
HAL Id: hal-04570639
https://hal.science/hal-04570639

Submitted on 7 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Prime 2-structures
Pierre Ille

To cite this version:

Pierre Ille. Prime 2-structures. 19 (1), 2024, �10.55016/ojs/cdm.v19i1�. �hal-04570639�

https://hal.science/hal-04570639
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr


Volume 19, Number 1, Pages 1–227
ISSN 1715-0868

PRIME 2-STRUCTURES

PIERRE ILLE

This work is licensed under a Creative Commons “Attribution-
NoDerivatives 4.0 International” license.

2010 Mathematics Subject Classification. 05-02.
Key words and phrases. 2-structure, module, prime.

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
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Preface

My purpose is to present the main results on prime 2-structures. We
consider primality in terms of the usual modular decomposition. We are
mainly interested in the downward hereditary properties of primality. The
first six sections are devoted to finite prime 2-structures whereas the last
four sections are devoted to infinite prime 2-structures. The main focus is
to establish results from the literature proven for graphs, digraphs, binary
relational structures, etc., in the setting of 2-structures.

In section 1, we provide the definition of a 2-structure. The 2-structures
are the suitable generalizations of usual structures in graph theory, such as
graphs and digraphs, to study the modular decomposition. In a 2-structure,
the link between two vertices is not an edge or an arc, but a type of links,
that is, an equivalence class of ordered pairs of distinct vertices. In this
manner, a 2-structure is defined as an equivalence relation on the set of
ordered pairs of distinct vertices. This equivalence relation is sufficient to
define the notion of a module.

In section 2, we define different types of connectedness for 2-structures.
They generalize known connectedness for graphs and tournaments. We ex-
amine the components which are generated by these different types of con-
nectedness. This examination leads us to introduce the notions of a module,
a modular cut, and a strong module. These three notions induce three dif-
ferent types of primality. We study these three types of primality, and we
conclude with Gallai’s decomposition theorem.

In section 3, we examine the prime 2-substructures in a prime 2-struc-
ture. First, we prove that every vertex is covered by prime 2-substructures
of size 3, 4, or 5. Second, we introduce the outside partition associated
with a prime 2-substructure. The outside partition allows us to build from
a prime 2-substructure a new prime 2-substructure by adding two vertices.
The first downward hereditary property of primality follows: A prime 2-
structure admits prime 2-substructures obtained by removing one or two
vertices.

In section 4, we characterize the critical 2-structures, that is, the prime
2-structures with the property that all the 2-substructures obtained by re-
moving one vertex are decomposable. We introduce the primality graph
associated with every prime 2-structures. Its edges are the unordered pairs
whose removal provides a prime 2-substrucure. We examine the neighbour-
hoods of the primality graph of a critical graph. We deduce that the primal-
ity graph of a critical graph is a path, a cycle of odd length or a path of odd
length together with one isolated vertex. For each of these four types, we
characterize the corresponding critical 2-structures. The characterization
of critical 2-structures constitutes an important step in the study of prime
2-structures.
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In section 5, we demonstrate the Schmerl–Trotter theorem: a prime 2-
structure, with at least seven vertices, admits an unordered pair whose re-
moval provides a prime 2-substructure. In other words, the primality graph
of a prime graph, with at least seven vertices, is nonempty. The Schmerl–
Trotter theorem is the first substantial theorem in the study of prime 2-
structures. It is an important downward hereditary property of primality.
We prove also different refinements of the Schmerl–Trotter theorem.

In section 6, we characterize the prime 2-structures that are minimal for
a singleton or an unordered pair. Precisely, a prime 2-structure is minimal
for a vertex subset if every proper induced 2-substructure with at least three
vertices containing this vertex subset is not prime. We mainly characterize
the prime 2-structures with at least six vertices that are minimal for an
unordered pair. This characterization allows us to provide a concise proof
of the Schmerl–Trotter theorem.

Section 7 is devoted to the following compactness theorem on infinite
prime 2-structures. An infinite 2-structure is prime if and only if every
finite vertex subset is contained in a finite vertex subset which induces a
prime 2-substructure.

Section 8 is the analogue of section 4 for infinite 2-structures. Precisely,
we characterize the infinite prime 2-structures, all the 2-substructures of
which are obtained by removing one vertex are decomposable, and which
admit at least a prime 2-substructure obtained by removing finitely many
vertices.

In section 9, we characterize finite or infinite partially critical 2-structures.
A prime 2-structure is partially critical whenever the removal of every vertex
outside a given proper and prime 2-substructure provides a decomposable
2-substructure. As in section 3, we associate with the prime 2-substructure
an outside partition. We also associate with it an outside graph which plays
an important role in our characterization.

Finally, in section 10, we provide a downward hereditary property of
primality in the case of infinite 2-structures. Precisely, we prove that an
infinite prime 2-structure admits a proper vertex subset equipotent to the
vertex set which induces a prime 2-substructure.
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1. 2-structures

A 2-structure [14] σ consists of a vertex set V (σ) , and of an equivalence 2-structure
vertex setrelation ≡σ defined on (V (σ) × V (σ)) ∖ {(v, v) ∶ v ∈ V (σ)}. The cardinality

of V (σ) is denoted by v(σ). A vertex subset of σ is a subset of V (σ). The vertex subset
set of the equivalence classes of ≡σ is denoted by E(σ) . Given a 2-structure
σ, if E(σ) admits a unique element e, then σ is said to be constant or constant
e-constant. e-constant

Warning. Unless indicated to the contrary, we consider 2-structures
to be finite.

Notation 1.1. Let σ be a 2-structure. Given distinct v,w ∈ V (σ), the equiv-
alence class of ≡σ to which (v,w) belongs is denoted by (v,w)σ . Moreover,
set

[v,w]σ = ((v,w)σ, (w, v)σ),
and

≺v,w≻σ= {(v,w)σ, (w, v)σ}.

Let σ be a 2-structure. With each W ⊆ V (σ) associate the 2-substructure
σ[W ] of σ induced by W defined on V (σ[W ]) =W such that 2-substructure

≡σ[W ] = (≡σ)↾(W×W )∖{(w,w)∶w∈W}.

Given W ⊆ V (σ), σ[V (σ) ∖W ] is denoted by σ −W , and by σ − w when
W = {w}.

We use the next notation.

Notation 1.2. Let S be a set. Given W ⊆ S ×S, set W ⋆ = {(v,w) ∶ (w, v) ∈
W}.

We associate with a 2-structure σ its dual σ⋆ defined on V (σ⋆) = V (σ) dual
as follows. Given x, y, v,w ∈ V (σ⋆), with x ≠ y and v ≠ w, (x, y) ≡σ⋆ (v,w) if
(y, x) ≡σ (w, v). Hence E(σ⋆) = {e⋆ ∶ e ∈ E(σ)}. A 2-structure σ is reversible
if σ = σ⋆. Hence, a 2-structure σ is reversible if and only if for each e ∈ E(σ), reversible
e⋆ ∈ E(σ). Let σ be a reversible 2-structure. For each e ∈ E(σ), we have
e⋆ ∈ E(σ), so e = e⋆ or e ∩ e⋆ = ∅. A 2-structure σ is symmetric if for each symmetric
e ∈ E(σ), e = e⋆. On the other hand, it is asymmetric if for each e ∈ E(σ), asymmetric
e ∩ e⋆ = ∅ 1.1 .

1.1. Isomorphism. Given 2-structures σ and τ , an isomorphism from σ isomorphism
onto τ is a bijection from V (σ) onto V (τ) satisfying for x, y, v,w ∈ V (σ),
with x ≠ y and v ≠ w, (x, y) ≡σ (v,w) if and only if (f(x), f(y)) ≡τ

1.1In general, a reversible 2-structure is neither symmetric nor asymmetric.
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(f(v), f(w)). Therefore, given a bijection f ∶ V (σ)Ð→ V (τ), f is an isomor-
phism from σ onto τ if and only if f induces a bijection f ∶ E(σ) Ð→ E(τ)
satisfying for any v,w ∈ V (σ), with v ≠ w, we have

(f(v), f(w))τ = f((v,w)σ).
Two 2-structures are isomorphic if there exists an isomorphism from oneisomorphic
onto the other.

Let σ be a 2-structure. An automorphism of σ is an isomorphism fromautomorphism
σ onto itself. For example, the identity function IdV (σ) ∶ V (σ) Ð→ V (σ),identity function
defined by IdV (σ)(v) = v for every v ∈ V (σ), is an automorphism of σ.
The family of the automorphisms of σ, endowed with composition, is the
automorphism group of σ. It is denoted by Aut(σ). A 2-structure σ is rigidautomorphism

group if Aut(σ) = {IdV (σ)}. On the other hand, it is vertex-transitive if for any

rigid

vertex-transitive

v,w ∈ V (σ), there is f ∈ Aut(σ) such that f(v) = w.
Lastly, given 2-structures σ and τ , σ embeds into τ if σ is isomorphic to

embedding a 2-substructure of τ .

1.2. Graphs. A (simple) graph G is defined by a vertex set V (G) andgraph

vertex set an edge set E(G), where an edge of G is an unordered pair of distinct
edge set vertices of G. Such a graph is denoted by (V (G),E(G)). For instance,

given a nonempty set S, KS = (S, (S2)) is the complete graph on S whereascomplete graph
(S,∅) is the empty graph. With each graph G we associate its complementempty graph

complement G = (V (G), (V (G)
2

) ∖E(G)).
A graph G is multipartite with a partition P of V (G) if the subgraphmultipartite

G[X] of G induced by X is empty for each X ∈ P . It is bipartite when ∣P ∣ = 2.bipartite
Given n ≥ 2, the path Pn is the graph defined on V (Pn) = {0, . . . , n − 1} as

path
follows. Given v,w ∈ {0, . . . , n − 1}, with v ≠ w, {v,w} ∈ E(Pn) if ∣v −w∣ = 1
(see Figure 1.1). The length of the path Pn is n − 1.length

0
●

1
● .........

n − 2
●

n − 1
●

Figure 1.1. The path Pn

Given n ≥ 3, the cycle Cn is the graph defined on V (Cn) = {0, . . . , n − 1}cycle
obtained from Pn by adding the edge {0, n − 1}. The length of Cn is n.

Let G be a graph. Given a vertex v of G, a neighbour of v is a vertex wneighbour
of G such that {v,w} ∈ E(G). The neighbourhood of v is the set NG(v) ofneighbourhood
its neighbours, and dG(v) = ∣NG(v)∣ is its degree. Given a nonempty subsetdegree
X of V (G), G[X] is connected if for any x, y ∈ X, with x ≠ y, there areconnected
elements x0, . . . , xn of X such that x0 = x, xn = y, and {xm, xm+1} ∈ E(G)
for every 0 ≤ m ≤ n − 1. Given a nonempty subset X of V (G), G[X] is a
component of G if G[X] is connected, and for any x ∈X and v ∈ V (G)∖X,component
{x, v} /∈ E(G). A vertex v of a graph G is isolated if G[{v}] is a componentisolated
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of G.
Let G and H be graphs such that V (G) ∩ V (H) = ∅. The disjoint union disjoint union

of G and H is the graph G⊕H = (V (G)∪V (H),E(G)∪E(H)). If V (G)∩
V (H) ≠ ∅, then we can define G ⊕H up to isomorphism by considering a
graph H ′ such that H ≃H ′, and V (G) ∩ V (H ′) = ∅.

A graph G is identified with the symmetric 2-structure σ(G) defined on
V (σ(G)) = V (G) as follows. Given x, y, v,w ∈ V (σ(G)), with x ≠ y and
v ≠ w,

(x, y) ≡σ(G) (v,w) if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{x, y},{v,w} ∈ E(G)
or

{x, y},{v,w} /∈ E(G).
Given a graph G, observe that σ(G) = σ(G). A graph is self-complementary
if it is isomorphic to its complement. Consider a self-complementary graph self-

complementaryG. Since σ(G) = σ(G), an isomorphism from G onto G is an automorphism
of σ(G).

1.3. Digraphs. A digraph D is defined by a vertex set V (D) and an arc set digraph

vertex set
arc set

A(D), where an arc of D is an ordered pair of distinct vertices of D. Such
a digraph is denoted by (V (D),A(D)). With each digraph D we associate
its dual D⋆ defined on V (D⋆) = V (D) as follows. Given v,w ∈ V (D⋆), with dual
v ≠ w, (v,w) ∈ A(D⋆) if (w, v) ∈ A(D). Given a vertex v of a digraph D,
the in-neighbourhood of v is the set N−

D(v) = {w ∈ V (D) ∶ (w, v) ∈ A(D)}, in-neighbourhood
and its out-neighbourhood is the set N+

D(v) = {w ∈ V (D) ∶ (v,w) ∈ A(D)}. out-neighbourhood
A digraph D is identified with the 2-structure σ(D) defined on V (σ(D)) =

V (D) as follows. Given x, y, v,w ∈ V (σ(D)), with x ≠ y and v ≠ w,

(x, y) ≡σ(D) (v,w) if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(x, y), (v,w) ∈ A(D)
or

(x, y), (v,w) /∈ A(D).
A digraph D is a tournament if for any v,w ∈ V (D), with v ≠ w, ∣A(D)∩ tournament

{(v,w), (w, v)}∣ = 1. It is a transitive digraph provided that for any u, v,w ∈ transitive digraph
V (D), if (u, v) ∈ A(D) and (v,w) ∈ A(D), then (u,w) ∈ A(D). A transitive
digraph is also called a (strict) partial order. With each partial order O, we partial order
associate its comparability graph Comp(O) defined on V (Comp(O)) = V (O) comparability

graphas follows. For any v,w ∈ V (Comp(O)), with v ≠ w, {v,w} ∈ E(Comp(O))
if (v,w) ∈ A(O) or (w, v) ∈ A(O). A linear order is a transitive tournament. linear order
Given a nonempty set S of integers, the usual linear order on S is denoted
by LS . Given m ≥ 1, L{0,...,m−1} is also denoted by Lm. Given n ≥ 1, we
consider the tournament T2n+1 defined on V (T2n+1) = {0, . . . ,2n} by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T2n+1 − (2n) = L2n,

(2n,2m) ∈ A(T2n+1) for 0 ≤m ≤ n − 1,

and

(2m + 1,2n) ∈ A(T2n+1) for 0 ≤m ≤ n − 1 (see Figure 1.2).
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0
●

1
●

2i
●. . .

2i+1
● . . .

2n − 2
●

2n − 1

●- - -
**

2n
●�����������������) �

�
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��3�
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�
�
�� J

J
J
J
J
J]
HHH

HHH
HHH

HHHj PP
PP

PP
PP

PP
PP

PP
PPi

Figure 1.2. The tournament T2n+1

Consider a reversible 2-structure σ. Given e ∈ E(σ), the 2-structure σ is
linear or e-linear if (V (σ), e) is a linear order.linear, e-linear

Remark 1.3. Consider an e-linear 2-structure σ, where e ∈ E(σ). We have
(V (σ), e) is a linear order. Clearly, (V (σ), e⋆) is a linear order as well.
Since σ is reversible, e⋆ ∈ E(σ). Thus, σ is (e⋆)-linear, and E(σ) = {e, e⋆}.
Moreover, we have σ = σ((V (σ), e)) = σ((V (σ), e⋆)).
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2. Connectedness and modules

We use the following notation.

Notation 2.1. Let σ be a 2-structure. For W,W ′ ⊆ V (σ), with W ∩W ′ = ∅,
W ←→σ W ′ signifies that (v, v′) ≡σ (w,w′) and (v′, v) ≡σ (w′,w) for any
v,w ∈ W and v′,w′ ∈ W ′. The negation is denoted by W /←→σ W ′ . Given
v ∈ V (σ) and W ⊆ V (σ) ∖ {v}, {v} ←→σ W is also denoted by v ←→σ W .
The negation is denoted by v /←→σ W .

Given W,W ′ ⊆ V (σ) such that W ←→σ W ′, (W,W ′)σ denotes the equiv-
alence class (w,w′)σ of (w,w′), where w ∈ W and w′ ∈ W ′. Furthermore,
set

[W,W ′]σ = ((W,W ′)σ, (W ′,W )σ).

Lastly, given v ∈ V (σ) and W ⊆ V (σ)∖{v} such that {v}←→σ W , ({v},W )σ
is also denoted by (v,W )σ , (W,{v})σ is denoted by (W,v)σ , and [{v},W ]σ
is denoted by [v,W ]σ .

2.1. Different types of connectedness. Let σ be a 2-structure. With
each (e, f) ∈ E(σ) × E(σ), we associate a type of connectedness. Given
(e, f) ∈ E(σ) ×E(σ), we require that if σ is not connected in terms of the
type associated with (e, f), then the ordered pairs of vertices that are not
in the same component, belong to e or f .

Given a 2-structure σ, consider e, f ∈ E(σ). We define on V (σ) the
equivalence relation ≈(e,f) in the following way. Given v,w ∈ V (σ), v ≈(e,f) w
if v = w or v ≠ w and there exist sequences v0, . . . , vm and w0, . . . ,wn of
vertices of σ satisfying

● v0 = v and vm = w;
● for 0 ≤ i ≤m − 1, [vi, vi+1]σ ≠ (e, f);
● w0 = w and wn = v;
● for 0 ≤ j ≤ n − 1, [wj ,wj+1]σ ≠ (e, f).

Note that we do not need the second sequence w0, . . . ,wp when e = f .
Moreover, for 0 ≤ i ≤ m − 1, [vi+1, vi]σ ≠ (f, e), and for 0 ≤ j ≤ n − 1,
[wj+1,wj]σ ≠ (f, e). By considering the sequences v = wn, . . . ,w0 = w and
w = vm, . . . , v0 = v, we obtain v ≈(f,e) w. Consequently, for any e, f ∈ E(σ)
and v,w ∈ V (σ), we have v ≈(e,f) w if and only if w ≈(f,e) v.

Definition 2.2. Let σ be a 2-structure. Consider e, f ∈ E(σ). The equiv-
alence classes of ≈(e,f) are called the {e, f}-components of σ. The family {e, f}-components
of the {e, f}-components of σ is denoted by C{e,f}(σ). Lastly, we say that
the 2-structure σ is {e, f}-connected if it admits a unique {e, f}-component. {e, f}-connected
Moreover, the 2-structure σ is connected if σ is {e, f}-connected for all connected
e, f ∈ E(σ).
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Remark 2.3. First, consider a graph G. Set

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e1 = {(v,w) ∶ {v,w} ∈ E(G)}
and

e0 = {(v,w) ∶ {v,w} /∈ E(G)}.
We have

E(σ(G)) = {e0, e1}.
The {e0}-components of σ(G) are exactly the components of G, whereas
the {e1}-components of σ(G) are exactly the components of G. Since σ(G)
is symmetric, σ(G) is {e0, e1}-connected.

Second, consider a tournament T . We have

E(σ(T )) = {A(T ),A(T )⋆}.
The {A(T ),A(T )⋆}-components of σ(T ) are exactly the strongly connected
components of T . Since σ(T ) is asymmetric, σ(T ) is {A(T )}-connected,
and {A(T )⋆}-connected.

The following lemma is established in [23] for binary structures, that is,
labeled 2-structures [14].

Lemma 2.4. Given a 2-structure σ, consider e, f ∈ E(σ). Let X be an
{e, f}-component of σ. For each v ∈ V (σ)∖X, we have v ←→σ X. Precisely,
for each y ∈ V (σ) ∖X, we have [v,X]σ = (e, f) or (f, e).

Proof. Let v ∈ V (σ) ∖X. Consider x ∈X. Since v /≈(e,f) x, we have

(2.1) [x, v]σ = (e, f) or (f, e).
For a contradiction, suppose that there exist x, y ∈ X such that [x, v]σ ≠
[y, v]σ. It follows from (2.1) that e ≠ f . Morever, by interchanging x and y
if necessary, we can assume that [x, v]σ = (e, f) and [y, v]σ = (f, e). Hence
[v, x]σ ≠ (e, f) and [y, v]σ ≠ (e, f). Since x ≈(e,f) y, there exists a sequence
x0, . . . , xm satisfying

● x0 = x and xm = y;
● for 0 ≤ i ≤m − 1, [xi, xi+1]σ ≠ (e, f).

By considering the sequences x0, . . . , xm, v and v, x, we obtain x ≈(e,f) v,
which contradicts v /∈ X. Therefore, [x, v]σ = [y, v]σ for any x, y ∈ X. It
follows from (2.1) that [v,X]σ = (e, f) or (f, e). �

2.2. Modules and quotient. Given Lemma 2.4, we introduce the follow-
ing definition. Given a 2-structure σ, a subset M of V (σ) is a module2.1 ofmodule

2.1This notion of a module generalizes the usual notion of module for a graph [34]. One
also uses homogeneous set [11, 28] for graphs. For a partial order, Gallai [18] uses closed
set (geschlossen Menge in German), and Kelly [26] uses autonomous set. For a linear order
L, the notion of a module of σ(L) coincide with the classical notion of an interval of L.
For relations and multirelations [17], Fräıssé introduced the notion of an interval [16]. It
is also used for digraphs [22, 33] . The notion of clan was introduced by Ehrenfeucht and
Rozenberg for 2-structures [13].
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σ if for each v ∈ V (σ) ∖M , we have v ←→σ M . The classical properties of
modules follow.

Proposition 2.5. Let σ be a 2-structure.

(M1) ∅, V (σ), and {v}, where v ∈ V (σ), are modules of σ.
(M2) Given W ⊆ V (σ), if M is a module of σ, then M ∩W is a module

of σ[W ].
(M3) Let M be a module of σ. For every N ⊆M , N is a module of σ[M]

if and only if N is a module of σ.
(M4) For any modules M and N of σ, M ∩N is a module of σ.
(M5) Given modules M and N of σ, if M ∩N ≠ ∅, then M ∪N is a module

of σ.
(M6) Given modules M and N of σ, if M ∖N ≠ ∅, then N ∖M is a module

of σ.
(M7) Given modules M and N of σ, if M ∩N = ∅, then M ←→σ N .

Proof. It is easy to verify that the first assertion holds. For the second one,
consider a subset W of V (σ), and a module M of σ. Let v ∈W ∖M . Clearly,
v ∈ V (σ)∖M . Since M is a module of σ, we have v ←→σ M , so v ←→σ M∩W .

For the third assertion, consider a module M of σ and a subset N of M .
By the preceding assertion, if N is a module of σ, then M ∩ N = N is a
module of σ[M]. Conversely, suppose that N is a module of σ[M], and
consider v ∈ V (σ) ∖N . We have v ∈ V (σ) ∖M or v ∈ M ∖N . In the first
instance, since M is a module of σ, v ←→σ M , and hence v ←→σ N . In the
second instance, v ←→σ N because N is a module of σ[M].

Now, let M and N be modules of σ.
To verify that M ∩N is a module of σ, consider v ∈ V (B)∖ (M ∩N). We

have v ∈ (V (σ)∖M)∪ (V (σ)∖N). By interchanging M and N if necessary,
assume that v ∈ V (σ) ∖M . As M is a module of σ, v ←→σ M , and hence
v ←→σ M ∩N .

To show that M ∪N is a module of σ, suppose that there exists x ∈M ∩N .
Let v ∈ V (σ)∖(M ∪N). Since M is a module of σ, x ∈M and v ∈ V (σ)∖M ,
we have [v,M]σ = [v, x]σ. Similarly, we have [v,N]σ = [v, x]σ. It follows
that [v,M ∪N]σ = [v, x]σ. Thus v ←→σ M ∪N .

Lastly, to prove that N ∖M is a module of σ, suppose that there exists
x ∈ M ∖N . Let v ∈ V (σ) ∖ (N ∖M). Clearly, v ∈ (V (σ) ∖N) ∪ (M ∩N).
First, suppose that v ∈ V (σ) ∖N . Since N is a module of σ, v ←→σ N , so
v ←→σ N ∖M . Second, suppose that v ∈ M ∩N . Consider u,u′ ∈ N ∖M .
We have to verify that v ←→σ {u,u′}. Since M is a module of σ, x, v ∈ M
and u ∈ V (σ) ∖M , we have [v, u]σ = [x,u]σ. Similarly, [v, u′]σ = [x,u′]σ.
Moreover, we have [x,u]σ = [x,u′]σ because N is a module of σ with u,u′ ∈
N and x ∈ V (σ) ∖N . It follows that [v, u]σ = [v, u′]σ, so v ←→σ {u,u′}.

Finally, let M and N be nonempty modules of σ such that M ∩N = ∅.
Consider x ∈ M and y ∈ N . For any v ∈ M and w ∈ N , we have [v,w]σ =
[x,w]σ because M is a module of σ with x, v ∈ M and w ∈ V (σ) ∖M .
Furthermore, [x,w]σ = [x, y]σ because N is a module of σ with y,w ∈ N and
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x ∈ V (σ) ∖N . Therefore, [v,w]σ = [x, y]σ for any v ∈M and w ∈ N . Thus
M ←→σ N . �

Let σ be a 2-structure. Following assertion (M1) of Proposition 2.5, the
modules ∅, V (σ), and {v}, where v ∈ V (σ), are called trivial modules. Atrivial module
2-structure is indecomposable if all its modules are trivial 2.2 . Otherwise, itindecomposable
is decomposable. Observe that a 2-structure, with at most two vertices, isdecomposable
indecomposable. This leads us to the following notion. A 2-structure σ is
prime if σ is indecomposable, with v(σ) ≥ 3.prime

For instance, if σ is a constant 2-structure, then all the subsets of V (σ) are
modules of σ. Hence, a constant 2-structure σ is decomposable if v(σ) ≥ 3.
The same holds for linear 2-structures. Instead, consider a linear 2-structure
σ such that v(σ) ≥ 3. By Remark 1.3, there exists a linear order L such that
σ = σ(L). As above mentioned, the intervals of L are modules of σ. By
denoting by v and w the first two vertices of L, we obtain that {v,w} is an
interval of L. Thus, {v,w} is a nontrivial module of σ, so σ is decomposable.

Fact 2.6. For n ≥ 4, the path Pn (see Figure 1.1) is prime.

Proof. Let M be a module of Pn with ∣M ∣ ≥ 2. We have to show that M =
{0, . . . , n−1}. Consider p, q ∈M such that 0 < p < q. Since {p−1, p} ∈ E(Pn)
and {p − 1, q} /∈ E(Pn), we have p − 1 ∈M . In the same manner, if 0 < p − 1,
then p − 2 ∈M . It follows that {0, . . . , p} ⊆M . Similarly {q, . . . , n − 1} ⊆M .
Therefore

{0, . . . , p} ∪ {q, . . . , n − 1} ⊆M.

Now, consider p, q ∈M such that p < q andM∩{p, . . . , q} = {p, q}. Suppose
for a contradiction that p < q − 1. Since {p, p + 1} ∈ E(Pn) and p + 1 /∈ M ,
we have {x, p + 1} ∈ E(Pn) for every x ∈M . Therefore M ⊆ {p, p + 2}. Since
{0, . . . , p}∪ {q, . . . , n− 1} ⊆M , we obtain p = 0, q = n− 1 = 2. Since n ≥ 4, we
have p = q − 1. Thus M = {0, . . . , n − 1}. �

Fact 2.7. For n ≥ 1, the tournament T2n+1 (see Figure 1.2) is prime.

Proof. Consider a module M of T2n+1 such that ∣M ∣ ≥ 2. We have to show
that M = {0, . . . ,2n}. By Proposition 2.5, M ∩ {0, . . . ,2n − 1} is a module
of T2n+1[{0, . . . ,2n − 1}] = L2n. Since M ∩ {0, . . . ,2n − 1} ≠ ∅, there exist
p, q ∈ {0, . . . ,2n − 1} such that p ≤ q and M ∩ {0, . . . ,2n − 1} = {p, . . . , q}.
If p = q, then 2n ∈ X because ∣M ∣ ≥ 2. If p < q, then 2n ∈ X because
2n /←→σ {2m,2m + 1} for 0 ≤ m ≤ n − 1. Thus 2n ∈ M . Since (2n,0) ∈
A(T2n+1) and (0, r) ∈ A(T2n+1) for 1 ≤ r ≤ 2n − 1, we have 0 ∈ M . Since
(2n − 1,2n) ∈ A(T2n+1) and (r,2n − 1) ∈ A(T2n+1) for 0 ≤ r ≤ 2n − 2, we have
2n − 1 ∈M . Consequently, p = 0, q = 2n − 1 and M = {0, . . . ,2n}. �

Let σ be a 2-structure. For any e, f ∈ E(σ), the {e, f}-components of σ are
modules of σ by Lemma 2.4. Hence, the family C{e,f}(σ) (see Definition 2.2)
realizes a partition of V (σ) in modules of σ. Generally, we introduce the
following definition. A partition P of V (σ) is a modular partition of σ if allmodular partition

2.2Ehrenfeucht et al. [13, 14] use primitive instead of indecomposable.
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the blocks of P are modules of σ. Given a modular partition P of σ, it follows
from assertion (M7) of Proposition 2.5 that for distinct X,Y ∈ P , we have
X ←→σ Y . Hence, the blocks of P can be considered as the vertices of a new
2-structure defined in the following manner. With each modular partition
P of σ, we associate the quotient σ/P of σ by P defined on V (σ/P ) = P as quotient
follows. Given X,X ′, Y, Y ′ ∈ V (σ/P ), with X ≠X ′ and Y ≠ Y ′,

(X,X ′) ≡(σ/P ) (Y,Y ′) if (x,x′) ≡σ (y, y′),

where x ∈X, x′ ∈X ′, y ∈ Y , and y′ ∈ Y ′.
Let σ be a 2-structure. Given e, f ∈ E(σ), C{e,f}(σ) is a modular partition

of σ as mentioned above. We characterize the quotient σ/C{e,f}(σ) as follows.

Proposition 2.8 (Ille [23]). Let σ be a 2-structure. For every e ∈ E(σ),
σ/C{e}(σ) is constant. Moreover, for distinct e, f ∈ E(σ), σ/C{e,f}(σ) is
linear.

Proof. To begin, consider e ∈ E(σ). Given distinct X,Y ∈ C{e}(σ), it follows
from Lemma 2.4 that

(2.2) (X,Y )σ = e.

Consider X,X ′, Y, Y ′ ∈ C{e}(σ), with X ≠ X ′ and Y ≠ Y ′. Let x ∈ X,

x′ ∈ X ′, y ∈ Y , and y′ ∈ Y ′. It follows from (2.2) that (x,x′)σ = e and
(y, y′)σ = e, so (x,x′) ≡σ (y, y′). By the definition of quotient, we have
(X,X ′) ≡(σ/C{e}(σ)) (Y,Y ′). Hence σ/C{e}(σ) is constant.

Now, consider distinct e, f ∈ E(σ). Given distinct X,Y ∈ C{e,f}(σ), it
follows from Lemma 2.4 and assertion (M7) of Proposition 2.5 that

(2.3) [X,Y ]σ = (e, f) or (f, e).

Set

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e/C{e,f}(σ) = {(X,Y ) ∈ C{e,f}(σ) × C{e,f}(σ) ∶X ≠ Y, (X,Y )σ = e}
and

f/C{e,f}(σ) = {(X,Y ) ∈ C{e,f}(σ) × C{e,f}(σ) ∶X ≠ Y, (X,Y )σ = f}.

We prove that

(2.4) E(σ/C{e,f}(σ)) = {e/C{e,f}(σ), f/C{e,f}(σ)}.

Consider X,X ′, Y, Y ′ ∈ C{e,f}(σ), with X ≠ X ′ and Y ≠ Y ′. Let x ∈ X,

x′ ∈ X ′, y ∈ Y , and y′ ∈ Y ′. First, suppose that (X,X ′) ≡(σ/C{e}(σ)) (Y,Y ′).
By the definition of quotient, we have (x,x′) ≡σ (y, y′), so (x,x′)σ = (y, y′)σ.
By (2.3), (x,x′)σ, (y, y′)σ ∈ {e, f}. Thus, either (x,x′)σ = (y, y′)σ = e
or (x,x′)σ = (y, y′)σ = f . In the first instance, we obtain (X,X ′)σ =
(Y,Y ′)σ = e, and hence (X,X ′), (Y,Y ′) ∈ e/C{e,f}(σ). In the second one, we

have (X,X ′), (Y,Y ′) ∈ f/C{e,f}(σ). Second, suppose that (X,X ′), (Y,Y ′) ∈
e/C{e,f}(σ). We have (X,X ′)σ = (Y,Y ′)σ = e. Thus (x,x′)σ = (y, y′)σ = e, so
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(x,x′) ≡σ (y, y′). By the definition of quotient, we have (X,X ′) ≡(σ/C{e}(σ))
(Y,Y ′). Similarly, we have

(X,X ′) ≡(σ/C{e}(σ)) (Y,Y ′)

when (X,X ′), (Y,Y ′) ∈ f/C{e,f}(σ). Consequently (2.4) holds.
We continue by showing that

(2.5) (e/C{e,f}(σ))⋆ = f/C{e,f}(σ).
Consider distinct X,Y ∈ C{e,f}(σ). Suppose that (X,Y ) ∈ (e/C{e,f}(σ))⋆.
We have (Y,X) ∈ e/C{e,f}(σ), so (Y,X)σ = e. By (2.2), [X,Y ]σ = (e, f) or
(f, e). Since (Y,X)σ = e, we obtain (X,Y )σ = f , so (X,Y ) ∈ f/C{e,f}(σ).
Conversely, suppose that (X,Y ) ∈ f/C{e,f}(σ). We have (X,Y )σ = f . By
(2.2), [X,Y ]σ = (e, f) or (f, e). Hence (Y,X)σ = e, so (Y,X) ∈ e/C{e,f}(σ),
that is, (X,Y ) ∈ (e/C{e,f}(σ))⋆. Consequently (2.5) holds.

To conclude, we have to prove that (C{e,f}(σ), e/C{e,f}(σ)) is a linear
order. It follows from (2.4) and (2.5) that (C{e,f}(σ), e/C{e,f}(σ)) is a tour-
nament. Thus, we have to verify that (C{e,f}(σ), e/C{e,f}(σ)) is transitive.
Consider X,Y,Z ∈ C{e,f}(σ) such that (X,Y ), (Y,Z) ∈ e/C{e,f}(σ). Since
(X,Y ), (Y,Z) ∈ e/C{e,f}(σ), we have (X,Y )σ = (Y,Z)σ = e. It follows from
(2.3) that [X,Y ]σ = [Y,Z]σ = (e, f). Since e ≠ f , we have X ≠ Z. Let
x ∈ X, y ∈ Y , and z ∈ Z. We obtain [z, y]σ = [y, x]σ = (f, e). Since e ≠ f ,
we have [z, y]σ ≠ (e, f) and [y, x]σ ≠ (e, f). Since X ≠ Z, we have x /≈(e,f) z.
It follows that [x, z]σ = (e, f). By (2.3), [X,Z]σ = (e, f). Consequently,
(C{e,f}(σ), e/C{e,f}(σ)) is transitive. �

Notation 2.9. Given a 2-structure σ, consider a partition P of V (σ). With
W ⊆ V (σ), we associate the set W /P of the blocks X of P such that X∩W ≠
∅. Moreover, with Q ⊆ P , we associate the union ∪Q of the elements of Q.

In the following result, we compare the modules of a 2-structure with
those of its quotients.

Lemma 2.10. Given a 2-structure σ, consider a modular partition P of σ.

(1) If M is a module of σ, then M/P is a module of σ/P .
(2) If Q is a module of σ/P , then ∪Q a module of σ.

Proof. First, we consider a module M of σ. Consider X ∈ P ∖ (M/P ), and
Y,Z ∈ M/P . Let x ∈ X. Since Y,Z ∈ M/P , there exist y, z ∈ M such that
y ∈ Y ∩M and z ∈ Z ∩M . Since M is a module of σ, we have (x, y) ≡σ (x, z)
and (y, x) ≡σ (z, x). By the definition of quotient, (X,Y ) ≡(σ/P ) (X,Z) and
(Y,X) ≡(σ/P ) (Z,X). Thus, M/P is a module of σ/P .

Second, let Q be a module of σ/P . Consider v ∈ V (σ) ∖ (∪Q), and
y, z ∈ (∪Q). Since v ∈ V (σ) ∖ (∪Q), there exist X ∈ P ∖Q such that v ∈ X.
Furthermore, since y, z ∈ (∪Q), there exist Y,Z ∈ Q such that y ∈ Y and
z ∈ Z. Since Q is a module of σ/P , Y,Z ∈ Q and X ∈ P ∖ Q, we have
(X,Y ) ≡σ/P (X,Z) and (Y,X) ≡σ/P (Z,X). It follows from the definition
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of quotient that (v, y) ≡σ (v, z) and (y, v) ≡σ (z, v). Therefore, ∪Q is a
module of σ. �

2.3. Modular cuts. Given a 2-structure σ, we continue the examination of
the properties of the {e, f}-components of σ, where e, f ∈ E(σ). The next
result is a consequence of Proposition 2.8.

Corollary 2.11 (Ille [23]). Given a 2-structure σ, consider e, f ∈ E(σ). If σ
is not {e, f}-connected, then there exists X ∈ C{e,f}(σ) such that [X,V (σ)∖
X]σ = (e, f).

Proof. If e = f , then it follows from Proposition 2.8 that [X,V (σ) ∖X]σ =
(e, e) for every X ∈ C{e}(σ). Suppose that e ≠ f . By Proposition 2.8 and
Remark 1.3, there exists a linear order L defined on V (L) = C{e,f}(σ) such
that σ/C{e,f}(σ) = σ(L). The least vertex Y of L satisfies [Y,V (σ) ∖ Y ]σ =
(e, f) or (f, e). Similarly, the greatest vertex Z of L satisfies [Z,V (σ) ∖
Z]σ = (e, f) or (f, e). Since [Y,Z]σ ≠ [Z,Y ]σ, we have [Y,V (σ) ∖ Y ]σ ≠
[Z,V (σ)∖Z]σ. Therefore, there existsX ∈ {Y,Z} such that [X,V (σ)∖X]σ =
(e, f). �

In Corollary 2.11, observe that X and V (σ) ∖X are modules of σ. This
leads us to the following definition. Given a 2-structure σ, a subset X of
V (σ) is a modular cut2.3 of σ if X and V (σ) ∖ X are modules of σ. For modular cut
instance, ∅ and V (σ) are modular cuts of σ, called trivial modular cuts. trivial modular cut
A 2-structure is uncuttable if all its modular cuts are trivial, otherwise it is uncuttable
cuttable 2.4. The following characterization of uncuttable 2-structures follows cuttable
from assertion (M7) of Proposition 2.5 and from Corollary 2.11.

Proposition 2.12 (Ille [23]). A 2-structure is uncuttable if and only if it is
connected.

Proof. Let σ be a 2-structure. To begin, suppose that σ is not connected.
There exist e, f ∈ E(σ) such that σ is not {e, f}-connected. By Corol-
lary 2.11, σ admits a nontrivial modular cut among its {e, f}-components.
Hence σ is cuttable.

Conversely, suppose that σ is cuttable, and consider a nontrivial modular
cut X of σ. Since X is a nontrivial modular cut of σ, X and V (σ) ∖X are
nonempty modules of σ. It follows from assertion (M7) of Proposition 2.5
that there exist e, f ∈ E(σ) such that [X,V (σ) ∖ X]σ = (e, f). Conse-
quently, there is no sequence x0, . . . , xn satisfying x0 ∈X, xn ∈ V (σ)∖X, and
[xm, xm+1]σ ≠ (e, f) for m ∈ {0, . . . , n − 1}. Thus σ is not {e, f}-connected,
so σ is not connected. �

2.3Also called cut in [8] for digraphs.
2.4Ehrenfeucht, Harju, and Rozenberg [14] say that a 2-structure has the 2-block prop-

erty if it is cuttable.
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2.4. Strong modules and Gallai’s decomposition. Let σ be a 2-struc-
ture. If σ is prime, then {V (σ)} and {{v} ∶ v ∈ V (σ)} are the only modular
partitions of σ. On the other hand, if σ is constant, then every partition
of V (σ) is a modular partition of σ. Hence, in order to obtain a successful
modular decomposition process, we have to associate intrinsically a mod-
ular partition with each 2-structure and to characterize the corresponding
quotient. Furthermore, for the efficiency of the process, we require that if
we repeat the process a second time, we would get an isomorphic quotient.
For instance, consider a binary structure σ, and suppose that σ is not {e}-
connected, where e ∈ E(σ). First, given Lemma 2.4, we can associate with
σ the modular partition C{e}(σ). By Proposition 2.8, the corresponding
quotient σ/C{e}(σ) is constant. Set

τ = σ/C{e}(σ),
and

ε = (C{e}(σ) × C{e}(σ)) ∖ {(X,X) ∶X ∈ C{e}(σ)}.
Since τ is constant, we have E(τ) = {ε}. Moreover, ∣C{e}(σ)∣ ≥ 2 because
σ is not {e}-connected. Thus τ is not {ε}-connected. Second, associate
with τ the family C{ε}(τ) of its {ε}-components. Since E(τ) = {ε}, the
{ε}-components of τ are reduced to singletons. Therefore, the quotient of
τ/C{ε}(τ) is isomorphic to τ . To proceed for any 2-structure σ, we return
to the examination of the properties of the {e, f}-components of σ, where
e, f ∈ E(σ).

Lemma 2.13 (Ille [23]). Given a 2-structure σ, consider an {e, f}-compo-
nent X of σ, where e, f ∈ E(σ). For every module M of σ, if X ∩M ≠ ∅,
then X ⊆M or M ⊆X.

Proof. Let M be a module of σ such that X ∩M ≠ ∅ and X ∖M ≠ ∅. We
have to show that M ⊆ X. Consider x ∈ X ∖M and y ∈ X ∩M . Since
X is an {e, f}-component of σ containing x and y, there exist sequences
x = x0, . . . , xp = y and y = y0, . . . , yq = x of elements of X such that for
0 ≤ m ≤ p − 1, [xm, xm+1]σ ≠ (e, f), and for 0 ≤ m ≤ q − 1, [ym, ym+1]σ ≠
(e, f). Since x0 /∈ M and xp ∈ M , there exists m ∈ {0, . . . , p − 1} such that
xm ∈ X ∖M and xm+1 ∈ X ∩M . Similarly, since y0 ∈ M and yq /∈ M ,
there exists n ∈ {0, . . . , q − 1} such that yn ∈ X ∩M and yn+1 ∈ X ∖M .
Now, let v ∈ M . Since M is a module of σ, xm+1, v ∈ M and xm /∈ M , we
have [xm, xm+1]σ = [xm, v]σ. Hence [xm, v]σ ≠ (e, f). Since yn, v ∈ M and
yn+1 /∈ M , [yn, yn+1]σ = [v, yn+1]σ. Thus [v, yn+1]σ ≠ (e, f). By considering
the sequences x = x0, . . . , xm, v and v, yn+1, . . . , yq = x, we obtain x ≈(e,f) v.
It follows that v ∈X. Therefore M ⊆X. �

This result leads us to introduce the following definition. Given a 2-
structure σ, a subset M of V (σ) is a strong module 2.5 of σ provided thatstrong module

2.5Also called prime module in [14] for 2-structures, and strong interval for digraphs.
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M is a module of σ, and for every module N of σ, we have

if M ∩N ≠ ∅, then M ⊆ N or N ⊆M .

Given e, f ∈ E(σ), it follows from Lemma 2.13 that each {e, f}-component
of σ is a strong module of σ. As for modules, ∅, V (σ) and {v}, v ∈ V (σ), are
strong modules of σ, called trivial strong modules. A 2-structure is primitive
2.6 if all its strong modules are trivial. Three types of primitive 2-structures primitive
occur.

Lemma 2.14. Given a 2-structure σ, if σ is prime, constant, or linear,
then σ is primitive.

Proof. If σ is indecomposable, then all its modules are trivial, and hence all
its strong modules are also. Therefore, if σ is prime, then σ is primitive.

Now, suppose that σ is constant or linear. Recall that a 2-structure with
at most 2 vertices is indecomposable. Hence, suppose also that v(σ) ≥ 3. To
show that σ is primitive, it suffices to verify that every nontrivial module M
of σ is not strong, that is, there exists a module N of σ such that M ∩N ≠ ∅,
M ∖N ≠ ∅ and N ∖M ≠ ∅.

