, as it avoids 
the need to evaporate large amounts of ace=c acid and the remaining slight excess of peracid could be easily 
monitored and quenched with sodium sulfite prior further work-up (see Supplementary Informa=on). This three-
steps synthesis of 3a•PF6 could be scaled up to 5 g with an overall yield of 56%.17 

 

 
Scheme 2: Improved protocols for the synthesis of typical thiazolium precatalysts with N-alkyl (A) and bulky N-aryl 
subs9tuents (B). 
 
 
These procedures worked as well for the synthesis of thiazoliums 3b-c from other typical �-halogeno ketones, 
and thiazoliums 3d-e featuring secondary alkyl N-subs=tuents, which cannot be accessed through quaterniza=on 
of the corresponding thiazole. Of note, the condensa=on of dithiocarbamate 1e with 1-chlorobutan-2-one to 
afford 2e (with a 2-adamantyl N-subs=tuent) required refluxing the compound in the presence of para-
toluenesulfonic acid in toluene and azeotropic dis=lla=on of water with a Dean Stark apparatus. Unfortunately, 
even the laaer procedure failed to afford thiazoline-2-thione 2g with a bulkier 1-adamantyl N-alkyl group in a 
decent yield. In addi=on, thiazolium 3f (with a N-phenyl subs=tuent) was obtained only in 20% overall yield. 
Similarly, we failed to properly isolate dithiocarbamates 1h-j, stemming from bulkier anilines with Dipp and Mes 
groups, which are ubiquitous subs=tuents in thiazolium-based organocatalysis. Thus, thiazoline-2-thiones 2h-j 
were synthesized in good yields from the classical reported one-pot procedure.9d However, in these cases, 
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subsequent oxida=on with m-CPBA proceeded in far beaer yields than the previously reported H2O2/AcOH 
approach and thiazoliums 3h-j were isolated in good to excellent yields.       
Most thiazol-2-ylidenes NHCs readily dimerize. In 1997, Arduengo reported the first observa=on of the carbene, 
which was generated by deprotona=on of the Dipp N-subs=tuted thiazolium 3h.2a,18 This persistent NHC could 
be isolated and even crystallized, but it ul=mately dimerized in solu=on within two days. The dimeriza=on of the 
NHC with slightly smaller Mes group was considerably faster and its observa=on was only possible at 0 °C. Thus, 
the synthesis of thiazolium 3e with a bulky 2-adamantyl N-subs=tuent provided us with a rare opportunity to 
study a novel persistent thiazol-2-ylidene. We reacted a suspension of 3e in C6D6 with an equivalent of potassium 
hexamethyldisilazide (Scheme 3). The NMR spectra were consistent with the forma=on of the corresponding 
NHC 4e. In par=cular, 13C NMR revealed a very high field singlet at 246.2 ppm, which is expected for a carbenic 
carbon of thiazol-2-ylidenes. Carbene 4e decayed within few hours. Its dimer 5e was isolated and suitable single 
crystals were obtained from a saturated solu=on of toluene at -20 °C. Electron-rich olefins stemming from the 
dimeriza=on of thiazolylidenes oken feature a variety of geometrical distor=ons around the C=C double 
bond.2a,11b,19 Dimer 5e provided another example of unusual topology. Indeed, X-ray diffrac=on study revealed 
the non-planar structure of the E-isomer with syn out-of-plane bending and pronounced pyramidaliza=on at the 
nitrogen atoms. An electrochemical study showed that 5e is a rather weak reductant, which undergoes a 
reversible two-electrons oxida=on at E = -0.3 V vs SCE (see Suppor=ng Informa=on). This was interpretated as 
the result of the easy hybridiza=on of nitrogens in 5e and the ensuing destabilisa=on of radical 5e•+. In marked 
contrast the dimer 5h stemming from 3h, features N-Dipp subs=tuents, which force the nitrogen atoms into a 
planar geometry and result in a remarkably stable radical 5h•+.11b 

 
Scheme 3: Genera9on of persistent NHC 4e, forma9on and representa9on of the X-ray structure of its dimer 5e  
In conclusion, the isola9on of the intermediate dithiocarbamates can drama9cally improve the yield of the synthesis of 
thiazolethiones from carbon disulfide and a-halogenoketones in the case of alkyl primary amines.  
 
 
However, ter=ary alkyl groups remain out of reach of this methodology and aryl groups are beaer introduced 
using the former one-pot procedure. Furthermore, in the final oxida=ve step, meta-chloroperbenzoic acid 
performs beaer than H202 in ace=c acid, including with bulky aryl N-groups. Overall, these updated protocols 
improve the previously reported approaches, as they allow for the synthesis of key organic pre-catalysts in good 
to excellent yields on mul=gram scales. 
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