Suppose that σ is constant. As previously observed, any subset of V (σ)
is a module of σ. Consider distinct x, y ∈M , and v ∈ V (σ)∖M . The module
{x, v} of σ satisfies x ∈M ∩ {x, v}, y ∈M ∖ {x, v} and v ∈ {x, v} ∖M .

Lastly, suppose that σ is linear. By Remark 1.3, there exists a linear order
L defined on V (L) = V (σ) such that σ = σ(L). Recall that the modules
of σ are exactly the intervals of L. Hence, M is a nontrivial interval of
L. Up to isomorphism, we can assume that L = Ln, where n ≥ 3. Since
M is a nontrivial interval of L, M = [p, q], where 0 ≤ p < q ≤ n − 1 and
(p, q) ≠ (0, n − 1). Observe that σ = σ(L⋆) as well. Thus, by considering L⋆

instead of L if necessary, we can assume that p ≥ 1. To conclude, it suffices
to consider for N the interval [0, p] of L. �

The analogue of Lemma 2.10 for strong modules follows.

Lemma 2.15. Given a 2-structure σ, consider a modular partition P of σ.

(1) If M is a strong module of σ, then M/P is a strong module of σ/P .
(2) Suppose that all the blocks of P are strong modules of σ. If Q is a

strong module of σ/P , then ∪Q is a strong module of σ.

Proof. First, let M be a strong module of σ. By Lemma 2.10, M/P is a
module of σ/P . Consider a module Q of σ/P such that Q ∩ (M/P ) ≠ ∅. If
∣M/P ∣ = 1, that is, if there is X ∈ P such that M ⊆ X, then M/P = {X}, so
X ∈ Q and M/P ⊆ Q. Hence suppose that ∣M/P ∣ ≥ 2. For each X ∈ M/P ,
we have M ∩ X ≠ ∅ and M ∖ X ≠ ∅. Since M is a strong module of σ,
X ⊆M . Consequently M = ∪(M/P ). By Lemma 2.10, ∪Q is a module of σ.
Clearly M ∩ (∪Q) ≠ ∅ because Q∩ (M/P ) ≠ ∅. Since M is a strong module

2.6Also called special in [14] .
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of σ, we have M ⊆ ∪Q or ∪Q ⊆M . Since M = ∪(M/P ), we obtain M/P ⊆ Q
or Q ⊆M/P . Consequently, M/P is a strong module of σ/P .

Second, let Q be a strong module of σ/P . Consider a module M of σ
such that there exists x ∈ (∪Q)∩M . Denote by X the block of P containing
x. Clearly X ∈ Q ∩ (M/P ). By Lemma 2.10, M/P is a module of σ/P .
If ∣M/P ∣ = 1, then M ⊆ X ⊆ ∪Q. Thus suppose that ∣M/P ∣ ≥ 2. Consider
Y ∈M/P . Since ∣M/P ∣ ≥ 2, we have Y ∩M ≠ ∅ and M ∖ Y ≠ ∅. Moreover,
Y is a strong module of σ because Y ∈ P . It follows that Y ⊆M . Therefore
M = ∪(M/P ). Since Q is a strong module of σ/P and X ∈ Q ∩ (M/P ),
we have Q ⊆ M/P or M/P ⊆ Q. It follows that ∪Q ⊆ M or M ⊆ ∪Q.
Consequently, ∪Q is a strong module of σ. �

In the second assertion of Lemma 2.15, the hypothesis that all the blocks
of P are strong modules of σ is necessary. Indeed, for each X ∈ P , {X} is a
strong module of σ/P , so we must have ∪{X} =X is a strong module of σ.

The following property of the {e, f}-components of a 2-structure σ, where
e, f ∈ E(σ), completes our examination.

Lemma 2.16 (Ille [23]). Let σ be a 2-structure σ. Consider an {e, f}-
component X of σ, where e, f ∈ E(σ). For every strong module M of σ, if
X ⊆M , then M =X or M = V (σ).

Proof. Let M be a strong module of σ such that X ⊊M ⊆ V (σ). We have
to show that M = V (σ). It follows from Lemma 2.4 that C{e,f}(σ) is a
modular partition of σ. Furthermore, each block of C{e,f}(σ) is a strong
module of σ by Lemma 2.13. Since M is a strong module of σ, it follows
from Lemma 2.15 that M/C{e,f}(σ) is a strong module of σ/C{e,f}(σ). By
Proposition 2.8, σ/C{e,f}(σ) is constant or linear. Thus, σ/C{e,f}(σ) is prim-
itive by Lemma 2.14. Therefore, M/C{e,f}(σ) is a trivial strong module of
σ/C{e,f}(σ). Since X ⊊ M , ∣M/C{e,f}(σ)∣ ≥ 2, so M/C{e,f}(σ) = C{e,f}(σ).
Lastly, consider Y ∈ C{e,f}(σ). Since M/C{e,f}(σ) = C{e,f}(σ), we have
Y ∩M ≠ ∅ and M ∖ Y ≠ ∅. Since M is a strong module of σ, we obtain
Y ⊆M . It follows that M = V (σ). �

Notation 2.17. Let σ be a 2-structure. Suppose that σ is not {e, f}-
connected, where e, f ∈ E(σ). It follows from Lemma 2.16 that C{e,f}(σ) is
the set of the strong modules of σ that are maximal under inclusion among
the proper strong modules of σ. In a general way, we associate with each
2-structure σ the set Π(σ) of the strong modules of σ that are maximal
under inclusion among the proper strong modules of σ. (Note that Π(σ)
can be empty when σ is infinite.)

Proposition 2.18. Let σ be a 2-structure such that v(σ) ≥ 2. The set Π(σ)
constitutes a modular partition of σ2.7, and the quotient σ/Π(σ) is primitive.

Proof. To begin, consider X,Y ∈ Π(σ) such that X ∩ Y ≠ ∅. Since X
is a strong module of σ, we have X ⊆ Y or Y ⊆ X. It follows from the

2.7Recall that we consider finite 2-structures.
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maximality of X and Y that X = Y . Moreover, consider v ∈ V (σ). As
previously mentioned, {v} is a strong module of σ. Denote by Sv the set of
the proper strong modules of σ containing v. Since v(σ) ≥ 2, {v} ∈ Sv. Let
M,N ∈ Sv. We have v ∈M ∩N . Since M is a strong module of σ, we obtain
M ⊆ N or N ⊆M . Therefore, (Sv,⊊) is a linear order. Since V (σ) is finite,
(Sv,⊊) admits a greatest element Mv. Clearly, Mv ∈ Π(σ). Consequently,
we have ∪Π(σ) = V (σ). It follows that Π(σ) is a modular partition of σ.

Now, we prove that σ/Π(σ) is primitive. Consider a strong module Q of
σ/Π(σ) such that ∣Q∣ ≥ 2. We have to show that Q = Π(σ). Since all the
blocks of Π(σ) are strong modules of σ, it follows from Lemma 2.15 that ∪Q
is a strong module of σ. Given X ∈ Q, we have X ⊊ (∪Q) because ∣Q∣ ≥ 2.
By the maximality of X, ∪Q = V (σ), and hence Q = Π(σ). �

The characterization of primitive 2-structures is an easy consequence of
Lemma 2.14, and of the following two propositions.

Proposition 2.19. Given a primitive 2-structure σ such that v(σ) ≥ 3, σ
is prime if and only if σ is uncuttable.

Proof. To begin, suppose that σ is cuttable, and consider a nontrivial mod-
ular cut X of σ. Since v(σ) ≥ 3, X or V (σ) ∖X are nontrivial modules of
σ. Therefore σ is decomposable.

Conversely, suppose that σ is decomposable. Hence σ admits nontrivial
modules. Consider a module M of σ that is maximal under inclusion among
the nontrivial modules of σ. Since σ is primitive, M is not a strong module
of σ. Thus there exists a module N of σ such that M ∩N ≠ ∅, M ∖N ≠ ∅,
and N ∖M ≠ ∅. By assertion (M5) of Proposition 2.5, M ∪N is a module
of σ because M ∩N ≠ ∅. Since N ∖M ≠ ∅, we have M ⊊ M ∪N . By the
maximality of M , we obtain M ∪ N = V (σ). Thus N ∖M = V (σ) ∖M .
By assertion (M6) of Proposition 2.5, N ∖M = V (σ) ∖M is a module of
σ because M ∖N ≠ ∅. Consequently, M is a nontrivial modular cut of σ.
Therefore σ is cuttable. �

Proposition 2.20. Given a 2-structure σ, σ is primitive and cuttable if
and only if σ is constant or linear, with v(σ) ≥ 2.

Proof. Suppose that σ is constant or linear, with v(σ) ≥ 2. By Lemma 2.14,
σ is primitive. Since σ is constant or linear, it follows from Corollary 2.11
that there exists v ∈ V (σ) such that {v} is a modular cut of σ. Since
v(σ) ≥ 2, {v} is a nontrivial modular cut of σ, so σ is cuttable.

Conversely, suppose that σ is primitive and cuttable. By Proposition 2.12,
there exist e, f ∈ E(σ) such that σ is not {e, f}-connected. Furthermore, by
Lemma 2.13, each {e, f}-component of σ is a strong module of σ. Since σ is
primitive and not {e, f}-connected, each {e, f}-component of σ is reduced to
a singleton. Consequently, the function V (σ) Ð→ C{e,f}(σ), defined by v ↦
{v} for every v ∈ V (σ), realizes an isomorphism from σ onto σ/C{e,f}(σ). It
follows from Proposition 2.8 that σ is constant or linear. Note that v(σ) ≥ 2
because σ is cuttable. �
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There is another approach to establish the forward direction of Proposi-
tion 2.20. It reveals the importance of the notion of a modular cut in the
study of nonconnected 2-structures.

Second proof of the forward direction of Proposition 2.20. Let σ be a cut-
table and primitive 2-structure. We consider a maximal set S under inclusion
among the sets of modular cuts of σ that are linearly ordered by inclusion.
By the maximality of S, we have ∅, V (σ) ∈ S, and S∖{∅, V (σ)} ≠ ∅ because
σ is cuttable. We denote the elements of S by X0, . . . ,Xn, where n ≥ 2, in
such a way that

∅ =X0 ⊊ ⋯ ⊊Xn = V (σ).
Let m ∈ {0, . . . , n − 1}. We show that

Xm+1 ∖Xm is a strong module of σ.

Since V (σ) ∖Xm is a module of σ, Xm+1 ∩ (V (σ) ∖Xm) = Xm+1 ∖Xm is a
module of σ by assertion (M4) of Proposition 2.5. Now, consider a module
M of σ such that M ∩ (Xm+1 ∖Xm) ≠ ∅, and M ∖ (Xm+1 ∖Xm) ≠ ∅. We
have to verify that (Xm+1∖Xm) ⊆M . Since M ∖ (Xm+1∖Xm) ≠ ∅, we have
M ∩Xm ≠ ∅ or M ∩ (V (σ) ∖Xm+1) ≠ ∅. The set {V (σ) ∖Xp ∶ 0 ≤ p ≤ n} is
also maximal under inclusion among the sets of modular cuts of σ that are
linearly ordered by inclusion. So, by interchanging S and {V (σ) ∖Xp ∶ 0 ≤
p ≤ n} if necessary, we can assume that

M ∩Xm ≠ ∅.
We verify that

Xm ∪ (M ∩Xm+1) is a modular cut of σ.

Since Xm ∩ (M ∩Xm+1) =M ∩Xm, Xm ∪ (M ∩Xm+1) is a module of σ by
assertion (M5) of Proposition 2.5. Clearly, V (σ) ∖ (Xm ∪ (M ∩Xm+1)) =
(V (σ) ∖Xm) ∖ (M ∩Xm+1). Since (M ∩Xm+1) ∖ (V (σ) ∖Xm) =M ∩Xm,
it follows from assertion (M6) of Proposition 2.5 that (V (σ) ∖Xm) ∖ (M ∩
Xm+1) = V (σ)∖(Xm∪(M ∩Xm+1)) is a module of σ. Therefore, Xm∪(M ∩
Xm+1) is a modular cut of σ.

Since Xm ∪ (M ∩Xm+1) =Xm ∪ (M ∩ (Xm+1 ∖Xm)), we have

Xm ⊊Xm ∪ (M ∩Xm+1) ⊆Xm+1.

It follows from the maximality of S that Xm ∪ (M ∩ Xm+1) = Xm+1 or,
equivalently, (Xm+1 ∖Xm) ⊆M .

Consequently, Xm+1∖Xm is a strong module of σ for every m ∈ {0, . . . , n−
1}. Since σ is primitive, ∣Xm+1 ∖Xm∣ = 1 for every 0 ≤ m ≤ n − 1. Denote
by xm+1 the unique element of Xm+1 ∖ Xm. We have Xm = {x1, . . . , xm}
for each 0 < m ≤ n. In particular, V (σ) = Xn = {x1, . . . , xn}. Consider
p, q ∈ {1, . . . , n} such that p < q. Since Xp = {x1, . . . , xp} is a module of σ,
we obtain [xp, xq]σ = [x1, xq]σ. Since V (σ) ∖X1 = {x2, . . . , xn} is a module
of σ, [x1, xq]σ = [x1, x2]σ. Thus

[xp, xq]σ = [x1, x2]σ for any p, q ∈ {1, . . . , n} such that p < q.
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It follows that σ is constant if (x1, x2)σ = (x2, x1)σ, and σ is linear if
(x1, x2)σ ≠ (x2, x1)σ. �

The characterization of primitive 2-structures follows.

Theorem 2.21 (Ille [23]2.8). Given a 2-structure σ, σ is primitive if and
only if σ is prime, constant, or linear.

Proof. By Lemma 2.14, if σ is prime, constant, or linear, then σ is primi-
tive. Conversely, we verify that if σ is primitive and decomposable, then σ
is constant or linear. Hence, suppose that σ is primitive and decomposable.
Obviously, v(σ) ≥ 3 because σ is decomposable. It follows from Proposi-
tion 2.19 that σ is cuttable, and it suffices to apply Proposition 2.20. �

The next result, called Gallai’s decomposition theorem, is a direct conse-
quence of Proposition 2.18 and Theorem 2.21.

Theorem 2.22 (Gallai [18, 28]2.9 ). Given a 2-structure σ, with v(σ) ≥ 2,
the quotient σ/Π(σ) is prime, constant, or linear.

Remark 2.23. Chein, Habib, and Maurer [9] adopted a different approach
to establish Theorem 2.22 for partitive hypergraphs, which constitutes a nice
generalization of Theorem 2.22. We transcribe it in terms of symmetric 2-
structures. (The set of the modules of a symmetric 2-structure is a partitive
hypergraph.) Given a symmetric 2-structure σ, define a partial order O on
the set of the modular partitions of σ as follows. Given distinct modular
partitions P and Q of σ, (P,Q) ∈ A(O) if for every X ∈ P , there exists
Y ∈ Q such that X ⊆ Y . Clearly, {{v} ∶ v ∈ V (σ)} is the least vertex of
O, and {V (σ)} is the greatest one. Furthermore, with modular partitions
P and Q of σ associate their join P ∨Q, and their meet P ∧Q defined as join

meetfollows. First, given distinct v,w ∈ V (σ), v and w belong to the same block
of P ∨Q if there exist X0, . . . ,Xn ∈ P ∪Q satisfying v ∈X0, w ∈Xn, and for
0 ≤ i ≤ n− 1 (when n ≥ 1), Xi ∩Xi+1 ≠ ∅. Second, given distinct v,w ∈ V (σ),
v and w belong to the same block of P ∧Q if there exist X ∈ P and Y ∈ Q
such that v,w ∈X ∩ Y . Clearly, P ∨Q and P ∧Q are modular partitions of
σ. Therefore, O is a lattice, that is, for any modular partitions P , Q, and lattice
R of σ, we have: if (P,R), (Q,R) ∈ A(O), then ((P ∨Q),R) ∈ A(O), and if
(R,P ), (R,Q) ∈ A(O), then (R, (P ∧Q)) ∈ A(O). The maximal vertices of
O − {V (σ)} are called the coatoms of O. Lastly, Chein, Habib, and Maurer coatoms
observed that Π(σ) is the meet of all the coatoms of O.

2.8Ehrenfeucht, Harju and Rozenberg [14, Theorem 5.3] established a more general
result. They associate with a decomposable and primitive 2-structure σ a graph Γ defined
on V (Γ) = V (σ) as follows. Given distinct v,w ∈ V (Γ), vw ∈ E(Γ) if {v,w} is a module
of σ. Then, they proved that either Γ is complete or Γ is a path. In the first instance, σ
is constant whereas σ is linear in the second one.

2.9Gallai [18] demonstrated this theorem for graphs; Boussäıri, Ille, Lopez, Thomassé
[8, Theorem 5] for digraphs; Ehrenfeucht, Harju, and Rozenberg [14, Theorem 5.5] for
2-structures; Ille [23, Theorem 2] for binary structures.
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We specify Theorem 2.22 as follows.

Theorem 2.24. Given a 2-structure σ, with v(σ) ≥ 2, the assertions below
hold.

(1) There exists e ∈ E(σ) such that σ is not {e}-connected if and only if
Π(σ) = C{e}(σ) and σ/Π(σ) is constant.

(2) There exist distinct e, f ∈ E(σ) such that σ is not {e, f}-connected
if and only if Π(σ) = C{e,f}(σ) and σ/Π(σ) is linear.

(3) The 2-structure σ is connected if and only if σ/Π(σ) is prime.

Proof. To begin, suppose that there exist e, f ∈ E(σ) such that σ is not
{e, f}-connected. It follows from Lemma 2.4, Lemma 2.13, and Lemma 2.16
that Π(σ) = C{e,f}(σ). By Proposition 2.8, σ/Π(σ) is constant if e = f , and
σ/Π(σ) is linear if e ≠ f . Conversely, suppose that σ/Π(σ) is constant or
linear. There exists X ∈ Π(σ) such that {X} is a modular cut of σ/Π(σ).
By Lemma 2.10, X is a modular cut of σ. It follows from assertion (M7) of
Proposition 2.5 that there exist e, f ∈ E(σ) such that [X,V (σ)∖X]σ = (e, f).
Therefore, σ is not {e, f}-connected.

Lastly, suppose that σ is {e, f}-connected for any e, f ∈ E(σ). By Propo-
sition 2.12, σ is uncuttable. It follows that ∣Π(σ)∣ ≥ 3. For every modular
cut Q of σ/Π(σ), ∪Q is a modular cut of σ by Lemma 2.10. Thus σ/Π(σ)
is uncuttable as well. Moreover, by Proposition 2.18, σ/Π(σ) is primitive.
Since ∣Π(σ)∣ ≥ 3, it follows from Proposition 2.19 that σ/Π(σ) is prime.
Conversely, suppose that σ/Π(σ) is prime. Since ∣Π(σ)∣ ≥ 3, σ/Π(σ) is nei-
ther constant nor linear. It follows from the first two assertions that σ is
connected. �

Notation 2.25. Let σ be a nonconnected 2-structure. It follows from The-
orem 2.24 that there exists a unique subset ν(σ) of E(σ) such that ∣ν(σ)∣ = 1
or 2, and σ is not ν(σ)-connected. The ν(σ)-components of σ are simply
called the components of σ, and Cν(σ)(σ) is denoted by C(σ).component

Finally, the last assertion of Theorem 2.24 is developed as follows.

Theorem 2.26. Given a 2-structure σ, with v(σ) ≥ 2, the following asser-
tions are equivalent

(1) σ is connected;
(2) σ is uncuttable;
(3) σ/Π(σ) is prime;
(4) There exists a modular partition P of σ such that σ/P is prime;
(5) ∣Π(σ)∣ ≥ 3 and Π(σ) is the set of the maximal modules of σ under

inclusion among the proper modules of σ.

Proof. We denote byM the set of the maximal modules of σ under inclusion
among the proper modules of σ. Hence, (5) is restated as follows

∣Π(σ)∣ ≥ 3 and Π(σ) =M.
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By Proposition 2.12, the first two assertions are equivalent. Hence, it
follows from the last assertion of Theorem 2.24 that the first three assertions
are equivalent.

Clearly, (3) implies (4). Now, we show that (4) implies (5). Suppose that
there exists a modular partition P of σ such that σ/P is prime. First, we
prove that for every module M of σ,

(2.6) if ∣M/P ∣ ≥ 2, then M/P = P .
Let M be a module of σ such that ∣M/P ∣ ≥ 2. By Lemma 2.10, M/P is
a module of σ/P . Thus M/P = P because σ/P is prime. Therefore (2.6)
holds. Second, we prove that for every module M of σ,

(2.7) if ∣M/P ∣ ≥ 2, then M = V (σ).
Let M be a module of σ such that ∣M/P ∣ ≥ 2. By (2.6), M/P = P . For
a contradiction, suppose that M ≠ V (σ), and consider X ∈ P such that
X ∖M ≠ ∅. By assertion (M6) of Proposition 2.5, M ∖X is a module of σ.
We have (M ∖X)/P = P ∖ {X}. Since ∣P ∣ ≥ 3, we obtain ∣(M ∖X)/P ∣ ≥ 2
and (M ∖X)/P ≠ P , which contradicts (2.6). It follows that X ⊆ M for
every X ∈ P , so M = V (σ). Therefore (2.7) holds. Third, we prove that
P =M. Given X ∈ P , consider a module M of σ such that X ⊊ M . Since
X ⊊M , ∣M/P ∣ ≥ 2. By (2.7), M = V (σ). Thus P ⊆M. Conversely, consider
Y ∈M. Since Y ≠ V (σ), it follows from (2.7) that there exists X ∈ P such
that Y ⊆ X. By the maximality of Y , Y = X, so Y ∈ P . Therefore M ⊆ P .
It follows that P =M. Fourth, we verify that the blocks of P are strong
modules of σ. Given X ∈ P , consider a module M of σ such that X ∩M ≠ ∅
and M ∖X ≠ ∅. We have ∣M/P ∣ ≥ 2. By (2.7), M = V (σ). Hence X ⊆M .
It follows that X is a strong module of σ. Since P =M, X ∈M. It follows
that X ∈ Π(σ). Therefore P ⊆ Π(σ). Since P and Π(σ) are partitions of
V (σ), we obtain P = Π(σ). Consequently

P = Π(σ) =M.

Note that ∣Π(σ)∣ ≥ 3 because Π(σ) = P and σ/P is prime. It follows that
(4) implies (5).

Lastly, we show that (5) implies (3). Hence suppose that ∣Π(σ)∣ ≥ 3 and
Π(σ) =M. Since ∣Π(σ)∣ ≥ 3, we have to show that σ/Π(σ) is indecompos-
able. Let Q be a module of σ/Π(σ) such that ∣Q∣ ≥ 2. We have to verify that
Q = Π(σ). By Lemma 2.10, ∪Q is a module of σ. Consider X ∈ Q. Since
Π(σ) =M, we have X ∈M. Since ∣Q∣ ≥ 2, we obtain X ⊊ ∪Q. It follows
from the maximality of X that ∪Q = V (σ). Hence Q = Π(σ). �
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3. Prime 2-substructures of a prime 2-structure: the first
results

Notation 3.1. Let σ be a 2-structure. For n ∈ {3, . . . , v(σ) − 1}, we de-
note by Pn(σ) the set of X ⊆ V (σ) such that σ[X] is prime and ∣X ∣ = n.
Furthermore, we denote by Rn(σ) the union of the elements of Pn(σ).

Question 3.2. Let σ be a prime 2-structure. A natural question is:

For which n ∈ {3, . . . , v(σ) − 1}, is Pn(σ) ≠ ∅?

Obviously, we can refine the question as follows. Given v ∈ V (σ), for which
n ∈ {3, . . . , v(σ) − 1}, do we have v ∈ Rn(σ)?

For instance, given n ≥ 2, consider the graph B2n+1 defined on V (B2n+1) =
{0, . . . ,2n} by

E(B2n+1) ={{i, j} ∶ i, j ∈ {0, . . . , n − 1}, i ≠ j}
∪ {{i, i + n} ∶ i ∈ {0, . . . , n − 1}}
∪ {{i,2n} ∶ i ∈ {0, . . . , n − 1}} (see Figure 3.1).

The graph B5 is called the bull.the bull
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Figure 3.1. The graph B7

Claim 3.3. B2n+1 − 2n is prime.

Proof. Consider a module M of B2n+1 − 2n such that ∣M ∣ ≥ 2. We have
to show that M = {0, . . . ,2n − 1}. For a contradiction, suppose that M ∩
{0, . . . , n − 1} = ∅. Hence M ⊆ {n, . . . ,2n − 1}. Since ∣M ∣ ≥ 2, there exist
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distinct i, j ∈ {0, . . . , n − 1} such that i + n, j + n ∈ M , which is impossible
because i /∈M with {i, i+n} ∈ E(B2n+1) and {i, j+n} /∈ E(B2n+1). It follows
that M ∩ {0, . . . , n − 1} ≠ ∅. Similarly, M ∩ {n, . . . ,2n − 1} ≠ ∅.

We prove that for every i ∈ {0, . . . , n − 1},

(3.1) i ∈M Ô⇒ i + n ∈M.

Indeed, consider i ∈M ∩ {0, . . . , n − 1}. Since M ∩ {n, . . . ,2n − 1} ≠ ∅, there
exists j ∈ {0, . . . , n − 1} such that j + n ∈ M ∩ {n, . . . ,2n − 1}. If i = j,
then i + n ∈ M . Suppose that i ≠ j. We have {i, i + n} ∈ E(B2n+1) and
{j + n, i + n} /∈ E(B2n+1). Since M is a module of B2n+1 − 2n such that
i, j +n ∈M , we obtain i+n ∈M . Hence (3.1) holds. Now, we prove that for
every i ∈ {0, . . . , n − 1},

(3.2) i ∈M ⇐⇒ i + n ∈M.

Since (3.1) holds, consider i ∈ {0, . . . , n − 1} such that i + n ∈ M . Since
M ∩{0, . . . , n−1} ≠ ∅, there exists j ∈ {0, . . . , n−1}∩M . If j = i, then i ∈M .
Suppose that i ≠ j. Since (3.1) holds, j+n ∈M . We have {i, i+n} ∈ E(B2n+1)
and {i, j + n} /∈ E(B2n+1). Since M is a module of B2n+1 − 2n such that
i + n, j + n ∈M , we obtain i ∈M . Hence (3.2) holds.

Lastly, since (3.2) holds, there exists i ∈ {0, . . . , n−1} such that i, i+n ∈M .
For each j ∈ {0, . . . , n − 1} ∖ {i}, we have {i, j} ∈ E(B2n+1) and {i + n, j} /∈
E(B2n+1). Since M is a module of B2n+1 − 2n such that i, i + n ∈ M , we
obtain j ∈ M . Therefore {0, . . . , n − 1} ⊆ M . It follows from (3.2) that
M = {0, . . . ,2n − 1}. �

Claim 3.4. B2n+1 is prime.

Proof. Consider a module M of B2n+1 such that ∣M ∣ ≥ 2. We have to show
that M = {0, . . . ,2n}. For a contradiction, suppose that 2n /∈M . By asser-
tion (M2) of Proposition 2.5, M is a module of B2n+1 − 2n. Since ∣M ∣ ≥ 2, it
follows from Claim 3.3 that M = {0, . . . ,2n−1}, which is impossible because
{0,2n} ∈ E(B2n+1) and {n,2n} /∈ E(B2n+1). Thus 2n ∈M .

We prove that ∣M ∖ {2n}∣ ≥ 2. We have M ∖ {2n} ≠ ∅ because ∣M ∣ ≥ 2.
First, suppose that there exists i ∈ M ∩ {0, . . . , n − 1}. Since {i, i + n} ∈
E(B2n+1) and {i + n,2n} /∈ E(B2n+1), we have i + n ∈ M . Second, suppose
that there exists i ∈ {0, . . . , n−1} such that i+n ∈M . Consider j ∈ {0, . . . , n−
1}∖ {i}. Since {j,2n} ∈ E(B2n+1) and {j, i+n} /∈ E(B2n+1), we have j ∈M .
It follows that ∣M ∖ {2n}∣ ≥ 2.

By assertion (M2) of Proposition 2.5, M ∖{2n} is a module of B2n+1−2n.
Moreover, B2n+1 −2n is prime by Claim 3.3. Since ∣M ∖{2n}∣ ≥ 2, we obtain
M ∖ {2n} = {0, . . . ,2n − 1}. Thus M = {0, . . . ,2n} because 2n ∈M . �

Claim 3.5. We have 2n ∈ R5(B2n+1) ∖ (R3(B2n+1) ∪R4(B2n+1)).

Proof. It follows from Claim 3.4 that the 2-substructure B2n+1[{0,1, n, n +
1,2n}] is prime because it is isomorphic to B5. Thus 2n ∈ R5(B2n+1).

Now, consider X ⊆ V (B2n+1) such that ∣X ∣ = 3 or 4, and 2n ∈X. We have
to prove that B2n+1[X] is decomposable.
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First, suppose that for all i ∈X∩{0, . . . , n−1} and all j ∈X∩{n, . . . ,2n−1},
we have j− i ≠ n. We have (X ∩{0, . . . , n−1})∪{2n} and X ∩{n, . . . ,2n−1}
are modules of B2n+1[X]. If (X ∩{0, . . . , n−1})∪{2n} is a trivial module of
B2n+1[X], then X ⊆ {n, . . . ,2n}, and hence X∩{n, . . . ,2n−1} is a nontrivial
module of B2n+1[X]. Therefore, (X∩{0, . . . , n−1})∪{2n} or X∩{n, . . . ,2n−
1} are nontrivial modules of B2n+1[X].

Second, suppose that there exists i ∈ {0, . . . , n−1} such that i, i+n ∈X. If
X ∩ {0, . . . , n− 1} = {i}, then {i+n,2n} is a nontrivial module of B2n+1[X].
Otherwise, if there exists j ∈ {0, . . . , n−1}∖{i} such that X = {i, j, i+n,2n},
then {j,2n} is a nontrivial module of B2n+1[X]. �

In Corollary 3.9, we establish that such a vertex 2n is unique.

3.1. Sumner’s theorem.

Remark 3.6. Let σ be a prime 2-structure. Consider

(3.3) v /∈ R3(σ) ∪R4(σ).
Let X ⊆ V (σ) such that v ∈ X and ∣X ∣ = 3 or 4. We verify that σ[X] is not
connected. Otherwise, σ[X] is connected, and it follows from Theorem 2.26
that σ[X]/Π(σ[X]) is prime. Consider a subset X ′ of X such that v ∈ X ′

and ∣X ′ ∩ Y ∣ = 1 for each Y ∈ Π(σ[X]). The function f ∶ Π(σ[X]) Ð→ X ′,
satisfying X ′ ∩ Y = {f(Y )} for each Y ∈ Π(σ[X]), realizes an isomorphism
from σ[X]/Π(σ[X]) onto σ[X ′]. Thus, σ[X ′] is prime with v ∈ X ′ and
∣X ′∣ = 3 or 4, which contradicts (3.3).

Notation 3.7. Consider a 2-structure σ. Let v ∈ V (σ). For e, f ∈ E(σ), set

N (e,f)
σ (v) = {w ∈ V (σ) ∖ {v} ∶ [v,w]σ = (e, f)}.

Proposition 3.8 (Ille [23]3.1). Given a prime 2-structure σ, consider v /∈
R3(σ) ∪R4(σ).

(1) For each e ∈ E(σ), σ[N (e,e)
σ (v)] is e-constant.

(2) For distinct e, f ∈ E(σ), σ[N (e,f)
σ (v)] is e-linear (and f -linear).

Proof. Consider e, f ∈ E(σ) such that N
(e,f)
σ (v) ≠ ∅. We prove that each

{e, f}-component C of σ[N (e,f)
σ (v)] is a module of σ. Consider x ∈ V (σ)∖C.

We have to verify that x ←→σ C. Since C ⊆ N (e,f)
σ (v), we have [v,C]σ =

(e, f). Hence, suppose that x ≠ v. Moreover, since C is a module of

σ[N (e,f)
σ (v)] by Lemma 2.4, suppose that x /∈ N (e,f)

σ (v). Thus suppose
that

x /∈ N (e,f)
σ (v) ∪ {v}.

Let γ ∈ C. Since γ ∈ N (e,f)
σ (v) and x /∈ N (e,f)

σ (v), {γ, x} is not a module of
σ[{v, x, γ}]. Since σ[{v, x, γ}] is decomposable, {v, x} or {v, γ} are modules
of σ[{v, x, γ}]. First, suppose that {v, γ} is a module of σ[{v, x, γ}]. We

3.1Cournier and Ille [12] established this proposition for digraphs. Ille [23] proved this
proposition for binary structures, that is, labeled 2-structures [14].
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obtain x ←→σ {v, γ}. Thus [x, γ]σ = [x, v]σ, so γ ∈ N [x,v]σ
σ (x). Second,

suppose that {v, x} is a module of σ[{v, x, γ}]. We obtain γ ←→σ {v, x}.

Hence [x, γ]σ = [v, γ]σ. Since C ⊆ N
(e,f)
σ (v), we obtain γ ∈ N (e,f)

σ (x).
Therefore

(3.4) C ⊆ N (e,f)
σ (x) ∪N [x,v]σ

σ (x).
Suppose that ≺ v, x ≻σ= {e, f} (see Notation 1.1). We obtain e ≠ f and

[v, x]σ = (f, e) because x /∈ N (e,f)
σ (v). It follows from (3.4) that [x,C]σ =

(e, f). Now, suppose that ≺v, x≻σ≠ {e, f}. We obtain

(C ∩N [x,v]σ
σ (x)) ∩ (C ∩N (e,f)

σ (x)) = ∅.

Consider γ ∈ C∩N [x,v]σ
σ (x) and δ ∈ C∩N (e,f)

σ (x). By Remark 3.6, σ[{v, x, γ,
δ}] is not connected. Since ≺v, γ≻σ=≺v, δ≻σ=≺x, δ≻σ= {e, f}, we obtain

ν(σ[{v, x, γ, δ}]) = {e, f} (see Notation 2.25).

Furthermore, since ≺v, x≻σ≠ {e, f} and ≺x, γ≻σ=≺v, x≻σ, we have

{v, x, γ} ∈ C(σ[{v, x, γ, δ}]).
By Lemma 2.4, δ ←→σ {v, x, γ}, and hence [γ, δ]σ = [v, δ]σ = (e, f). Conse-

quently, if C∩N [x,v]σ
σ (x) ≠ ∅ and C∩N (e,f)

σ (x) ≠ ∅, then [C∩N [x,v]σ
σ (x),C∩

N
(e,f)
σ (x)]σ = (e, f). Since σ[C] is {e, f}-connected and C ⊆ N (e,f)

σ (x) ∪
N

[x,v]σ
σ (x) by (3.4), we have C ⊆ N

[x,v]σ
σ (x) or C ⊆ N

(e,f)
σ (x). In both

instances, we obtain x←→σ C.

Consequently, the {e, f}-components of σ[N (e,f)
σ (v)] are modules of σ.

Since σ is prime, they are reduced to singletons. Thus, the function from

N
(e,f)
σ (v) onto C{e,f}(σ[N

(e,f)
σ (v)), defined by

u↦ {u} for every u ∈ N (e,f)
σ (v),

is an isomorphism from σ[N (e,f)
σ (v)] onto

σ[N (e,f)
σ (v)]/C{e,f}(σ[N (e,f)

σ (v)]).

It follows from Lemma 2.4 and Proposition 2.8 that σ[N (e,f)
σ (v)] is e-

constant if e = f , and σ[N (e,f)
σ (v)] is e-linear if e ≠ f . �

Corollary 3.9 (Ille [23]3.2). Given a prime 2-structure σ, we have

∣V (σ) ∖ (R3(σ) ∪R4(σ))∣ ≤ 1.

Proof. For a contradiction, suppose that there exist distinct x, y ∈ V (σ) ∖
(R3(σ) ∪ R4(σ)). We prove that σ is decomposable. This is the case if
{x, y} is a module of σ because v(σ) ≥ 3. Hence, suppose that {x, y} is not
a module of σ, and consider v ∈ V (σ)∖ {x, y} such that v /←→σ {x, y}. Since
σ[{x, y, v}] is decomposable, {x, v} or {y, v} are modules of σ[{x, y, v}].

3.2Cournier and Ille [12] proved this corollary for digraphs. Ille [23] proved this propo-
sition for binary structures, that is, labeled 2-structures [14]
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Suppose that {x, v} is a module of σ[{x, y, v}]. Thus x, v ∈ N [y,x]σ
σ (y). By

Proposition 3.8, ≺x, v≻σ=≺x, y≻σ. It follows that

(3.5) ≺x, v≻σ=≺y, v≻σ=≺x, y≻σ .
Since v /←→σ {x, y} and ≺ x, v ≻σ=≺ y, v ≻σ, we obtain ∣≺ x, v ≻σ ∣ = 2 and
[x, v]σ = [v, y]σ. Since {x, v} is a module of σ[{x, y, v}], we have

(3.6) [x, v]σ = [v, y]σ = [x, y]σ.
We obtain also that (3.6) is satisfied when {y, v} is a module of σ[{x, y, v}].
Consequently, by setting

W = {v ∈ V (σ) ∖ {x, y} ∶ v /←→σ {x, y}},
we obtain that W ∪{x} is a module of σ[W ∪{x, y}]. We show that W ∪{x}
is a module of σ. By assertion (M3) of Proposition 2.5, it suffices to verify
that W ∪ {x, y} is a module of σ. Consider v,w ∈ V (σ) ∖ {x, y} such that
v /←→σ {x, y} (i.e. v ∈W ) and w ←→σ {x, y}. We prove that

(3.7) w ←→σ {x, y, v}.
By Remark 3.3, B[{x, y, u,w}] is not connected. We distinguish the follow-
ing two cases.
Case 1: ≺x, y≻σ≠ ν(σ[{x, y, v,w}]) (see Notation 2.25).

Since ≺ x, v ≻σ=≺ y, v ≻σ=≺ x, y ≻σ by (3.5), it follows from Lemma 2.4
and Proposition 2.8 that {x, y, v} ∈ C(σ[{x, y, v,w}]). By Lemma 2.4,
{x, y, v} is a module of σ[{x, y, v,w}], and hence w ←→σ {x, y, v}.

Case 2: ≺x, y≻σ= ν(σ[{x, y, v,w}]) (see Notation 2.25).
Since w ←→σ {x, y}, we have ≺ x,w ≻σ=≺ y,w ≻σ. For a contradiction,
suppose that

≺x,w≻σ≠ ν(σ[{x, y, v,w}]).
By Lemma 2.4 and Proposition 2.8, {x, y,w} ∈ C(σ[{x, y, v,w}]). By
Lemma 2.4, {x, y,w} is a module of B[{x, y, v,w}], which contradicts
v /←→σ {x, y}. It follows that ≺x,w≻σ= ν(σ[{x, y, v,w}]). Since w ←→σ
{x, y}, [w,{x, y}]σ = [x, y]σ or [y, x]σ. Suppose that

[w,{x, y}]σ = [x, y]σ.
Since ∣ ≺x, y≻σ ∣ = 2 and [v, x]σ = [y, x]σ by (3.6), {v,w} is not a module
of σ[{x, v,w}]. Since σ[{x,u,w}] is decomposable, we have {x, v} is
a module of σ[{x, v,w}] and [w, v]σ = [w,x]σ = [x, y]σ or {x,w} is a
module of σ[{x, v,w}] and [w, v]σ = [x, v]σ. Since [x, v]σ = [x, y]σ by
(3.6), we obtain

[w,{x, y, v}]σ = [x, y]σ
in both instances. When [w,{x, y}]σ = [y, x]σ, we obtain

[w,{x, y, v}]σ = [y, x]σ
by considering σ[{y, u,w}] instead of σ[{x,u,w}].
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In both cases, we obtain that (3.7) holds. It follows that W ∪ {x, y} is a
module of σ. By assertion (M3) of Proposition 2.5, W ∪{x} is a module of σ.
Hence σ is decomposable. Consequently ∣V (σ) ∖ (R3(σ) ∪R4(σ))∣ ≤ 1. �

Sumner’s theorem is an immediate consequence of Corollary 3.9.

Theorem 3.10 (Sumner [35]3.3). Given a prime 2-structure σ, we have

P3(σ) ∪P4(σ) ≠ ∅.
Sumner’s theorem is improved as follows.

Theorem 3.11 (Cournier, Ille [12]3.4). Given a prime 2-structure σ, we
have

V (σ) = R3(σ) ∪R4(σ) ∪R5(σ).
Proof. We prove that

V (σ) ∖ (R3(σ) ∪R4(σ)) ⊆ R5(σ).
Hence, consider v ∈ V (σ) ∖ (R3(σ) ∪ R4(σ)). By Corollary 3.9, V (σ) ∖
(R3(σ) ∪ R4(σ)) = {v}. Thus, by considering an element of V (σ) ∖ {v},
we obtain X ∈ P3(σ) ∪P4(σ) such that X ⊆ V (σ) ∖ {v}. We prove that
σ[X ∪ {v}] is prime. Otherwise, σ[X ∪ {v}] admits a nontrivial module
M . By assertion (M2) of Proposition 2.5, M ∩ X is a module of σ[X].
Since ∣M ∣ ≥ 2, M ∩ X ≠ ∅. Since σ[X] is prime, we obtain ∣M ∩ X ∣ = 1
or M ∩X = X. In the first instance, there is y ∈ X such that M = {y, v}.
Since {y, v} is a module of σ[X ∪ {v}], the function X Ð→ (X ∖ {y}) ∪ {v},
defined by y ↦ v and z ↦ z for each z ∈ X ∖ {y}, is an isomorphism from
σ[X] onto σ[(X ∖ {y}) ∪ {v}]. Thus σ[(X ∖ {u}) ∪ {v}] is prime, which
contradicts v ∈ V (σ) ∖ (R3(σ) ∪R4(σ)). In the second instance, v ←→σ X.

Hence there exist e, f ∈ E(σ) such that X ⊆ N (e,f)
σ (v). By Proposition 3.8,

σ[N (e,f)
σ (v)] is constant or linear. Therefore, σ[X] is constant or linear as

well, which contradicts the fact that σ[X] is prime. Consequently σ[X∪{v}]
is prime. �

3.2. The Ehrenfeucht–Rozenberg theorem. We continue examining the
existence of prime 2-substructures of cardinality greater than 5 in a prime
2-structure (see Question 3.2).

Notation 3.12. Given a 2-structure σ, suppose that there exists X ⊊ V (σ)
such that σ[X] is prime. By Theorem 3.10, such a subset X exists if σ is
prime with v(σ) ≥ 5. The discussion on M ∩X in the proof of Theorem 3.11,
where M is a module of σ[X∪{v}], leads us to consider the following subsets
of V (σ) ∖X

● Extσ(X) denotes the set of v ∈ V (σ) ∖X such that σ[X ∪ {v}] is
prime;

3.3Sumner [35] demonstrated this theorem for graphs.
3.4Cournier and Ille [12] proved this theorem for digraphs, and Ille [23] for binary

structures by using the same proof.
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● ⟨X⟩σ denotes the set of v ∈ V (σ) ∖X such that X is a module of
σ[X ∪ {v}];

● For each y ∈ X, Xσ(y) denotes the set of v ∈ V (σ) ∖X such that
{y, v} is a module of σ[X ∪ {v}].

Furthermore, p(σ,X) denotes the set {Extσ(X), ⟨X⟩σ} ∪ {Xσ(y) ∶ y ∈X}.

Lemma 3.13. Given a 2-structure σ, consider X ⊆ V (σ) such that σ[X]
is prime. The set p(σ,X) constitutes a partition of V (σ) ∖X.

Proof. To begin, we verify that the union of the elements of p(σ,X) equals
V (σ) ∖X. Let v ∈ V (σ) ∖X. If σ[X ∪ {v}] is prime, then v ∈ Extσ(X).
Suppose that σ[X ∪ {v}] is decomposable. Hence, σ[X ∪ {v}] admits a
nontrivial module M . By assertion (M2) of Proposition 2.5, M ∩ X is a
module of σ[X]. Since M is a nontrivial module of σ[X ∪ {v}], we have
∣M ∣ ≥ 2, so M∩X ≠ ∅. Since σ[X] is prime, we obtain ∣M ∣ = 1 or M∩X =X.
In the first instance, there exists y ∈X such that M∩X = {y}. Since ∣M ∣ ≥ 2,
we obtain M = {y, v}, and hence v ∈ Xσ(y). In the second instance, we
obtain M =X because M ≠X ∪ {v}. It follows that v ∈ ⟨X⟩σ.

Now, we show that the elements of p(σ,X) are pairwise disjoint. By
definition of the elements of p(σ,X), we have Extσ(X) ∩ ⟨X⟩σ = ∅, and
Extσ(X) ∩Xσ(y) = ∅ for every y ∈X.

Let y ∈X. Suppose for a contradiction that there exists v ∈Xσ(y)∩⟨X⟩σ.
We obtain that {y, v} and X are modules of σ[X ∪ {v}]. By assertion (M6)
of Proposition 2.5, X ∖ {y, v} = X ∖ {y} is a module of σ[X ∪ {v}] because
v ∈ {y, v} ∖X. By assertion (M2) of Proposition 2.5, X ∖ {y} is a module
of σ[X], which contradicts the fact that σ[X] is prime. It follows that
Xσ(y) ∩ ⟨X⟩σ = ∅.

Lastly, consider distinct y, z ∈ X. Suppose for a contradiction that there
is v ∈ Xσ(y) ∩ Xσ(z). We obtain that {y, v} and {z, v} are modules of
σ[X ∪ {v}]. By assertion (M5) of Proposition 2.5, {y, v} ∪ {z, v} = {y, z, v}
is a module of σ[X ∪ {x}] because v ∈ {y, v} ∩ {z, v}. By assertion (M2) of
Proposition 2.5, X ∩{y, z, v} = {y, z} is a module of σ[X], which contradicts
the fact that σ[X] is prime. �

Lemma 3.13 justifies the following definition.

Definition 3.14. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. By Lemma 3.13, p(σ,X) is a partition of V (σ)∖X. It is called the
outside partition induced by σ and X.outside partition

Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X] is prime. We
study the modules of σ[X ∪ {v,w}], where v,w ∈ V (σ) ∖X. We begin with
two remarks.

Remark 3.15. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime.
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● For every v ∈ ⟨X⟩σ, X is a module of σ[X ∪ {v}], that is, v ←→σ
X. Thus, X is a module of σ[X ∪ ⟨X⟩σ], and X is a module of
σ[X ∪ {v,w}] for v,w ∈ ⟨X⟩σ.

● Let y ∈ X. For z ∈ X ∖ {y} and v ∈ Xσ(y), we have z ←→σ {y, v}
because {y, v} is a module of σ[X ∪ {v}]. Therefore z ←→σ {y} ∪
Xσ(y). Consequently {y}∪Xσ(y) is a module of σ[X ∪Xσ(y)], and
{y, v,w} is a module of σ[X ∪ {v,w}] for v,w ∈Xσ(y).

Remark 3.16. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. Suppose that σ admits a nontrivial module M . By assertion (M2)
of Proposition 2.5, X ∩M is a module of σ[X]. Since σ[X] is prime, we
obtain X ∩M = ∅, ∣X ∩M ∣ = 1 or X ∩M = X. We consider the three cases
below.
Case 1: X ∩M = ∅.

We prove that there exists B ∈ p(σ,X) such that M ⊆ B. For distinct v,w ∈
M , we have (X ∪ {v,w}) ∩M = {v,w} is a module of σ[X ∪ {v,w}] by
assertion (M2) of Proposition 2.5. Therefore, the function f ∶X∪{v}Ð→
X ∪ {w}, defined by v ↦ w and y ↦ y for every y ∈X, is an isomorphism
from σ[X ∪ {v}] onto σ[X ∪ {w}]. Consequently, if v ∈ Extσ(X), that
is, σ[X ∪ {v}] is prime, then σ[X ∪ {w}] is prime too, so w ∈ Extσ(X).
Furthermore, if v ∈ ⟨X⟩σ, that is, if X is a module of σ[X ∪ {v}], then
f(X) =X is a module of σ[X ∪{w}], so w ∈ ⟨X⟩σ. Lastly, given y ∈X, if
v ∈X(y), that is, {y, v} is a module of σ[X∪{v}], then f({y, v}) = {y,w}
is a module of σ[X ∪ {w}], so w ∈ Xσ(y). Therefore, v and w belong to
the same block of p(σ,X).

Case 2: There is y ∈X such that X ∩M = {y}.
We verify that M ∖ {y} ≠ ∅ and M ∖ {y} ⊆Xσ(y). We have M ∖ {y} ≠ ∅
because ∣M ∣ ≥ 2. For each v ∈M ∖ {y}, it follows from assertion (M2) of
Proposition 2.5 that (X ∪ {v}) ∩M = {y, v} is a module of σ[X ∪ {v}]
or, equivalently, v ∈Xσ(y).

Case 3: X ⊆M .
Since M is a nontrivial module of σ, we have M ⊊ V (σ). Moreover,
(V (σ) ∖M) ⊆ ⟨X⟩σ. Indeed, for each v ∈ V (σ) ∖M , it follows from
assertion (M2) of Proposition 2.5 that (X ∪{v})∩M =X is a module of
σ[X ∪ {v}] or, equivalently, v ∈ ⟨X⟩σ.

Lemma 3.17. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. The following statements hold.

(P1) For v ∈ ⟨X⟩σ and w ∈Xσ(y), where y ∈X, if σ[X ∪{v,w}] is decom-
posable, then X ∪ {w} and {y,w} are the only nontrivial modules of
σ[X ∪ {v,w}].

(P2) For v ∈ ⟨X⟩σ and w ∈ Extσ(X), if σ[X ∪ {v,w}] is decomposable,
then X ∪ {w} is the unique nontrivial module of σ[X ∪ {v,w}].

(P3) Given distinct y, z ∈X, for v ∈Xσ(y) and w ∈Xσ(z), if σ[X∪{v,w}]
is decomposable, then {y, v} and {z,w} are the only nontrivial mod-
ules of σ[X ∪ {v,w}].
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(P4) Given y ∈ X, for v ∈ Xσ(y) and w ∈ Extσ(X), if σ[X ∪ {v,w}] is
decomposable, then {y, v} is the unique nontrivial module of σ[X ∪
{v,w}].

(P5) Given distinct v,w ∈ Extσ(X), if σ[X∪{v,w}] is decomposable, then
{v,w} is the unique nontrivial module of σ[X ∪ {x, y}].

Proof. For statements (P1),. . . ,(P5) above, consider v,w ∈ V (σ) ∖X such
that v ≠ w. Suppose that σ[X ∪ {v,w}] admits a nontrivial module M .
By assertion (M2) of Proposition 2.5, X ∩M is a module of σ[X]. Since
σ[X] is prime, we obtain ∣X ∩M ∣ ≤ 1 or X ∩M = X. Observe that in
statements (P1), (P2), (P3), and (P4) above, v and w do not belong to the
same block of p(σ,X). By Remark 3.16, we have X ∩M ≠ ∅. Hence, we have
∣X ∩M ∣ = 1 or X ∩M =X in statements (P1), (P2), (P3), and (P4) above.

For statement (P1), suppose that v ∈ ⟨X⟩σ and w ∈ Xσ(y), where y ∈ X.
As above observed, X ⊆M or there is z ∈ X such that X ∩M = {z}. First,
suppose that X ⊆ M . Since w ∈ Xσ(y), w /∈ ⟨X⟩σ by Lemma 3.13. It
follows from Remark 3.16 that w ∈ M . Since M ≠ X ∪ {v,w}, we obtain
M = X ∪ {w}. Thus v ←→σ X ∪ {w}, so v ←→σ {y,w}. Since w ∈ Xσ(y),
that is, {y,w} is a module of σ[X ∪{w}], we obtain that {y,w} is a module
of σ[X ∪ {v,w}]. Second, suppose that X ∩M = {z}. By Lemma 3.13,
v /∈ Xσ(z). It follows from Remark 3.16 that v /∈M . Therefore M = {z,w}
because ∣M ∣ ≥ 2. We obtain w ∈Xσ(z). By Lemma 3.13, y = z. Since {y,w}
is a module of σ[X ∪{v,w}], we have v ←→σ {y,w}. We have also v ←→σ X
because v ∈ ⟨X⟩σ. Thus v ←→σ X ∪ {w}, and hence X ∪ {w} is a module of
σ[X ∪ {v,w}].

For statement (P2), suppose that v ∈ ⟨X⟩σ and w ∈ Extσ(X). We verify
that ∣X ∩M ∣ ≥ 2. Otherwise, there exits y ∈ X such that X ∩M = {y}.
By Remark 3.16, M ∖ {y} ≠ ∅ and M ∖ {y} ⊆ Xσ(y), which contradicts
Lemma 3.13. Therefore, ∣X ∩M ∣ ≥ 2, and hence X ⊆M . Since w /∈ ⟨X⟩σ, we
obtain w ∈M by Remark 3.16. Hence M =X ∪ {w} because M ⊊X{v,w}.

For statement (P3), suppose that v ∈Xσ(y) and w ∈Xσ(z), where y, z ∈X
and y ≠ z. Suppose for a contradiction that X ⊆ M . By Remark 3.16,
{v,w} ∖M ≠ ∅ and {v,w} ∖M ⊆ ⟨X⟩σ, which contradicts Lemma 3.13.
Consequently, X ∖M ≠ ∅, and hence there exists t ∈ X such that X ∩M =
{t}. By Remark 3.16, M ∖ {t} ≠ ∅ and M ∖ {t} ⊆ Xσ(t). It follows from
Lemma 3.13 that t ∈ {y, z}. By interchanging y and z, and hence v and
w if necessary, we can assume that y = t. As previously, M ∖ {y} ≠ ∅ and
M ∖ {y} ⊆ Xσ(y). By Lemma 3.13, w /∈ Xσ(y), and hence w /∈ M . Since
∣M ∣ ≥ 2, we obtain M = {y, v}. It remains to show that {z,w} is a module
of σ[X ∪ {x, y}] as well. Since {z,w} is a module of σ[X ∪ {w}], it suffices
to verify that v ←→σ {z,w}. We have [z, y]σ = [z, v]σ and [w,y]σ = [w, v]σ
because {y, v} is a module of σ[X ∪ {v,w}]. Furthermore, we have [z, y]σ =
[w,y]σ because {z,w} is a module of σ[X∪{w}]. Therefore [z, v]σ = [w, v]σ.

For statement (P4), suppose that v ∈ Xσ(y), where y ∈ X, and w ∈
Extσ(X). Suppose for a contradiction that X ⊆ M . By Remark 3.16,
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{v,w} ∖M ≠ ∅ and {v,w} ∖M ⊆ ⟨X⟩σ, which contradicts Lemma 3.13.
Consequently, X ∖M ≠ ∅, and hence there exists z ∈ X such that X ∩M =
{z}. By Remark 3.16, M ∖ {z} ≠ ∅ and M ∖ {z} ⊆ Xσ(z). By Lemma 3.13,
w /∈Xσ(v), so w /∈M . Since ∣M ∣ ≥ 2, we obtain M = {z, v}. By Lemma 3.13,
we have z = y.

For statement (P5), suppose that v,w ∈ Extσ(X). First, suppose that
X ⊆M . By Remark 3.16, {v,w}∖M ≠ ∅ and {v,w}∖M ⊆ ⟨X⟩σ. It follows
from Lemma 3.13 that X ∖M ≠ ∅. Second, suppose that there exists y ∈X
such that X ∩M = {y}. By Remark 3.16, M ∖ {y} ≠ ∅ and M ∖ {y} ⊆
Xσ(y). It follows from Lemma 3.13 that ∣X ∩M ∣ ≠ 1. Consequently, we
have X ∖M ≠ ∅, and ∣X ∩M ∣ ≠ 1. By Remark 3.16, X ∩M = ∅, and hence
M = {v,w}. �

The following result is a direct consequence of Lemma 3.17.

Corollary 3.18. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. The following two assertions hold.

(Q1) For v ∈ ⟨X⟩σ and w ∈ V (σ)∖ (X ∪ ⟨X⟩σ), if σ[X ∪ {v,w}] is decom-
posable, then X ∪ {w} is a nontrivial module of σ[X ∪ {v,w}].

(Q2) Given y ∈ X, for v ∈ Xσ(y) and w ∈ V (σ) ∖ (X ∪Xσ(y)), if σ[X ∪
{v,w}] is decomposable, then {y, v} is a nontrivial module of σ[X ∪
{v,w}].

At present, we are ready to establish the Ehrenfeucht–Rozenberg theorem.

Theorem 3.19 (Ehrenfeucht and Rozenberg [13]). Given a 2-structure σ,
consider X ⊊ V (σ) such that ∣V (σ) ∖X ∣ ≥ 2 and σ[X] is primitive. If σ is
prime, then there exist distinct v,w ∈ V (σ) ∖X such that σ[X ∪ {v,w}] is
primitive. More precisely, if σ is prime, then the following two statements
hold.

(1) If ⟨X⟩σ ≠ ∅, then there exist v ∈ ⟨X⟩σ and w ∈ V (σ) ∖ (X ∪ ⟨X⟩σ)
such that σ[X ∪ {v,w}] is prime.

(2) For each y ∈ X, if Xσ(y) ≠ ∅, then there exist v ∈ Xσ(y) and w ∈
V (σ) ∖ (X ∪Xσ(y)) such that σ[X ∪ {v,w}] is prime.

Proof. First, suppose that ⟨X⟩σ ≠ ∅. Since σ is prime, V (σ)∖ ⟨X⟩σ is not a
module of σ. Thus, there exists v ∈ ⟨X⟩σ such that v /←→σ V (σ)∖⟨X⟩σ. But
v ←→σ X because v ∈ ⟨X⟩σ. It follows that there exists w ∈ V (σ)∖(X∪⟨X⟩σ)
such that v /←→σ X ∪ {w}. It follows from assertion (Q1) of Corollary 3.18
that σ[X ∪ {v,w}] is prime.

Second, consider y ∈ X such that Xσ(y) ≠ ∅. Since σ is prime, {y} ∪
Xσ(y) is not a module of σ. By Remark 3.15, {y} ∪Xσ(y) is a module of
σ[X ∪Xσ(y)]. Consequently, there exists w ∈ V (σ)∖ (X ∪Xσ(y)) such that
w /←→σ {y} ∪Xσ(y). Observe that for u ∈ V (σ) ∖ ({y} ∪Xσ(y)), we have
u←→σ {y}∪Xσ(y) if and only if u←→σ {y, v} for every v ∈Xσ(y). It follows
that there is v ∈ Xσ(y) such that w /←→σ {y, v}. Therefore, {y, v} is not a
module of σ[X ∪ {v,w}]. It follows from assertion (Q2) of Corollary 3.18
that σ[X ∪ {v,w}] is prime.
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Finally, suppose that ⟨X⟩σ = ∅, and Xσ(y) = ∅ for each y ∈ X. By
Lemma 3.13, we have V (σ)∖X = Extσ(X). Since σ is prime, V (σ)∖X is not
a module of σ. Therefore, there exist y ∈X and distinct v,w ∈ V (σ)∖X such
that y /←→σ {v,w}. We obtain that {v,w} is not a module of σ[X ∪ {v,w}].
Since v,w ∈ Extσ(X), it follows from statement (P5) of Lemma 3.17 that
σ[X ∪ {v,w}] is prime. �

The next result, called the parity property, follows by applying Theo-
rem 3.19 several times. It also provides an upward hereditary property of
primality.

Corollary 3.20 (Ehrenfeucht and Rozenberg [13]). Given a prime 2-struc-
ture σ, consider X ⊊ V (σ) such that σ[X] is prime. For each n ≥ 0 such
that ∣V (σ) ∖ X ∣ ≥ 2n, there exists Y ⊆ V (σ) ∖ X such that ∣Y ∣ = 2n and
σ[X ∪ Y ] is prime.

The next result is a simple consequence of Corollary 3.20.

Corollary 3.21 (Ehrenfeucht and Rozenberg [13]). Given a prime 2-struc-
ture σ, consider X ⊊ V (σ) such that σ[X] is prime. There exist v,w ∈
V (σ) ∖X such that σ − {v,w} is prime.

Proof. It suffices to apply Corollary 3.20 with n = ⌈v(σ)−∣X ∣
2 ⌉ − 1. �

The first downward hereditary property of primality ends the section. It is
an immediate consequence of Theorem 3.10 and Corollary 3.21. The second
downward hereditary property of primality is the Schmerl–Trotter theorem
(see Theorem 5.3).

Proposition 3.22 (Ehrenfeucht and Rozenberg [13]). Given a prime 2-
structure σ, with v(σ) ≥ 5, there exist v,w ∈ V (σ) such that σ − {v,w} is
prime.

Proof. By Theorem 3.10, there exists X ⊆ V (σ) such that σ[X] is prime,
and ∣X ∣ = 3 or 4. To conclude, it suffices to apply Corollary 3.21. �
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4. Critical 2-structures

Given n ≥ 2, the tournament T2n+1 (see Figure 1.2) is prime by Fact 2.7.
Moreover, we have

● T2n+1 − 2n = L2n and, for instance, {0,1} is a nontrivial module of
T2n+1 − 2n;

● {2, . . . ,2n} is a nontrivial module of T2n+1 − 0;
● {0, . . . ,2n − 3} is a nontrivial module of T2n+1 − (2n − 1);
● for 1 ≤ p ≤ 2n − 2, {p − 1, p + 1} is a nontrivial module of T2n+1 − p.

This leads us to the following definition.

Definition 4.1. Given a prime 2-structure σ, a vertex v of σ is critical critical
(in terms of primality) if σ − v is decomposable. The set of the noncritical
vertices of σ is called the support of σ, it is denoted by S (σ). Generally, a support
proper subset W of V (σ) is critical if σ −W is decomposable. A primitive
2-structure is critical if all its vertices are critical.

From the example above, given n ≥ 2, the tournament T2n+1 is criti-
cal. Since critical 2-structures exist, the only attempt to improve Proposi-
tion 3.22 is to answer the following question positively.

Question 4.2. Let σ be a prime 2-structure. If v(σ) is large enough, then
does there exist Z ⊊ V (σ) such that σ[Z] is prime and ∣V (σ) ∖Z ∣ = 2?

The second downward hereditary property of primality, that is, the
Schmerl–Trotter theorem (see Theorem 5.3) answered Question 4.2 posi-
tively. Before providing such an answer, Schmerl and Trotter [33] charac-
terized the critical partial orders, graphs, tournaments, etc.. Bonizzoni [4]
independently characterized the critical 2-structures. To describe the struc-
ture of the critical digraphs, Boubabbous and Ille [7] study the components
of the primality graph4.1 associated with every prime 2-structure. The pri-
mality graph was introduced by Ille [20] as below. It plays a decisive role in
the structural study of the prime 2-structures.

4.1. The primality graph.

Definition 4.3. Given a prime 2-structure σ, the primality graph P(σ) of primality graph
σ is the graph defined on V (P(σ)) = V (σ), the edges of which are the
noncritical unordered pairs. Therefore, given v,w ∈ V (σ), with v ≠ w, we
have

{v,w} ∈ E(P(σ)) if and only if σ − {v,w} is prime.

To begin, given a prime 2-structure σ, we examine the neighbourhood
NP(σ)(v) of a critical vertex v of σ.

Lemma 4.4 (Ille [20]). Let σ be a prime 2-structure with v(σ) ≥ 5. For
every v ∈ V (σ) ∖S (σ), we have dP(σ)(v) ≤ 2. Moreover, we have

4.1The same approach is adopted in [6] to characterize the critical infinite digraphs.
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(1) if dP(σ)(v) = 1, then V (σ)∖(NP(σ)(v)∪{v}) is the unique nontrivial
module of σ − v;

(2) if dP(σ)(v) = 2, then NP(σ)(v) is the unique nontrivial module of
σ − v.

Proof. To begin, we prove that dP(σ)(v) ≤ 2 for each v ∈ V (σ) ∖ S (σ).
Consider v ∈ V (σ) ∖S (σ) such that NP(σ)(v) ≠ ∅. Let w ∈ NP(σ)(v). Set

X = V (σ) ∖ {v,w}.
Hence, σ[X] is prime. Since v /∈ S (σ), σ − v is decomposable. Thus,

(4.1) w /∈ Extσ(X) (see Notation 3.12).

By Lemma 3.13, w ∈ ⟨X⟩σ or w ∈ Xσ(y), where y ∈ X. Therefore, we
distinguish the following two cases.
Case 1: w ∈ ⟨X⟩σ.

For every y ∈ X, X ∖ {y} is a nontrivial module of σ − {v, y}. Therefore
y /∈ NP(σ)(v). Consequently,

(4.2) if there exists w ∈ NP(σ)(v) ∩ ⟨X⟩σ , then NP(σ)(v) = {w}.
Case 2: There exists y ∈X such that w ∈Xσ(y).

For every z ∈ X ∖ {y}, {y,w} is a nontrivial module of σ − {v, z}. Con-
sequently, z /∈ NP(σ)(v), and hence NP(σ)(v) ⊆ {y,w}. Since {y,w} is a
module of σ[X ∪ {w}], the function X Ð→ (X ∖ {y}) ∪ {w}, defined by
y ↦ w and z ↦ z for every z ∈X ∖{y}, is an isomorphism from σ−{v,w}
onto σ − {v, y}. It follows that y ∈ NP(σ)(v). Consequently, given y ∈X,

(4.3) if there exists w ∈ NP(σ)(v) ∩Xσ(y), then NP(σ)(v) = {y,w}.
It follows from both cases above that dP(σ)(v) ≤ 2.
Now, consider v ∈ V (σ) ∖ S (σ) such that dP(σ)(v) = 1. Denote by w

the unique neighbour of v in P(σ). Set X = V (σ) ∖ {v,w}. It follows from
(4.3) that w /∈ Xσ(y) for every y ∈ X. Moreover, w /∈ Extσ(X) by (4.1). By
Lemma 3.13, w ∈ ⟨X⟩σ, and V (σ) ∖ {v,w} is the only nontrivial module of
σ − v.

Lastly, consider v ∈ V (σ)∖S (σ) such that dP(σ)(v) = 2. Denote by w and

w′ the neighbours of v in P(σ). Set X = V (σ)∖{v,w}. It follows from (4.2)
that w /∈ ⟨X⟩σ. Moreover, w /∈ Extσ(X) by (4.1). By Lemma 3.13, there
exists y ∈ X such that w ∈ Xσ(y). By (4.3), NP(σ)(v) = {y,w}. Therefore,

w′ = y, so w ∈ Xσ(w′). It follows from Lemma 3.13 that {w,w′} is the only
nontrivial module of σ − v. �

Given a prime 2-structure σ, consider a component C of P(σ) such that
v(C) ≥ 2 and V (C) ⊆ V (σ) ∖S (σ). It follows from Lemma 4.4 that C is a
cycle or a path.

Proposition 4.5 (Boudabbous and Ille [7]). Let σ be a prime 2-structure
with v(σ) ≥ 5. For every component C of P(σ) such that v(C) ≥ 2 and
V (C) ⊆ V (σ) ∖S (σ), the following statements hold.
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(1) If C is a cycle, then its length is odd and V (C) = V (σ);
(2) If C is a path of odd length, then ∣V (σ) ∖ V (C)∣ ≤ 1;
(3) If C is a path of even length, then V (C) = V (σ).

Proof. We denote the vertices of C by 0, . . . , v(C) − 1 in such a way that
C = Cv(C) or Pv(C).

First, suppose that v(C) ≥ 3 and C = Cv(C). For a contradiction, suppose
that v(C) is even. Hence, v(C) = 2n, where n ≥ 2. We show that {1,2n−1} is
a nontrivial module of σ. Since NP(σ)(0) = {1,2n−1}, {1,2n−1} is a module
of σ −0 by Lemma 4.4. To show that {1,2n−1} is a nontrivial module of σ,
it suffices to verify that [0,1]σ = [0,2n− 1]σ. For m ∈ {1, . . . , n− 1}, we have
NP(σ)(2m) = {2m− 1,2m+ 1}. By Lemma 4.4, {2m− 1,2m+ 1} is a module
of σ − 2m. In particular, we obtain [0,2m − 1]σ = [0,2m + 1]σ. Therefore,
we have [0,1]σ = [0,3]σ = ⋯ = [0,2n − 1]σ. Consequently, {1,2n − 1} is a
nontrivial module of σ, which contradicts the fact that σ is prime. It follows
that v(C) is odd. Hence v(C) = 2n + 1, where n ≥ 1. For a contradiction,
suppose that V (C) ⊊ V (σ). We show that V (C) is a module of σ. Consider
v ∈ V (σ)∖V (C). Form ∈ {0, . . . , n−1}, we haveNP(σ)(2m+1) = {2m,2m+2}.
By Lemma 4.4, {2m,2m+2} is a module of σ−(2m+1). We obtain [v,0]σ =
[v,2]σ = ⋯ = [v,2n]σ, so v ←→σ {0,2, . . . ,2n}. Similarly, since for m ∈
{1, . . . , n−1}, NP(σ)(2m) = {2m−1,2m+1}, we have v ←→σ {1,3, . . . ,2n−1}.
Since NP(σ)(0) = {1,2n}, [v,2n]σ = [v,1]σ. It follows that v ←→σ V (C).
Consequently, V (C) is a nontrivial module of σ, which contradicts the fact
that σ is prime. Therefore V (C) = V (σ).

Second, suppose that v(C) ≥ 2, v(C) is even, and C = Pv(C). Hence
v(C) = 2n, where n ≥ 1. For a contradiction, suppose that n = 1. We
obtain NP(σ)(0) = {1} and NP(σ)(1) = {0}. By Lemma 4.4, V (σ) ∖ {0,1} is
a module of σ − 0 and σ − 1. Thus V (σ) ∖ {0,1} is a nontrivial module of
σ. Therefore n ≥ 2. We show that V (σ) ∖ V (C) is a module of σ. Consider
v ∈ V (σ)∖V (C). Since NP(σ)(2m+ 1) = {2m,2m+ 2} for m ∈ {0, . . . , n− 2},
we have v ←→σ {0,2, . . . ,2n − 2}. Moreover, since NP(σ)(2n − 1) = {2n − 2},
[v,2n − 2]σ = [1,2n − 2]σ. It follows that for any v,w ∈ V (σ) ∖ V (C) and
m ∈ {0, . . . , n − 1}, [v,2m]σ = [w,2m]σ. Similarly, for v ∈ V (σ) ∖ V (C), we
have v ←→σ {1,3, . . . ,2n − 1} because NP(σ)(2m) = {2m − 1,2m + 1} for m ∈
{1, . . . , n−1}. Now, since NP(σ)(0) = {1}, [v,1]σ = [2n−2,1]σ. Consequently,
for any v,w ∈ V (σ)∖V (C) and m ∈ {0, . . . , n−1}, [v,2m+1]σ = [w,2m+1]σ.
Consequently, V (σ) ∖ V (C) is a module of σ. Since σ is prime, we obtain
∣V (σ) ∖ V (C)∣ ≤ 1.

Lastly, suppose that v(C) is odd. Hence v(C) = 2n + 1, where n ≥ 1. For
a contradiction, suppose that V (C) ⊊ V (σ). We show that V (σ) ∖ {1} is
a nontrivial module of σ. Since NP(σ)(0) = {1}, V (σ) ∖ {0,1} is a module
of σ − 0 by Lemma 4.4. Let v ∈ V (σ) ∖ V (C). It suffices to verify that
[1, v]σ = [1,0]σ. We distinguish the following two cases.
Case 1: n = 1.
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We have NP(σ)(2) = {1}. By Lemma 4.4, V (σ) ∖ {1,2} is a module of
σ − 2. In particular, we obtain [1, v]σ = [1,0]σ.

Case 2: n ≥ 2.
Since for m ∈ {1, . . . , n − 1}, NP(σ)(2m) = {2m − 1,2m + 1}, we obtain
v ←→σ {1,3, . . . ,2n−1} and 0←→σ {1,3, . . . ,2n−1}. Therefore, [1, v]σ =
[2n − 1, v]σ and [1,0]σ = [2n − 1,0]σ. Furthermore, since NP(σ)(2n) =
{2n − 1}, [2n − 1, v]σ = [2n − 1,0]σ. It follows that [1, v]σ = [1,0]σ.

In both cases above, V (σ) ∖ {1} is a nontrivial module of σ, which con-
tradicts the fact that σ is prime. Consequently, V (C) = V (σ). �

Corollary 4.6 (Boudabbous and Ille [7]). For every critical 2-structure σ,
with v(σ) ≥ 5, there exists n ≥ 2 such that P(σ) is isomorphic to P2n⊕K{2n},
P2n+1, C2n+1, or P2n. (In the last instance, n ≥ 3.)

Proof. By Proposition 3.22, there exist v,w ∈ V (σ) such that σ − {v,w}
is prime. Since σ is critical, we have v ≠ w, and hence {v,w} ∈ E(P(σ)).
Consider the component C of P(σ) containing v and w. As observed before
stating Proposition 4.5, it follows from Lemma 4.4 that C is a cycle or a
path. To begin, suppose that C is a cycle. It follows from Proposition 4.5
that there exists n ≥ 2 such that P(σ) ≃ C2n+1. Similarly, if there exists
n ≥ 2 such that C is a path of length 2n, then V (C) = V (σ), and hence
P(σ) ≃ P2n+1. Lastly, suppose that there is n ≥ 2 such that C is a path
of length 2n − 1. By Proposition 4.5, ∣V (σ) ∖ V (C)∣ ≤ 1. Obviously, if
V (C) = V (σ), then n ≥ 3 and P(σ) ≃ P2n. Suppose that ∣V (σ)∖C ∣ = 1. The
single element of V (σ) ∖ V (C) is an isolated vertex of P(σ) because C is a
component of P(σ). Therefore, P(σ) ≃ P2n ⊕K{2n}. �

We end the section with some specific results on critical 2-structures. The
first one follows from Corollary 3.20.

Corollary 4.7. Let σ be a critical 2-structure σ such that v(σ) ≥ 5. Let
X ⊊ V (σ).

(1) If σ[X] is prime, then v(σ) − ∣X ∣ is even.
(2) Moreover, if σ[X] is prime and ∣X ∣ ≥ 4, then σ[X] is critical.

Proof. Let X ⊊ V (σ) such that σ[X] is prime. For a contradiction, suppose
that v(σ) − ∣X ∣ = 2n + 1, where n ≥ 0. By Corollary 3.20, there exists Y ⊆
V (σ)∖X such that ∣Y ∣ = 2n and σ[X∪Y ] is prime. We have ∣V (σ)∖(X∪Y )∣ =
1. By denoting by v the unique element of V (σ)∖(X∪Y ), we obtain σ−v is
prime, which contradicts the fact that σ is critical. Consequently, v(σ)− ∣X ∣
is even.

Now, suppose that ∣X ∣ ≥ 4. For each x ∈ X, we have v(σ) − ∣X ∖ {x}∣ is
odd. It follows from the first assertion that σ[X ∖ {x}] is decomposable.
Consequently, σ is critical. �

The second result follows from Lemma 4.4 and Corollary 4.6.

Corollary 4.8. Let σ be a critical 2-structure σ such that v(σ) ≥ 5. For
e, f ∈ E(P(σ)), we have σ − e ≃ σ − f .
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Proof. Consider distinct e, f ∈ E(P(σ)). It follows from Corollary 4.6 that
e and f are contained in the same component of P(σ). Consequently, there
exist distinct vertices v0, . . . , vp of σ satisfying

● {v0, v1} = e;
● p ≥ 2, and {vp−1, vp} = f ;
● for i ∈ {0, . . . , p − 1}, {vi, vi+1} ∈ E(P(σ)).

Let i ∈ {0, . . . , p − 1}. We have vi−1, vi+1 ∈ NP(σ)(vi). Since vi /∈ S (σ),
it follows from Lemma 4.4 that NP(σ)(vi) = {vi−1, vi+1}, and {vi−1, vi+1} is
a module of σ − vi. Thus, σ − {vi−1, vi} ≃ σ − {vi, vi+1}. It follows that
σ − {v0, v1} ≃ σ − {vp−1, vp}, that is, σ − e ≃ σ − f . �

The third result is an easy consequence of Corollaries 4.7 and 4.8.

Corollary 4.9. Let σ be a critical 2-structure σ such that v(σ) ≥ 6. Let
X,Y ⊊ V (σ) such that ∣X ∣ = ∣Y ∣ and ∣X ∣ ≥ 4. If σ[X] and σ[Y ] are prime,
then σ[X] ≃ σ[Y ].
Proof. By Corollary 3.21, there exist x,x′ ∈ V (σ)∖X such that σ−{x,x′} is
prime. Since σ is critical, we have x ≠ x′. Thus, v(σ) − ∣X ∣ ≥ 2. We proceed
by induction on v(σ) − ∣X ∣ ≥ 2. If v(σ) − ∣X ∣ = 2, then it suffices to apply
Corollary 4.8. Hence, suppose that v(σ) − ∣X ∣ ≥ 3. Similarly, there exist
distinct y, y′ ∈ V (σ) ∖ Y such that σ − {y, y′} is prime. By Corollary 4.8,
σ−{x,x′} ≃ σ−{y, y′}. Therefore, there exists Y ′ ⊊ V (σ)∖{x,x′} such that
σ[Y ′] ≃ σ[Y ]. Since σ − {x,x′} is prime and v(σ) ≥ 6, σ − {x,x′} is critical
by Corollary 4.7. To conclude, it suffices to apply the induction hypothesis
to σ − {x,x′} with σ[X] and σ[Y ′]. �

Lastly, we obtain the following result.

Corollary 4.10. Let σ be a critical 2-structure σ such that v(σ) ≥ 6. Con-
sider X,Y ⊊ V (σ) such that σ[X] and σ[Y ] are prime. If 4 ≤ ∣X ∣ ≤ ∣Y ∣,
then σ[X] embeds into σ[Y ].
Proof. By Corollary 4.9, σ[X] ≃ σ[Y ] if ∣X ∣ = ∣Y ∣. Hence, suppose that
∣X ∣ < ∣Y ∣. By Corollary 4.7, there exist m > n ≥ 0 such that v(σ) − ∣X ∣ = 2m
and v(σ) − ∣Y ∣ = 2n. By applying Theorem 3.19 (m − n) times from σ[X],
we obtain X ⊊ X ′ ⊆ V (σ) such that σ[X ′] is prime, and ∣X ′∣ = ∣Y ∣. By
Corollary 4.9, we have σ[X ′] ≃ σ[Y ]. It follows that σ[X] embeds into
σ[Y ]. �

4.2. The characterization of critical 2-structures. Given a critical 2-
structure σ, it follows from Corollary 4.6 that σ has four possible types
according to whether P(σ) is isomorphic to P2n, P2n ⊕ K{2n}, P2n+1, or
C2n+1. The following remark is very useful in the characterization of critical
2-structures of a given type.

Remark 4.11. Consider a set S. We denote by ∆(S) the set of all 2-
structures defined on S. We consider the partial order <S defined on ∆(S)
as follows. Given σ, τ ∈ ∆(S), σ <S τ if (σ ≠ τ and) for every e ∈ E(σ), there
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exists f ∈ E(τ) such that e ⊆ f . Consider σ, τ ∈ ∆(S). As in Remark 2.23,
we define their meet σ ∧ τ and their join σ ∨ τ as follows. Given x, y, v,w ∈
V (σ), with x ≠ y and v ≠ w, (x, y) ≡σ∧τ (v,w) if (x, y) ≡σ (v,w) and
(x, y) ≡τ (v,w). Hence

E(σ ∧ τ) = {e ∩ f ∶ e ∈ E(σ), f ∈ E(τ), e ∩ f ≠ ∅}.
Given x, y, v,w ∈ V (σ), with x ≠ y and v ≠ w, (x, y) ≡σ∨τ (v,w) if there
exists a sequence (e0, . . . , en) of elements of E(σ)∪E(τ) such that (x, y) ∈ e0,
(v,w) ∈ en, and (when n ≥ 1,) ei ∩ ei+1 ≠ ∅ for 0 ≤ i ≤ n − 1. Hence, ∆(S)
ordered by <S is a lattice.

Since it is easy to verify that the next fact holds, we omit its proof.

Fact 4.12. Given σ, τ ∈ ∆(S), the following statements hold.

(1) If σ <S τ , then all the modules of σ are modules of τ .
(2) The modules of σ ∧ τ are exactly the modules of both σ and τ .

We obtain the following consequences.

Fact 4.13. Given σ, τ ∈ ∆(S) such that σ <S τ , the next statements hold.

(1) If τ is prime, then σ is prime too.
(2) For each n ∈ {3, . . . , ∣S∣ − 1}, we have

Pn(τ) ⊆ Pn(σ) (see Notation 3.1).

In particular, when τ is prime, we have S (τ) ⊆ S (σ) and P(τ) ⊆
P(σ).

It follows from the first statement of Fact 4.13 that the set of the prime
2-structures defined on S is an ideal of the lattice (∆(S),<S). We end
the remark with the following consequence of Lemma 4.4, Fact 4.12, and
Fact 4.13.

Fact 4.14. Consider σ, τ ∈ ∆(S). Suppose that σ and τ are critical. Suppose
also that P(σ) = P(τ). Lastly, suppose that P(σ) does not have isolated
vertices. Under these assumptions, we obtain that σ ∧ τ is critical, and

P(σ ∧ τ) = P(σ).

Proof. To begin, we verify that σ ∧ τ is prime. We have σ ∧ τ ≤S σ and σ is
prime. By the first statement of Fact 4.13, σ ∧ τ is prime.

Now, we show that σ ∧ τ is critical, and P(σ ∧ τ) = P(σ). Let v ∈ V (σ).
Since P(σ) does not have isolated vertices, dP(σ)(v) ≠ 0. Since v is a critical
vertex of σ, it follows from Lemma 4.4 that dP(σ)(v) = 1 or 2. We distinguish
the following two cases.
Case 1: dP(σ)(v) = 2.

Since P(σ) = P(τ), we have NP(σ)(v) = NP(τ)(v). Furthermore, since v is
a critical vertex of σ and τ , it follows from Lemma 4.4 that NP(σ)(v) is a
nontrivial module of σ−v and τ−v. Note that (σ−v)∧(τ−v) = (σ∧τ)−v.
Therefore, it follows from the second statement of Fact 4.12 thatNP(σ)(v)
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is a nontrivial module of (σ ∧ τ)− v. Thus, v is a critical vertex of σ ∧ τ ,
and

NP(σ∧τ)(v) ⊆ NP(σ)(v).
Lastly, it follows from the second statement of Fact 4.13 that

NP(σ)(v) ⊆ NP(σ∧τ)(v).
Consequently, we obtain NP(σ∧τ)(v) = NP(σ)(v).

Case 2: dP(σ)(v) = 1.
Since P(σ) = P(τ), we have NP(σ)(v) = NP(τ)(v). Furthermore, since v
is a critical vertex of σ and τ , it follows from Lemma 4.4 that V (σ) ∖
(NP(σ)(v) ∪ {v}) is a nontrivial module of σ − v and τ − v. We conclude
as in the preceding case.

It follows from both cases above that σ ∧ τ is critical, and P(σ ∧ τ) =
P(σ). �

4.2.1. The type P2n.

Proposition 4.15. Given n ≥ 3, consider a 2-structure τ defined on V (τ) =
{0, . . . ,2n − 1}. The following two statements are equivalent

(1) τ is critical and P(τ) = P2n;
(2) ≺ 0,1 ≻τ≠≺ 0,2 ≻τ (see Notation 1.1), and for p, q ∈ {0, . . . ,2n − 1}

such that p < q, we have

(4.4) [p, q]τ =
⎧⎪⎪⎨⎪⎪⎩

[0,1]τ if p is even and q is odd,

[0,2]τ otherwise.

Proof. To begin, suppose that τ is critical and P(τ) = P2n. First, we show
that (4.4) holds. Consider p, q ∈ {0, . . . ,2n − 1} such that p < q. We prove
that there exist p′ ∈ {0,1} and q′ ∈ {2n − 2,2n − 1} such that

(4.5) p′ ≡ p mod 2, q′ ≡ q mod 2, and [p, q]τ = [p′, q′]τ .

For instance, suppose that p ≥ 2. Since P(τ) = P2n, we have NP(τ)(p − 1) =
{p− 2, p}. By Lemma 4.4, {p− 2, p} is a module of τ − (p− 1). In particular,
we obtain [p, q]τ = [p − 2, q]τ . By iteration, we obtain p′ ∈ {0,1} such that

p′ ≡ p mod 2 and [p, q]τ = [p′, q]τ .

Similarly, we obtain q′ ∈ {2n−2,2n−1} such that q′ ≡ q mod 2 and [p′, q]τ =
[p′, q′]τ . Therefore, (4.5) holds. It follows from (4.5) that for any p′, q′ ∈
{0, . . . ,2n − 1},

(4.6) if p′ < q′, p′ ≡ p mod 2 and q′ ≡ q mod 2, then [p, q]τ = [p′, q′]τ .

We distinguish the following four cases, where p, q ∈ {0, . . . ,2n−1} such that
p < q.
Case 1: p and q are even.

By (4.6), [p, q]τ = [0,2]τ .
Case 2: p and q are odd.
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By (4.6), [p, q]τ = [1,2n−1]τ . Since P(τ) = P2n, we have NP(τ)(0) = {1}.
By Lemma 4.4, {2, . . . ,2n−1} is a module of τ−0. In particular, we obtain
[1,2n − 1]τ = [1,2n − 2]τ . Moreover, we have NP(τ)(2n − 1) = {2n − 2}.
By Lemma 4.4, {0, . . . ,2n− 3} is a module of τ − (2n− 1). In particular,
we obtain [1,2n − 2]τ = [0,2n − 2]τ . By (4.6), [0,2n − 2]τ = [0,2]τ .
Consequently, we obtain [p, q]τ = [0,2]τ .

Case 3: p is even and q is odd.
By (4.6), [p, q]τ = [0,1]τ .

Case 4: p is odd and q is even.
By (4.6), [p, q]τ = [1,2]τ . Since NP(τ)(0) = {1}, we have {2, . . . ,2n − 1}
is a module of τ − 0. In particular, we obtain [1,2]τ = [1,2n − 2]τ .
Since NP(τ)(2n − 1) = {2n − 2}, we have {0, . . . ,2n − 3} is a module of
τ − (2n− 1). In particular, we obtain [1,2n− 2]τ = [0,2n− 2]τ . By (4.6),
[0,2n − 2]τ = [0,2]τ . Consequently, we obtain [p, q]τ = [0,2]τ .

It follows from the four cases above that (4.4) holds.
Second, we show that ≺ 0,1 ≻τ≠≺ 0,2 ≻τ . Since τ is prime, τ is neither

constant nor linear. It follows from (4.4) that [0,1]τ ≠ [0,2]τ . Furthermore,
since NP(τ)(1) = {0,2}, it follows from Lemma 4.4 that {0,2} is a module
of τ − 1. Since τ is prime, {0,2} is not a module of τ . Therefore, we have
[0,1]τ ≠ [2,1]τ . Since [2,1]τ = [2,0]τ by (4.4), we obtain [0,1]τ ≠ [2,0]τ .
Consequently, we obtain [0,1]τ ≠ [0,2]τ and [0,1]τ ≠ [2,0]τ . It follows that
≺0,1≻τ≠≺0,2≻τ .

Conversely, suppose that ≺ 0,1 ≻τ≠≺ 0,2 ≻τ and (4.4) holds. Since ≺
0,1≻τ≠≺0,2≻τ , we have

(4.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[0,1]τ ≠ [0,2]τ
and

[0,1]τ ≠ [2,0]τ .
We prove by induction on k ∈ {2, . . . , n} that

(4.8) τ[{0, . . . ,2k − 1}] is prime.

To begin, we verify that τ[{0,1,2,3}] is prime. By (4.4), we have [0,2]τ =
[1,2]τ = [1,3]τ and [0,1]τ = [0,3]τ = [2,3]τ . Using (4.7), it is easy to
verify that for each W ⊆ {0,1,2,3}, with ∣W ∣ = 2 or 3, W is not a mod-
ule of τ[{0,1,2,3}]. Therefore, τ[{0,1,2,3}] is prime. Now, suppose that
τ[{0, . . . ,2k − 1}] is prime, where k ∈ {2, . . . , n − 1}. Set

X = {0, . . . ,2k − 1}.
By (4.4), we have [y,2k]τ = [0,2]τ for every y ∈ X. Thus, 2k ∈ ⟨X⟩τ .
Furthermore, it follows from (4.4) that for every y ∈X∖{2k−1}, [y,2k−1]τ =
[y,2k + 1]τ . Therefore, 2k + 1 ∈ Xτ(2k − 1). Lastly, by (4.4), we have
[2k−1,2k]τ = [0,2]τ and [2k+1,2k]τ = [1,0]τ . By (4.7), {2k−1,2k+1} is not
a module of τ[X∪{2k,2k+1}]. It follows from statement (P1) of Lemma 3.17
that τ[X∪{2k,2k+1}] = τ[{0, . . . ,2k+1}] is prime. Consequently, τ is prime.

Now, we verify that τ is critical. We consider the following cases.
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Case 1: p ∈ {2, . . . ,2n − 1}.
We have [1, p]τ = [0,2]τ . Hence, {2, . . . ,2n − 1} is a module of τ − 0.

Case 2: p ∈ {0, . . . ,2n − 3}.
We have [p,2n − 2]τ = [0,2]τ . Thus, {0, . . . ,2n − 3} is a module of
τ − (2n − 1).

Case 3: p ∈ {1, . . . ,2n − 2}.
Consider v ∈ V (τ) ∖ {p − 1, p, p + 1}. Since p − 1 ≡ p + 1mod 2, it follows
from (4.4) that [v, p−1]τ = [v, p+1]τ . Therefore, {p−1, p+1} is a module
of τ − p.

It follows that τ is critical.
Lastly, we have to prove that P(τ) = P2n. Let p ∈ {0, . . . ,2n − 2}. The

function {0, . . . ,2n − 1} ∖ {p, p + 1} Ð→ {0, . . . ,2n − 3}, defined by q ↦ q if
q ≤ p − 1 and q ↦ q − 2 if q ≥ p + 2, is an isomorphism from τ − {p, p + 1}
onto τ[{0, . . . ,2n−3}]. It follows from (4.8) that τ[{0, . . . ,2n−3}] is prime.
Hence τ − {p, p + 1} is prime too, so {p, p + 1} ∈ E(P(τ)). It follows that

(4.9) E(P2n) ⊆ E(P(τ)).
Thus, since τ is critical, it follows from Lemma 4.4 that

(4.10) for p ∈ {1, . . . ,2n − 2}, NP(τ)(p) = {p − 1, p + 1}.

By (4.9), 1 ∈ NP(τ)(0). As previously seen, {2, . . . ,2n − 1} is a nontrivial
module of τ − 0. Since ∣{2, . . . ,2n − 1}∣ ≥ 4, it follows from Lemma 4.4 that
dP(τ)(0) = 1. Therefore,

(4.11) NP(τ)(0) = {1}.

By (4.9), 2n − 2 ∈ NP(τ)(2n − 1). Furthermore, it follows from (4.10) that
NP(τ)(2n − 1) ∩ {1, . . . ,2n − 3} = ∅. Finally, by (4.11), 0 /∈ NP(τ)(2n − 1).
Thus,

NP(τ)(2n − 1) = {2n − 2}.
Consequently, we obtain that P(τ) = P2n. �

By using Proposition 4.15, we construct critical graphs, digraphs or 2-
structures of type P2n that allow us to characterize the critical 2-structures
of type P2n. We use the following notation.

Notation 4.16. Let n ≥ 2. Recall that A(Ln) is the set of ordered pairs
(p, q), where 0 ≤ p < q ≤ n − 1. Given i, j ∈ {0,1}, set

A(Ln)(i,j) = {(p, q) ∈ A(Ln) ∶ p ≡ i mod 2, q ≡ j mod 2}.

Let τ be a 2-structure defined on V (τ) = {0, . . . ,2n − 1}, where n ≥ 3.
Suppose that ≺ 0,1 ≻τ≠≺ 0,2 ≻τ . Suppose also that τ satisfies (4.4). By
Proposition 4.15, τ is critical and P(τ) = P2n. We distinguish the following
cases.
Case 1: (0,2)τ = (2,0)τ .

Subcase a: (0,1)τ = (1,0)τ .
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Since ≺0,1≻τ≠≺0,2≻τ , (0,1)τ ≠ (0,2)τ . Therefore, we obtain

E(τ) = {A(L2n)(0,1) ∪ (A(L2n)(0,1))⋆, (see Notation 1.2)

(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))(4.12)

∪ (A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆}.

In fact, τ is the 2-structure associated with a graph (see the end
of subsection 1.2). Given m ≥ 1, we consider the half-graph H2mhalf-graph
defined on V (H2n) = {0, . . . ,2m − 1} as follows (see Figure 4.1). For
p, q ∈ {0, . . . ,2m − 1}, with p ≠ q, {p, q} ∈ E(H2m) if there exist
0 ≤ i ≤ j ≤m − 1 such that {p, q} = {2i,2j + 1}. It follows from (4.12)
that

τ = σ(H2n).
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Figure 4.1. The half-graph H2m

Subcase b: (0,1)τ ≠ (1,0)τ .
We distinguish the following three subcases.

(1) Suppose that (1,0)τ = (0,2)τ . We obtain

E(τ) = {A(L2n)(0,1),
(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))

∪ (A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆(4.13)

∪ (A(L2n)(0,1))⋆}.

In fact, τ is the 2-structure associated with a partial order
(see Subsection 1.3). Given m ≥ 2, we consider the partial
order Q2m defined on V (Q2m) = {0, . . . ,2m − 1} as follows
(see Figure 4.2). For p, q ∈ {0, . . . ,2m− 1}, with p ≠ q, (p, q) ∈
A(Q2m) if there exist 0 ≤ i ≤ j ≤ m − 1 such that (p, q) =
(2i,2j + 1).
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Figure 4.2. The partial order Q2m

Observe that Comp(Q2m) =H2m
4.2 . It follows from (4.13)

that

τ = σ(Q2n).
(2) Suppose that (0,1)τ = (0,2)τ . We obtain

E(τ) = {(A(L2n)(0,1))⋆,
(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))

∪ (A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆(4.14)

∪ A(L2n)(0,1)}.

It follows from (4.14) that

τ = σ((Q2n)⋆).
(3) Suppose that ≺0,1≻τ ∩ ≺0,2≻τ= ∅. We obtain

E(τ) = {A(L2n)(0,1), (A(L2n)(0,1))⋆,
(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))(4.15)

∪ (A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆}.

It follows from (4.13), (4.14), and (4.15) that

τ = σ(Q2n) ∧ σ((Q2n)⋆) (see Notation 4.11).

Recall that by Proposition 4.15, σ(Q2n)∧σ((Q2n)⋆) is critical
and P(σ(Q2n) ∧ σ((Q2n)⋆)) = P2n. Note that we obtain the
same by using Fact 4.14 because σ(Q2n) and σ((Q2n)⋆) are
critical, and P(σ(Q2n)) = P(σ((Q2n)⋆)) = P2n. Note also that
σ(Q2n)∧σ((Q2n)⋆) = σ(H2n)∧σ(Q2n) = σ(H2n)∧σ((Q2n)⋆).

4.2The following theorem is due to Gallai [18, 28] .

Theorem 4.17 (Gallai [18, 28]). A partial order is prime if and only if its comparability
graph is prime.

Let m ≥ 3. As showed above, σ(H2n), and hence H2n are critical. Moreover, P(H2n) =

P2n. It follows from Theorem 4.17 that Q2n is critical, and P(Q2n) = P2n.
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Case 2: (0,2)τ ≠ (2,0)τ .
Subcase a: (0,1)τ = (1,0)τ .

We distinguish the following three subcases.

(1) Suppose that (0,1)τ = (2,0)τ . We obtain

E(τ) = {(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1)),
A(L2n)(0,1) ∪ (A(L2n)(0,1))⋆(4.16)

∪ (A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆}.
In fact, τ is the 2-structure associated with a partial order.
Given m ≥ 2, we consider the partial order R2m defined on
V (R2m) = {0, . . . ,2m − 1} as follows (see Figure 4.3). For
p, q ∈ {0, . . . ,2m − 1}, with p ≠ q, (p, q) ∈ A(R2n) if p < q and
either p is odd or q is even. Equivalently, R2m is obtained
from the linear order L2m by removing the arcs (2i,2j + 1)
for 0 ≤ i ≤ j ≤m − 1.

0 ●

6
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Figure 4.3. The partial order R2m

Observe that Comp(R2m) = H2m. It follows from (4.16)
that

τ = σ(R2n).
(2) Suppose that (0,1)τ = (0,2)τ . We obtain

E(τ) = {A(L2n)(0,1) ∪ (A(L2n)(0,1))⋆

∪ (A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1)),(4.17)

(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆}.
It follows from (4.17) that

τ = σ((R2n)⋆).
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(3) Suppose that ≺0,1≻τ ∩ ≺0,2≻τ= ∅. We obtain

E(τ) = {A(L2n)(0,1) ∪ (A(L2n)(0,1))⋆,
(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1)),(4.18)

(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆}.
It follows from (4.16), (4.17) and (4.18) that

τ = σ(R2n) ∧ σ((R2n)⋆).
Note that

σ(R2n) ∧ σ((R2n)⋆) = σ(H2n) ∧ σ(R2n) = σ(H2n) ∧ σ((R2n)⋆).
Subcase b: (0,1)τ ≠ (1,0)τ .

We distinguish the following five subcases.

(1) Suppose that (0,1)τ = (0,2)τ . Since ≺ 0,1 ≻τ≠≺ 0,2 ≻τ , we
have (1,0)τ ≠ (2,0)τ . We obtain

E(τ) = {A(L2n)(0,1)
∪ (A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1)),

(A(L2n)(0,1))⋆,(4.19)

(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆}.
It follows from (4.19) that

τ = σ((Q2n)⋆) ∧ σ((R2n)⋆).
(2) Suppose that (1,0)τ = (0,2)τ . Since ≺ 0,1 ≻τ≠≺ 0,2 ≻τ , we

have (0,1)τ ≠ (2,0)τ . We obtain

E(τ) = {(A(L2n)(0,1))⋆

∪ (A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1)),
A(L2n)(0,1),(4.20)

(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆}.
It follows from (4.20) that

τ = σ(Q2n) ∧ σ((R2n)⋆).
(3) Suppose that (0,1)τ = (2,0)τ . Since ≺ 0,1 ≻τ≠≺ 0,2 ≻τ , we

have (1,0)τ ≠ (0,2)τ . We obtain

E(τ) = {A(L2n)(0,1)
∪ (A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆,

(A(L2n)(0,1))⋆,(4.21)

(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))}.
It follows from (4.21) that

τ = σ((Q2n)⋆) ∧ σ(R2n).
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(4) Suppose that (1,0)τ = (2,0)τ . Since ≺ 0,1 ≻τ≠≺ 0,2 ≻τ , we
have (0,1)τ ≠ (0,2)τ . We obtain

E(τ) = {(A(L2n)(0,1))⋆

∪ (A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆,
A(L2n)(0,1),(4.22)

(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))}.
It follows from (4.22) that

τ = σ(Q2n) ∧ σ(R2n).
(5) Suppose that ≺0,1≻τ ∩ ≺0,2≻τ= ∅. We obtain

E(τ) = {A(L2n)(0,1),
(A(L2n)(0,1))⋆

(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1)),(4.23)

(A(L2n)(0,0) ∪A(L2n)(1,0) ∪A(L2n)(1,1))⋆}.
It follows from (4.23) that

τ = σ(Q2n) ∧ σ((Q2n)⋆) ∧ σ(R2n).

Remark 4.18. We showed previously that σ(H2n), σ(Q2n), σ((Q2n)⋆),
σ(R2n), and σ((R2n)⋆) are critical. Furthermore, their primality graph
equals P2n. We also obtained that some of their meets are also critical, and
admit P2n as primality graph. Observe that, by Fact (4.14), all their meets
are also critical, and admit P2n as a primality graph.

We summarize the previous examination in the next theorem.

Theorem 4.19 (Boudabbous and Ille4.3 [7]). Consider a 2-structure τ de-
fined on V (τ) = {0, . . . ,2n − 1}, where n ≥ 3. The following two statements
are equivalent

● τ is critical, and P(τ) = P2n;
● τ = σ(H2n), σ(Q2n), σ((Q2n)⋆) , σ(R2n) , σ((R2n)⋆) , σ(Q2n)∧
σ((Q2n)⋆) , σ(R2n) ∧ σ((R2n)⋆) , σ(Q2n) ∧ σ(R2n) , σ(Q2n)∧
σ((R2n)⋆), σ((Q2n)⋆)∧σ(R2n), σ((Q2n)⋆)∧σ((R2n)⋆), or σ(Q2n)∧
σ((Q2n)⋆) ∧ σ(R2n).

The following result is an immediate consequence of Theorem 4.19.

Corollary 4.20. Consider a reversible 2-structure τ defined on V (τ) =
{0, . . . ,2n − 1}, where n ≥ 3. The following two statements are equivalent

● τ is critical, and P(τ) = P2n;
● τ = σ(H2n), σ(Q2n) ∧ σ((Q2n)⋆), σ(R2n) ∧ σ((R2n)⋆), or σ(Q2n) ∧
σ((Q2n)⋆) ∧ σ(R2n).

4.3Boudabbous and Ille [7] proved this theorem for digraphs.
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The next remark completes subsubsection 4.2.1. We use the following
notation.

Notation 4.21. Given n ≥ 2, πn denotes the permutation of {0, . . . , n − 1}
which exchanges i and (n − 1) − i for i ∈ {0, . . . , n − 1}.

Remark 4.22. Given n ≥ 3, consider a critical 2-structure τ defined on
V (τ) = {0, . . . ,2n − 1}, and such that P(τ) = P2n. Set

E(τ) = {A(L2n)(0,0) ∪A(L2n)(1,1) ∪A(L2n)(1,0),
(A(L2n)(0,0) ∪A(L2n)(1,1) ∪A(L2n)(1,0))⋆,
A(L2n)(0,1),A(L2n)⋆(0,1)}.

We obtain

(4.24) π2n(e) = e⋆ for each e ∈ E(τ).
Consider e ∈ E(τ). By Proposition 4.15, there exists Be ⊊ E(τ) such that

e = ⋃
f∈Be

f.

Thus, we obtain

π2n(e) = ⋃
f∈Be

π2n(f)

= ⋃
f∈Be

f⋆ (by (4.24))

= e⋆.
Consequently, π2n is an isomorphism from τ onto τ⋆. If τ is reversible, then
τ = τ⋆, and hence π2n is an automorphism of τ .

4.2.2. The type P2n ⊕K{2n}.

Proposition 4.23. Given n ≥ 2, consider a 2-structure τ defined on V (τ) =
{0, . . . ,2n}. The following two statements are equivalent

(1) τ is critical, and P(τ) = P2n ⊕K{2n};
(2) (0,1)τ ≠ (1,0)τ , and for p, q ∈ {0, . . . ,2n − 1}, we have

(4.25) if p < q, then [p, q]τ = [0,1]τ ;

moreover, for i ∈ {0, . . . , n − 1}, we have

(4.26) [2i,2n]τ = [1,0]τ and [2i + 1,2n]τ = [0,1]τ .
Proof. To begin, suppose that τ is critical, and P(τ) = P2n ⊕K{2n}. In a
similar way as in the proof of Proposition 4.15, we verify that (4.4) holds.
For a contradiction, suppose that ≺ 0,1≻τ≠≺ 0,2≻τ . If n = 2, then it is not
difficult to verify that τ − 4 is prime. Furthermore, if n ≥ 3, then it follows
from Proposition 4.15 that τ−(2n) is critical, and hence prime. Since τ−(2n)
is decomposable, we obtain

(4.27) ≺0,1≻τ=≺0,2≻τ .
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Since P(τ) = P2n ⊕ K{2n}, we have NP(τ)(0) = {1}. By Lemma 4.4,
{2, . . . ,2n} is a module of τ − 0. Since τ is primitive, {0} ∪ {2, . . . ,2n}
is not a module of τ , so [1,0]τ ≠ [1,2]τ . Since (4.4) holds, we have [1,2]τ =
[0,2]τ . Therefore, we obtain [1,0]τ ≠ [0,2]τ . It follows from (4.27) that
(0,1)τ ≠ (1,0)τ and [0,1]τ = [0,2]τ . Since (4.4) holds and [0,1]τ = [0,2]τ ,
(4.25) holds.

Lastly, we show that (4.26) holds. As previously seen, {2, . . . ,2n} is a
module of τ − 0. Hence we have [1,2n]τ = [1,2]τ . Since (4.25) holds, we
have [1,2]τ = [0,1]τ . We obtain [1,2n]τ = [0,1]τ . Let i ∈ {0, . . . , n − 2}.
Since P(τ) = P2n ⊕ K{2n}, we have NP(τ)(2i + 2) = {2i + 1,2i + 3}. By
Lemma 4.4, {2i + 1,2i + 3} is a module of τ − (2i). In particular, we have
[2i + 1,2n]τ = [2i + 3,2n]τ . It follows that

[0,1]τ = [1,2n]τ = [3,2n]τ = ⋯ = [2n − 1,2n]τ .
Since P(τ) = P2n⊕K{2n}, we have NP(τ)(2n− 1) = {2n− 2}. By Lemma 4.4,
{0, . . . ,2n − 3} ∪ {2n} is a module of τ − (2n − 1). In particular, we have
[2n − 2,2n]τ = [2n − 2,0]τ . Since (4.25) holds, we have [2n − 2,0]τ = [1,0]τ .
We obtain [2n − 2,2n]τ = [1,0]τ . Let i ∈ {1, . . . , n − 1}. Since P(τ) =
P2n ⊕K{2n}, we have NP(τ)(2i− 1) = {2i− 2,2i}. By Lemma 4.4, {2i− 2,2i}
is a module of τ − (2i− 1). In particular, we have [2i− 2,2n]τ = [2i,2n]τ . It
follows that

[1,0]τ = [2n − 2,2n]τ = [2n − 4,2n]τ = ⋯ = [0,2n]τ .
Consequently, (4.26) holds.

Conversely, suppose that (4.25) and (4.26) hold. Moreover, suppose that
(0,1)τ ≠ (1,0)τ . It follows that τ = σ(T2n+1) (see Figure 1.2). By Fact 2.7,
τ is prime. We continue with the following observation

(4.28) for every p ∈ {0, . . . ,2n − 2}, τ − {p, p + 1} is prime.

Indeed, consider p ∈ {0, . . . ,2n − 2}. Recall that τ − {p, p + 1} = σ(T2n+1) −
{p, p + 1}. The bijection

ϕ ∶ {0, . . . ,2n} ∖ {p, p + 1} Ð→ {0, . . . ,2n − 2}
q ≤ p − 1 z→ q,
q ≥ p + 2 z→ q − 2

is an isomorphism from T2n+1 − {p, p + 1} onto T2n−1. Hence, ϕ is an iso-
morphism from σ(T2n+1) − {p, p + 1} onto σ(T2n−1). By Fact 2.7, σ(T2n−1)
is prime. Thus, σ(T2n+1) − {p, p + 1} is prime as well. Consequently, (4.28)
holds. It follows from (4.28) that

(4.29) E(P2n) ⊆ E(P(τ)).
Lastly, we prove that τ is critical, and P(τ) = P2n ⊕K{2n}. As already

observed, τ − (2n) = σ(L2n). Hence τ − (2n) is decomposable. Furthermore,
since τ−(2n) = σ(L2n), τ−{p,2n} is decomposable for each p ∈ {0, . . . ,2n−1}.
Thus,

(4.30) NP(σ)(2n) = ∅.
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Consider p ∈ {1, . . . ,2n−2}. It follows from (4.25) and (4.26) that {p−1, p+1}
is a module of τ−p. Therefore, p is a critical vertex of τ . Moreover, it follows
from (4.29) that {p − 1, p + 1} ⊆ NP(τ)(p). Since p is a critical vertex of τ , it
follows from Lemma 4.4 that NP(τ)(p) = {p − 1, p + 1}. Hence,

(4.31) for each p ∈ {1, . . . ,2n − 2}, NP(τ)(p) = {p − 1, p + 1}.

It follows from (4.25) and (4.26) that {2, . . . ,2n} is a module of τ −0. There-
fore, 0 is a critical vertex of τ . By (4.31), 1 ∈ NP(τ)(0). Since {2, . . . ,2n} is a
nontrivial module of τ − 0, with ∣{2, . . . ,2n}∣ ≥ 3, it follows from Lemma 4.4
that dP(τ)(0) = 1. Thus,

(4.32) NP(τ)(0) = {1}.
Finally, it follows from (4.25) and (4.26) that {0, . . . ,2n−3}∪{2n} is a module
of τ − (2n − 1). Therefore, 2n − 1 is a critical vertex of τ . By (4.30), 2n /∈
NP(σ)(2n−1). By (4.31), 2n−2 ∈ NP(σ)(2n−1) and NP(σ)(2n−1)∩{1, . . . ,2n−
3} = ∅. By (4.32), 0 /∈ NP(σ)(2n−1). Consequently, NP(σ)(2n−1) = {2n−2}.
It follows that τ is critical, and P(τ) = P2n ⊕K{2n}. �

The next characterization is a simple consequence of Proposition 4.23 and
its proof.

Theorem 4.24 (Boudabbous and Ille4.4 [7]). Consider a 2-structure τ de-
fined on V (τ) = {0, . . . ,2n}, where n ≥ 2. The following two statements are
equivalent

● τ is critical, and P(τ) = P2n ⊕K{2n};
● τ = σ(T2n+1) (see Figure 1.2).

In Remark 4.26, we determine the automorphism group of σ(T2n+1),
where n ≥ 2. We use the following note.

Note 4.25. Consider a tournament T . We denote by Iso(T,T ⋆) the set of
the isomorphism from T onto its dual. We prove that

(4.33) Aut(σ(T )) = Aut(T ) ∪ Iso(T,T ⋆).
Given x, y, v,w ∈ V (σ(T )), with x ≠ y and v ≠ w,

(x, y) ≡σ(T ) (v,w) if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(x, y), (v,w) ∈ A(T )
or

(x, y), (v,w) /∈ A(T ).
Therefore,

(x, y) ≡σ(T ) (v,w) if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(x, y), (v,w) ∈ A(T )
or

(x, y), (v,w) ∈ (A(T ))⋆.

4.4Boudabbous and Ille [7] proved this theorem for digraphs.



48 PIERRE ILLE

It follows that

E(σ(T )) = {A(T ), (A(T ))⋆}.
Given a permutation ϕ of V (T ), we have

ϕ ∈ Aut(σ(T ))if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ(A(T )) = A(T ) and ϕ((A(T ))⋆) = (A(T ))⋆
or

ϕ(A(T )) = (A(T ))⋆ and ϕ((A(T ))⋆) = A(T ).

Clearly, if ϕ(A(T )) = A(T ), then ϕ((A(T ))⋆) = (A(T ))⋆. Similarly, if
ϕ(A(T )) = (A(T ))⋆, then ϕ((A(T ))⋆) = A(T ). Therefore,

ϕ ∈ Aut(σ(T )) if and only if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ(A(T )) = A(T )
or

ϕ(A(T )) = (A(T ))⋆.

We have ϕ(A(T )) = A(T ) if and only if ϕ ∈ Aut(T ). Analogously, ϕ(A(T )) =
(A(T ))⋆ if and only if ϕ ∈ Iso(T,T ⋆). It follows that (4.33) holds.

Remark 4.26. Let n ≥ 2. We verify that T2n+1 is rigid. Let ϕ ∈ Aut(T2n+1).
Since n ≥ 2, 2n is the only vertex of T2n+1 such that T2n+1 − (2n) is a linear
order. Consequently, ϕ(2n) = 2n. It follows that ϕ↾{0,...,2n−1} ∈ Aut(T2n+1 −
(2n)). Since T2n+1 − (2n) is a linear order, T2n+1 − (2n) is rigid. Therefore,
ϕ↾{0,...,2n−1} = Id{0,...,2n−1}. Since ϕ(2n) = 2n, we obtain ϕ = Id{0,...,2n}.

We denote by π̂2n the extension of π2n to {0, . . . ,2n} defined by π̂2n(2n) =
2n (see Notation 4.21). Clearly, π̂2n is an isomorphism from T2n+1 onto
(T2n+1)⋆. Conversely, consider an isomorphism ϕ from T2n+1 onto (T2n+1)⋆.
Recall that 2n is the only vertex of T2n+1 such that T2n+1 − (2n) is a linear
order. Hence, 2n is the only vertex of (T2n+1)⋆ such that (T2n+1)⋆ − (2n)
is a linear order. It follows that ϕ(2n) = 2n. Therefore, ϕ↾{0,...,2n−1} is an
isomorphism from T2n+1−(2n) onto (T2n+1)⋆−(2n). Since T2n+1−(2n) = L2n,
we obtain ϕ↾{0,...,2n−1} = π2n. Consequently, we have ϕ = π̂2n.

It follows from Note 4.25 that

(4.34) Aut(σ(T2n+1)) = {Id{0,...,2n}, π̂2n}.

4.2.3. The type P2n+1.

Proposition 4.27. Given n ≥ 2, consider a 2-structure τ defined on V (τ) =
{0, . . . ,2n}. The following two statements are equivalent

(1) τ is critical, and P(τ) = P2n+1;
(2) (0,1)τ ≠ (1,0)τ , [0,1]τ ≠ [0,2]τ , and for p, q ∈ {0, . . . ,2n} such that

p < q, we have

(4.35) [p, q]τ =
⎧⎪⎪⎨⎪⎪⎩

[0,2]τ if p and q are even,

[0,1]τ otherwise.
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Proof. To begin, suppose that τ is critical, and P(τ) = P2n+1. First, we show
that (4.35) holds. Consider p, q ∈ {0, . . . ,2n} such that p < q. We prove that
there exist p′ ∈ {0,1} and q′ ∈ {2n − 1,2n} such that

(4.36) p′ ≡ p mod 2, q′ ≡ q mod 2, and [p, q]τ = [p′, q′]τ .

For instance, suppose that p ≥ 2. Since P(τ) = P2n+1, we have NP(τ)(p−1) =
{p− 2, p}. By Lemma 4.4, {p− 2, p} is a module of τ − (p− 1). In particular,
we obtain [p, q]τ = [p − 2, q]τ . By iteration, we obtain p′ ∈ {0,1} such that

p′ ≡ p mod 2 and [p, q]τ = [p′, q]τ .

Similarly, we obtain q′ ∈ {2n−2,2n−1} such that q′ ≡ q mod 2 and [p′, q]τ =
[p′, q′]τ . Therefore, (4.36) holds. It follows from (4.36) that for any p′, q′ ∈
{0, . . . ,2n} such that p′ < q′,

(4.37) if p′ ≡ p mod 2 and q′ ≡ q mod 2, then [p, q]τ = [p′, q′]τ .

We distinguish the following four cases, where p, q ∈ {0, . . . ,2n} such that
p < q.
Case 1: p and q are even.

By (4.37), [p, q]τ = [0,2]τ .
Case 2: p and q are odd.

By (4.37), [p, q]τ = [1,2n− 1]τ . Since P(τ) = P2n+1, we have NP(τ)(2n) =
{2n − 1}. By Lemma 4.4, {0, . . . ,2n − 2} is a module of τ − (2n). In
particular, we obtain [1,2n − 1]τ = [0,2n − 1]τ . By (4.37), [0,2n − 1]τ =
[0,1]τ . Consequently, we obtain [p, q]τ = [0,1]τ .

Case 3: p is even and q is odd.
By (4.37), [p, q]τ = [0,1]τ .

Case 4: p is odd and q is even.
By (4.37), [p, q]τ = [1,2]τ . Since NP(τ)(0) = {1}, we have {2, . . . ,2n} is
a module of τ − 0. In particular, we obtain [1,2]τ = [1,2n − 1]τ . Since
NP(τ)(2n) = {2n− 1}, we have {0, . . . ,2n− 2} is a module of τ − (2n). In
particular, we obtain [1,2n − 1]τ = [0,2n − 1]τ . By (4.37), [0,2n − 1]τ =
[0,1]τ . Consequently, we obtain [p, q]τ = [0,1]τ .

It follows from the four cases above that (4.35) holds.
Second, we verify that (0,1)τ ≠ (1,0)τ and [0,1]τ ≠ [0,2]τ . If (0,1)τ =

(1,0)τ , then {2i ∶ i ∈ {0, . . . , n}} is a module of τ , which contradicts the fact
that τ is critical, and hence prime. Hence (0,1)τ ≠ (1,0)τ . Furthermore,
if [0,1]τ = [0,2]τ , then τ = σ(L2n+1), which contradicts the fact that τ is
prime. Thus [0,1]τ ≠ [0,2]τ .

Conversely, suppose that (0,1)τ ≠ (1,0)τ , [0,1]τ ≠ [0,2]τ , and (4.35)
holds. To begin, we prove that τ is prime. We show by induction that

(4.38) for each m ∈ {1, . . . , n} that τ[{0, . . . ,2m}] is prime.

Since [0,1]τ ≠ [0,2]τ , {0,1} and {1,2} are not modules of τ[{0,1,2}]. More-
over, {0,2} is not a module of τ[{0,1,2}] because (0,1)τ ≠ (1,0)τ . It follows
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that τ[{0,1,2}] is prime. Now, consider m ∈ {1, . . . , n−1}, and suppose that
τ[{0, . . . ,2m}] is prime. Set

X = {0, . . . ,2m}.
Since (4.35) holds, we obtain 2m + 1 ∈ ⟨X⟩τ and 2m + 2 ∈ Xτ(2m). Since
(0,1)τ ≠ (1,0)τ , X ∪ {2m + 2} is not a module of τ[{0, . . . ,2m + 2}]. By
statement (P1) of Lemma 3.17, τ[{0, . . . ,2m + 2}] is prime. Consequently,
(4.38) holds for every m ∈ {0, . . . , n}. It follows that τ is prime.

To continue, we make the following observation

(4.39) for every p ∈ {0, . . . ,2n − 1}, τ − {p, p + 1} is prime.

Indeed, let p ∈ {0, . . . ,2n − 1}. Since (4.35) holds, the bijection

{0, . . . ,2n} ∖ {p, p + 1} Ð→ {0, . . . ,2n − 2}
q ≤ p − 1 z→ q,

(if p ≤ 2n − 2) q ≥ p + 2 z→ q − 2.

is an isomorphism from τ − {p, p+ 1} onto τ[{0, . . . ,2n− 2}]. It follows from
(4.38) that τ[{0, . . . ,2n − 2}] is prime, so τ − {p, p + 1} is as well.

(4.40) E(P2n+1) ⊆ E(P(τ)).
Lastly, we prove that τ is critical, and P(τ) = P2n+1. Let p ∈ {1, . . . ,2n−1}.

Since (4.35) holds, {p − 1, p + 1} is a module of τ − p. Thus, p is a critical
vertex of τ . By (4.40), {p − 1, p + 1} ⊆ NP(τ)(p). Since p is a critical vertex
of τ , it follows from Lemma 4.4 that NP(τ)(p) = {p− 1, p+ 1}. Therefore, for
each p ∈ {1, . . . ,2n − 1}, we have

(4.41) NP(τ)(p) = {p − 1, p + 1}.

Since (4.35) holds, {2, . . . ,2n} is a module of τ − 0. Thus 0 is a critical
vertex of τ . It follows from (4.41) that 1 ∈ NP(τ)(0). Since {2, . . . ,2n} is a
nontrivial module of τ − 0, with ∣{2, . . . ,2n}∣ ≥ 3, it follows from Lemma 4.4
that dP(τ)(0) = 1. Therefore,

(4.42) NP(τ)(0) = {1}.

Finally, since (4.35) holds, {0, . . . ,2n − 2} is a module of τ − (2n). Thus
2n is a critical vertex of τ . It follows from (4.41) that 2n − 1 ∈ NP(τ)(2n)
and NP(τ)(2n) ∩ {1, . . . ,2n − 2} = ∅. By (4.42), 0 /∈ NP(τ)(2n). Therefore,
NP(τ)(2n) = {2n − 1}. Consequently, τ is critical, and P(τ) = P2n+1. �

Let τ be a 2-structure defined on V (τ) = {0, . . . ,2n}, where n ≥ 2. Suppose
that (0,1)τ ≠ (1,0)τ and [0,1]τ ≠ [0,2]τ . Suppose also that τ satisfies
(4.35). By Proposition 4.27, τ is critical, and P(τ) = P2n+1. We distinguish
the following cases.
Case 1: (0,2)τ = (2,0)τ .

We distinguish the following three subcases.
Subcase a: (0,2)τ = (1,0)τ .
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We obtain

E(τ) = {A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1),
(A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1))⋆(4.43)

∪ A(L2n+1)(0,0) ∪ (A(L2n+1)(0,0))⋆} (see Notation 4.16).

In fact, τ is the 2-structure associated with a digraph (see subsec-
tion 1.3). Given m ≥ 2, we consider the digraph D2m+1 obtained
from the linear order L2m+1 by removing all the arcs between the
even integers (see Figure 4.4).
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Figure 4.4. The digraph D2m+1.

It follows from (4.43) that

τ = σ(D2n+1).
Subcase b: (0,2)τ = (0,1)τ .

We obtain

E(τ) = {A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1)
∪ A(L2n+1)(0,0) ∪ (A(L2n+1)(0,0))⋆,(4.44)

(A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1))⋆}.
It follows from (4.44) that

τ = σ((D2n+1)⋆).
Subcase c: ≺0,1≻τ ∩ ≺0,2≻τ= ∅.

We obtain

E(τ) = {A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1),
(A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1))⋆,(4.45)

A(L2n+1)(0,0) ∪ (A(L2n+1)(0,0))⋆}.
It follows from (4.43), (4.44), and (4.45) that

τ = σ(D2n+1) ∧ σ((D2n+1)⋆) (see Remark 4.11 and Fact 4.14).
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Case 2: (0,2)τ ≠ (2,0)τ .
Since [0,1]τ ≠ [0,2]τ , we have (0,1)τ = (2,0)τ and (1,0)τ = (0,2)τ or
≺0,1≻τ ∩ ≺0,2≻τ= ∅. We distinguish the following two subcases.
Subcase a: (0,1)τ = (2,0)τ and (1,0)τ = (0,2)τ .

We obtain

E(τ) = {A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1)
∪ (A(L2n+1)(0,0))⋆, (see Notation 4.16)

(A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1))⋆(4.46)

∪ A(L2n+1)(2,0))} (see Notation 1.2).

In fact, τ is the 2-structure associated with a graph (see subsec-
tion 1.2). Given m ≥ 2, we consider the tournament U2m+1 obtained
from the linear order L2m+1 by reversing all the arcs between the even
integers (see Figure 4.5).
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Figure 4.5. The tournament U2m+1.

It follows from (4.46) that

τ = σ(U2n+1).

Subcase b: ≺0,1≻τ ∩ ≺0,2≻τ= ∅.
We obtain

E(τ) = {A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1),
(A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪ (A(L2n+1)(1,1))⋆,
A(L2n+1)(0,0),(4.47)

(A(L2n+1)(0,0))⋆}.

It follows from (4.45), (4.46), and (4.47) that

τ = σ(D2n+1) ∧ σ((D2n+1)⋆) ∧ σ(U2n+1) (see Remark 4.11 and Fact 4.14).

We summarize the previous examination in the next theorem.
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Theorem 4.28 (Boudabbous and Ille4.5 [7]). Consider a 2-structure τ de-
fined such that V (τ) = {0, . . . ,2n}, where n ≥ 2. The following two state-
ments are equivalent

● τ is critical, and P(τ) = P2n+1;
● τ = σ(D2n+1), σ((D2n+1)⋆), σ(D2n+1) ∧ σ((D2n+1)⋆), σ(U2n+1), or
σ(D2n+1) ∧ σ((D2n+1)⋆) ∧ σ(U2n+1).

The following result is an immediate consequence of Theorem 4.28.

Corollary 4.29. Consider a reversible 2-structure τ defined such that
V (τ) = {0, . . . ,2n}, where n ≥ 2. The following two statements are equivalent

● τ is critical, and P(τ) = P2n+1;
● τ = σ(U2n+1), σ(D2n+1)∧σ((D2n+1)⋆), or σ(D2n+1)∧σ((D2n+1)⋆)∧
σ(U2n+1).

The next remark completes the subsubsection.

Remark 4.30. Given n ≥ 2, consider a critical 2-structure τ defined on
V (τ) = {0, . . . ,2n}, and such that P(τ) = P2n+1. Set

E(τ) = {A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1),
(A(L2n+1)(0,1) ∪A(L2n+1)(1,0) ∪A(L2n+1)(1,1))⋆,
A(L2n+1)(0,0),A(L2n+1)⋆(0,0)}.

We obtain

(4.48) π2n+1(e) = e⋆ for each e ∈ E(τ) (see Notation 4.21).

Consider e ∈ E(τ). By Proposition 4.27, there exists Be ⊊ E(τ) such that

e = ⋃
f∈Be

f.

Thus, we obtain

π2n+1(e) = ⋃
f∈Be

π2n+1(f)

= ⋃
f∈Be

f⋆ (by (4.48))

= e⋆.

Consequently, π2n+1 is an isomorphism from τ onto τ⋆. If τ is reversible,
then τ = τ⋆, and hence π2n+1 is an automorphism of τ .

4.2.4. The type C2n+1. Given m ≥ 1, we consider the tournament W2m+1

obtained from the tournament U2m+1 by reversing all the arcs between the
odd integers (see Figure 4.6). The next remark is useful to establish Propo-
sition 4.36 below.

4.5Boudabbous and Ille [7] proved this theorem for digraphs.
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Figure 4.6. The tournament W2m+1.

Remark 4.31. Let Γ be a group of odd order with identity element e.
Consider Ω ⊆ Γ ∖ {e} such that ∣Ω ∩ {x,x−1}∣ = 1 for each x ∈ Γ ∖ {e}.
We associate with Γ and Ω the Cayley tournament Cay(Γ,Ω) defined on
V (Cay(Γ,Ω)) = Γ as follows. Given x, y ∈ Γ, (x, y) ∈ A(Cay(Γ,Ω)) if yx−1 ∈
Ω. For each a ∈ Γ, the permutation of Γ, defined by x ↦ xa for every
x ∈ Γ, is an automorphism of Cay(Γ,Ω). Consequently, Cay(Γ,Ω) is vertex-
transitive.

Let m ≥ 1. We consider the cyclic group (Z2m+1,+). We consider also the
permutation

ψ2m+1 ∶ {0, . . . ,2m} Ð→ {0, . . . ,2m}
p z→ (m + 1) × p mod 2m + 1

of Z2m+1. We denote by ψ2m+1(W2m+1) the unique tournament defined on
Z2m+1 such that ψ2m+1 is an isomorphism from W2m+1 onto ψ2m+1(W2m+1).
Fact 4.32. For m ≥ 1, we have

(ψ2m+1(W2m+1))⋆ = Cay(Z2m+1,{1, . . . ,m}).
For convenience, set

Cay2m+1 = Cay(Z2m+1,{1, . . . ,m}).
Fact 4.33. Given m ≥ 1, Cay2m+1 is prime.

Proof. Let M be a module of Cay2m+1 such that ∣M ∣ ≥ 2. We have to show
that M = Z2m+1. As previously noted, the permutation of Z2m+1, defined
by p ↦ (p + 1) mod (2m + 1) for each p ∈ Z2m+1, is an automorphism of
Cay2m+1. Hence, we can assume that 0 ∈M . Moreover, the permutation of
Z2m+1, defined by p↦ −p mod (2m+1) for each p ∈ Z2m+1, is an isomorphism
from Cay2m+1 onto (Cay2m+1)⋆. Since Cay2m+1 and (Cay2m+1)⋆ share the
same modules, we can assume that there exists q ∈ M ∩ {1, . . . ,m}. Since
Cay2m+1[{0, . . . ,m}] = Lm+1, we obtain {0, . . . , q} ⊆M . Since (1,m+1), (m+
1,0) ∈ A(Cay2m+1), we have m + 1 ∈M . Hence

(4.49) {0, . . . , q} ∪ {m + 1} ⊆M.
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Now, we show that

(4.50) {0, . . . ,m + 1} ⊆M.

Clearly, (4.50) follows from (4.49) when q =m. Thus, suppose that q ≤m−1.
Let p ∈ {q + 1, . . . ,m}. Since (q, p), (p,m + 1) ∈ A(Cay2m+1), we have p ∈M .
It follows that {q + 1, . . . ,m} ⊆M . Since {0, . . . , q}∪ {m+ 1} ⊆M by (4.49),
we obtain {0, . . . ,m + 1} ⊆ M . Consequently, (4.50) holds. If m = 1, then
M = Z2m+1 by (4.50). Lastly, suppose that m ≥ 2. Let p ∈ {m + 2, . . . ,2m}.
Since (m + 1, p), (p,0) ∈ A(Cay2m+1), we have p ∈ M . We obtain {m +
2, . . . ,2m} ⊆ M . It follows from (4.50) that M = Z2m+1. Consequently,
Cay2m+1 is prime. �

Fact 4.34. Given m ≥ 2, Cay2m+1 is critical, and

P(Cay2m+1) = ψ2m+1(C2m+1),

where ψ2m+1(C2m+1) denotes the unique graph defined on Z2m+1 such that
ψ2m+1 is an isomorphism from C2m+1 onto ψ2m+1(C2m+1).

Proof. We have W2m+1 ∖ {2m − 1,2m} = W2m−1. By Fact 4.33, Cay2m−1 is
prime. Since (ψ2m−1(W2m−1))⋆ = Cay2m−1 by Fact 4.32, W2m−1 is prime.
Hence W2m+1 ∖ {2m − 1,2m} is prime as well. Since (ψ2m+1(W2m+1))⋆ =
Cay2m+1 by Fact 4.32, we obtain that Cay2m+1 ∖ ψ2m+1({2m − 1,2m}) =
Cay2m+1 ∖ {m,2m} is prime. The permutation of Z2m+1, defined by p ↦
(p −m) mod (2m + 1) for each p ∈ Z2m+1, is an automorphism of Cay2m+1.
Thus Cay2m+1∖{0,m} is prime. The permutation of Z2m+1, defined by p↦ −p
mod (2m + 1) for each p ∈ Z2m+1, is an isomorphism from Cay2m+1 onto
(Cay2m+1)⋆. Therefore, Cay2m+1∖ψ2m+1({0,−m}) = Cay2m+1∖ψ2m+1({0,m
+1}) is prime. It follows that

m,m + 1 ∈ NP(Cay2m+1)(0).

Clearly, {m,m + 1} is a module of Cay2m+1 − 0. Thus 0 is a critical vertex
of Cay2m+1. By Lemma 4.4, dP(Cay2m+1)(0) ≤ 2. We obtain

NP(Cay2m+1)(0) = {m,m + 1}.

Let q ∈ Z2m+1. Since the permutation of Z2m+1, defined by p ↦ (p + q)
mod (2m+1) for each p ∈ Z2m+1, is an automorphism of Cay2m+1, we obtain
that q is a critical vertex of Cay2m+1, and NP(Cay2m+1)(q) = {q+m,q+m+1}.
Consequently, Cay2m+1 is critical, and P(Cay2m+1) = ψ2m+1(C2m+1). �

The next fact is an immediate consequence of Facts 4.32 and 4.34.

Fact 4.35. Given m ≥ 2, W2m+1 is critical, and P(W2m+1) = C2m+1.

Proposition 4.36. Given n ≥ 2, consider a 2-structure τ defined on V (τ) =
{0, . . . ,2n}. The following two statements are equivalent

(1) τ is critical, and P(τ) = C2n+1;
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(2) (0,1)τ ≠ (1,0)τ , and for p, q ∈ {0, . . . ,2n} such that p < q, we have

(4.51) [p, q]τ =
⎧⎪⎪⎨⎪⎪⎩

[1,0]τ if p and q have the same parity,

[0,1]τ otherwise.

Proof. To begin, suppose that τ is critical, and P(τ) = C2n+1. We verify
that (4.51) holds in the following manner. Since E(P2n+1) ⊆ E(C2n+1),
(4.36) holds. It follows that (4.37) holds. We distinguish the following
cases, where p, q ∈ {0, . . . ,2n} such that p < q.
Case 1: p and q are even.

By (4.37), [p, q]τ = [0,2]τ . Since P(τ) = C2n+1, we have NP(τ)(2n) =
{0,2n − 1}. By Lemma 4.4, {0,2n − 1} is a module of τ − (2n). In
particular, we obtain [0,2]τ = [2n−1,2]τ . By (4.37), [2n−1,2]τ = [1,0]τ .
Thus

(4.52) [p, q]τ = [1,0]τ .
Case 2: p and q are odd.

By (4.37), [p, q]τ = [1,2n− 1]τ . Since {0,2n− 1} is a module of τ − (2n),
we have [1,2n − 1]τ = [1,0]τ . Hence

[p, q]τ = [1,0]τ .
Case 3: p is even and q is odd.

By (4.37), [p, q]τ = [0,1]τ .
Case 4: p is odd and q is even.

By (4.37), [p, q]τ = [1,2]τ . Since P(τ) = C2n+1, we have NP(τ)(0) =
{1,2n}. By Lemma 4.4, {1,2n} is a module of τ − 0. In particular,
we obtain [1,2]τ = [2n,2]τ . By (4.37), [2n,2]τ = [2,0]τ . By (4.52),
[2,0]τ = [0,1]τ . Therefore

[p, q]τ = [0,1]τ .
It follows that (4.51) holds. Since τ is prime, τ is not constant. It follows

from (4.51) that (0,1)τ ≠ (1,0)τ .
Conversely, suppose that (4.51) holds, and (0,1)τ ≠ (1,0)τ . We obtain

τ = σ(W2m+1).
By Fact 4.35, τ is critical, and P(τ) = C2m+1. �

The next characterization is a simple consequence of Proposition 4.36 and
its proof.

Theorem 4.37 (Boudabbous and Ille4.6 [7]). Consider a 2-structure τ de-
fined on V (τ) = {0, . . . ,2n}, where n ≥ 2. The following two statements are
equivalent

● τ is critical, and P(τ) = C2n+1;
● τ = σ(W2n+1) (see Figure 4.6).

4.6Boudabbous and Ille [7] proved this theorem for digraphs.
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In the next remark, we determine the automorphism group of σ(W2n+1)
when n ≥ 2.

Remark 4.38. Let n ≥ 2. By Fact 4.32, ψ2n+1 is an isomorphism fromW2n+1

onto (Cay2n+1)⋆. To determine Aut(Cay2n+1), we consider the permutation

θ2n+1 ∶ {0, . . . ,2n} Ð→ {0, . . . ,2n}
p z→ p + 1 mod 2n + 1

of Z2n+1. We prove that

(4.53) Aut(σ(W2n+1)) = < θ2n+1, π2n+1 > .
To begin, we show that

(4.54) Aut(Cay2n+1) = < θ2n+1 > .
Clearly, θ2n+1 ∈ Aut(Cay2n+1), and hence < θ2n+1 > ⊆ Aut(Cay2n+1). Con-
versely, consider ϕ ∈ Aut(Cay2n+1). Since < θ2n+1 > ⊆ Aut(Cay2n+1),

(θ2n+1)−ϕ(0) ○ ϕ ∈ Aut(Cay2n+1).
We have

((θ2n+1)−ϕ(0) ○ ϕ)(0) = 0.

Since Cay2n+1[N−
Cay2n+1

(0)] and Cay2n+1[N+
Cay2n+1

(0)] are linear orders, we

obtain (θ2n+1)−ϕ(0) ○ ϕ = Id{0,...,2n}. Therefore, ϕ ∈ < θ2n+1 >. It follows that
(4.54) holds. Moreover, since ψ2n+1 is an isomorphism from W2n+1 onto
(Cay2n+1)⋆, we obtain

Aut(W2n+1) = (ψ2n+1)−1○ < θ2n+1 > ○ ψ2n+1.

We have (ψ2n+1)−1 ○ θ2n+1 ○ ψ2n+1 = (θ2n+1)2. Furthermore, we have

((θ2n+1)2)n+1 = θ2n+1.

It follows that

(4.55) Aut(W2n+1) = (ψ2n+1)−1○ < θ2n+1 > ○ ψ2n+1 =< θ2n+1 > .
Now, we show that

(4.56) Iso(Cay2n+1, (Cay2n+1)⋆) = < θ2n+1 > ○ π2n+1.

Clearly, π2n+1 ∈ Iso(Cay2n+1, (Cay2n+1)⋆). It follows from (4.54) that <
θ2n+1 > ○ π2n+1 ⊆ Iso(Cay2n+1, (Cay2n+1)⋆). Conversely, let ϕ be an isomor-
phism from Cay2n+1 onto (Cay2n+1)⋆. Since θ2n+1 ∈ Aut(Cay2n+1) by (4.54),

(θ2n+1)n−ϕ(n) ○ ϕ ∈ Iso(Cay2n+1, (Cay2n+1)⋆). Set

ϕ′ = (θ2n+1)n−ϕ(n) ○ ϕ.
We have ϕ′(n) = n. Thus, we obtain ϕ′[N−

Cay2n+1
(n)] = N+

Cay2n+1
(n) and

ϕ′[N+
Cay2n+1

(n)] = N−
Cay2n+1

(n). Recall that

Cay2n+1[N−
Cay2n+1(n)] = L{0,...,n−1} and Cay2n+1[N+

Cay2n+1(n)] = L{n+1,...,2n}.
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It follows that ϕ′ = π2n+1, so ϕ = (θ2n+1)ϕ(n)−n ○ π2n+1. Consequently, (4.56)
holds. Lastly, since ψ2n+1 is an isomorphism from W2n+1 onto (Cay2n+1)⋆,
we obtain

Iso(W2n+1, (W2n+1)⋆) = (ψ2n+1)−1○ < θ2n+1 > ○ π2n+1 ○ ψ2n+1.

Since π2n+1 ○ ψ2n+1 = (θ2n+1)n ○ ψ2n+1 ○ π2n+1,

Iso(W2n+1, (W2n+1)⋆) = (ψ2n+1)−1○ < θ2n+1 > ○ (θ2n+1)n ○ ψ2n+1 ○ π2n+1

= (ψ2n+1)−1○ < θ2n+1 > ○ ψ2n+1 ○ π2n+1

= < θ2n+1 > ○ π2n+1 (by (4.55)).(4.57)

By Note 4.25, Aut(σ(W2n+1)) = Aut(W2n+1) ∪ Iso(W2n+1, (W2n+1)⋆). It
follows from (4.55) and (4.57) that

Aut(σ(W2n+1)) = < θ2n+1 > ∪(< θ2n+1 > ○ π2n+1).
Since π2n+1 ○ (θ2n+1)k = (θ2n+1)−k ○ π2n+1, (4.53) holds.

4.3. Properties of critical 2-structures.

Lemma 4.39. Let τ be a critical 2-structure, with v(τ) ≥ 7. If u, v, x, y are
distinct vertices of τ such that {u,x},{x, y},{y, v} ∈ E(P(τ)), then τ −{x, y}
is critical, τ and τ − {x, y} share the same type, and

E(P(τ − {x, y})) = (E(P(τ)) ∖ {{u,x},{x, y},{y, v}}) ∪ {{u, v}}.
Proof. By Corollary 4.6, there exist n ≥ 3 and a bijection f defined on V (τ)
such that f(P(τ)) = P2n ⊕K{2n}, P2n+1,C2n+1 or f(P(τ)) = P2n, with n ≥ 4.

To begin, suppose that

f(P(τ)) = C2n+1.

We can assume that f(u) = 2n − 2, f(x) = 2n − 1, f(y) = 2n and f(v) = 0.
Since P(f(τ)) = f(P(τ)), we have

P(f(τ)) = C2n+1.

By Proposition 4.36, (0,1)f(τ) ≠ (1,0)f(τ), and f(τ) satisfies (4.51). Clearly,
(0,1)f(τ)−{2n−1,2n} ≠ (1,0)f(τ)−{2n−1,2n}, and f(τ) − {2n − 1,2n} satisfies
(4.51). Since n ≥ 3, we can apply Proposition 4.36 to f(τ)−{2n−1,2n}. We
obtain that f(τ)−{2n−1,2n} is critical, and P(f(τ)−{2n−1,2n}) = C2n−1.
Since f is an isomorphism from P(τ) onto C2n+1, we obtain

E(P(τ)) ={{f−1(p), f−1(p + 1)} ∶ 0 ≤ p ≤ 2n − 1}
∪ {{f−1(2n), f−1(0)}}.(4.58)

Clearly, f↾V (τ)∖{x,y} is an isomorphism from τ−{x, y} onto f(τ)−{2n−1,2n}.
Hence, f↾V (τ)∖{x,y} is an isomorphism from P(τ −{x, y}) onto P(f(τ)−{2n−
1,2n}). Since P(f(τ) − {2n − 1,2n}) = C2n−1, we obtain

E(P(τ − {x, y})) ={{f−1(p), f−1(p + 1)} ∶ 0 ≤ p ≤ 2n − 3}
∪ {{f−1(2n − 2), f−1(0)}}.(4.59)
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It follows from (4.58) and (4.59) that

E(P(τ − {x, y}) =
(E(P(τ)) ∖ {{f−1(2n − 2), f−1(2n − 1)},{f−1(2n − 1), f−1(2n)},
{f−1(2n), f−1(0)}}) ∪ {{f−1(2n − 2), f−1(0)}}
= (E(P(τ)) ∖ {{u,x},{x, y},{y, v}}) ∪ {{u, v}}.

Now, suppose that f(P(τ)) = P2n, P2n ⊕K{2n}, or P2n+1. We proceed in
the same way for the three cases. For instance, assume that

f(P(τ)) = P2n+1.

There exists p ∈ {0, . . . ,2n − 3} such that f(u) = p, f(x) = p + 1, f(y) = p + 2
and f(v) = p + 3. Since P(f(τ)) = f(P(τ)), we have

P(f(τ)) = P2n+1.

By Proposition 4.27, (0,1)f(τ) ≠ (1,0)f(τ), [0,1]f(τ) ≠ [0,2]f(τ), and f(τ)
satisfies (4.35). Consider the bijection

g ∶ {0, . . . ,2n} ∖ {p + 1, p + 2} Ð→ {0, . . . ,2n − 2}
q ≤ p z→ q,

q ≥ p + 3 z→ q − 2.

For each q ∈ {0, . . . ,2n − 2}, we have q ≡ g−1(q) mod 2. Moreover, for any
q, r ∈ {0, . . . ,2n − 2}, q < r if and only if g−1(q) < g−1(r). Since (0,1)f(τ) ≠
(1,0)f(τ), [0,1]f(τ) ≠ [0,2]f(τ), and f(τ) satisfies (4.35), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0,1)g(f(τ)−{p+1,p+2}) ≠ (1,0)g(f(τ)−{p+1,p+2}),

[0,1]g(f(τ)−{p+1,p+2}) ≠ [0,2]g(f(τ)−{p+1,p+2}),

and

g(f(τ) − {p + 1, p + 2}) satisfies (4.35).

By Proposition 4.27 applied to g(f(τ)−{p+1, p+2}), g(f(τ)−{p+1, p+2})
is critical, and

P(g(f(τ) − {p + 1, p + 2})) = P2n−1.

Since f is an isomorphism from P(τ) onto P2n+1, we have

(4.60) E(P(τ)) = {{f−1(q), f−1(q + 1)} ∶ 0 ≤ q ≤ 2n − 1}.

Since P(g(f(τ)−{p+1, p+2})) = P2n−1, g ○ (f↾V (τ)∖{x,y}) is an isomorphism
from P(τ − {x, y}) onto P2n−1. It follows that

E(P(τ − {x, y})) =
{{(g ○ (f↾V (τ)∖{x,y}))−1(q), (g ○ (f↾V (τ)∖{x,y}))−1(q + 1)} ∶ 0 ≤ q ≤ 2n − 3}.
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We obtain

E(P(τ−{x, y})) = {{f−1(p), f−1(p + 3)}}
∪ {{f−1(q), f−1(q + 1)} ∶ 0 ≤ q ≤ p − 1} (when p ≥ 1)(4.61)

∪ {{f−1(q), f−1(q + 1)} ∶ p + 3 ≤ q ≤ 2n − 1} (when p ≤ 2n − 4).

It follows from (4.60) and (4.61) that

E(P(τ − {x, y}) =(E(P(τ)) ∖ {{f−1(p), f−1(p + 1)},{f−1(p + 1), f−1(p + 2)},
{f−1(p + 2), f−1(p + 3)}}) ∪ {{f−1(p), f−1(p + 3)}}
=(E(P(τ)) ∖ {{u,x},{x, y},{y, v}}) ∪ {{u, v}}. �

Lemma 4.40. Let τ be a critical 2-structure, with v(τ) ≥ 7. If u,x, y are
distinct vertices of τ such that {u,x},{x, y} ∈ E(P(τ)), and dP(τ)(y) = 1,
then τ − {x, y} is critical, τ and τ − {x, y} share the same type, and

E(P(τ − {x, y})) = E(P(τ)) ∖ {{u,x},{x, y}}.

Proof. By Corollary 4.6, there exist n ≥ 3 and a bijection f defined on V (τ)
such that f(P(τ)) = P2n⊕K{2n}, P2n+1,C2n+1, or f(P(τ)) = P2n, with n ≥ 4.
Since dP(τ)(y) = 1, f(P(τ)) = P2n, P2n ⊕K{2n}, or P2n+1. As in the proof of
Lemma 4.39, we treat only the case f(P(τ)) = P2n+1. We can assume that
f(u) = 2n − 2, f(x) = 2n − 1 and f(y) = 2n.

Since P(f(τ)) = f(P(τ)), we have

P(f(τ)) = P2n+1.

By Proposition 4.27, (0,1)f(τ) ≠ (1,0)f(τ), [0,1]f(τ) ≠ [0,2]f(τ), and f(τ)
satisfies (4.35). Therefore, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0,1)f(τ)−{2n−1,2n} ≠ (1,0)f(τ)−{2n−1,2n},

[0,1]f(τ)−{2n−1,2n} ≠ [0,2]f(τ)−{2n−1,2n},

and

f(τ) − {2n − 1,2n} satisfies (4.35).

By Proposition 4.27 applied to f(τ) − {2n − 1,2n}, f(τ) − {2n − 1,2n} is
critical, and

P(f(τ) − {2n − 1,2n}) = P2n−1.

Since f is an isomorphism from P(τ) onto P2n+1, we have

(4.62) E(P(τ)) = {{f−1(q), f−1(q + 1)} ∶ 0 ≤ q ≤ 2n − 1}.

Since P(f(τ) − {2n − 1,2n}) = P2n−1, f↾V (τ)∖{x,y} is an isomorphism from
P(τ − {x, y}) onto P2n−1. we obtain

(4.63) E(P(τ − {x, y})) = {{f−1(q), f−1(q + 1)} ∶ 0 ≤ q ≤ 2n − 3}.
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It follows from (4.62) and (4.63) that

E(P(τ − {x, y}) = E(P(τ))
∖ {{f−1(2n − 2), f−1(2n − 1)},{f−1(2n − 1), f−1(2n)}}

= E(P(τ)) ∖ {{u,x},{x, y}}. �

The following corollary is an immediate consequence of Lemmas 4.39 and
4.40. It is useful in the next section when disjoint edges of the primality
graph of a critical 2-structure are considered.

Corollary 4.41. Given a critical 2-structure τ , with v(τ) ≥ 7, consider
distinct vertices x and y of τ such that {x, y} ∈ E(P(τ)). The following two
statements hold.

(1) τ − {x, y} is critical;
(2) τ and τ − {x, y} share the same type;
(3) For every e ∈ E(P(τ)), if e ∩ {x, y} = ∅, then e ∈ E(P(τ − {x, y}));
(4) For every e ∈ E(P(τ −{x, y})), if e∖(NP(τ)(x)∪NP(τ)(y)) ≠ ∅, then

e ∈ E(P(τ)).
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5. Noncritical unordered pair theorems

Given a prime 2-structure, a noncritical unordered pair theorem provides
distinct vertices v and w of σ such that σ − {v,w} is prime as well.

We refine the notion of a support as follows. Given a 2-structure σ, the
critical support of σ is the set of the vertices v of σ such that σ−v is critical.critical support
It is denoted by Sc(σ).

Remark 5.1. Let σ be a prime 2-structure. Suppose that

S (σ) ∖Sc(σ) ≠ ∅.

Let v ∈ S (σ) ∖ Sc(σ). Since v ∈ S (σ), σ − v is prime. Since v /∈ Sc(σ),
σ − v is not critical. Hence, there exists w ∈ V (σ − v) such that (σ − v) −w
is prime. Therefore, {v,w} is a noncritical unordered pair of σ.

Remark 5.2. Let σ be a prime 2-structure, with v(σ) ≥ 6. Suppose that

∣Sc(σ)∣ ≤ 1.

It follows from Theorem 3.11 that there exists X ⊆ V (σ) such that 3 ≤ ∣X ∣ ≤ 5
and

(5.1) Sc(σ) ⊆X.

By Corollary 3.21, there exist v,w ∈ V (σ)∖X such that σ − {v,w} is prime.
Clearly, if v ≠ w, then {v,w} is a noncritical unordered pair of σ. Hence,
suppose that v = w. We obtain v ∈ S (σ). Since Sc(σ) ⊆ X, we have
v ∈ S (σ) ∖Sc(σ), and we conclude as in Remark 5.1.

5.1. The Schmerl–Trotter theorem.

Theorem 5.3 (Schmerl and Trotter [33]5.1). Given a prime 2-structure σ
such that v(σ) ≥ 7, there exist v,w ∈ V (σ) such that v ≠ w and σ − {v,w} is
prime.

Theorem 5.3 is the second downward hereditary property of primality.
We use the properties of critical 2-structures presented in subsection 4.3 to
prove it. Our approach is based on Remark 5.1.

In this subsection, we provide a proof of Theorem 5.3 when v(σ) ≥ 9.
In section 6, we provide a proof of Theorem 5.3, when v(σ) ≥ 7, by using
Theorem 5.23. We begin with the following lemma.

Lemma 5.4. Let σ be a prime 2-structure, with v(σ) ≥ 8, such that Sc(σ) ≠
∅. Consider x ∈ Sc(σ). Let

E ⊆ E(P(σ − x))

such that e ∩ f = ∅ for distinct e, f ∈ E. If ∣E ∣ ≥ 4, then E ∩E(P(σ)) ≠ ∅.

5.1Schmerl and Trotter [33] proved this theorem for binary relational structures. The
cases of partially ordered sets, graphs, and tournaments are specified.
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Proof. Suppose that E ∩E(P(σ)) = ∅. We have to show that ∣E ∣ ≤ 3. Hence,
suppose that ∣E ∣ ≥ 3. We have to show that ∣E ∣ = 3.

Given e ∈ E , set

Xe = V (σ) ∖ ({x} ∪ e).
Since e ∈ E(P(σ − x)), σ[Xe] is prime. Since e /∈ E(P(σ)), σ[Xe ∪ {x}] is
decomposable. By Lemma 3.13, x ∈ ⟨Xe⟩σ or there exists ue ∈ Xe such that
x ∈ (Xe)σ(ue).

Given distinct e, f ∈ E , set

X{e,f} =Xe ∖ f.
Since e ∩ f = ∅, it follows from Corollary 4.41 applied to σ − x that f ∈
E(P(σ[Xe])), that is,

(5.2) σ[X{e,f}] is prime.

For a contradiction, suppose that there is e ∈ E such that x ∈ ⟨Xe⟩σ. For
each f ∈ E ∖ {e}, we have

(5.3) x ∈ ⟨X{e,f}⟩σ.
If there is f ∈ E ∖ {e} such that x ∈ ⟨Xf ⟩σ, then V (σ) ∖ {x} is a module of
σ, which contradicts the fact that σ is prime. Thus, suppose that for every
f ∈ E ∖ {e}, there is uf ∈ Xf such that x ∈ (Xf)σ(uf). Let f ∈ E ∖ {e}.
If uf /∈ e, then x ∈ (X{e,f})σ(uf). By (5.3), x ∈ (X{e,f})σ(uf) ∩ ⟨X{e,f}⟩σ,
which contradicts Lemma 3.13. Therefore, for every f ∈ E ∖ {e},

(5.4) uf ∈ e.
Since ∣E ∣ ≥ 3, consider distinct f, g ∈ E ∖ {e}. By (5.4), uf , ug ∈ e. If uf = ug,
then {x,uf} is a module of σ, which contradicts the fact that σ is prime.
Hence uf ≠ ug. Recall that σ[X{f,g}] is prime by Corollary 4.41. We obtain
that x ∈ (X{f,g})σ(uf) ∩ (X{f,g})σ(ug), which contradicts Lemma 3.13.

It follows that for each e ∈ E , there is ue ∈ Xe such that x ∈ (Xe)σ(ue).
Given distinct e, f ∈ E , if ue = uf , then {x,ue} is a module of σ, which
contradicts the fact that σ is prime. Hence, for distinct e, f ∈ E , we have

(5.5) ue ≠ uf .
Given distinct e, f ∈ E , if ue /∈ f and uf /∈ e, then x ∈ (X{e,f})σ(ue) ∩
(X{e,f})σ(uf) which contradicts Lemma 3.13 because ue ≠ uf by (5.5).
Thus, for distinct e, f ∈ E , we have

(5.6) ue ∈ f or uf ∈ e.
Let e ∈ E . Recall that the elements of E are pairwise disjoint. Since ∣E ∣ ≥ 3,
there exists f ∈ E ∖ {e} such that ue /∈ f . By (5.6), uf ∈ e. Let g ∈ E ∖ {e, f}.
By (5.6) applied to f and g, ug ∈ f , because uf /∈ g. By (5.6) applied to e
and g, ue ∈ g because ug /∈ e. Therefore, every element of E ∖ {e, f} contains
ue. Consequently, ∣E ∣ = 3. �

The next result follows from Corollary 4.6 and Lemma 5.4.
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Corollary 5.5. Given a prime 2-structure σ, consider x ∈ Sc(σ). If v(σ) ≥
9, then E(P(σ − x)) ∩E(P(σ)) ≠ ∅.

A first proof of Theorem 5.3 when v(σ) ≥ 9. If σ is critical, then E(P(σ)) ≠
∅ by Corollary 4.6. Suppose that σ is not critical, so S (σ) ≠ ∅. If Sc(σ) ≠
∅, then we conclude by using Corollary 5.5. Lastly, if Sc(σ) = ∅, then we
conclude as in Remark 5.1. �

Remark 5.6. By using Corollary 4.6, we can directly verify that Corol-
lary 5.5 holds when v(σ) = 7 or 8.

The next result improves the Schmerl–Trotter theorem when the critical
support is nonempty.

Proposition 5.7. Let σ be a prime 2-structure such that v(σ) ≥ 9. If

Sc(σ) ≠ ∅, then ∣E(P(σ))∣ ≥ ⌈v(σ)2 ⌉ − 4.

Proof. Consider x ∈ Sc(σ). Set

n = ⌈v(σ)
2

⌉.

We have n ≥ 5. We verify that P2n−2 embeds into P(σ − x).
● Suppose that v(σ) is even. We obtain v(σ) = 2n, so v(σ − x) =

2n − 1. It follows from Corollary 4.6 that P(σ − x) is isomorphic to
P2n−2⊕K{2n−2}, P2n−1, or C2n−1. Thus, P2n−2 embeds into P(σ−x).

● Suppose that v(σ) is odd. We obtain v(σ) = 2n−1, so v(σ−x) = 2n−2.
It follows from Corollary 4.6 that P(σ − x) is isomorphic to P2n−2.

Since P2n−2 embeds into P(σ−x), there exists a function f ∶ {0, . . . ,2n−3}Ð→
V (σ − x) such that f is an isomorphism from P2n−2 onto P(σ − x)[{f(p) ∶
0 ≤ p ≤ 2n − 3}]. Set

F = {{f(2m), f(2m + 1)} ∶ 0 ≤m ≤ n − 2}.
Clearly, F ⊆ E(P(σ−x)). It follows from Lemma 5.4 that ∣F ∖E(P(σ))∣ ≤ 3.
We obtain

∣E(P(σ))∣ ≥ ∣F ∩E(P(σ))∣ = ∣F ∣ − ∣F ∖E(P(σ))∣
= (n − 1) − ∣F ∖E(P(σ))∣
≥ n − 4. �

5.2. Ille’s theorem. Ille [22] succeeded in providing conditions that ensure
the existence of a noncritical unordered pair outside a prime substructure
of a prime 2-structure.

Theorem 5.8 (Ille [22]). Given a prime 2-structure σ, consider X ⊆ V (σ)
such that σ[X] is prime. If ∣V (σ)∖X ∣ ≥ 6, then there exist v,w ∈ V (σ)∖X
such that v ≠ w and σ − {v,w} is prime.

The first proof of Theorem 5.8 is technical and unclear. A new clearer
and shorter proof is provided in subsection 9.6 at the end of section 9.
Belkhechine et al. [3] improved Theorem 5.8 in particular cases as follows.
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Theorem 5.9 (Belkhechine et al. [3]). Given a prime 2-structure σ, con-
sider X ⊆ V (σ) such that σ[X] is prime. Suppose that at least one of the
following statements holds

(S1) there exists v ∈ ⟨X⟩σ such that (v,X)σ ≠ (X,v)σ (see Notation 2.1);
(S2) there exist y ∈X and v ∈Xσ(y) such that (v, y)σ ≠ (y, v)σ.

Under these assumptions, if ∣V (σ)∖X ∣ ≥ 4, then there exist v,w ∈ V (σ)∖X
such that v ≠ w and σ − {v,w} is prime.

Sayar [32] proved Theorem 5.9 for tournaments. Obviously, statements
(S1) and (S2) above are satisfied by tournaments. We provide a proof of
Theorem 5.9 in subsection 9.6 as well.

5.3. The Boudabbous–Ille theorem. Boubabbous and Ille [7] succeeded
in finding a noncritical unordered pair which intersects the support. Note
that the proof of the next result uses Theorem 5.3.

Theorem 5.10 (Boubabbous and Ille [7]5.2). Consider a prime 2-structure
σ such that v(σ) ≥ 7. If ∣S (σ)∣ ≥ 2, then there exists e ∈ E(P(σ)) such that
e ∩S (σ) ≠ ∅. (In other words, if ∣S (σ)∣ ≥ 2, then S (σ) ∖Sc(σ) ≠ ∅.)

Proof. By Theorem 5.3, E(P(σ)) ≠ ∅. Hence, P(σ) admits a component C
such that v(C) ≥ 2. Since ∣S (σ)∣ ≥ 2, it follows from Proposition 4.5 that
V (C) ∩ S (σ) ≠ ∅. Since C is connected, there exist distinct v,w ∈ V (C)
such that {v,w} ∈ E(P(σ)) and v ∈ S (σ). Thus, v /∈ Sc(σ). �

As shown by the next result, Theorem 5.10 does not hold when ∣S (σ)∣ = 1.
For convenience, we use the following notation.

Notation 5.11. Given n ≥ 3, set

R2n = {σ(R2n), σ((R2n)⋆), σ(R2n) ∧ σ((R2n)⋆),
σ(Q2n) ∧ σ(R2n), σ(Q2n ∧ σ((R2n)⋆), σ((Q2n)⋆) ∧ σ(R2n),
σ((Q2n)⋆) ∧ σ((R2n)⋆), σ(Q2n) ∧ σ((Q2n)⋆) ∧ σ(R2n)}

(see Figures 4.2 and 4.3).

Remark 5.12. Given n ≥ 3, it follows from Theorem 4.19 that the elements
of R2n are the critical 2-structures σ defined on {0, . . . ,2n − 1} such that
P(σ) = P2n and (0,2)σ ≠ (2,0)σ.

Theorem 5.13 (Boubabbous and Ille [7]5.3). Consider a prime 2-structure
σ such that v(σ) ≥ 6, and ∣S (σ)∣ = 1. The primality graph P(σ) admits a
unique component C such that v(C) ≥ 2. Moreover, if V (C) ∩S (σ) = ∅,
then v(σ) = 2n + 1, where n ≥ 3, and there exists an isomorphism ϕ from

5.2Boubabbous and Ille [7] proved this theorem for digraphs.
5.3Boubabbous and Ille [7] proved this theorem for digraphs.
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σ −S (σ) onto an element of R2n satisfying5.4

(5.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[S (σ), ϕ−1({2i ∶ i ∈ {0, . . . , n − 1}})]σ = [ϕ−1(0), ϕ−1(2)]σ,
and

[S (σ), ϕ−1({2i + 1 ∶ i ∈ {0, . . . , n − 1}})]σ = [ϕ−1(2), ϕ−1(0)]σ.
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Figure 5.1. The digraph R2n+1

Proof. Denote by x the unique element of S (σ). By Theorem 3.11, there
exists X ⊆ V (σ) such that x ∈ X, 3 ≤ ∣X ∣ ≤ 5, and σ[X] is prime. It follows
from Corollary 3.21 that there exist v,w ∈ V (σ) ∖X such that σ − {v,w} is
prime. Since S (σ) ⊆ X, we have v ≠ w. Denote by C the component of
P(σ) containing v and w. For a contradiction, suppose that P(σ) admits a
component D such that v(D) ≥ 2 and D ≠ C. Since V (C) ∩ V (D) = ∅ and
∣S (σ)∣ = 1, we have V (C) ∩S (σ) = ∅ or V (D) ∩S (σ) = ∅. For instance,
assume that V (C) ∩S (σ) = ∅. Since V (C) ∩ V (D) = ∅ and v(D) ≥ 2, we
obtain ∣V (σ) ∖ V (C)∣ ≥ 2, which contradicts Proposition 4.5. Consequently,
C is the unique component of P(σ) such that v(C) ≥ 2.

5.4The digraph R2n+1 (see Figure 5.1) is the extension of R2n (sse Figure 4.3) to
{0, . . . ,2n} defined by

A(R2n+1) = A(R2n) ∪ {(2n,2i) ∶ 0 ≤ i ≤ n − 1} ∪ {(2i + 1,2n) ∶ 0 ≤ i ≤ n − 1}.

By using the fact that σ(R2n+1)− (2n) is prime, it is not difficult to verify that σ(R2n+1)
is prime. We have S (σ(R2n+1)) = {2n} and C = P2n, so V (C)∩S (σ) = ∅. Furthermore,
σ(R2n+1) satisfies (5.7) with ϕ = Id{0,...,2n−1}.
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Now, suppose that V (C) ∩S (σ) = ∅, so x /∈ V (C). Since x /∈ V (C), we
have dP(σ)(x) = 0. Therefore, σ−x is critical. It follows from Proposition 4.5
that V (C) = V (σ) ∖ {x}, and C is isomorphic to P2n, where n = (v(σ) −
1)/2. Consider an isomorphism ϕ from C onto P2n. As in the proof of
Proposition 4.15, we verify that

≺ϕ−1(0), ϕ−1(1)≻σ≠≺ϕ−1(0), ϕ−1(2)≻σ (see Notation 1.1),

and for any p, q ∈ {0, . . . ,2n − 1} such that p < q, we have

(5.8) [ϕ−1(p), ϕ−1(q)]σ =
⎧⎪⎪⎨⎪⎪⎩

[ϕ−1(0), ϕ−1(1)]σ if p is even and q is odd,

[ϕ−1(0), ϕ−1(2)]σ otherwise.

Let i ∈ {0, . . . , n−2}. Since ϕ−1 is an isomorphism from P2n onto C, we have
NP(σ)(ϕ−1(2i+1)) = {ϕ−1(2i), ϕ−1(2i+2)}. By Lemma 4.4, {ϕ−1(2i), ϕ−1(2i+
2)} is a module of σ − ϕ−1(2i + 1). In particular, we obtain [x,ϕ−1(2i)]σ =
[x,ϕ−1(2i + 2)]σ. It follows that

[x,ϕ−1({2i ∶ i ∈ {0, . . . , n − 1}}]σ = [x,ϕ−1(2n − 2)]σ.
Since ϕ−1 is an isomorphism from P2n onto C, we have NP(σ)(ϕ−1(2n−1)) =
{ϕ−1(2n−2)}. By Lemma 4.4, V (σ)∖{ϕ−1(2n−2), ϕ−1(2n−1)} is a module of
σ−ϕ−1(2n−1). In particular, we obtain [x,ϕ−1(2n−2)]σ = [ϕ−1(0), ϕ−1(2n−
2)]σ. Moreover, we have [ϕ−1(0), ϕ−1(2n−2)]σ = [ϕ−1(0), ϕ−1(2)]σ by (5.8).
It follows that

[x,ϕ−1({2i ∶ i ∈ {0, . . . , n − 1}}]σ = [ϕ−1(0), ϕ−1(2)]σ.
Similarly, we show that

[x,ϕ−1({2i + 1 ∶ i ∈ {0, . . . , n − 1}}]σ = [ϕ−1(2), ϕ−1(0)]σ.
Consequently, (5.7) holds. Since σ is prime, V (σ) ∖ {x} is not a module of
σ. It follows that [ϕ−1(0), ϕ−1(2)]σ ≠ [ϕ−1(2), ϕ−1(0)]σ. Therefore,

[0,2]τ ≠ [2,0]τ ,
where τ is the unique 2-structure defined on {0, . . . ,2n − 1} such that ϕ is
an isomorphism from σ − x onto τ . Hence τ is critical and P(τ) = P2n. As
observed in Remark 5.12, we have τ ∈R2n because [0,2]τ ≠ [2,0]τ . �

Since the elements of R2n are not symmetric, the next result follows from
Theorems 5.10 and 5.13.

Corollary 5.14. Consider a symmetric 2-structure σ such that v(σ) ≥ 7.
If σ is prime and noncritical, then there exists v ∈ V (σ) such that σ − v is
prime and noncritical, as well.

Proof. Suppose that σ is prime and noncritical. Hence, S (σ) ≠ ∅. If
∣S (σ)∣ ≥ 2, then we conclude by using Theorems 5.10. Therefore, suppose
that S (σ) contains a unique element denoted by x. By Theorem 5.13, P(σ)
admits a unique component C such that v(C) ≥ 2. Since σ is symmetric,
σ − x is not isomorphic to an element of R2n by Remark 5.12. It follows
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from Theorem 5.13 that x ∈ V (C). Since v(C) ≥ 2, we have dP(σ)(x) ≠ 0.
Thus, σ − x is prime and noncritical. �

Theorem 5.13 leads us to introduce the following definition. It is useful
to generalize the Chudnovsky–Seymour theorem (see Theorem 5.21).

Definition 5.15. Consider a prime 2-structure σ such that v(σ) ≥ 5. Sup-
pose that S (σ) admits a unique element, denoted by x. We say that σ is
almost critical if σ − x is critical (that is, S (σ) = Sc(σ) = {x}).almost critical

Remark 5.16. Consider a prime 2-structure σ such that v(σ) ≥ 6. Suppose
that S (σ) admits a unique element denoted by x. By Theorem 5.13, P(σ)
admits a unique component C such that v(C) ≥ 2. Suppose also that σ is
almost critical, that is, σ − x is critical. Since σ − x is critical, we have

NP(σ)(x) = ∅.
As seen in the proof of Theorem 5.13, it follows from Proposition 4.5 that

V (C) = V (σ) ∖ {x},
and there exists an isomorphism ϕ from C onto P2n. Furthermore, ϕ is an
isomorphism from σ − x onto a critical 2-structure τ such that P(τ) = P2n.
Thus, ϕ is an isomorphism from P(σ − x) onto P2n. It follows that

P(σ − x) = P(σ) − x = C.

The next result is an easy consequence of Theorem 5.13.

Corollary 5.17. Given a 2-structure σ such that v(σ) ≥ 7, the following
two statements are equivalent

(1) σ is almost critical;
(2) v(σ) = 2n + 1, where n ≥ 3, and there exist x ∈ V (σ) and an isomor-

phism ϕ from σ−x onto an element of R2n (see Notation 5.11) such
that (5.7) holds.

Proof. To begin, suppose that σ is almost critical. Hence, there exists x ∈
V (σ) such that

S (σ) = Sc(σ) = {x}.
As seen in Remark 5.16, V (σ) ∖ {x} is the unique component of P(σ) con-
taining at least two elements. Clearly, (V (σ) ∖ {x}) ∩ S (σ) = ∅, and it
suffices to apply Theorem 5.13 to obtain the second statement above.

Conversely, suppose that v(σ) = 2n + 1, where n ≥ 3, and suppose that
there exist x ∈ V (σ) and an isomorphism ϕ from σ − x onto an element τ
of R2n such that (5.7) holds. As observed in Remark 5.12, τ is critical and
P(τ) = P2n. Hence,

(5.9) σ − x is critical.

Set

X = V (σ) ∖ {x}.
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We prove that σ is prime. As observed in Remark 5.12, we have (0,2)τ ≠
(2,0)τ . It follows that (ϕ−1(0), ϕ−1(2))σ ≠ (ϕ−1(2), ϕ−1(0))σ. Since (5.7)
holds, we have [x,ϕ−1({2i ∶ i ∈ {0, . . . , n − 1}})]σ = [ϕ−1(0), ϕ−1(2)]σ and
[x,ϕ−1({2i + 1 ∶ i ∈ {0, . . . , n − 1}})]σ = [ϕ−1(2), ϕ−1(0)]σ. It follows that

x /∈ ⟨X⟩σ.
Now, consider y ∈X. Set

p = ϕ(y).
There exists q ∈ {0, . . . ,2n − 1} such that ≺p, q≻τ=≺0,1≻τ . It follows that

≺ϕ−1(p), ϕ−1(q)≻σ=≺ϕ−1(0), ϕ−1(1)≻σ .
Moreover, by Proposition 4.15, ≺0,1≻τ≠≺0,2≻τ . It follows that

≺ϕ−1(0), ϕ−1(1)≻σ≠≺ϕ−1(0), ϕ−1(2)≻σ .
Since (5.7) holds, we have

≺x,ϕ−1(q)≻σ=≺ϕ−1(0), ϕ−1(2)≻σ .
Therefore, we obtain

≺x,ϕ−1(q)≻σ≠≺ϕ−1(p), ϕ−1(q)≻σ .
It follows that

x /∈Xσ(y).
By Lemma 3.13, x ∈ Extσ(X), so σ is prime. Since σ −x is critical by (5.9),
we obtain

(5.10) x ∈ Sc(σ).
Lastly, we show that (V (σ) ∖ {x}) ∩S (σ) = ∅. Consider y ∈ V (σ) ∖ {x}.

We have to verify that σ − y is decomposable. Set

p = ϕ(y).
Suppose that p ∈ {1, . . . ,2n − 2}. Since P(τ) = P2n, we have NP(τ)(p) =
{p − 1, p + 1}. By Lemma 4.4, {p − 1, p + 1} is a module of τ − p. It follows
that {ϕ−1(p − 1), ϕ−1(p + 1)} is a module of σ − {x,ϕ−1(p)}. Since (5.7)
holds, we have x ←→σ {ϕ−1(p − 1), ϕ−1(p + 1)}. It follows that {ϕ−1(p −
1), ϕ−1(p + 1)} is a module of σ − ϕ−1(p). Hence, σ − ϕ−1(p) is decompos-
able. Now, suppose that p = 0. Since P(τ) = P2n, we have NP(τ)(0) =
{1}. By Lemma 4.4, τ − {0,1} is a module of τ − 0. Precisely, since τ
is critical and P(τ) = P2n, we have [1,{2, . . . ,2n − 1}]τ = [0,2]τ . It fol-
lows that [ϕ−1(1), ϕ−1({2, . . . ,2n − 1})]σ = [ϕ−1(0), ϕ−1(2)]σ. Since (5.7)
holds, we have [ϕ−1(1), x]σ = [ϕ−1(0), ϕ−1(2)]σ. It follows that V (σ) ∖
{ϕ−1(0), ϕ−1(1)} is a module of σ −ϕ−1(0). Hence, σ −ϕ−1(0) is decompos-
able. Similarly, σ − ϕ−1(2n − 1) is decomposable. Consequently, we obtain

(V (σ) ∖ {x}) ∩S (σ) = ∅.
It follows from (5.10) that

Sc(σ) = S (σ) = {x}.
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Thus, σ is almost critical. �

We complete the subsection with the following properties of almost critical
2-structures.

Fact 5.18. Consider an almost critical 2-structure σ such that v(σ) ≥ 7.
The following two statements hold, where x denotes the unique element of
S (σ),

(1) given X ⊆ V (σ − x), if σ[X] is prime, then σ[X ∪ {x}] is prime;
(2) for e, f ∈ E(P(σ − x)) (or for e, f ∈ E(P(σ))), we have σ − e ≃ σ − f .

Proof. Consider an isomorphism ϕ from σ − x onto an element ρ of R2n,
where n ≥ 3, satisfying (5.7).

For the first statement, consider X ⊆ V (σ − x) such that σ[X] is prime.
Let y ∈X. We verify that x /∈Xσ(y). Since (5.7) holds, we have

≺x, z≻σ=≺ϕ−1(0), ϕ−1(2)≻σ
for every z ∈ X ∖ {y}. Since ρ ∈ R2n, it follows from Proposition 4.15 that
there exists z ∈X ∖ {y} such that

≺y, z≻σ=≺ϕ−1(0), ϕ−1(1)≻σ .
Moreover, we have

≺ϕ−1(0), ϕ−1(2)≻σ≠≺ϕ−1(0), ϕ−1(1)≻σ
by Proposition 4.15. It follows that

x /∈Xσ(y).
Now, we verify that x /∈ ⟨X⟩σ. Consider i, j ∈ {0, . . . , n−1} such that i < j. It
follows from Proposition 4.15 that [ϕ−1(2i), ϕ−1(2j)]σ = [ϕ−1(0), ϕ−1(2)]σ.
Therefore, σ[ϕ−1({2i ∶ i ∈ {0, . . . , n − 1}}] is constant or linear. Since σ[X]
is prime, we obtain X ∖ ϕ−1({2i ∶ i ∈ {0, . . . , n − 1}} ≠ ∅. Thus, there
exits p ∈ {0, . . . , n − 1} such that ϕ−1(2p + 1) ∈ X. Similarly, there exists
q ∈ {0, . . . , n − 1} such that ϕ−1(2q) ∈X. Since (5.7) holds, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[x,ϕ−1(2q)]σ = [ϕ−1(0), ϕ−1(2)]σ
and

[x,ϕ−1(2p + 1)]σ = [ϕ−1(2), ϕ−1(0)]σ.
Since ρ ∈R2n, it follows from Remark 5.12 that

[ϕ−1(0), ϕ−1(2)]σ ≠ [ϕ−1(2), ϕ−1(0)].
Therefore, we have

x /∈ ⟨X⟩σ.
It follows from Lemma 3.13 that

x ∈ Extσ(X),
that is, σ[X ∪ {x}] is prime.
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For the second statement, consider e, f ∈ E(P(σ−x)). To begin, we make
the following observation. By Remark 5.16, P(σ − x) = P(σ) − x, and x is
isolated in P(σ). It follows that

E(P(σ − x)) = E(P(σ) − x).
Consequently, we can consider e, f ∈ E(P(σ)) as well.

By Remark 5.16, ϕ is an isomorphism from P(σ − x) onto P2n. By ex-
changing e and f if necessary, we can suppose that e = {ϕ−1(i), ϕ−1(i + 1)}
and f = {ϕ−1(j), ϕ−1(j + 1)}, where 0 ≤ i < j ≤ 2n − 2.

Consider the bijection f from {0, . . . ,2n − 1} ∖ {i, i + 1} onto {0, . . . ,2n −
1} ∖ {j, j + 1} defined as follows. Given m ∈ {0, . . . ,2n − 1} ∖ {i, i + 1},

f(m) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m if i ≥ 1 and 0 ≤m ≤ i − 1,

m − 2 if i + 2 ≤m ≤ j + 1,

m if j ≤ 2n − 3 and j + 2 ≤m ≤ 2n − 1.

By Remark 5.12, P(ρ) = P2n. It follows from Proposition 4.15 that for
p, q ∈ {0, . . . ,2n − 1}, with p < q, we have

[p, q]ρ =
⎧⎪⎪⎨⎪⎪⎩

[0,1]ρ if p is even and q is odd,

[0,2]ρ otherwise.

Since f is strictly increasing and preserves the parity, f is an isomorphism
from ρ − {i, i + 1} onto ρ − {j, j + 1}. Now, consider the bijection ψ from
V (σ) ∖ e onto V (σ) ∖ f defined by ψ(x) = x, and ψ(w) = (ϕ−1 ○ f ○ ϕ)(w)
for every w ∈ V (σ) ∖ (e ∪ {x}). Since ϕ satisfies (5.7) and f preserves the
parity, ψ is an isomorphism from σ − e onto σ − f . �

5.4. The Chudnovsky–Seymour theorem.

Theorem 5.19 (Chudnovsky and Seymour [10]5.5). Let σ be a symmetric
2-structure. If σ is prime and noncritical, then for every prime 2-structure
τ such that τ embeds into σ, with 5 ≤ v(τ) < v(σ), there exists X ⊊ V (σ)
such that σ[X] ≃ τ and Extσ(X) ≠ ∅ (see Notation 3.12).

Proof. We consider a prime 2-structure τ , such that v(τ) ≥ 5, and we proceed
by induction on v(σ) ≥ v(τ)+1. The result is obvious when v(σ) = v(τ)+1.
Hence, suppose that v(σ) ≥ v(τ) + 2. We have v(σ) ≥ 7 because v(τ) ≥ 5.
By Corollary 5.14, we have

S (σ) ∖Sc(σ) ≠ ∅.
To begin, we prove that there exists X ⊊ V (σ) such that

(5.11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ[X] ≃ τ
and

(V (σ) ∖X) ∩S (σ) ≠ ∅.

5.5Chudnovsky and Seymour [10] proved this theorem for graphs.
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Consider Y ⊆ V (σ) such that σ[Y ] ≃ τ , and suppose that σ−u is decompos-
able for every u ∈ V (σ) ∖ Y . It follows from Corollary 3.21 that there exist
distinct v,w ∈ V (σ) ∖ Y such that σ − {v,w} is prime. Thus, τ embeds into
σ − {v,w}. Denote by C the component of P(σ) containing v and w. For
a contradiction, suppose that V (C) ⊆ V (σ) ∖ S (σ). By Proposition 4.5,
∣V (σ)∖V (C)∣ ≤ 1, so ∣S (σ)∣ ≤ 1. Since σ is not critical, we have ∣S (σ)∣ = 1.
By Theorem 5.13, C is the unique component of P(σ) such that v(C) ≥ 2.
Since V (C) ∩ S (σ) = ∅, it follows from Theorem 5.13 that σ is almost
critical, which contradicts the fact that σ is symmetric (see Remark 5.12).
Consequently, we have V (C) ∩S (σ) ≠ ∅. Since σ − u is decomposable for
every u ∈ V (σ)∖Y , we have {v,w}∩S (σ) = ∅. Since C is connected, there
exist distinct vertices c0, . . . , cp of C satisfying

● {c0, c1} = {v,w};
● p ≥ 2, {c0, . . . , cp−1} ⊆ V (σ) ∖S (σ), and cp ∈ S (σ);
● for i ∈ {0, . . . , p − 1}, {ci, ci+1} ∈ E(P(σ)).

Let i ∈ {1, . . . , p − 1}. We have ci−1, ci+1 ∈ NP(σ)(ci). Since ci /∈ S (σ),
it follows from Lemma 4.4 that NP(σ)(ci) = {ci−1, ci+1}, and {ci−1, ci+1} is
a module of σ − ci. Thus, σ − {ci−1, ci} ≃ σ − {ci, ci+1}. It follows that
σ−{c0, c1} ≃ σ−{cp−1, cp}, that is, σ−{v,w} ≃ σ−{cp−1, cp}. Since τ embeds
into σ − {v,w}, τ embeds into σ − {cp−1, cp} as well. Since cp ∈ S (σ), (5.11)
holds.

Now, we consider X ⊆ V (σ) such that (5.11) holds. There exists

v ∈ (V (σ) ∖X) ∩S (σ).

If there exists w ∈ (V (σ) ∖X) ∩ (S (σ) ∖Sc(σ)), then it suffices to apply
the induction hypothesis to σ −w. Hence, suppose that

(V (σ) ∖X) ∩ (S (σ) ∖Sc(σ)) = ∅.

In particular, σ − v is critical. Since S (σ) ∖Sc(σ) ≠ ∅, there exists

x ∈X ∩ (S (σ) ∖Sc(σ)).

Since σ−v is a critical symmetric 2-structure, it follows from Corollary 4.6
and Propositions 4.15, 4.23, 4.27, and 4.36 that P(σ − v) = P2n, where n ≥ 3.
Consequently, there exists y ∈ (V (σ)−v)∖{x} such that {x, y} ∈ E(P(σ−v)).
Since v(σ)−v(τ) ≥ 2, we have X ⊊ V (σ−v). Since σ−v is critical, it follows
from Corollary 3.21 that there exist distinct w,w′ ∈ V (σ − v) ∖ X such
that {w,w′} ∈ E(P(σ − v)). Thus, τ embeds into (σ − v) − {w,w′}. Since
{x, y},{w,w′} ∈ E(P(σ − v)), it follows from Corollary 4.8 that (σ − v) −
{x, y} ≃ (σ − v) − {w,w′}. Therefore, τ embeds into (σ − v) − {x, y} as well.
To conclude, it suffices to apply the induction hypothesis to σ − x. �
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Remark 5.20. Theorem 5.19 does not hold for almost critical 2-structures.
Indeed, given n ≥ 3, consider the 2-structure ρ2n+1 defined on {0, . . . ,2n} by

(5.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ2n+1 − (2n) = σ(R2n) (see Figure 4.3)

[2n,{2i ∶ i ∈ {0, . . . , n − 1}}]ρ2n+1 = [0,2]ρ2n+1 ,
and

[2n,{2i + 1 ∶ i ∈ {0, . . . , n − 1}}]ρ2n+1 = [2,0]ρ2n+1 .
By Corollary 5.17, ρ2n+1 is almost critical. As observed in Remark 5.16, we
have

P(ρ2n+1 − (2n)) = P(ρ2n+1) − (2n) = P2n.

Therefore, ρ2n+1 − {2n − 2,2n − 1} is prime. Set

τ = ρ2n+1 − {2n − 2,2n − 1}.
Consider X ⊆ {0, . . . ,2n} such that τ is isomorphic to ρ2n+1[X]. Since τ is
prime, ρ2n+1[X] is prime. It follows that

V (ρ2n+1) ∖X ∈ E(P(ρ2n+1)).
As observed in Remark 5.16, we have

P(ρ2n+1) = P2n ⊕K{2n}.

It follows that there exists p ∈ {0, . . . ,2n − 2} such that

X = V (ρ2n+1) ∖ {p, p + 1}.
Finally, to establish that Theorem 5.19 does not hold for ρ2n+1, we verify
that

p, p + 1 /∈ Extρ2n+1(X).
Since P(ρ2n+1) = P2n ⊕K{2n}, we have

NP(ρ2n+1)(p + 1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{p, p + 2} if p ≤ 2n − 3

or

{p} if p = 2n − 2.

It follows from Lemma 4.4 that

p ∈ ⟨X⟩ρ2n+1 ∪Xρ2n+1(p + 2).
In the same way, we verify that

p + 1 ∈Xρ2n+1(p − 1).

We generalize Theorem 5.19 as follows.

Theorem 5.21 (Liu [27]5.6). Let σ be a prime 2-structure σ. Suppose that
σ is neither critical nor almost critical. For each prime 2-structure τ such
that τ embeds into σ, with 5 ≤ v(τ) < v(σ), there exists X ⊆ V (σ) satisfying
X ≠ V (σ), σ[X] ≃ τ , and Extσ(X) ≠ ∅.

5.6Liu [27] proved this theorem for tournaments.



74 PIERRE ILLE

Theorem 5.21 is proved in appendix A. The next result is obtained by
applying Theorem 5.21 several times.

Theorem 5.22. Let σ be a prime 2-structure. Suppose that σ is neither
critical nor almost critical. Consider a prime 2-structure τ such that τ
embeds into σ, with 5 ≤ v(τ) < v(σ). Under these assumptions, there exists
X ⊊ V (σ) such that σ[X] ≃ τ , and the elements of V (σ)∖X can be indexed
as z1, . . . , zn in such a way that σ[X∪{z1, . . . , zi}] is prime for i ∈ {1, . . . , n}.

5.5. The critical support. The purpose of this subsection is to demon-
strate the next theorem.

Theorem 5.23 (Sayar5.7[31] ). For every prime 2-structure σ, with v(σ) ≥
7, we have ∣Sc(σ)∣ ≤ 2.

Theorem 5.23 is an immediate consequence of Corollary 4.6 and of Propo-
sitions 5.26, 5.27, 5.28, and 5.29 below. The proofs of Propositions 5.26, 5.27,
5.28, and 5.29 share the same approach and have similar arguments. More-
over, they are technical and the proofs of the last three ones are long. In
order to keep this subsection at a satisfactory length, we provide the proofs
of Propositions 5.27, 5.28, and 5.29 in appendix B.

We begin with the following lemma (compare with Corollary 4.10).

Lemma 5.24. Let σ be a prime 2-structure with v(σ) ≥ 6. Consider X,Y ⊆
V (σ) such that σ[X] and σ[Y ] are critical. Suppose that ∣X ∣ ≤ ∣Y ∣. If there
exists Z ⊆ X ∩ Y such that σ[Z] is prime and ∣Z ∣ ≥ 5, then σ[X] embeds
into σ[Y ].

Proof. We can suppose that ∣Z ∣ = 5 or 6. Indeed, suppose that ∣Z ∣ ≥ 7. By
Theorem 3.10, there exists Z ′ ⊆ Z such that σ[Z ′] is prime and ∣Z ′∣ = 3 or
4. By Theorem 3.19, there exists Z ′′ ⊆ Z such that Z ′ ⊆ Z ′′, ∣Z ′′∣ = ∣Z ′∣ + 2,
and σ[Z ′′] is prime. Consequently, suppose that ∣Z ∣ = 5 or 6. Furthermore,
σ[Z] is critical by Corollary 4.7.

To begin, suppose that ∣Z ∣ = 5. It follows from Corollary 4.7 that there
exist 2 ≤ m ≤ n such that ∣X ∣ = 2m + 1 and ∣Y ∣ = 2n + 1. Moreover, it
follows from Corollary 4.41 that σ[X], σ[Y ], and σ[Z] share the same
type. By Corollary 4.6, P(σ[X]) is isomorphic to C2m+1, P2m ⊕K{2m} or
P2m+1. Suppose that P(σ[X]) ≃ C2m+1. Hence P(σ[Y ]) ≃ C2n+1. It follows
from Theorem 4.37 that σ[X] embeds into σ[Y ]. Similarly, if P(σ[X]) ≃
P2m ⊕ K{2m}, then it follows from Theorem 4.24 that σ[X] embeds into
σ[Y ]. Therefore, suppose that P(σ[X]) ≃ P2m+1. Thus, P(σ[Y ]) ≃ P2n+1.
Consider an isomorphism ϕX from P(σ[X]) onto P2m+1. Denote by τX the
unique 2-structure defined on {0, . . . ,2m} such that ϕX is an isomorphism
from σ[X] onto τX . We obtain that τX is critical and P(τX) = P2m+1. It
follows from Proposition 4.27 that (0,1)τX ≠ (1,0)τX , [0,1]τX ≠ [0,2]τX , and

5.7Sayar [31] proved this theorem for digraphs.
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for any p, q ∈ {0, . . . ,2m} such that p < q, we have

[p, q]τX = { [0,2]τX if p and q are even
[0,1]τX otherwise.

(5.13)

There exist x0, . . . , x4 ∈ {0, . . . ,2m} such that x0 < ⋯ < x4 and

ϕX(Z) = {x0, . . . , x4}.
Since σ[Z] is isomorphic to τX[ϕX(Z)], τX[ϕX(Z)] is prime too. By (5.13),
if x0 is odd, then ϕX(Z)∖{x0} is a module of τX[ϕX(Z)]. Thus, x0 is even.
Given i ∈ {0, . . . ,3}, if xi ≡ xi+1 mod 2, then it follows from (5.13) that
{xi, xi+1} is a module of τX[ϕX(Z)]. Therefore, xi /≡ xi+1 mod 2. It follows
that

(5.14)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0, x2, x4 are even

and

x1, x3 are odd.

Let fX ∶ ϕX(Z) ←→ {0, . . . ,4} defined by fX(xi) = i for i ∈ {0, . . . ,4}.
Clearly, fX is strictly increasing. By (5.14), fX preserves the parity. It
follows that fX is an isomorphism from τX[ϕX(Z)] onto τX[{0, . . . ,4}].
Therefore, σ[Z] is isomorphic to τX[{0, . . . ,4}]. Since (5.13) holds, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[0,2]τX = [0,4]τX = [2,4]τX
and

[0,1]τX = [0,3]τX = [1,2]τX = [1,3]τX = [1,4]τX = [2,3]τX = [3,4]τX .
Since (0,1)τX ≠ (1,0)τX and [0,1]τX ≠ [0,2]τX , it follows from Proposi-
tion 4.27 applied with τX[{0, . . . ,4}] that τX[{0, . . . ,4}] is critical and
P(τX[{0, . . . ,4}]) = P5. Similarly, let ϕY be an isomorphism from P(σ[Y ])
onto P2n+1. Denote by τY the unique 2-structure defined on {0, . . . ,2n} such
that ϕY is an isomorphism from σ[Y ] onto τY . We obtain that τY is critical
and P(τX) = P2n+1. It follows from Proposition 4.27 that (0,1)τY ≠ (1,0)τY ,
[0,1]τY ≠ [0,2]τY , and for any p, q ∈ {0, . . . ,2n} such that p < q, we have

[p, q]τY = { [0,2]τY if p and q are even
[0,1]τY otherwise.

(5.15)

Moreover, σ[Z] is isomorphic to τY [{0, . . . ,4}]. Consequently, there ex-
ists an isomorphism ψ from τX[{0, . . . ,4}] onto τY [{0, . . . ,4}]. We ob-
tain also that τY [{0, . . . ,4}] is critical and P(τY [{0, . . . ,4}]) = P5. Since
P(τX[{0, . . . ,4}]) = P5 and P(τY [{0, . . . ,4}]) = P5, ψ is an automorphism of
P5. Therefore, we have

ψ = Id{0,...,4} or π5 (see Notation 4.21).

To conclude, we distinguish the following two cases.
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Case 1: ψ = Id{0,...,4}.
We obtain τX[{0, . . . ,4}] = τY [{0, . . . , 4}]. It follows from (5.13) and
(5.15) that

τX = τY [{0, . . . ,2m}].
Since σ[X] ≃ τX and σ[Y ] ≃ τY , σ[X] embeds into σ[Y ].

Case 2: ψ = π5.
By Remark 4.30, ψ is an isomorphism from τX[{0, . . . ,4}] onto (τX[{0,
. . . ,4}])⋆. Since ψ is also an isomorphism from τX[{0, . . . ,4}] onto
τY [{0, . . . ,4}], we obtain

(τX)⋆[{0, . . . ,4}] = τY [{0, . . . ,4}].
Clearly, (τX)⋆ is critical and P((τX)⋆) = P2m+1. It follows from Propo-
sition 4.27 that for p, q ∈ {0, . . . ,2m} such that p < q, we have

[p, q](τX)⋆ =
⎧⎪⎪⎨⎪⎪⎩

[0,2](τX)⋆ if p and q are even

[0,1](τX)⋆ otherwise.

Since (τX)⋆[{0, . . . ,4}] = τY [{0, . . . ,4}], it follows from (5.15) that

(τX)⋆ = τY [{0, . . . ,2m}].
By Remark 4.30, π2m+1 is an isomorphism from τX onto (τX)⋆. Thus,
τX embeds into τY . Therefore, σ[X] embeds into σ[Y ].

Now, suppose that ∣Z ∣ = 6. It follows from Corollary 4.7 that there ex-
ist 3 ≤ m ≤ n such that ∣X ∣ = 2m and ∣Y ∣ = 2n. If m = 3, then X = Z,
and hence σ[X] embeds into σ[Y ]. Thus, suppose that m ≥ 4. By Corol-
lary 4.6, P(σ[X]) ≃ P2m and P(σ[Y ]) ≃ P2n. We proceed as previously, using
Proposition 4.15 instead of Proposition 4.27. We obtain a prime 2-structure
µ = τX[{0, . . . ,5}] such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≺0,1≻µ≠≺0,2≻µ
[0,1]µ = [0,3]µ = [0,5]µ = [2,3]µ = [2,5]µ = [4,5]µ,
[0,2]µ = [0,4]µ = [1,2]µ = [1,3]µ = [1,4]µ = [1,5]µ = [2,4]µ
and

[0,2]µ = [3,4]µ = [3,5]µ.
It follows from Proposition 4.15 that P(µ) = P6. We obtain also a prime
2-structure ν = τY [{0, . . . ,5}] such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≺0,1≻ν≠≺0,2≻ν
[0,1]ν = [0,3]ν = [0,5]ν = [2,3]ν = [2,5]ν = [4,5]ν ,
[0,2]ν = [0,4]ν = [1,2]ν = [1,3]ν = [1,4]ν = [1,5]ν = [2,4]ν
and

[0,2]ν = [3,4]ν = [3,5]ν ,
It follows from Proposition 4.15 that P(ν) = P6. Furthermore, there exists an
isomorphism ψ from µ onto ν. Thus, ψ is an automorphism of P6. We obtain
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ψ = Id{0,...,5} or π6. As previously, we deduce that τY [{0, . . . ,2m − 1}] = τX
or (τX)⋆. Since π2m is an isomorphism from τX onto (τX)⋆, τX embeds into
τY . Thus, σ[X] embeds into σ[Y ]. �

The next result follows from Lemma 5.24.

Corollary 5.25. Let σ be a prime 2-structure with v(σ) ≥ 7. Consider
distinct s, t ∈ Sc(σ). We have

NP(σ−s)(t) = NP(σ−t)(s), and NP(σ−s)(t) ≠ ∅.

Moreover, if v(σ) ≥ 8, then σ − s ≃ σ − t.

Proof. We have NP(σ−s)(t) = {x ∈ V (σ − s) ∖ {t} ∶ (σ − s) − {t, x} is prime}.
Similarly, NP(σ−t)(s) = {x ∈ V (σ − t) ∖ {s} ∶ (σ − t) − {s, x} is prime}. Thus,
NP(σ−s)(t) = NP(σ−t)(s).

For a contradiction, suppose that NP(σ−s)(t) = ∅. It follows from Corol-
lary 4.6 that there exists an isomorphism ϕs from P(σ−s) onto P2n⊕K{2n},
where v(σ) = 2n + 2. Furthermore, since NP(σ−s)(t) = ∅, ϕs(t) = 2n. De-
note by τs the unique 2-structure defined on {0, . . . ,2n} such that ϕs is
an isomorphism from σ − s onto τs. We obtain that τs is critical and
P(τs) = P2n ⊕ K{2n}. By Theorem 4.24, τs = σ(T2n+1). Similarly, there
exists an isomorphism ϕt from σ − t onto σ(T2n+1) such that ϕt(s) = 2n.
Since ϕs(t) = 2n and ϕt(s) = 2n, (ϕs)↾V (σ)∖{s,t} ○ ((ϕt)↾V (σ)∖{s,t})−1 is an
automorphism of σ(T2n+1) − (2n). Furthermore, since T2n+1 − (2n) = L2n,
σ(T2n+1) − (2n) is linear, and hence σ(T2n+1) − (2n) is rigid. Therefore,
(ϕs)↾V (σ)∖{s,t} = (ϕt)↾V (σ)∖{s,t}. It follows that {s, t} is a module of σ,
which contradicts the fact that σ is prime. Consequently, NP(σ−s)(t) ≠ ∅.

Lastly, suppose that v(σ) ≥ 8. Since NP(σ−s)(t) ≠ ∅ and NP(σ−s)(t) =
NP(σ−t)(s), there exists v ∈ NP(σ−s)(t) ∩NP(σ−t)(s). We have σ − {s, t, v} is
prime. Since v(σ − {s, t, v}) ≥ 5, it follows from Lemma 5.24 that σ − s ≃
σ − t. �

Proposition 5.26. Let σ be a prime 2-structure with v(σ) ≥ 7. If there
exists s ∈ Sc(σ) such that P(σ − s) ≃ C2n+1, then Sc(σ) = {s}.

Proof. Let s ∈ Sc(σ) be such that P(σ − s) ≃ C2n+1, where n ≥ 3. Up to
isomorphism, we can assume that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V (σ) = {0, . . . ,2n + 1},
s = 2n + 1,

and

P(σ − (2n + 1)) = C2n+1.

For a contradiction, suppose that

(5.16) ∣Sc(σ)∣ ≥ 2,
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and consider t ∈ Sc(σ) ∖ {2n + 1}. Since θ2n+1, π2n+1 ∈ Aut(C2n+1) by Re-
mark 4.38, we can assume that

t = 2n.

Hence, NP(σ−(2n+1))(2n) = {0,2n−1}. By Corollary 5.25, NP(σ−(2n))(2n+1) =
{0,2n − 1}. Moreover, since v(σ) ≥ 8, it follows from Corollary 5.25 that
σ − (2n) ≃ σ − (2n + 1). Therefore, P(σ − (2n)) ≃ C2n+1. Consider an
isomorphism ϕ from P(σ−(2n)) onto C2n+1. Since θ2n+1, π2n+1 ∈ Aut(C2n+1),
we can assume that

(5.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(2n + 1) = 2n,

ϕ(0) = 0,

and

ϕ(2n − 1) = 2n − 1.

Since σ − (2n + 1) is critical and P(σ − (2n + 1)) = C2n+1, it follows from
Proposition 4.36 that

(5.18) (0,1)σ ≠ (1,0)σ,
and for p, q ∈ {0, . . . ,2n} such that p < q, we have

(5.19) [p, q]σ =
⎧⎪⎪⎨⎪⎪⎩

[0,1]σ if p /≡ q mod 2

[1,0]σ otherwise.

Set
E = {{2n − 2,2n − 1},{2n − 1,2n},{2n,0}}.

Since E ⊆ E(P(σ − (2n + 1))), it follows from Lemma 4.39 that (σ − (2n +
1)) − {2n − 1,2n} is critical, and

E(P((σ − (2n + 1)) − {2n − 1,2n}))
= (E(P(σ − (2n + 1)) ∖E) ∪ {{2n − 2,0}}.

We obtain

(5.20) P(σ − {2n − 1,2n,2n + 1}) = C2n−1.

Similarly, we obtain (ϕ−1(0), ϕ−1(1))σ ≠ (ϕ−1(1), ϕ−1(0))σ, and for p, q ∈
{0, . . . ,2n} such that p < q, we have

(5.21) [ϕ−1(p), ϕ−1(q)]σ =
⎧⎪⎪⎨⎪⎪⎩

[ϕ−1(0), ϕ−1(1)]σ if p /≡ q mod 2

[ϕ−1(1), ϕ−1(0)]σ otherwise.

Furthermore, ϕ↾(V (σ−(2n))∖{ϕ−1(2n−1),ϕ−1(2n)}) is an isomorphism from P((σ−
(2n) − {ϕ−1(2n − 1), ϕ−1(2n)}) onto C2n−1. By (5.17), ϕ↾{0,...,2n−2} is an
isomorphism from P(σ − {2n − 1,2n,2n + 1}) onto C2n−1. It follows from
(5.20) that ϕ↾{0,...,2n−2} ∈ Aut(C2n−1). Since ϕ(0) = 0, we obtain

ϕ↾{0,...,2n−2} = Id{0,...,2n−2} or π2n−1 (see Notation 4.21).

We distinguish the following two cases. In each of them, we obtain a con-
tradiction.
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(1) Suppose that ϕ↾{0,...,2n−2} = Id{0,...,2n−2}. Hence, ϕ(i) = i for i ∈
{0, . . . ,2n − 2}. Since ϕ(2n − 1) = 2n − 1 by (5.17), we obtain

(5.22) ϕ(i) = i for i ∈ {0, . . . ,2n − 1}.
Consider k ∈ {0, . . . ,2n−1}. For instance, assume that k is even. We
obtain

[k,2n]σ = [1,0]σ by (5.19)

= [ϕ−1(1), ϕ−1(0)]σ by (5.22)

= [ϕ−1(k), ϕ−1(2n)]σ by (5.21)

= [k,ϕ−1(2n)]σ by (5.22)

= [k,2n + 1]σ by (5.17).

The same holds when k is odd. It follows that {2n,2n + 1} is a
module of σ, which contradicts the fact that σ is prime.

(2) Suppose that ϕ↾{0,...,2n−2} = π2n−1. Therefore, for each i ∈ {0, . . . ,2n−
2}, we have

(5.23) ϕ−1(i) = 2n − 2 − i.
It follows that

[0,1]σ = [0,2n − 1]σ by (5.19)

= [ϕ−1(0), ϕt)−1(2n − 1)]σ by (5.17)

= [ϕ−1(0), ϕ−1(1)]σ by (5.21)

= [2n − 2,2n − 3]σ by (5.23)

= [1,0]σ by (5.19),

which contradicts (5.18).

Consequently, (5.16) does not hold, and hence Sc(σ) = {s}. �

Proposition 5.27. Let τ be a prime 2-structure with v(τ) ≥ 7. If there
exists s ∈ Sc(τ) such that P(τ − s) ≃ P2n ⊕K{2n}, then Sc(τ) = {s}.

Proposition 5.28. Let σ be a prime 2-structure with v(σ) ≥ 7. Suppose that
there exists s ∈ Sc(σ) such that P(σ − s) ≃ P2n+1. Also, suppose that there
exists t ∈ Sc(σ) ∖ {s}. Under these assumptions, the following statements
hold

● dP(σ−s)(t) = 2;
● by denoting by x and y the elements of NP(σ−s)(t), the function

(5.24)

V (σ) ∖ {s} Ð→ V (σ) ∖ {t}
t z→ s,
x z→ y,
y z→ x,

v ∈ V (σ) ∖ {s, t, x, y} z→ v,

is an isomorphism from σ − s onto σ − t;
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● note that (x, y)σ = (y, x)σ;
● Sc(σ) = {s, t}.

Proposition 5.29. Let σ be a prime 2-structure with v(σ) ≥ 7. Suppose
that there exists s ∈ Sc(σ) such that P(σ−s) ≃ P2n. Also, suppose that there
exists t ∈ Sc(σ) ∖ {s}. We can suppose that

(5.25)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (σ) = {0, . . . ,2n},
s = 2n,

t ∈ {n, . . . ,2n − 1},
and

P(σ − (2n)) = P2n.

Under these assumptions, one of the following two cases holds.

(1) Suppose that dP(σ−(2n))(t) = 1. We obtain t = 2n−1, (0,2)σ = (2,0)σ,
and the function

(5.26)

{0, . . . ,2n − 1} Ð→ {0, . . . ,2n − 2} ∪ {2n}
0 z→ 2n,
1 z→ 2n − 2,

2 ≤ k ≤ 2n − 1 z→ k − 2,

is an isomorphism from σ − (2n) onto σ − t.
(2) Suppose that dP(σ−(2n))(t) = 2. We obtain n ≤ t ≤ 2n − 2 and the

function

(5.27)

{0, . . . ,2n − 1} Ð→ {0, . . . ,2n} ∖ {t}
t z→ 2n,

t − 1 z→ t + 1,
t + 1 z→ t − 1,

v ∈ V (σ) ∖ {t − 1, t, t + 1,2n} z→ v,

is an isomorphism from σ − (2n) onto σ − t. In particular, we have
(t − 1, t + 1)σ = (t + 1, t − 1)σ.

In both cases above, we have Sc(σ) = {t,2n}.
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6. Minimal prime 2-structures

Definition 6.1. Let σ be a prime 2-structure. Consider a vertex subset
W of σ. We say that σ is minimal for W if for each W ′ ⊊ V (σ) such that minimal
W ⊆W ′ and ∣W ′∣ ≥ 3, we have σ[W ′] is decomposable.

Cournier and Ille [12] characterized the prime digraphs that are minimal
for a vertex subset of size 1 or 2. The purpose of this section is to extend their
characterization to prime 2-structures. The next question follows naturally.

Question 6.2. Given k ≥ 3, characterize the prime 2-structures that are
minimal for a vertex subset of size k6.1.

6.1. Minimal and prime 2-structures for a singleton. Consider a
prime 2-structure σ. Given v ∈ V (σ), suppose that σ is minimal for {v}. It
follows from Theorem 3.11 that

v ∈ R3(σ) ∪R4(σ) ∪R5(σ) (see Notation 3.1).

Hence, there exists X ⊆ V (σ) such that 3 ≤ ∣X ∣ ≤ 5, v ∈ X, and σ[X] is
prime. Since σ is minimal for {v}, we obtain X = V (σ). Therefore, we have

3 ≤ v(σ) ≤ 5.

We examine only the minimal and prime 2-structures for one vertex that are
defined on five vertices. For instance, it follows from Claims 3.4 and 3.5 that
B5 is prime and minimal for {4}. We use the following set of 2-structures.

Notation 6.3. We denote by M1 the set of the 2-structures σ defined on
V (σ) = {0, . . . ,4} and satisfying the following assertions

(1) ≺0,1≻σ≠≺0,2≻σ (see the second statement of Proposition 4.15);
(2) [0,1]σ = [0,3]σ = [2,3]σ and [0,2]σ = [1,2]σ = [1,3]σ (see (4.4) in

the second statement of Proposition 4.15 6.2 );
(3) [0,4]σ = [4,3]σ = [0,3]σ and [1,4]σ = [4,2]σ = [1,2]σ.

Remark 6.4. It is easy to verify that the elements of M1 are prime and
minimal for {4}.

Theorem 6.5 (Cournier and Ille6.3 [12]). Consider a 2-structure σ such
that v(σ) = 5. Let v ∈ V (σ). The following two assertions are equivalent

● σ is prime and minimal for {v};
● there exists an isomorphism f from σ onto an element of M1 such

that f(v) = 4.

6.1Alzohairi and Boudabbous [1] characterized the minimal prime graphs for a vertex
subset of size 3 that do not contain K{0,1,2} as an induced subgraph.

6.2By the first two assertions, σ − 4 satisfies the second statement of Proposition 4.15.
Proposition 4.15 does not hold for 2-structures of size 4 because the primality graph of a
prime 2-structure of size 4 is empty. Nevertheless, we can directly verify that a 2-structure
of size 4, which satisfies the second statement of Proposition 4.15, is critical. Therefore,
we can deduce here that σ − 4 is critical.

6.3Cournier and Ille [12] proved this theorem for digraphs.
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The proof of Theorem 6.5 is a long sequence of easy verifications. We
omit it, but we provide the following hint.

Hint for a proof of Theorem 6.5. To begin, suppose that there exists an iso-
morphism from σ onto τ ∈M1 such that f(v) = 4. By Remark 6.4, τ is prime
and minimal for {4}. Thus, σ is prime and minimal for {v}.

Conversely, suppose that σ is prime and minimal for {v}. Up to iso-
morphy, we can assume that V (σ) = {0, . . . ,4} and v = 4. We prove that
σ ∈M1.

Since σ is minimal for {4}, we have

(6.1) 4 /∈ R3(σ) ∪R4(σ).

We show that

(6.2) P3(σ) ∪P4(σ) = {{0, . . . ,3}}.

By Theorem 3.10, there exists X ∈ P3(σ) ∪P4(σ). By (6.1), v /∈ X. As in
the proof of Theorem 3.11, we obtain that σ[X ∪ {4}] is prime. Since σ is
minimal for {4}, we have V (σ) = X ∪ {4}, so X = {0, . . . ,3}. Consequently,
(6.2) holds.

It follows from (6.2) that σ[{0, . . . ,3}] is critical. Up to isomorphy, we
can assume that

● {2,3} is a module of σ[{0, . . . ,3}] − 0;
● {0,2} is a module of σ[{0, . . . ,3}] − 1;
● {1,3} is a module of σ[{0, . . . ,3}] − 2;
● {0,1} is a module of σ[{0, . . . ,3}] − 3.

It follows that [0,1]σ = [0,3]σ = [2,3]σ and [0,2]σ = [1,2]σ = [1,3]σ. There-
fore, we obtain ≺0,1≻σ≠≺0,2≻σ.

We prove that

(6.3) ≺i,4≻σ= ≺0,1≻σ or ≺0,2≻σ

for i ∈ {0, . . . ,3}. By using Proposition 3.8 and (6.2), we show that (6.3)
holds for i = 0 or 1. Since the permutation (03)(12) is an isomorphism from
σ − 4 onto (σ − 4)⋆, we obtain that (6.3) holds for i = 2 or 3.

Finally, by using Proposition 3.8 and (6.2), we verify that [0,4]σ = [4,3]σ =
[0,3]σ and [1,4]σ = [4,2]σ = [1,2]σ. Therefore, σ ∈M1. �

6.2. Minimal and prime 2-structures for an unordered pair. Given
n ≥ 4, it is easy to verify that σ(Pn) (see Figure 1.1) is prime and minimal
for {0, n − 1}. Furthermore, for n ≥ 3, Mn is the tournament defined on
V (Mn) = {0, . . . , n − 1} as follows. Given i, j ∈ {0, . . . , n − 1}, (i, j) ∈ A(Mn)
if j = i + 1 or j < i − 1 (see Figure 6.1). Given n ≥ 5, it is easy to verify that
σ(Mn) is prime and minimal for {0, n − 1}.
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0
●

1
● . . . .

n − 2
●

n − 1
●- - - -

I I
		

Figure 6.1. The tournament Mn.

We generalize σ(Pn) and σ(Mn) as follows.

Notation 6.6. We denote by M2 the set of the 2-structures σ defined on
V (σ) = {0, . . . , n − 1}, where n ≥ 3, and satisfying the following assertions

(6.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

for i ∈ {0, . . . , n − 3} and j ∈ {i + 2, . . . , n − 1}, [i, j]σ = [0, n − 1]σ
and

for i ∈ {0, . . . , n − 2}, [i, i + 1]σ ≠ [0, n − 1]σ.

We use the next result to verify that the elements of M2 are prime.

Lemma 6.7. Consider a 2-structure σ ∈M2. If M is a nontrivial module
of σ, then M = {0, n − 1}.

Proof. Consider i, j ∈ M such that i < j and {m ∈ M ∶ i ≤ m ≤ j} = {i, j}.
Suppose that i ≥ 1. Since [i − 1, i]σ ≠ [0, n − 1]σ and [i − 1, j]σ = [0, n − 1]σ,
we have i − 1 ∈ M . By proceeding by induction, we obtain {0, . . . , i} ⊆ M .
Similarly, we have {j, . . . , n − 1} ⊆ M . Therefore, we have M = {0, . . . , i} ∪
{j, . . . , n − 1}.

Since M ≠ {0, . . . , n − 1}, we have j ≥ i + 2. If i ≥ 1, then [i − 1, i + 1]σ =
[0, n − 1]σ and [i, i + 1]σ ≠ [0, n − 1]σ, which contradicts the fact that M
is a module of σ because i − 1, i ∈ M and i + 1 /∈ M . It follows that i = 0.
Similarly, we have j = n − 1. Consequently, we obtain M = {0, n − 1}. �

Lemma 6.8. Given σ ∈M2, if v(σ) ≥ 5, then σ is prime and minimal for
{0, n − 1}.

Proof. Let σ ∈ M2. We have V (σ) = {0, . . . , n − 1}, where n ≥ 5. First,
we verify that σ is prime. For a contradiction, suppose that σ admits a
nontrivial module M . By Lemma 6.7, M = {0, n − 1}. We have [0,2]σ =
[0, n − 1]σ and [n − 1,2]σ = [n − 1,0]σ. It follows that

[0, n − 1]σ = [n − 1,0]σ.
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We obtain [0,1]σ ≠ [0, n− 1]σ and [n− 1,1]σ = [n− 1,0]σ = [0, n− 1]σ, which
contradicts the fact that {0, n − 1} is a module of σ. Consequently, σ is
prime.

Second, we verify that σ is minimal for {0, n − 1}. Let W ⊊ V (σ) such
that 0, n− 1 ∈W and ∣W ∣ ≥ 3. Since W ≠ V (σ), there exists i ∈ {1, . . . , n− 2}
such that i /∈W . Set

W ′ =W ∩ {0, . . . , i − 1}.

For j ∈ W ′ and k ∈ W ∖W ′, we have k ≥ j + 2, and hence [j, k]σ = [0, n −
1]σ. It follows that W ′ and W ∖W ′ are modules of σ[W ]. Thus, σ[W ] is
decomposable. �

Given n ≥ 6, the graph Qn is defined on V (Qn) = {0, . . . , n − 1} in the
following way (see Figure 6.2)

(1) Qn − {n − 2, n − 1} = Pn−2 (see Figure 1.1);
(2) for i ∈ {0, . . . , n − 4}, {i, n − 2} ∈ E(Qn);
(3) {n − 2, n − 1} ∈ E(Qn).

0
●

1
● . . .

n − 4
●

n − 3
●�

�
�
�
�
�
��

�
�
�
�
�
�
��

@
@
@
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@
@
@
●

n − 2
●
n − 1

Figure 6.2. The graph Qn

Furthermore, for n ≥ 6, On is the tournament defined on V (On) = {0, . . . ,
n − 1} in the following way (see Figure 6.3)

(1) On − {n − 2, n − 1} =Mn−2;
(2) for i ∈ {0, . . . , n − 4}, (i, n − 2) ∈ A(On);
(3) for i ∈ {0, . . . , n − 3}, (i, n − 1) ∈ A(On);
(4) (n − 2, n − 3), (n − 1, n − 2) ∈ A(On).
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Figure 6.3. The tournament On

Given n ≥ 6, it is not difficult to verify that σ(Qn) and σ(On) are prime
and minimal for {0, n − 1}. We generalize σ(Qn) and σ(On) as follows.

Notation 6.9. We denote by N2 the set of the 2-structures σ defined on
V (σ) = {0, . . . , n − 1}, where n ≥ 5, and satisfying the following assertions

(6.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ − {n − 2, n − 1} satisfies (6.4),

for i ∈ {0, . . . , n − 4}, [n − 2, i]σ = [n − 2, n − 1]σ,
for i ∈ {0, . . . , n − 3}, [n − 1, i]σ = [0, n − 3]σ,
and

[n − 2, n − 1]σ ≠ [n − 2, n − 3]σ and [n − 2, n − 1]σ ≠ [n − 3,0]σ.

Lemma 6.10. The elements of N2 are prime and minimal for {0, n − 1}.

Proof. Let σ ∈ N2. We have V (σ) = {0, . . . , n − 1}, where n ≥ 5. First, we
verify that σ is prime. We distinguish the following two cases.
Case 1: n ∈ {5,6}.

Using assertion (M2) of Proposition 2.5 and Lemma 6.7 applied to σ[{0,
. . . , n − 3}] ∈M2, it is not difficult to verify that σ is prime.

Case 2: n ≥ 7.
Since σ−{n−2, n−1} ∈M2, it follows from Lemma 6.8 that σ−{n−2, n−1}
is prime. Set

X = {0, . . . , n − 3}.
It is not difficult to verify that n − 2 ∈ Extσ(X) and n − 1 ∈ ⟨X⟩σ. Since
[n − 2, n − 1]σ ≠ [n − 3,0]σ and [n − 1, n − 3]σ = [0, n − 3]σ, we have
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[n − 1, n − 2]σ ≠ [n − 1, n − 3]σ. Thus, X ∪ {n − 2} is not a module of
σ[X ∪ {n − 2, n − 1}]. It follows from assertion (P2) of Lemma 3.17 that
σ[X ∪ {n − 2, n − 1}], that is σ, is prime.

Second, we verify that σ is minimal for {0, n − 1}. Consider W ⊊ V (σ)
such that 0, n − 1 ∈ W and ∣W ∣ ≥ 3. If n − 2 /∈ W , then W ∖ {n − 1} is a
nontrivial module of σ[W ]. Hence, suppose that {0, n − 2, n − 1} ⊆ W . If
n − 3 /∈W , then W ∖ {n − 2} is a nontrivial module of σ[W ]. Thus, suppose
that {0, n − 3, n − 2, n − 1} ⊆ W . If 1 /∈ W , then {0, n − 1} is a nontrivial
module of σ[W ]. Therefore, suppose that {0,1, n − 3, n − 2, n − 1} ⊆ W .
Since W ≠ {0, . . . , n − 1}, there exists i ∈ {2, . . . , n − 4} ∖W . We obtain that
W ∩ {0, . . . , i − 1} is a nontrivial module of σ[W ]. �

Proposition 6.11. Consider a prime 2-structure σ such that v(σ) ≥ 6. Let
v and w be distinct vertices of σ. Suppose that for every W ⊆ V (σ), we have

(6.6) if 3 ≤ ∣W ∣ ≤ 5 and v,w ∈W , then σ[W ] is decomposable.

Under these assumptions, there exists an isomorphism ϕ from an element
of M2 ∪N2 onto σ[X], where X ⊆ V (σ), such that v,w ∈ X and ∣X ∣ ≥ 6,
satisfying

ϕ({0, n − 1}) = {v,w}.

Proof. Set

e = (v,w)σ and f = (w, v)σ.

Consider

Z = {z ∈ V (σ) ∖ {v,w} ∶ z ←→σ {v,w}} ∖N (e,f)
σ (v)

(see Notation 2.1 and Notation 3.7).

Denote by C(v) (respectively, C(w)) the {e, f}-component of σ − Z (see
Definition 2.2) containing v (respectively, w).

To begin, suppose that

C(v) = C(w).
Let n be the least integer m ≥ 3 such that there exists a sequence v0, . . . , vm−1

of vertices of σ −Z satisfying

● v0 = v and vm−1 = w;
● for 0 ≤ i ≤m − 2, [vi, vi+1]σ ≠ (e, f).

It follows from the minimality of n that for i ∈ {0, . . . , n − 3} and j ∈ {i +
2, . . . , n − 1}, we have

[vi, vj]σ = (e, f).
We consider the bijection ϕ ∶ {0, . . . , n − 1} Ð→ {v0, . . . , vn−1} defined by
ϕ(i) = vi for i ∈ {0, . . . , n − 1}. Moreover, we denote by τ the unique 2-
structure defined on V (τ) = {0, . . . , n − 1} such that ϕ is an isomorphism
from τ onto σ[{v0, . . . , vn−1}]. For g ∈ E(σ[{v0, . . . , vn−1}]), set

ϕ−1(g) = {(ϕ−1(x), ϕ−1(y)) ∶ (x, y) ∈ g}.
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We obtain

E(τ) = {ϕ−1(g) ∶ g ∈ E(σ[{v0, . . . , vn−1}])}.
In particular, we have [0, n − 1]τ = (ϕ−1(e), ϕ−1(f)). Let i ∈ {0, . . . , n − 1}.
Since [vi, vi+1]σ ≠ (e, f), we have [i, i+1]τ ≠ [0, n−1]τ . Furthermore, consider
i ∈ {0, . . . , n − 3} and j ∈ {i + 2, . . . , n − 1}. Since [vi, vj]σ = (e, f), we have
[i, j]τ = [0, n − 1]τ . It follows that τ satisfies (6.4). Hence, τ ∈M2. Finally,
we prove that τ is prime. For a contradiction, suppose that τ admits a
nontrivial module M . By Lemma 6.7, M = {0, n − 1}. Hence, {v0, vn−1},
that is {v,w}, is a module of σ[{v0, . . . , vn−1}]. We obtain v1 ←→σ {v,w}
and [v, v1]σ ≠ (e, f). Thus, v1 ∈ Z, which contradicts the fact that C(v) ⊆
V (σ) ∖ Z. Consequently, τ is prime. Thus, σ[{v0, . . . , vn−1}] is prime too.
It follows from (6.6) that n ≥ 6.

Now, suppose that

C(v) ≠ C(w).
It follows from Lemma 2.4 that C{e,f}(σ−Z) (see Definition 2.2) is a modular
partition of σ − Z. In particular, for c ∈ C(v) and d ∈ C(w), we have
[c, d]σ = [v,w]σ.

First, suppose that there exists z ∈ Z such that ≺v, z≻σ≠≺v,w≻σ, we have

(6.7) z /←→σ C(v).

We conclude in the following way. Since C(v) is {e, f}-connected, there
exist v0, . . . , vk−1 ∈ C(v), where k ≥ 2, such that

● σ[{v0, . . . , vk−1}] satisfies (6.4);
● v0 = v;
● if k = 2, then [v0, vk−1]σ ≠ (f, e);
● if k ≥ 3, then [v0, vk−1]σ = (f, e);
● [z, v0]σ ≠ [z, vk−1]σ;
● for i ∈ {0, . . . , k − 2}, [z, v0]σ = [z, vi]σ.

If k = 2, then it is not difficult to verify directly that σ[{v0, . . . , vk−1}∪{z,w}]
is prime, which contradicts (6.6). Therefore, we have k ≥ 3. Consider the
bijection

ϕ ∶ {0, . . . , k + 1} Ð→ {v0, . . . , vk−1} ∪ {z,w}
0 ≤ i ≤ k − 1 z→ vi,

k z→ z,
k + 1 z→ w.

Denote by τ the unique 2-structure defined on V (τ) = {0, . . . , k + 1} such
that ϕ is an isomorphism from τ onto σ[{v0, . . . , vk−1} ∪ {z,w}]. We have
τ ∈ N2. By Lemma 6.10, τ is prime. Hence, σ[{v0, . . . , vk−1} ∪ {z,w}] is
prime too. It follows from (6.6) that k ≥ 4, so ∣{v0, . . . , vk−1} ∪ {z,w}∣ ≥ 6.

Second, suppose that for every for z ∈ Z such that ≺ v, z ≻σ≠≺ v,w ≻σ,
(6.7) does not hold, that is, z ←→σ C(v). Similarly, for z ∈ Z such that
≺ v, z ≻σ≠≺ v,w ≻σ, we can suppose that z ←→σ C(w). Since z ←→σ {v,w}
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for every z ∈ Z, we obtain

(6.8) z ←→σ C(v) ∪C(w) for every z ∈ Z such that ≺v, z≻σ≠≺v,w≻σ.

For a contradiction, suppose that e = f . Since C{e}(σ − Z) is a modular
partition of σ−Z, C(v) and C(w) are modules of σ−Z. By Proposition 2.8,
(σ −Z)/C{e}(σ −Z) is constant. Thus, C(v)∪C(w) is a module of σ −Z as
well. It follows from (6.8) that C(v), C(w), and C(v) ∪C(w) are modules
of σ, which contradicts the fact that σ is prime. Consequently, we have

e ≠ f.

To continue, suppose that there exists z ∈ Z such that z /←→σ C(w). By

(6.8), ≺v, z≻σ=≺v,w≻σ. Since z /∈ N (e,f)
σ (v), we obtain [z, v]σ = (e, f). Set

C = {c ∈ C(w) ∖ {w} ∶ z /←→σ {c,w}}.

If there exists c ∈ C such that ≺ c,w ≻σ≠≺ v,w ≻σ, then σ[{c, v,w, z}] is
prime, which contradicts (6.6). Furthermore, if there exists c, d ∈ C such
that [c,w]σ = (e, f) and [d,w]σ = (f, e), then σ[{c, d, v,w, z}] is prime,
which contradicts (6.6). Hence, suppose that [w,C]σ = (e, f) or (f, e). We
distinguish the following two cases.
Case 1: [w,C]σ = (e, f).

Since C(w) is {e, f}-connected, there exist w0, . . . ,wk−1 ∈ C(w), where
k ≥ 3, such that

● σ[{w0, . . . ,wk−1}] satisfies (6.4);
● w0 = w and [w0,wk−1]σ = (e, f);
● [z,w0]σ ≠ [z,wk−1]σ;
● for i ∈ {0, . . . , k − 2}, [z,wi]σ = (e, f).

Consider the bijection

ϕ ∶ {0, . . . , k + 1} Ð→ {w0, . . . ,wk−1} ∪ {z, v}
0 ≤ i ≤ k − 1 z→ wi,

k z→ z,
k + 1 z→ v.

Denote by τ the unique 2-structure defined on V (τ) = {0, . . . , k+1} such
that ϕ is an isomorphism from τ onto σ[{w0, . . . ,wk−1}∪{z, v}]. We have
τ ∈ N2. By Lemma 6.10, τ is prime. Hence, σ[{w0, . . . ,wk−1}∪ {z, v}] is
prime too. It follows from (6.6) that k ≥ 4, so ∣{w0, . . . ,wk−1}∪{z, v}∣ ≥ 6.

Case 2: [w,C]σ = (f, e).
Since C(w) is {e, f}-connected, there exist w0, . . . ,wk−1 ∈ C(w), where
k ≥ 3, such that

● σ[{w0, . . . ,wk−1}] satisfies (6.4);
● w0 = w and [w0,wk−1]σ = (f, e);
● [z,w0]σ ≠ [z,wk−1]σ;
● for i ∈ {0, . . . , k − 2}, [z,wi]σ = (e, f).
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Consider the bijection

ϕ ∶ {0, . . . , k + 1} Ð→ {w0, . . . ,wk−1} ∪ {z, v}
0 ≤ i ≤ k − 1 z→ wi,

k z→ z,
k + 1 z→ v.

Denote by τ the unique 2-structure defined on V (τ) = {0, . . . , k+1} such
that ϕ is an isomorphism from τ onto σ[{w0, . . . ,wk−1}∪{z, v}]. We have
τ ∈M2. It follows from Lemma 6.8 that τ and hence σ[{w0, . . . ,wk−1}∪
{z, v}] are prime. By (6.6), ∣{w0, . . . ,wk−1} ∪ {z, v}∣ ≥ 6.

Consequently, we can suppose that z ←→σ C(w) for every z ∈ Z. Since
C(w) is a module of σ −Z, C(w) is a module of σ as well. Since σ is prime,
we obtain

C(w) = {w}.
By Proposition 2.8, (σ −Z)/C{e,f}(σ −Z) is linear. Set

I{v,w} = {u ∈ V (σ) ∖ (Z ∪C(v) ∪ {w}) ∶ [v, u]σ = [u,w]σ, [v, u]σ = (e, f)}.

Given z ∈ Z, we verify that

(6.9) if ≺v, z≻σ≠≺v,w≻σ, then z ←→σ (C(v) ∪ I{v,w} ∪ {w}).

By (6.8), we have z ←→σ (C(v) ∪ {w}). For a contradiction, suppose that
there exists u ∈ I{v,w} such that [z, v]σ ≠ [z, u]σ. It is easy to verify that
σ[{z, u, v,w}] is prime, which contradicts (6.6). It follows that (6.9) holds.

Since σ is prime and w ←→σ (C(v)∪I{v,w}), we have (C(v)∪I{v,w}∪{w}) ≠
V (σ). Hence, C(v) ∪ I{v,w} ∪ {w} is not a module of σ. Furthermore, since
(σ − Z)/C{e,f}(σ − Z) is linear, C(v) ∪ I{v,w} ∪ {w} is a module of σ − Z.
Thus, there exists z ∈ Z such that z /←→σ (C(v) ∪ I{v,w} ∪ {w}). By (6.9),
≺v, z ≻σ=≺v,w ≻σ, so [z, v]σ = (e, f). We define by induction a sequence of
pairwise disjoint subsets (Zp)p≥0 of {z ∈ Z ∶ [z, v]σ = (e, f)} as follows. Set

Z0 = {z ∈ Z ∶ [z, v]σ = (e, f), z /←→σ (C(v) ∪ I{v,w} ∪ {w})}.

Note that Z0 ≠ ∅. Given Z0, . . . , Zi, where i ≥ 0, set

Zi+1 = {z ∈ Z ∖ (Z0 ∪⋯ ∪Zi) ∶[z, v]σ = (e, f),
z /←→σ (C(v) ∪ I{v,w} ∪ {w} ∪ (Z0 ∪⋯ ∪Zi))}.

Denote by p the least integer i such that Zi = ∅. As previously noted,
Z0 ≠ ∅, so p ≥ 1. We have [w,C(v)∪I{v,w}∪(Z0∪⋯∪Zp−1)]σ = (f, e). Since
σ is prime, we have C(v)∪ I{v,w} ∪{w}∪ (Z0 ∪⋯∪Zp−1) ≠ V (σ). Therefore,
there exists x ∈ V (σ) ∖ (C(v) ∪ I{v,w} ∪ {w} ∪ (Z0 ∪⋯ ∪Zp−1)) such that

x /←→σ (C(v) ∪ I{v,w} ∪ {w} ∪ (Z0 ∪⋯ ∪Zp−1)).

Set

Z ′ = {z′ ∈ Z ∖ (Z0 ∪⋯ ∪Zp−1) ∶ [z′, v]σ = (e, f)}.
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For each z′ ∈ Z ′, we have z′ ←→σ (C(v) ∪ I{v,w} ∪ {w} ∪ (Z0 ∪ ⋯ ∪ Zp−1)).
Thus, x /∈ Z ′. It follows that either x ∈ N (e,f)

σ (v) ∩N (e,f)
σ (w) or x ∈ Z and

≺v, x≻σ≠≺v,w≻σ. In both cases, we obtain

[x, v]σ ≠ (e, f).
If x ∈ Z and ≺v, x≻σ≠≺v,w ≻σ, then x ←→σ (C(v) ∪ I{v,w} ∪ {w}) by (6.9).
Furthermore, since (σ − Z)/C{e,f}(σ − Z) is linear by Proposition 2.8, we

have [C(v) ∪ I{v,w} ∪ {w},N (e,f)
σ (v) ∩ N (e,f)

σ (w)]σ = (e, f). Therefore, in
both cases, we have

x←→σ (C(v) ∪ I{v,w} ∪ {w}).
Consequently, there exists i ∈ {0, . . . , p−1} such that x /←→σ (C(v)∪ I{v,w} ∪
{w}) ∪ (Z0 ∪⋯ ∪Zi). Set

j = min({i ∈ {0, . . . , p − 1} ∶ x /←→σ (C(v) ∪ I{v,w} ∪ {w}) ∪ (Z0 ∪⋯ ∪Zi)}).
We show that there exists a sequence (v0, . . . , vk−1) of elements of C(v) ∪
I{v,w}, where k ≥ 3, such that

(6.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ[{v0, . . . , vk−1}] satisfies (6.4),

[v0, vk−1]σ = (f, e),
v0 = v,
x←→σ {v0, . . . , vk−2}
and

x /←→σ {v0, vk−1}.
By minimality of j, we have x←→σ (C(v)∪ I{v,w} ∪ {w})∪ (Z0 ∪⋯∪Zj−1)),
when j ≥ 1, and x /←→σ (C(v)∪ I{v,w} ∪ {w})∪Zj). There exists a sequence
(z0, . . . , zj) satisfying

● for i ∈ {0, . . . , j}, zi ∈ Zi;
● x /←→σ (C(v) ∪ I{v,w} ∪ {w}) ∪ {zj});
● if j ≥ 1, then x←→σ (C(v) ∪ I{v,w} ∪ {w}) ∪ {z0, . . . , zj−1});
● if j ≥ 1, then [zi, zi+1]σ ≠ (f, e) for i ∈ {0, . . . , j − 1}.

Lastly, since z0 ∈ Z0, we have z0 ∈ Z, [z0, v]σ = (e, f), and z0 /←→σ (C(v) ∪
I{v,w} ∪ {w}). Therefore, there exists u ∈ (C(v) ∖ {v}) ∪ I{v,w} such that
[z0, u]σ ≠ (e, f). To conclude, we distinguish the following two cases.
Case 1: u ∈ I{v,w}.

Set k = j + 3 and

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v0 = v,
v1 = u,
and

for l ∈ {2, . . . , k − 1}, vl = zl−2.
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Case 2: u ∈ C(v) ∖ {v}.
Since C(v) is {e, f}-connected, there exist u0, . . . , um−1 ∈ C(w), where
m ≥ 2, such that

● u0 = v;
● for l ∈ {0, . . . ,m − 2}, [ul, ul+1]σ ≠ (f, e);
● if m ≥ 3, then for l ∈ {0, . . . ,m − 3} and l′ ∈ {l + 2, . . . ,m − 1}, we

have [ul, ul′]σ = (f, e);
● for l ∈ {0, . . . ,m − 2}, [ul, z0]σ = (f, e);
● [um−1, z0]σ ≠ (f, e).

Set k =m + j + 1 and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

for l ∈ {0, . . . ,m − 1}, vl = ul,
and

for l ∈ {m, . . . , k − 1}, vl = zl−m.

In both cases, we obtain k ≥ 3 and (v0, . . . , vk−1) satisfies (6.10). Consider
the bijection

ϕ ∶ {0, . . . , k + 1} Ð→ {v0, . . . , vk−1} ∪ {x,w}
0 ≤ i ≤ k − 1 z→ vi,

k z→ x,
k + 1 z→ w.

Denote by τ the unique 2-structure defined on V (τ) = {0, . . . , k+1} such that
ϕ is an isomorphism from τ onto σ[{v0, . . . , vk−1}∪{z,w}]. We have τ ∈ N2.
It follows from Lemma 6.10 that τ and hence σ[{v0, . . . , vk−1} ∪ {z,w}] are
prime. By (6.6), ∣{v0, . . . , vk−1} ∪ {z,w}∣ ≥ 6. �

The next characterization of prime 2-structures that are minimal for an
unordered pair follows from Lemma 6.8, Lemma 6.10, and Proposition 6.11.

Theorem 6.12 (Cournier and Ille6.4 [12]). Consider a 2-structure σ such
that v(σ) ≥ 6. Let v,w be distinct vertices of σ. The following two assertions
are equivalent

● σ is prime and minimal for {v,w};
● there exists an isomorphism ϕ from σ onto an element of M2 ∪N2

defined on {0, . . . , n − 1} such that

ϕ({v,w}) = {0, n − 1}.
Remark 6.13. The elements of M2 ∪N2 of size 5 are not the only prime
2-structures that are minimal for an unordered pair. For instance, consider
the reversible 2-structure σ defined on {0, . . . ,4} by

E(σ) = {{(0,1), (2,0), (3,0), (4,0), (4,1), (4,2), (3,4)},
{(1,0), (0,2), (0,3), (0,4), (1,4), (2,4), (4,3)},
{(1,2), (2,1), (1,3), (3,1), (2,3), (3,2)}}.

6.4Cournier and Ille [12] proved this theorem for digraphs.
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It is not difficult to verify that σ is prime and minimal for {0,4}. Netherthe-
less, σ is not isomorphic to an element of M2 ∪N2.

6.3. Proof of Theorem 5.3.
A second proof of Theorem 5.3 when v(σ) ≥ 7.

Consider a prime 2-structure σ such that v(σ) ≥ 7. By Theorem 5.23,
∣Sc(σ)∣ ≤ 2. Therefore, there exist distinct v,w ∈ V (σ) such that

Sc(σ) ⊆ {v,w}.
First, suppose that σ is minimal for {v,w}. By Theorem 6.12, there exists

an isomorphism ϕ from σ onto τ ∈M2 ∪N2 defined on V (τ) = {0, . . . , n−1}
such that ϕ({v,w}) = {0, n − 1}. Clearly, we have τ − {0,1} ∈ M2 ∪ N2.
It follows from Lemmas 6.8 and 6.10 that τ − {0,1} is prime. Hence, σ −
{ϕ−1(0), ϕ−1(1)} is prime as well.

Second, suppose that σ is not minimal for {v,w}. There exists X ⊊ V (σ)
such that σ[X] is prime and v,w ∈X. We obtain

Sc(σ) ⊆X and X ⊊ V (σ).
We conclude as in Remark 5.2 from (5.1) by using Corollary 3.21. �
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7. Infinite prime 2-structures

The purpose of this section is to prove the next theorem.

Theorem 7.1 (Ille7.1[21, 24] ). Given an infinite 2-structure σ, the following
two assertions are equivalent

● σ is prime;
● for each finite F ⊆ V (σ), there exists F ′ ⊆ V (σ) such that

(7.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

F ′ is finite,

F ⊆ F ′,

and

σ[F ′] is prime.

We use the following definition.

Definition 7.2. Let S be a set. A family F of subsets of S is up-directed if up-directed
for any X,Y ∈ F , there exists Z ∈ F such that X ∪ Y ⊆ Z.

Lemma 7.3. Given a 2-structure σ, consider an up-directed family F of
subsets of V (σ). If σ[X] is prime for each X ∈ F , then

σ[ ⋃
X∈F

X] is prime.

Proof. Let M be a module of σ[⋃X∈F X] such that ∣M ∣ ≥ 2. We have to
show that

M = ⋃
X∈F

X.

Since ∣M ∣ ≥ 2, consider distinct x, y ∈ M . Let v ∈ ⋃X∈F X. Since F is
up-directed, there exists X ∈ F such that x, y, v ∈ X. By assertion (M2) of
Proposition 2.5, M ∩X is a module of σ[X]. Since x, y ∈ M ∩X, we have
∣M ∩X ∣ ≥ 2. Since σ[X] is prime, we obtain M ∩X = X. Hence v ∈M . It
follows that M = ⋃X∈F X. �

Lemma 7.3 allows to prove one direction of the equivalence in Theo-
rem 7.1. The use of the next result is decisive in the proof of the other
direction. Furthermore, it is also significant in the study of infinite and
prime 2-structures.

Theorem 7.4. Given a prime 2-structure σ, consider X ⊆ V (σ) such that
σ[X] is prime. Suppose that V (σ) ∖X is infinite. For each v ∈ V (σ) ∖X,
there exists a finite F ⊆ V (σ) ∖X such that v ∈ F and σ[X ∪ F ] is prime.

Proof. Consider the set W of v ∈ V (σ) ∖X such that for every finite F ⊆
V (σ) ∖X, we have σ[X ∪F ] is decomposable whenever v ∈W . We have to
show that W = ∅.

Recall that

p(σ,X) = {Extσ(X), ⟨X⟩σ} ∪ {Xσ(y) ∶ y ∈X} (see Notation 3.12).

7.1Ille [21, 24] proved this theorem for digraphs.
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By Lemma 3.13, p(σ,X) is a partition of V (σ) ∖X. Consequently, to prove
that W = ∅, it suffices to show that

(7.2) W ∩Extσ(X) = ∅,

(7.3) W ∩ ⟨X⟩σ = ∅,
and

(7.4) W ∩Xσ(y) = ∅ for each y ∈X.

First, for v ∈ Extσ(X), we have σ[X∪{v}] is prime. Thus v /∈W . Therefore,
(7.2) holds.

Second, we verify that V (σ) ∖ (W ∩ ⟨X⟩σ) is a module of σ. Consider
w ∈ W ∩ ⟨X⟩σ. Since w ∈ ⟨X⟩σ, we have w ←→σ X (see Notation 2.1).
Consequently, to prove that w ←→σ (V (σ) ∖ (W ∩ ⟨X⟩σ)), it suffices to
verify that

(7.5) w ←→σ X ∪ {v} for every v ∈ (V (σ) ∖X) ∖ (W ∩ ⟨X⟩σ).
Given v ∈ (V (σ) ∖X) ∖ (W ∩ ⟨X⟩σ), we distinguish the following two cases
Case 1: v /∈ ⟨X⟩σ.

Since w ∈ W , σ[X ∪ {v,w}] is decomposable. It follows from assertions
(P1) and (P2) of Lemma 3.17 that X ∪{v} is a module of σ[X ∪{v,w}].
Hence, we obtain w ←→σ X ∪ {v}.

Case 2: v ∈ ⟨X⟩σ.
Since v ∈ (V (σ) ∖X) ∖ (W ∩ ⟨X⟩σ), v /∈ W . Thus, there exists a finite
F ⊆ V (σ) ∖X such that v ∈ F and σ[X ∪ F ] is prime. Set

Y =X ∪ F.
Since w ∈ W , w /∈ Y . Moreover, since w ∈ W , we have σ[Y ∪ {w}] is
decomposable. Thus, w /∈ Extσ(Y ). For a contradiction, suppose that
w ∈ Yσ(z), where z ∈ Y . If z ∈ X, then w ∈ Xσ(z), which contradicts
w ∈ ⟨X⟩σ because p(σ,X) is a partition of V (σ)∖X by Lemma 3.13. Now,
suppose that z ∈ Y ∖X, that is, z ∈ F . Set

F ′ = (F ∖ {z}) ∪ {w}.
Since w ∈ Yσ(z), we have {z,w} is a module of σ[(X∪F )∪{w}]. It follows
that σ[X ∪ F ] and σ[X ∪ F ′] are isomorphic. Therefore, σ[X ∪ F ′] is
prime too, which contradicts w ∈W . Consequently, we obtain w ∈ ⟨Y ⟩σ.
In particular, we have w ←→σ X ∪ {v}.

It follows from both cases above that (7.5) holds. Consequently, V (σ) ∖
(W ∩ ⟨X⟩σ) is a module of σ. Since σ[X] is prime, we have ∣X ∣ ≥ 3. Since
X ⊆ (V (σ) ∖ (W ∩ ⟨X⟩σ)), we obtain V (σ) ∖ (W ∩ ⟨X⟩σ)) = V (σ), that is,
(7.3) holds.

Third, we verify that (7.4) holds. Given y ∈ X, we show that {y} ∪ (W ∩
Xσ(y)) is a module of σ. Let w ∈W ∩Xσ(y). We have to verify that

(7.6) v ←→σ {y,w} for every v ∈ V (σ) ∖ ({y} ∪ (W ∩Xσ(y))).
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Since w ∈Xσ(y), we have v ←→σ {y,w} for v ∈X∖{y}. To continue, suppose
that

v ∈ (V (σ) ∖X) ∖ (W ∩Xσ(y)).

We distinguish the following two cases.
Case 1: v /∈Xσ(y).

Since w ∈ W , σ[X ∪ {v,w}] is decomposable. It follows from assertions
(P1), (P3), and (P4) of Lemma 3.17 that {y,w} is a module of σ[X ∪
{v,w}]. In particular, we have v ←→σ {y,w}.

Case 2: v ∈Xσ(y).
Since v /∈ W ∩Xσ(y), we have v /∈ W . Thus, there exists a finite F ⊆
V (σ) ∖X such that v ∈ F and σ[X ∪ F ] is prime. Set

Y =X ∪ F.

Since w ∈W , w /∈ Y . Since w ∈W , we have σ[Y ∪ {w}] is decomposable.
Thus, w /∈ Extσ(Y ). Furthermore, if w ∈ ⟨Y ⟩σ, then w ∈ ⟨X⟩σ, which
contradicts w ∈ Xσ(y) because p(σ,X) is a partition of V (σ) ∖ X by
Lemma 3.13. It follows that w ∈ Yσ(z), where z ∈ Y . For a contradiction,
suppose that z ∈ Y ∖X, that is, z ∈ F . Set

F ′ = (F ∖ {z}) ∪ {w}.

Since w ∈ Yσ(z), we have {z,w} is a module of σ[(X∪F )∪{w}]. It follows
that σ[X∪F ] and σ[X∪F ′] are isomorphic. Therefore, σ[X∪F ′] is prime
too, which contradicts w ∈ W . Therefore, z ∈ X. We obtain w ∈ Xσ(z)
because w ∈ Yσ(z). It follows from Lemma 3.13 that z = y. Hence, {y,w}
is a module of σ[Y ∪ {w}]. In particular, we have v ←→σ {y,w}.

Consequently, {y} ∪ (W ∩ Xσ(y)) is a module of σ. Since (X ∖ {y}) ∩
({y} ∪ (W ∩Xσ(y))) = ∅, we have {y} ∪ (W ∩Xσ(y)) ⊊ V (σ). Since σ is
prime, we obtain ∣{y} ∪ (W ∩Xσ(y))∣ ≤ 1, that is, W ∩Xσ(y) = ∅. Hence,
(7.4) holds. �

Finally, we prove Theorem 7.1 as follows.

Proof of Theorem 7.1. To begin, suppose that σ is prime. Consider a finite
F ⊆ V (σ). By Theorem 3.107.2, there exists X ⊆ V (σ) such that ∣X ∣ = 3
or 4, and σ[X] is prime. By applying Theorem 7.4 several times from X
together with the elements of F ∖X, we obtain F ′ ⊆ V (σ) satisfying (7.1).

Conversely, suppose that

(7.7) for every finite F ⊆ V (σ), there exists F ′ ⊆ V (σ) satisfying (7.1).

7.2It is not difficult to verify that Proposition 3.8, Corollary 3.9, and hence Theo-
rem 3.10 hold for infinite prime 2-structures as well.
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Consider the family F of finite X ⊆ V (σ) such that σ[X] is prime. Since
(7.7) holds, we have

⋃
X∈F

X = V (σ)

and

F is up-directed.

It follows from Lemma 7.3 that σ is prime. �
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8. Critical and nonfinitely critical 2-structures

The path PZ is defined on Z as follows. Given v,w ∈ Z, with v ≠ w,
{v,w} ∈ E(Z) if ∣v −w∣ = 1. In the sequel, PZ[N] is denoted by PN .

For each finite subset F of Z, there exist m,n ∈ Z such that n−m ≥ 4 and
F ⊆ {m, . . . , n}. Since PZ[{m, . . . , n}] ≃ Pn−m, it follows from Fact 2.6 that
PZ[{m, . . . , n}] is prime. Hence, σ(PZ)[{m, . . . , n}] is prime too. Therefore,
it follows from Theorem 7.1 that σ(PZ) is prime. Furthermore, for each
finite and nonempty subset F of Z, Z−F is disconnected. Therefore, Z−F
and hence σ(PZ)−F are decomposable. The properties of σ(PZ) lead us to
introduce the following definition.

Definition 8.1. An infinite prime 2-structure σ is finitely critical if for each finitely critical
finite and nonempty subset F of V (σ), σ − F is decomposable.

The next result is a direct consequence of Corollary 3.21.

Corollary 8.2. Given an infinite prime 2-structure σ, σ is critical and
nonfinitely critical if and only if the following two assertions hold

● for each v ∈ V (σ), σ − v is decomposable (i.e. σ is critical);
● there exist x, y ∈ V (σ) such that x ≠ y and σ − {x, y} is prime (i.e.
P(σ) is nonempty).

The next result provides a characterization of the nontrivial components
of the primality graph of an infinite critical 2-structure. It is an easy conse-
quence of Lemma 4.4 and Proposition 4.5.

Corollary 8.3. Given an infinite critical 2-structure σ, each nontrivial com-
ponent of P(σ) is isomorphic to PN or PZ.

Proof. Let C be a component of P(σ) such that v(C) ≥ 2. By Lemma 4.4,
C is a cycle or an infinite or finite path. It follows from Proposition 4.5 that
C is infinite. Therefore, C is isomorphic to PN or PZ. �

8.1. The families FZ and FN.

Observation 8.4. Let σ be an infinite critical 2-structure. We denote by
Q the partition of V (σ) constituted by the vertex sets of the components
of P(σ). Using the axiom of choice, it follows from Corollary 8.3 that there
exists a function ϕ ∶ V (σ)Ð→ Z satisfying

● for each Y ∈ Q such that ∣Y ∣ > 1, ϕ↾Y is an isomorphism from the
component P(σ)[Y ] of P(σ) onto PN or PZ.

Denote by ρ the unique 2-structure defined on N or Z such that ϕ↾Y is an
isomorphism from σ[Y ] onto ρ.

First, consider a nontrivial component C of P(σ) such that ϕ(V (C)) = Z.
Let n ∈ Z. It follows from Lemma 4.4 that {n−1, n+1} is a module of ρ−n.

Second, consider a nontrivial component C of P(σ) such that ϕ(V (C)) =
N. By Lemma 4.4, {2,3, . . .} is a module of ρ − 0. Furthermore, by Lem-
ma 4.4, {n − 1, n + 1} is a module of ρ − n for every n ≥ 1.
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Observation 8.4 leads us to introduce the following two families of 2-
structures.

Notation 8.5. First, we denote by FZ the family of the 2-structures τ
defined on V (τ) = Z and satisfying

● for every n ∈ Z, {n − 1, n + 1} is a module of τ − n and not of τ .

For instance, the usual linear order LZ defined on Z belongs to FZ.
Second, we denote by FN the family of the 2-structures τ defined on

V (τ) = N and satisfying

● {2,3, . . .} is a module of τ − 0;
● {0} ∪ {2,3, . . .} is not a module of τ ;
● for every n ≥ 1, {n − 1, n + 1} is a module of τ − n and not of τ .

For instance, the usual linear order LN defined on N belongs to FN.

In the next four lemmas, we examine the elements of FN ∪FZ.

Lemma 8.6. Given a 2-structure τ such that V (τ) = Z, τ ∈ FZ if and only
if the following two assertions hold

● [1,0]τ ≠ [1,2]τ ;
● for m,n ∈ Z such that m < n, we have [2m,2n]τ = [0,2]τ , [2m,2n −

1]τ = [0,1]τ , [2m + 1,2n]τ = [1,2]τ , and [2m + 1,2n + 1]τ = [1,3]τ .

Proof. To begin, suppose that τ ∈ FZ. In particular, {0,2} is a module of
τ − 1 and not of τ . It follows that [1,0]τ ≠ [1,2]τ . For the second assertion,
consider m,n ∈ Z such that m < n. Since {n,n+2} is a module of τ −(n+1),
we have

[m,n]τ = [m,n + 2]τ .
Furthermore, since {m,m + 2} is a module of τ − (m + 1), we have

[m,n + 2]τ = [m + 2, n + 2]τ .
Therefore, we obtain

[m,n]τ = [m + 2, n + 2]τ .
By proceeding by induction, we obtain that the second assertion holds.

Conversely, suppose that both assertions above hold. Since the second
assertion holds, we obtain the following. Given m,n, p, q ∈ Z such that
m < n and p < q,

if m ≡ p mod 2 and n ≡ q mod 2, then [m,n]τ = [p, q]τ .

It follows that for every n ∈ Z, {n−1, n+1} is a module of τ −n. To conclude,
we have to verify that [n,n− 1]τ ≠ [n,n+ 1]τ for every n ∈ Z. Let n ∈ Z. For
instance, suppose that n is even. We obtain

[n,n + 1]τ = [0,1]τ .
Moreover, we have [n − 1, n]τ = [1,2]τ , so

[n,n − 1]τ = [2,1]τ .
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Since [1,0]τ ≠ [1,2]τ , we obtain [n,n − 1]τ ≠ [n,n + 1]τ . The case n odd is
handled similarly. �

Lemma 8.7. Given a 2-structure τ such that V (τ) = N, τ ∈ FN if and only
if the following three assertions hold

● [1,0]τ ≠ [1,2]τ ;
● for m,n ∈ N such that m < n, we have [2m,2n]τ = [0,2]τ , [2m,2n −

1]τ = [0,1]τ , [2m + 1,2n]τ = [1,2]τ , and [2m + 1,2n + 1]τ = [1,3]τ ;
● [1,2]τ = [1,3]τ .

Proof. To begin, suppose that τ ∈ FN. As in the proof of Lemma 8.6, we
obtain that the first two assertions hold. Since τ ∈ FN, {2,3, . . .} is a module
of τ − 0. Hence, [1,2]τ = [1,3]τ .

Conversely, suppose that the three assertions above hold. Let n ≥ 1. As
in the proof of Lemma 8.6, we obtain that {n− 1, n+ 1} is a module of τ −n
and not of τ . Moreover, it follows from the last two assertions that {2,3, . . .}
is a module of τ − 0. Lastly, {0} ∪ {2,3, . . .} is not a module of τ because
[1,0]τ ≠ [1,2]τ . �

Lemma 8.8. Given τ ∈ FZ, the following four assertions hold

● for each n ∈ Z, {n,n + 1, . . .} is a module of τ if and only if [0,1]τ =
[0,2]τ and [1,2]τ = [1,3]τ ;

● for each n ∈ Z, {. . . , n− 1, n} is a module of τ if and only if [1,2]τ =
[0,2]τ and [0,1]τ = [1,3]τ ;

● every module of τ is a module of LZ;
● if τ is decomposable and τ ≠ σ(LZ), then one of the following two

situations holds
▸ for each nontrivial module M of τ , there exists n ≥ 1 such that
M = {n,n + 1, . . .};

▸ for each nontrivial module M of τ , there exists n ∈ Z such that
M = {. . . , n − 1, n}.

Proof. The first two assertions follow from the second assertion of Lem-
ma 8.6.

For the third assertion, consider a module M of τ . Consider p, q ∈M such
that p + 2 ≤ q. We verify that

(8.1) if p ≡ q mod 2, then {p, . . . , q} ⊆M.

For instance, suppose that p and q are even. To begin, consider r be an odd
integer such that p < r < q. By the second assertion of Lemma 8.6, [r, p]τ =
[1,0]τ and [r, q]τ = [1,2]τ . Since [1,0]τ ≠ [1,2]τ by the first assertion of
Lemma 8.6, we obtain r ∈ M . Now, let r be an even integer such that
p < r < q. We have r − 1, r + 1 ∈ M . Moreover, by the second assertion
of Lemma 8.6, we have [r, r − 1]τ = [2,1]τ and [r, r + 1]τ = [0,1]τ . Since
[0,1]τ ≠ [2,1]τ by the first assertion of Lemma 8.6, we obtain r ∈ M . The
case p and q both odd follows similarly. Thus, (8.1) holds.
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Now, suppose that p /≡ q mod 2. For instance, suppose that p is even and
q is odd. For a contradiction, suppose that q − 1 /∈M and q + 1 /∈M . By the
second assertion of Lemma 8.6, [q − 1, p]τ = [2,0]τ and [q − 1, q]τ = [0,1]τ .
Since q − 1 /∈ M , we obtain [2,0]τ = [0,1]τ . Furthermore, by the second
assertion of Lemma 8.6, [q + 1, p]τ = [2,0]τ and [q + 1, q]τ = [2,1]τ . Since
q + 1 /∈ M , we obtain [2,0]τ = [2,1]τ . Therefore, we have [0,1]τ = [2,1]τ ,
which contradicts the first assertion of Lemma 8.6. Consequently, q − 1 ∈M
or q + 1 ∈M , and we conclude by using (8.1).

For the fourth assertion, suppose that there exist p, q ∈ Z, with p < q, such
that {p, . . . , q} is a module of τ . We have to show that τ = σ(LZ). It follows
from the second assertion of Lemma 8.6 that

(8.2) [0,1]τ = [0,2]τ = [1,2]τ = [1,3]τ .
By the first assertion of Lemma 8.6, we have [1,0]τ ≠ [1,2]τ . By (8.2),
[0,1]τ ≠ [1,0]τ . Therefore, τ = σ(LZ). �

Example 8.9. We consider the tournament UZ obtained from the linear or-
der LZ by reversing all the arcs between the even integers. By Lemma 8.6,
σ(UZ) ∈ FZ. It follows from Lemma 8.8 that σ(UZ) is prime. We can
also see that σ(UZ) is prime by using Theorem 7.1 as follows. Let F be a
finite subset of Z. There exists n ∈ Z such that F ⊆ {−n, . . . , n}. By The-
orem 4.28, σ(U2n+1) is prime (see Figure 4.5). Since (σ(UZ))[{−n, . . . , n}]
and σ(U2n+1) are isomorphic, (σ(UZ))[{−n, . . . , n}] is prime too. It follows
from Theorem 7.1 that σ(UZ) is prime.

Now, we consider the tournament WZ obtained from the linear order LZ
by reversing all the arcs between the even integers and all the arcs between
the odd integers. As previously for σ(UZ), it is not difficult to verify that
σ(WZ) is a prime element of FZ.

Finally, we consider the bipartite graph HZ defined on Z in the following
way. For p, q ∈ Z, with p ≠ q, {p, q} ∈ E(HZ) if there exist i, j ∈ Z, with i ≤ j,
such that {p, q} = {2i,2j + 1}. Once again, σ(HZ) is a prime element of FZ.

Lemma 8.10. Given τ ∈ FN, the following four assertions hold

● for each n ≥ 1, {n,n + 1, . . .} is a module of τ if and only if [0,1]τ =
[0,2]τ ;

● every module of τ is a module of LN;
● if τ is decomposable and τ ≠ σ(LN), then for each nontrivial module
M of τ , there exists n ≥ 1 such that M = {n,n + 1, . . .}.

Proof. The first assertion follows from the last two assertions of Lemma 8.7.
We show the second assertion as in the proof of Lemma 8.8.

For the third assertion, suppose that there exist p ≥ 0 and q > p such that
{p, . . . , q} is a module of τ . We have to show that τ = σ(LN). It follows from
the second assertion of Lemma 8.7 that [1,2]τ = [0,2]τ and [0,1]τ = [1,3]τ .
By the third assertion of Lemma 8.7, we have [1,2]τ = [1,3]τ . It follows that
(8.2) holds. By the first assertion of Lemma 8.7, we have [1,0]τ ≠ [1,2]τ .
By (8.2), [0,1]τ ≠ [1,0]τ . Therefore, τ = σ(LN). �
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Example 8.11. Set

UN = UZ[N], WN =WZ[N], and HN =HZ[N].
As in Example 8.9, we verify easily that σ(UN) and σ(HN) are prime

elements of FN. Similarly, σ(WN) is prime, but σ(WN) /∈ FN because
[1,2]σ(WN) ≠ [1,3]σ(WN).

In fact, σ(WN) is also interesting because it shows that the analogue of
Theorem 7.1, when the primality is replaced by the criticality, does not
hold. Indeed, σ(WN) satisfies the second assertion of the analogue. Pre-
cisely, for each finite F ⊆ N, there exists n ≥ 2 such that F ⊆ {0, . . . ,2n}.
Clearly, σ(WN)[{0, . . . ,2n}] = σ(W2n+1) (see Figure 4.6). By Theorem 4.37,
σ(W2n+1) is critical. But, σ(WN) does not satisfy the first assertion of the
analogue. Clearly, the function N Ð→ N ∖ {0,1}, defined by n z→ n + 2
for each n ∈ N, is an isomorphism from σ(WN) onto σ(WN) − {0,1}. Thus,
σ(WN) − {0,1} is prime. Set

X = N ∖ {0,1}.
Since (3,1), (1,2) ∈ A(WN), we have

1 /∈ ⟨X⟩σ(WN).

Let n ≥ 1. Since WN[{1,2n,2n + 1}] is a 3-cycle, we have

1 /∈ (Xσ(WN)(2n) ∪Xσ(WN)(2n + 1)).
By Lemma 3.13,

1 ∈ Extσ(WN)(X).
Hence, σ(WN)[X∪{1}], which is σ(WN)−0, is prime. It follows that σ(WN)
is not critical, so it does not satisfy the first assertion of the analogue. For
the opposite direction, we consider σ(PZ). As seen at the beginning of
this section, σ(PZ) is critical. Hence, it satisfies the first assertion of the
analogue. Nevertheless, consider {0,4} for the finite subset F of Z. Let F ′

be any subset Z containing {0,4} and such that σ(PZ)[F ′] is prime. Since
σ(PZ)[F ′] is prime, PZ[F ′] is connected. Thus, there exists n ≥ 4 such that

F ′ = {0, . . . , n}.
Clearly, σ(PZ)[F ′] is not critical because σ(PZ)[F ′] − n is prime. Conse-
quently, σ(PZ) does not satisfy the second assertion of the analogue.

Observation 8.4 leads us to introduce the following definition.

Definition 8.12. An infinite 2-structure σ is locally critical if there exist a locally critical
partition Q of V (σ) and a function ϕ ∶ V (σ) Ð→ Z satisfying the following
two assertions

(I1) for every Y ∈ Q such that ∣Y ∣ > 1, ϕ↾Y is an isomorphism from σ[Y ]
onto an element of FN ∪FZ;

(I2) there exists Y ∈ Q such that ∣Y ∣ > 1.

Note that we do not require a locally critical 2-structure to be prime.



102 PIERRE ILLE

Lemma 8.13. Given an infinite 2-structure σ, if σ is critical and nonfinitely
critical, then σ is locally critical 8.1. Precisely, assertions (I1) and (I2) hold
for the partition Q of V (σ) and a function ϕ ∶ V (σ) Ð→ Z defined as in
Observation 8.4.

Proof. Let Q be the partition of V (σ) constituted by the vertex sets of the
components of P(σ). Using the axiom of choice, consider also a function
ϕ ∶ V (σ)Ð→ Z defined as in Observation 8.4.

Consider Y ∈ Q such that ∣Y ∣ > 1. There exists a nontrivial component C
of P(σ) such that Y = V (C). Denote by ρ the unique 2-structure defined on
Z or N such that ϕ↾Y is an isomorphism from σ[Y ] onto ρ. To verify that
assertion (I1) holds, we distinguish the following two cases.
Case 1: ϕ↾Y is an isomorphism from C onto PZ..

We have to verify that ρ ∈ FZ. For each n ∈ Z, we have

NP(σ)((ϕ↾Y )−1(n)) = {(ϕ↾Y )−1(n − 1), (ϕ↾Y )−1(n + 1)}.
It follows from Lemma 4.4 that {(ϕ↾Y )−1(n − 1), (ϕ↾Y )−1(n + 1)} is a
module of σ−(ϕ↾Y )−1(n). Thus, {n−1, n+1} is a module of ρ−n. Since
σ is prime, {(ϕ↾Y )−1(n−1), (ϕ↾Y )−1(n+1)} is not a module of σ. Hence,
we have

(ϕ↾Y )−1(n) /←→σ {(ϕ↾Y )−1(n − 1), (ϕ↾Y )−1(n + 1)}.
It follows that n /←→ρ {n − 1, n + 1}. Therefore, {n − 1, n + 1} is not a
module of ρ. Consequently, ρ ∈ FZ.

Case 2: ϕ↾Y is an isomorphism from C onto PN.
We have to verify that ρ ∈ FN. Let n ≥ 1. As seen in the first case,
{n − 1, n + 1} is a module of ρ − n, but not of ρ. Furthermore, we have

NP(σ)((ϕ↾Y )−1(0)) = {(ϕ↾Y )−1(1)}.
It follows from Lemma 4.4 that V (σ) ∖ {(ϕ↾Y )−1(0), (ϕ↾Y )−1(1)} is a
module of σ − (ϕ↾Y )−1(0). Thus, {2,3, . . .} is a module of ρ − 0. Since σ
is prime, V (σ) ∖ {(ϕ↾Y )−1(1)} is not a module of σ. Hence, we have

(ϕ↾Y )−1(1) /←→σ {(ϕ↾Y )−1(0), (ϕ↾Y )−1(2)}.
It follows that 1 /←→ρ {0,2}. Therefore, {0} ∪ {2,3, . . .} is not a module
of ρ. Consequently, ρ ∈ FN.

It follows that assertion (I1) holds.
By the second assertion of Corollary 8.2, P(σ) is nonempty. Thus, P(σ)

admits a nontrivial component C. We obtain that V (C) ∈ Q and ∣V (C)∣ > 1.
It follows that assertion (I2) holds. �

Notation 8.14. Let σ be a locally critical 2-structure. Consider a partition
Q of V (σ) and a function ϕ ∶ V (σ)Ð→ Z satisfying assertions (I1) and (I2).

Let Y ∈ Q such that ∣Y ∣ > 1. Since assertion (I1) holds, ϕ↾Y is an isomor-
phism from σ[Y ] onto an element of FN∪FZ. We denote ϕ↾Y by ϕY . Also,

8.1We use the axiom of choice to prove Lemma 8.13.
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we denote by τY the unique 2-structure defined on Z or N such that ϕY is
an isomorphism from σ[Y ] onto τY . Moreover, we denote by CY the unique
component of P(σ) such that Y = V (CY ).

Lastly, set

Veven(σ) = {v ∈ V (σ) ∶ ϕ(v) ≡ 0 mod 2}
and

Vodd(σ) = {v ∈ V (σ) ∶ ϕ(v) ≡ 1 mod 2}.
We consider also the partition

P = {Y ∈ Q ∶ ∣Y ∣ = 1} ∪ ( ⋃
{Y ∈Q∶∣Y ∣>1}

{Y ∩ Veven(σ), Y ∩ Vodd(σ)})

of V (σ).

8.2. A generalized quotient.

Observation 8.15. Let σ be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V (σ) and a function ϕ ∶ V (σ) Ð→ Z
defined as in Observation 8.4.

Let Y ∈ Q such that ∣Y ∣ > 1. For instance, suppose that τY ∈ FZ. Recall
that ϕY is an isomorphism from CY onto PZ. Therefore, for each n ∈ Z, we
have

NP(σ)((ϕY )−1(2n + 1)) = {(ϕY )−1(2n), (ϕY )−1(2n + 2)}.
By Lemma 4.4, {(ϕY )−1(2n), (ϕY )−1(2n+2)} is a module of σ−(ϕY )−1(2n+
1). In particular, for each v ∈ V (σ) ∖ Y , we have [v, (ϕY )−1(2n)]σ =
[v, (ϕY )−1(2n+2)]σ. It follows that Y ∩Veven(σ) is a module of σ[V (σ)∖(Y ∩
Vodd(σ))]. Similarly, Y ∩ Vodd(σ) is a module of σ[V (σ) ∖ (Y ∩ Veven(σ))].
The same holds when τY ∈ FN.

Observation 8.15 leads us to introduce the following definition.

Definition 8.16. Let σ be a 2-structure. Consider partitions P and Q of
V (σ) such that P is finer than Q. Hence, for each X ∈ P , there exists
Y (X) ∈ Q such that X ⊆ Y (X).

We say that P is a modular partition of σ according to Q [6] if for any modular partition
X,X ′ ∈ P such that Y (X) ≠ Y (X ′), X and X ′ are modules of σ[X ∪X ′]. according to

The generalized quotient is defined in the following manner. Consider
partitions P and Q of V (σ) such that P is a modular partition of σ according
to Q. The generalized quotient σ/QP of σ by P according to Q is defined on generalized quo-

tientV (σ/QP ) = P as follows. Given X0,X1,X2,X3 ∈ V (σ/QP ), with X0 ≠ X1

and X2 ≠X3,

(X0,X1) ≡(σ/QP ) (X2,X3) if

(8.3) Y (X0) = Y (X1) and Y (X2) = Y (X3)

or
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y (X0) ≠ Y (X1), Y (X2) ≠ Y (X3)
and

(x0, x1) ≡σ (x2, x3), where xi ∈Xi for i ∈ {0,1,2,3}.

A priori, (8.3) might appear arbitrary. In fact, it ensures the following
property (see the second assertion of Lemma 8.17). Let R be a module of
σ/QP such that ∣{Y ∈ Q ∶ Y ∩ (∪R) ≠ ∅}∣ ≥ 2. For each Y ∈ Q such that
Y ∩ (∪R) ≠ ∅, we have Y ⊆ (∪R).

Two results on the generalized quotient follow.

Lemma 8.17. Let σ be a 2-structure. Consider two partitions P and Q of
V (σ) such that P is a modular partition of σ according to Q.

● For each Y ∈ Q, Y is a module of σ if and only if {X ∈ P ∶ X ⊆ Y }
is a module of σ/QP .

● For every R ⊆ P such that ∣{Y ∈ Q ∶ Y ∩ (∪R) ≠ ∅}∣ ≥ 2, R is a
module of σ/QP if and only if (∪{Y ∈ Q ∶ Y ∩ (∪R) ≠ ∅}) = (∪R)
and ∪R is a module of σ (see Notation 2.9).

Proof. The first assertion follows from the definition of the generalized quo-
tient. For the second assertion, consider R ⊆ P such that ∣{Y ∈ Q ∶ Y ∩(∪R) ≠
∅}∣ ≥ 2. To begin, suppose that (∪{Y ∈ Q ∶ Y ∩ (∪R) ≠ ∅}) = (∪R) and ∪R
is a module of σ. It follows from the definition of the generalized quotient
that R is a module of σ/QP . Conversely, suppose that R is a module of
σ/QP . Clearly, (∪R) ⊆ (∪{Y ∈ Q ∶ Y ∩ (∪R) ≠ ∅}). For a contradiction,
suppose that

(∪R) ⊊ (∪{Y ∈ Q ∶ Y ∩ (∪R) ≠ ∅}).
Let v ∈ (∪{Y ∈ Q ∶ Y ∩ (∪R) ≠ ∅}) ∖ (∪R). There exist X0 ∈ P ∖ R and
Y0 ∈ Q such that v ∈ X0, X0 ⊆ Y0, and Y0 ∩ (∪R) ≠ ∅. Since Y0 ∩ (∪R) ≠ ∅,
there exists X1 ∈ R such that X1 ⊆ Y0. Since ∣{Y ∈ Q ∶ Y ∩ (∪R) ≠ ∅}∣ ≥ 2,
there exist X2 ∈ R and Y1 ∈ Q∖ {Y0} such that X2 ⊆ Y1. Since X0 ∪X1 ⊆ Y0,
X2 ⊆ Y1 and Y0 ≠ Y1, we have

(X0,X1) /≡(σ/QP ) (X0,X2),

which contradicts the fact that R is a module of σ/QP . Consequently, we
have

(∪R) = (∪{Y ∈ Q ∶ Y ∩ (∪R) ≠ ∅}).
It follows from the definition of the generalized quotient that ∪R is a module
of σ. �

The next result follows easily from Lemma 8.17.

Corollary 8.18. Let σ be a prime 2-structure. Consider two partitions P
and Q of V (σ) such that P is a modular partition of σ according to Q. For
every nontrivial module R of σ/QP , there exists Y ∈ Q such that (∪R) ⊊ Y
and there exists v ∈ Y ∖ (∪R) such that v /←→σ (∪R).
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8.3. The main theorem: Theorem 8.26. In the next lemmas, we con-
tinue the study of infinite, critical, and nonfinitely critical 2-structures.

Lemma 8.19. Let σ be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V (σ) and a function ϕ ∶ V (σ) Ð→ Z
defined as in Observation 8.4. The following two assertions hold

(I3) P (see Notation 8.14) is a modular partition of σ according to Q;
(I4) for each Y ∈ Q such that V (τY ) = N (see Notation 8.14),

(ϕY )−1(1)←→σ ({(ϕY )−1(2)} ∪ (V (σ) ∖ Y )).

Proof. It follows from Observation 8.15 that assertion (I3) holds. For asser-
tion (I4), consider Y ∈ Q such that ∣Y ∣ > 1 and τY ∈ FN. Since ϕY is an
isomorphism from CY onto PN, we have

NP(σ)((ϕY )−1(0)) = {(ϕY )−1(1)}.

By Lemma 4.4, V (σ)∖{(ϕY )−1(0), (ϕY )−1(1)} is a module of σ−(ϕY )−1(0).
In particular, we have (ϕY )−1(1)←→σ ({(ϕY )−1(2)} ∪ (V (σ) ∖ Y )). There-
fore, assertion (I4) holds. �

Lemma 8.20. Let σ be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V (σ) and a function ϕ ∶ V (σ) Ð→ Z
defined as in Observation 8.4. The following assertion holds

(I5) the generalized quotient σ/QP is prime.

Proof. Since σ is prime, assertion (I5) follows easily from Corollary 8.18
because for every Y ∈ Q, ∣{X ∈ P ∶X ⊆ Y }∣ = 1 or 2. �

In the next two facts, we consider locally critical 2-structures.

Fact 8.21. Let σ be a locally critical 2-structure. Consider a partition Q
of V (σ) and a function ϕ ∶ V (σ) Ð→ Z satisfying assertions (I1) and (I2).
Suppose also that assertions (I3) and (I4) hold.

Let Q′ ⊆ Q such that

{Y ∈ Q′ ∶ ∣Y ∣ > 1} ≠ ∅.
Set

P ′ = {X ∈ P ∶X ⊆ (∪Q′)}.
Suppose that σ[∪Q′] admits a nontrivial module M . The following state-
ments hold.

● If M/Q′ possesses a unique element Y , then {Y ∩ Veven(σ), Y ∩
Vodd(σ)} is a module of (σ/QP )[P ′].

● Suppose that ∣M/Q′∣ ≥ 2. Given Y ∈ (M/Q′), if ∣Y ∣ > 1, then (Y ∩
M)∩Veven(σ) ≠ ∅ and (Y ∩M)∩Vodd(σ) ≠ ∅. It follows that M/P ′ is
a module of (σ/QP )[P ′]. Moreover, if M/P ′ = P ′, then there exists
Y ∈ (M/Q′), with ∣Y ∣ > 1, such that P ′ ∖ {Y ∩Veven(σ), Y ∩Vodd(σ)}
is a module of (σ/QP )[P ′].
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Proof. To begin, suppose that M/Q′ possesses a unique element Y . Hence,
M ⊆ Y . By assertion (M2) of Proposition 2.5, M is a module of σ[Y ]. Thus,
ϕY (M) is a module of τY . By assertion (I1), τY ∈ FN ∪FZ. It follows from
Lemmas 8.8 and 8.10 that ϕY (M) is a module of LN or LZ. Therefore,
ϕY (M) contains even and odd integers. It follows that M ∩ Veven(σ) ≠ ∅
and M ∩ Vodd(σ) ≠ ∅. Since P is a modular partition of σ according to Q
by assertion (I3), {Y ∩ Veven(σ), Y ∩ Vodd(σ)} is a module of (σ/QP )[P ′].

Now, suppose that ∣M/Q′∣ ≥ 2. For a contradiction, suppose that there
exists Y ∈ M/Q′ such that ∣Y ∣ > 1 and ∣Y ∩M ∣ = 1. We have ϕY ∶ Y Ð→
N or ϕY ∶ Y Ð→ Z. Thus, there exists an integer n such that Y ∩M =
{(ϕY )−1(n)}. We distinguish the following two cases. In each of them, we
obtain a contradiction.
Case 1: ϕY ∶ Y Ð→ Z or ϕY ∶ Y Ð→ N and n ≥ 1.

Since ∣M ∣ ≥ 2, there exists x ∈M ∖ Y . Since assertion (I3) holds, P is a
modular partition of σ according to Q. Therefore, we have

x←→σ {(ϕY )−1(n − 1), (ϕY )−1(n + 1)}.
Since M is a module of σ[∪Q′] such that {(ϕY )−1(n), x} ⊆M and M ∩
{(ϕY )−1(n − 1), (ϕY )−1(n + 1)} = ∅, we obtain

(ϕY )−1(n)←→σ {(ϕY )−1(n − 1), (ϕY )−1(n + 1)}.
Since ϕY is an isomorphism from σ[Y ] onto τY , we obtain

n←→τY {n − 1, n + 1},
which contradicts τY ∈ FZ ∪FN.

Case 2: ϕY ∶ Y Ð→ N and n = 0.
By considering x ∈M ∖ Y , we obtain

(ϕY )−1(1)←→σ {(ϕY )−1(0), x}.
Since assertion (I4) holds, we have

(ϕY )−1(1)←→σ ({(ϕY )−1(2), x}.
Hence,

(ϕY )−1(1)←→σ ({(ϕY )−1(0), (ϕY )−1(2)}.
Since ϕY is an isomorphism from σ[Y ] onto τY , we obtain

1←→τY {0,2},
which contradicts τY ∈ FN.

Consequently, for each Y ∈ (M/Q′), we have

(8.4) if ∣Y ∣ > 1, then ∣Y ∩M ∣ ≥ 2.

As above, when ∣M/Q′∣ = 1, we obtain (Y ∩M)∩Veven(σ) ≠ ∅ and (Y ∩M)∩
Vodd(σ) ≠ ∅.

Let Y ∈ (M/Q′) such that ∣Y ∣ ≥ 2, we have ∣Y ∩M ∣ ≥ 2. We obtain
(Y ∩M) ∩ Veven(σ) ≠ ∅ and (Y ∩M) ∩ Vodd(σ) ≠ ∅. It follows that M/P ′

is the family of X ∈ P ′ such that there exists Y ∈ (M/Q′) satisfying Y ⊇X.
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Since P is a modular partition of σ according to Q by assertion (I3), M/P ′

is a module of (σ/QP )[P ′].
Lastly, suppose that M/P ′ = P ′. Since M is a nontrivial module of

σ[∪Q′], there exists Y ∈ (M/Q′) such that Y ∖M ≠ ∅. Moreover, since
M/P ′ = P ′, we have ∣Y ∣ > 1. We have ϕY ∶ Y Ð→ N or ϕY ∶ Y Ð→ Z. For
convenience, set

R = P ′ ∖ {Y ∩ Veven(σ), Y ∩ Vodd(σ)}.
Let y ∈ Y ∖M . We obtain

y ←→σ M.

Since P is a modular partition of σ according to Q and M/P ′ = P ′, we
obtain

(8.5) {z ∈ Y ∶ ϕY (z) ≡ ϕY (y) mod 2}←→(σ/QP )[P ′] R.

Therefore, if (Y ∖M) ∩ Veven(σ) ≠ ∅ and (Y ∖M) ∩ Vodd(σ) ≠ ∅, then R is
a module of (σ/QP )[P ′]. Thus, suppose that

(8.6) (Y ∖M) ∩ Veven(σ) = ∅ or (Y ∖M) ∩ Vodd(σ) = ∅.

By assertion (M2) of Proposition 2.5, M ∩Y is a module of σ[Y ]. By (8.4),
∣M ∩ Y ∣ ≥ 2. Since Y ∖M ≠ ∅, M ∩ Y is a nontrivial module of σ[Y ].
Thus, ϕY (M ∩ Y ) is a nontrivial module of τY . Since assertion (I1) holds,
τY ∈ FN ∪ FZ. It follows from Lemmas 8.8 and 8.10 that ϕY (M ∩ Y ) is
a nontrivial module of LN or LZ. It follows from (8.6) that τY ∈ FN and
M ∩ Y = Y ∖ {(ϕY )−1(0)}. Since assertion (I4) holds, we have

(ϕY )−1(1)←→σ ({(ϕY )−1(2)} ∪ (V (σ) ∖ Y )).
Since P is a modular partition of σ according Q, we obtain

(Y ∩ Vodd(σ))←→(σ/QP )[P ′] R.

Furthermore, since (ϕY )−1(0) ∈ Y ∖M , it follows from (8.5) that

(Y ∩ Veven(σ))←→(σ/QP )[P ′] R.

Therefore, R is a module of (σ/QP )[P ′]. �

The next fact follows easily from Fact 8.21.

Fact 8.22. Let σ be a locally critical 2-structure. Consider a partition Q
of V (σ) and a function ϕ ∶ V (σ) Ð→ Z satisfying assertions (I1) and (I2).
Suppose also that assertions (I3) and (I4) hold.

Let Q′ be a nonempty subset of Q such that

{Y ∈ Q′ ∶ ∣Y ∣ > 1} ≠ ∅.
Set

P ′ = {X ∈ P ∶X ⊆ (∪Q′)}.
Suppose that

(8.7) ∣{Y ∈ Q′ ∶ ∣Y ∣ > 1}∣ ≥ 2 or ∣Q′∣ ≥ 3.
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If σ[∪Q′] is decomposable, then (σ/QP )[P ′] is as well.

We go back to the study of infinite, critical, and nonfinitely critical 2-
structures. The next lemma follows easily from Fact 8.22.

Lemma 8.23. Let σ be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V (σ) and a function ϕ ∶ V (σ) Ð→ Z
defined as in Observation 8.4. The following assertion holds

(I6) If

(8.8) ∣{Y ∈ Q ∶ ∣Y ∣ > 1}∣ ≥ 2 or ∣Q∣ ≥ 4,

then

{v ∈ V (σ) ∶ {v} ∈ Q} ⊆ (P ∖S (σ/QP )).

Proof. Consider v ∈ V (σ) such that {v} ∈ Q. Furthermore, suppose that
(8.8) holds. Set

Q′ = Q ∖ {{v}}.
Since assertion (I2) holds, {Y ∈ Q ∶ ∣Y ∣ > 1} ≠ ∅. Furthermore, it follows
from (8.8) that (8.7) holds. By Lemma 8.19, assertions (I3) and (I4) hold.
To conclude, it suffices to apply Fact 8.22. �

Proposition 8.24. Let σ be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V (σ) and a function ϕ ∶ V (σ) Ð→ Z
defined as in Observation 8.4.

Suppose that P(σ) admits a unique nontrivial component C and finitely
many trivial components. If ∣V (σ) ∖ V (C)∣ ≥ 2, then

● ∣V (σ) ∖ V (C)∣ = 2;
● there exists a unique v ∈ V (σ) ∖ V (C) such that v /←→σ V (C);
● σ[V (C)] is decomposable.

Proof. To use Notation 8.14, set Y = V (C). Obviously, Y ∈ Q. To begin,
we show that for each W ⊊ V (σ) ∖ V (C), we have

(8.9) σ[Y ∪W ] is decomposable.

Otherwise, consider W ⊊ V (σ) ∖ Y such that σ[Y ∪W ] is prime. Since
V (σ) ∖ (Y ∪W ) is finite, it follows from Corollary 3.21 that there exist
v,w ∈ V (σ) ∖ (Y ∪W ) such that σ − {v,w} is prime. We cannot have v = w
because σ is critical. Moreover, we cannot have v ≠ w because v and w are
isolated in P(σ). It follows that (8.9) holds.

Set

S(Y ) = {v ∈ V (σ) ∖ Y ∶ v /←→σ Y }.
We prove that either for every v ∈ S(Y ), we have

(8.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[v, (ϕY )−1(0)]σ = [(ϕY )−1(0), (ϕY )−1(2)]σ
and

[v, (ϕY )−1(1)]σ = [(ϕY )−1(1), (ϕY )−1(3)]σ,
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or for every v ∈ S(Y ), we have

(8.11)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[v, (ϕY )−1(0)]σ = [(ϕY )−1(2), (ϕY )−1(0)]σ
and

[v, (ϕY )−1(1)]σ = [(ϕY )−1(3), (ϕY )−1(1)]σ.
Indeed, let v ∈ S(Y ). By (8.9), σ[Y ∪{v}] admits a nontrivial module M . By
Lemma 8.19, assertions (I3) and (I4) hold. We use Fact 8.21 in the following
manner. For Q′ consider {Y,{v}}. We obtain P ′ = {Y ∩ Veven(σ), Y ∩
Vodd(σ),{v}}. For a contradiction, suppose that ∣M/Q′∣ = 1. We obtain
M/Q′ = {Y }. It follows from Fact 8.21 that {Y ∩ Veven(σ), Y ∩ Vodd(σ)} is
a module of (σ/QP )[P ′], which contradicts v ∈ S(Y ). Therefore, ∣M/Q′∣ ≥
2. Hence, we have v ∈ M . Furthermore, it follows from Fact 8.21 that
(Y ∩M)∩Veven(σ) ≠ ∅ and (Y ∩M)∩Vodd(σ) ≠ ∅. Thus, there exist p, q ∈ Z
such that

(ϕY )−1(2p), (ϕY )−1(2q + 1) ∈ Y ∩M.

In particular, we have ∣M ∩ Y ∣ ≥ 2. By assertion (M2) of Proposition 2.5,
M ∩ Y is a module of σ[Y ]. Since v ∈ M and M ⊊ (Y ∪ {v}), we have
(M ∩ Y ) ≠ Y . Moreover, since ∣M ∩ Y ∣ ≥ 2, M ∩ Y is a nontrivial module of
σ[Y ]. It follows that ϕY (Y ∩M) is a nontrivial module of τY . We distinguish
the following two cases.

Case 1: There exists n ∈ Z such that

(8.12) ϕY (Y ∩M) ⊆ {. . . , n − 1, n}.
There exists m ≥ 0 such that (ϕY )−1(2m), (ϕY )−1(2m + 1) ∈ (Y ∖M).
Since (ϕY )−1(2p), (ϕY )−1(2q + 1) ∈ Y ∩M and v ∈M , we obtain

[v, (ϕY )−1(2m)]σ = [(ϕY )−1(2p), (ϕY )−1(2m)]σ,
and hence

[v, (ϕY )−1(2m)]σ = [(ϕY )−1(0), (ϕY )−1(2)]σ.
Since P is a modular partition of σ according to Q by assertion (I3) (see
Lemma 8.19), we have v ←→σ Y ∩ Veven(σ). It follows that

[v, (ϕY )−1(0)]σ = [(ϕY )−1(0), (ϕY )−1(2)]σ.
Similarly, we obtain

[v, (ϕY )−1(1)]σ = [(ϕY )−1(1), (ϕY )−1(3)]σ.
Therefore, v satisfies (8.10). Consequently, if M satisfies (8.12), then v
satisfies (8.10).

Case 2: There exists n ∈ Z such that

(8.13) {n,n + 1, . . .} ⊆ ϕY (Y ∩M).
By assertion (I1), τY ∈ FN∪FZ. Since ϕY (Y ∩M) is a nontrivial module
of τY , it follows from Lemmas 8.8 and 8.10 that there exists n′ ∈ Z such
that

ϕY (Y ∩M) = {n′, n′ + 1, . . .}.
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We verify that v satisfies (8.11). We distinguish the following two sub-
cases.
Subcase a: τY ∈ FZ or τY ∈ FN and n′ ≥ 2.

There exists m ≥ 0 such that (ϕY )−1(2m), (ϕY )−1(2m+1) ∈ (Y ∖M).
Since (ϕY )−1(2p) ∈ Y ∩M and v ∈M , we obtain

[v, (ϕY )−1(2m)]σ = [(ϕY )−1(2p), (ϕY )−1(2m)]σ,

and hence

[v, (ϕY )−1(2m)]σ = [(ϕY )−1(2), (ϕY )−1(0)]σ.

Since P is a modular partition of σ according to Q by assertion (I3),
we obtain v ←→σ Y ∩ Veven(σ). It follows that

[v, (ϕY )−1(0)]σ = [(ϕY )−1(2), (ϕY )−1(0)]σ.

Similarly, we obtain

[v, (ϕY )−1(1)]σ = [(ϕY )−1(3), (ϕY )−1(1)]σ.

Therefore, v satisfies (8.11).
Subcase b: τY ∈ FN and n′ = 1..

We have ϕY (Y ∩M) = {1,2, . . .}. Since v ∈M , we obtain

[v, (ϕY )−1(0)]σ = [(ϕY )−1(2), (ϕY )−1(0)]σ.

Since τY ∈ FN, ϕY is an isomorphism from C onto PN. Hence, we
have

NP(σ)((ϕY )−1(0)) = {(ϕY )−1(1)}.
By Lemma 4.4, V (σ) ∖ {(ϕY )−1(0), (ϕY )−1(1)} is a module of σ −
(ϕY )−1(0). It follows that

[v, (ϕY )−1(1)]σ = [(ϕY )−1(3), (ϕY )−1(1)]σ.

Thus, v satisfies (8.11).
Consequently, if M satisfies (8.13), then v satisfies (8.11).

It follows that for each v ∈ S(Y ), v satisfies (8.10) or (8.11). Let v ∈ S(Y ).
Since v /←→σ Y , we obtain

[v, (ϕY )−1(0)]σ ≠ [v, (ϕY )−1(1)]σ.

It follows from (8.10) or (8.11) that

[(ϕY )−1(0), (ϕY )−1(2)]σ ≠ [(ϕY )−1(1), (ϕY )−1(3)]σ.

Therefore, [0,2]τY ≠ [1,3]τY , so τY ≠ σ(L(N) and τY ≠ σ(L(Z). It follows
from Lemmas 8.8 and 8.10 that either (8.12) holds or (8.13) holds. Con-
sequently, either (8.10) holds for every v ∈ S(Y ) or (8.11) holds for every
v ∈ S(Y ). In particular, we obtain that

(8.14) S(Y ) is a module of σ[Y ∪ S(Y )].
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We conclude in the following manner. For a contradiction, suppose that
∣V (σ) ∖ Y ∣ ≥ 3. We show that

(8.15) Y ∪ S(Y ) is a module of σ.

Let v ∈ S(Y ) and w ∈ (V (σ) ∖ Y ) ∖ S(Y ). We must verify that Y ∪ {v} is
a module of σ[Y ∪ {v,w}]. Since ∣V (σ) ∖ Y ∣ ≥ 3, it follows from (8.9) that
σ[Y ∪ {v,w}] admits a nontrivial module M . We use Fact 8.21 as follows.
Consider

Q′ = {Y,{v},{w}}.
We obtain

P ′ = {Y ∩ Veven(σ), Y ∩ Vodd(σ),{v},{w}}.
By Fact 8.21, if ∣M/Q′∣ = 1, then {Y ∩ Veven(σ), Y ∩ Vodd(σ)} is a module
of (σ/QP )[P ′], which contradicts v ∈ S(Y ). Therefore, ∣M/Q′∣ ≥ 2. By
Fact 8.21, (Y ∩M)∩Veven(σ) ≠ ∅ and (Y ∩M)∩Vodd(σ) ≠ ∅. It follows that
M/P ′ is a module of (σ/QP )[P ′]. Furthermore, we have v ∈ M because
v ∈ S(Y ). For a contradiction, suppose that M/P ′ = P ′. It follows from
Fact 8.21 that {{v},{w}} is a module of (σ/QP )[P ′]. Thus, {v,w} is a
module of σ[Y ∪ {v,w}], which contradicts v ∈ S(Y ) and w ∈ (V (σ) ∖ Y ) ∖
S(Y ). Consequently, M/P ′ ⊊ P ′. Since v ∈M , we obtain

M/P ′ = {Y ∩ Veven(σ), Y ∩ Vodd(σ),{v}}.
By the second assertion of Lemma 8.17 applied to σ[Y ∪{v,w}] with Q′ and
P ′, Y ∪{v} is a module of σ[Y ∪{v,w}]. It follows that (8.15) holds. Finally,
it follows from (8.14) and (8.15) that Y ∪ S(Y ) is a nontrivial module of σ
or S(Y ) is a nontrivial module of σ, which contradicts the fact that σ is
prime. It ensues that

∣V (σ) ∖ Y ∣ = 2.

Since Y is not a module of σ, we have S(Y ) ≠ ∅. It follows from (8.14) that
∣S(Y )∣ = 1. Moreover, since both elements of V (σ)∖Y are isolated in P(σ),
we obtain σ[Y ] is decomposable. �

The next lemma follows from Proposition 8.24.

Lemma 8.25. Let σ be an infinite, critical, and nonfinitely critical 2-
structure. Consider the partition Q of V (σ) and a function ϕ ∶ V (σ) Ð→ Z
defined as in Observation 8.4. The following assertion holds

(I7) Suppose that ∣Q∣ ≤ 3 and there exists a unique Y ∈ Q such that ∣Y ∣ > 1
(i.e. (8.8) does not hold):
● if V (σ) = Y , then ϕ↾Y is an isomorphism from σ[Y ] onto a

prime element of FN ∪FZ;
● if ∣V (σ) ∖ Y ∣ = 1, then (V (σ) ∖ Y ) /←→σ Y and ϕ↾Y is an iso-

morphism from σ[Y ] onto a decomposable element of FN∪FZ;
● if ∣V (σ) ∖ Y ∣ = 2, then there exists a unique v ∈ V (σ) ∖ Y such

that v /←→σ Y , and ϕ↾Y is an isomorphism from σ[Y ] onto a
decomposable element of FN ∪FZ.
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Proof. Suppose that there exists a unique Y ∈ Q such that ∣Y ∣ > 1. If V (σ) =
Y , then ϕ↾Y is an isomorphism from σ[Y ] onto a prime element of FN∪FZ
because σ is prime. Suppose that V (σ) ∖ Y contains a unique element v.
Since σ is prime, Y is not a module of σ, and hence v /←→σ Y . Moreover,
since σ is critical, σ −v is decomposable. Thus, ϕ↾Y is an isomorphism from
σ[Y ] onto a decomposable element of FN∪FZ. Finally, when ∣V (σ)∖Y ∣ ≥ 2,
we utilize Proposition 8.24. �

The main theorem follows. It puts together Lemmas 8.13, 8.19, 8.20, 8.23,
and 8.25.

Theorem 8.26 (Boubabbous and Ille [6]8.2). Consider an infinite, criti-
cal, and nonfinitely critical 2-structure σ. Let Q be the partition of V (σ)
constituted by the vertex sets of the components of P(σ). Using the axiom
of choice, consider also a function ϕ ∶ V (σ) Ð→ Z defined as in Observa-
tion 8.4. Then, assertions (I1),. . . ,(I7) hold.

8.4. Locally critical 2-structures. The purpose of this subsection is to
establish the following theorem.

Theorem 8.27 (Boubabbous and Ille [6]8.3). Let σ be a locally critical 2-
structure. Consider a partition Q of V (σ) and a function ϕ ∶ V (σ) Ð→ Z
satisfying assertions (I1) and (I2). Suppose also that assertions (I3),. . . ,(I6)
hold. If (8.8) holds, then σ is critical and nonfinitely critical.

Before proving Theorem 8.27, we establish the following three results.

Lemma 8.28. Let σ be a locally critical 2-structure. Consider a partition Q
of V (σ) and a function ϕ ∶ V (σ) Ð→ Z satisfying assertions (I1) and (I2).
Suppose also that assertions (I3), (I4), and (I5) hold. If

(8.16) ∣{Y ∈ Q ∶ ∣Y ∣ > 1}∣ ≥ 2 or ∣Q∣ ≥ 3,

then σ is prime.

Proof. We consider the partition P of V (σ) defined as in Notation 8.14.
Suppose that (8.16) holds. We have to show that σ is prime. We utilize
Fact 8.22 as follows. Set Q′ = Q. We obtain P ′ = P . Since assertion (I2)
holds, {Y ∈ Q ∶ ∣Y ∣ > 1} ≠ ∅. Since (8.16) holds, (8.7) holds too. Since
assertion (I5) holds, σ/QP is prime. It follows from Fact 8.22 that σ is
prime. �

Lemma 8.29. Let σ be a locally critical 2-structure. Consider a partition Q
of V (σ) and a function ϕ ∶ V (σ) Ð→ Z satisfying assertions (I1) and (I2).
Suppose also that assertions (I3) and (I4) hold. Consider Y ∈ Q such that
∣Y ∣ > 1. For every v ∈ Y , σ − v is decomposable.

8.2Boubabbous and Ille [6] proved this theorem (see [6, Theorem 12]) for digraphs.
8.3Boubabbous and Ille [6] proved this theorem (see [6, Theorem 13]) for digraphs.



PRIME 2-STRUCTURES 113

Proof. Let v ∈ Y . Set

n = ϕY (v).
Since assertions (I1) and (I2) hold, we consider the partition P of V (σ)
defined as in Notation 8.14.

First, suppose that τY ∈ FZ or τY ∈ FN and n ≥ 1. We obtain that
{n − 1, n + 1} is a module of τY − n. Since ϕY is an isomorphism from σ[Y ]
onto τY , {(ϕY )−1(n − 1), (ϕY )−1(n + 1)} is a module of σ[Y ] − v. Since
assertion (I3) holds, P is a modular partition of σ according to Q. We
obtain

{(ϕY )−1(n − 1), (ϕY )−1(n + 1)}←→σ V (σ) ∖ Y.
It follows that {(ϕY )−1(n − 1), (ϕY )−1(n + 1)} is a module of σ − v.

Second, suppose that τY ∈ FN and n = 0. We obtain that {2,3, . . .}
is a module of τY − 0. Since ϕY is an isomorphism from σ[Y ] onto τY ,
Y ∖{(ϕY )−1(0), (ϕY )−1(1)} is a module of σ[Y ]−(ϕY )−1(0). Since assertion
(I4) holds, we have

(ϕY )−1(1)←→σ ({(ϕY )−1(2)} ∪ (V (σ) ∖ Y )).
It follows that V (σ) ∖ {(ϕY )−1(0), (ϕY )−1(1)} is a module of σ − v. �

Proposition 8.30. Let σ be a locally critical 2-structure. Consider a par-
tition Q of V (σ) and a function ϕ ∶ V (σ) Ð→ Z satisfying assertions (I1)
and (I2). Suppose also that assertions (I3), (I4), and (I5) hold. For every
Y ∈ Q such that ∣Y ∣ > 1, the following two assertions hold

(J1) for each n ∈ V (τY ) (see Notation 8.14), σ − {(ϕY )−1(n), (ϕY )−1(n+
1)} is isomorphic to σ;

(J2) there exists a nontrivial component C of P(σ) such that Y = V (C),
and ϕY is an isomorphism from C onto PN or PZ.

Proof. Let Y ∈ Q such that ∣Y ∣ > 1. Since assertion (I1) holds, ϕY is an
isomorphism from σ[Y ] onto τY ∈ FN ∪FZ. Furthermore, since assertions
(I3), (I4), and (I5) hold, it follows from Lemma 8.28 that σ is prime. We
prove that

(8.17) for each n ∈ V (τY ), {(ϕY )−1(n), (ϕY )−1(n + 1)} ∈ E(P(σ)).
More strongly, we establish that
(8.18)

for each n ∈ V (τY ), σ − {(ϕY )−1(n), (ϕY )−1(n + 1)} is isomorphic to σ,

that is, assertion (J1) holds. Let n ∈ V (τY ). Consider the function

(8.19)
f ∶ V (τY ) Ð→ V (τY ) ∖ {n,n + 1}

p ≤ n − 1 z→ p,
p ≥ n z→ p + 2.

Clearly, f is strictly increasing and preserves the parity. Since τY ∈ FN∪FZ,
it follows from Lemmas 8.6 and 8.7 that f is an isomorphism from τY onto
τY − {n,n+ 1}. Since assertion (I1) holds, ϕY is an isomorphism from σ[Y ]
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onto τY . Thus, ((ϕY )−1)↾V (τY )∖{n,n+1} ○f ○ϕY is an isomorphism from σ[Y ]
onto σ[Y ] − {(ϕY )−1(n), (ϕY )−1(n + 1)}. For convenience, set

ψ = ((ϕY )−1)↾V (τZ)∖{n,n+1} ○ f ○ ϕY .

Consider the extension ψ∪Id(V (σ)∖Y ) of ψ by the identity function on V (σ)∖
Y defined by

(8.20)
V (σ) Ð→ V (σ) ∖ {(ϕY )−1(n), (ϕY )−1(n + 1)}
w ∈ Y z→ ψ(w),

w ∈ (V (σ) ∖ Y ) z→ w.

Since assertion (I3) holds, P is a modular partition of σ according to Q. It
follows that ψ ∪ Id(V (σ)∖Y ) is an isomorphism from σ onto σ − {(ϕY )−1(n),
(ϕY )−1(n + 1)}. Consequently, (8.18) holds, so assertion (J1) holds. More-
over, (8.17) holds because σ is prime.

To prove that assertion (J2) holds, we distinguish the following two cases.
Case 1: ϕY ∶ Y Ð→ Z.

Let n ∈ Z. Since (8.17) holds,

{(ϕY )−1(n − 1), (ϕY )−1(n + 1)} ⊆ NP(σ)((ϕY )−1(n)).

Since assertions (I3) and (I4) hold, it follows from Lemma 8.29 that
σ − (ϕY )−1(n) is decomposable. By Lemma 4.4,

NP(σ)((ϕY )−1(n)) = {(ϕY )−1(n − 1), (ϕY )−1(n + 1)}.

It follows that P(σ)[Y ] is a component of P(σ), and ϕY is an isomor-
phism from P(σ)[Y ] onto PZ.

Case 2: ϕY ∶ Y Ð→ N.
As previously, we have

NP(σ)((ϕY )−1(n)) = {(ϕY )−1(n − 1), (ϕY )−1(n + 1)}

for each n ≥ 1. Furthermore, since (8.17) holds, we have

(8.21) (ϕY )−1(1) ∈ NP(σ)((ϕY )−1(0)).

Since assertion (I4) holds, we have

(8.22) (ϕY )−1(1)←→σ ({(ϕY )−1(2)} ∪ (V (σ) ∖ Y )).
Moreover, since assertion (I1) holds, τY ∈ FN. It follows from Lemma 8.7
that

1←→τY (V (τY ) ∖ {0,1}).
Since ϕY is an isomorphism from σ[Y ] onto τY , we obtain

(8.23) (ϕY )−1(1)←→σ (Y ∖ {(ϕY )−1(0), (ϕY )−1(1)}).
It follows from (8.22) and (8.23) that

(ϕY )−1(1)←→σ (V (σ) ∖ {(ϕY )−1(0), (ϕY )−1(1)}).
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Thus, for every v ∈ V (σ) ∖ {(ϕY )−1(0), (ϕY )−1(1)}, we have
v /∈ NP(σ)((ϕY )−1(0)). Since (ϕY )−1(1) ∈ NP(σ)((ϕY )−1(0)) by (8.21),
we obtain

NP(σ)((ϕY )−1(0)) = {(ϕY )−1(1)}.
Consequently, P(σ)[Y ] is a component of P(σ), and ϕY is an isomor-
phism from P(σ)[Y ] onto PN. �

Proof of Theorem 8.27. Since (8.8) holds, (8.16) holds as well. Since asser-
tions (I3), (I4), and (I5) hold, it follows from Lemma 8.28 that σ is prime.

To continue, we prove that σ is critical. Let v ∈ V (σ). We must verify
that σ−v is decomposable. Denote by Y the unique element of Q containing
v. To begin, suppose that ∣Y ∣ > 1. Since assertions (I3) and (I4) hold, it
follows from Lemma 8.29 that σ − v is decomposable. Now, suppose that
Y = {v}. Since assertion (I6) and (8.8) hold, (σ/QP )−{v} is decomposable.
Let R be a nontrivial module of (σ/QP ) − {v}. Set

Q′ = Q ∖ {{v}} and P ′ = P ∖ {{v}}.

Clearly, P ′ is a modular partition of σ − v according to Q′. Moreover, we
have

(σ/QP ) − {v} = (σ − v)/(P ′)Q′.

We apply Lemma 8.17 to σ−v together with partitons P ′ and Q′ as follows.
We distinguish the following two cases.
Case 1: ∣(∪R)/Q′∣ = 1.

Denote by Z the unique element of (∪R)/Q′. Since ∣R∣ ≥ 2 and ∣{X ∈
P ′ ∶ X ⊆ Z}∣ ≤ 2, we have R = {X ∈ P ′ ∶ X ⊆ Z}. It follows from the first
assertion of Lemma 8.17 that Z is a module of σ − v.

Case 2: ∣(∪R)/Q′∣ ≥ 2.
It follows from the second assertion of Lemma 8.17 that (∪{Y ∈ Q′ ∶
Y ∩ (∪R) ≠ ∅}) = (∪R) and (∪R) is a module of σ − v. Since (∪{Y ∈ Q′ ∶
Y ∩ (∪R) ≠ ∅}) = (∪R) and R is a nontrivial module of (σ − v)/(P ′)Q′,
(∪R) is a nontrivial module of σ − v.

Consequently, σ is critical.
Finally, we verify that σ is not finitely critical. Since assertion (I2) holds,

there exists Y ∈ Q such that ∣Y ∣ > 1. Moreover, since assertions (I3), (I4),
and (I5) hold, it follows from assertion (J2) of Proposition 8.30 that there
exists a nontrivial component C of P(σ) such that Y = V (C). Hence, there
exist distinct v,w ∈ Y such that σ − {v,w} is prime. �

Remark 8.31. Consider the tournament T defined on V (T ) = Z × {0,1}
which satisfies

● for i = 0 or 1, the function ψi ∶ Z Ð→ Z × {i}, defined by n z→ (n, i)
for every n ∈ Z, is an isomorphism from UZ onto T [Z × {i}];

● for p, q ∈ Z, we have ((2p,0), (2q,1)) ∈ A(T ), ((2p+1,0), (2q+1,1)) ∈
A(T ), ((2p + 1,1), (2q,0)) ∈ A(T ), and ((2p,1), (2q + 1,0)) ∈ A(T ).
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First, consider the partition

Q = {Z × {0},Z × {1}}
of V (σ(T )) and the function ϕ ∶ V (σ(T )) Ð→ Z defined by ϕ↾(Z×{0}) =
(ψ0)−1 and ϕ↾(Z×{1}) = (ψ1)−1. We obtain

P = {(2Z) × {0}, (2Z + 1) × {0}, (2Z) × {1}, (2Z + 1) × {1}}.
It is not difficult to verify that σ(T ) satisfies assertions (I1),. . . ,(I6) with
Q and ϕ. Furthermore, since ∣{Y ∈ Q ∶ ∣Y ∣ > 1}∣ = 2, (8.8) holds. By
Theorem 8.27, σ(T ) is critical but not finitely critical. Moreover, it follows
from assertion (J2) of Proposition 8.30 that Z × {0} and Z × {1} are the
vertex sets of the components of P(σ(T )).

Second, consider the partition

Q = {Z × {0}} ∪ {{(n,1)} ∶ n ∈ Z}
of V (σ(T )) and the same function ϕ as before. We obtain

P = {(2Z) × {0}, (2Z + 1) × {0}} ∪ {{(n,1)} ∶ n ∈ Z}.
Once again, σ(T ) satisfies assertions (I1),. . . ,(I6) with Q and ϕ. Further-
more, since Q is infinite, (8.8) holds. Nevertheless, it follows only from
Proposition 8.30 that Z × {0} is the vertex set of a component of P(σ(T )).

Consequently, it is not possible to determine the primality graph from
assertions (I1),. . . ,(I6) only.

The next result follows from Theorems 8.26 and 8.27.

Corollary 8.32 (Boubabbous and Ille [6]8.4). Given an infinite 2-structure
σ, if σ is critical and nonfinitely critical, then the following two assertions
hold

● for any distinct v,w ∈ V (σ), σ − {v,w} is prime if and only if σ −
{v,w} is isomorphic to σ;

● there exist distinct v,w ∈ V (σ) such that σ − {v,w} is isomorphic to
σ.

Proof. Suppose that σ is an infinite, critical, and nonfinitely critical 2-
structure. By the second assertion of Corollary 8.2, there exist distinct
v,w ∈ V (σ) such that σ − {v,w} is prime.

Now, consider any distinct v,w ∈ V (σ) such that σ − {v,w} is prime. We
have to verify that σ − {v,w} is isomorphic to σ. Consider the partition Q
of V (σ) and a function ϕ ∶ V (σ)Ð→ Z defined as in Observation 8.4. There
exists Y ∈ Q such that v,w ∈ Y . We have {v,w} ∈ E(P(σ)). Since ϕY is an
isomorphism from P(σ)[Y ] onto PN or PZ, there exists n ∈ Z such that

{v,w} = {(ϕY )−1(n), (ϕY )−1(n + 1)}.
Since assertions (I3), (I4), and (I5) hold, it follows from assertion (J1) of
Proposition 8.30 that σ−{(ϕY )−1(n), (ϕY )−1(n+1)} is isomorphic to σ. �

8.4Boubabbous and Ille [6] proved this theorem for digraphs.
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The next result follows from Corollary 8.32 and Theorem 5.8. It is the
analogue of Theorem 5.3 in the infinite case.

Corollary 8.33. Given an infinite and prime 2-structure σ, if there exists
a finite subset F of V (σ) such that ∣F ∣ ≥ 2 and σ − F is prime, then there
exist distinct v,w ∈ V (σ) such that σ − {v,w} is prime.

Proof. It follows from Corollary 3.20 that there exists F ′ ⊆ F such that
∣F ′∣ = 2 or 3 and σ − F ′ is prime. The conclusion is obvious when ∣F ′∣ = 2.
Hence, suppose that ∣F ′∣ = 3. By Corollary 3.20 again, there exists x ∈ F ′

such that σ − x is prime. Set

τ = σ − x.
Clearly, if τ is not critical, then we conclude directly. Thus, suppose that τ
is critical. By denoting by y and z the two elements of F ′ ∖ {x}, we obtain
τ − {y, z} is prime. Therefore, τ is not finitely critical. By applying three
times the second assertion of Corollary 8.32 from τ , we obtain F ′′ ⊆ V (τ)
such that ∣F ′′∣ = 6 and τ−F ′′ is isomorphic to τ . Since τ−F ′′ = σ−({x}∪F ′′),
we obtain that σ− ({x}∪F ′′) is prime. It follows from Theorem 5.8 applied
to σ−({x}∪F ′′) that there exist distinct v,w ∈ ({x}∪F ′′) such that σ−{v,w}
is prime. �

Remark 8.34. Observe that Corollary 8.32 does not hold if we only suppose
that σ is prime but not finitely critical. Similarly, Corollary 8.33 does not
hold if we only suppose that the finite subset F of V (σ) is nonempty. Indeed,
consider the graph G defined on V (G) = Z ∪ {∞} by

G[Z] = PZ and E(G) = E(PZ) ∪ {{0,∞}}.

As observed at the beginning of this section, G −∞ = PZ is prime. Hence,
σ(G) −∞ is prime as well. Set

X = V (G) ∖ {∞}.
Since {0,∞} ∈ E(G) and {1,∞} /∈ E(G), we have

∞ /∈ ⟨X⟩σ(G).

Furthermore, since dG(∞) = 1 and d(G−∞)(n) = 2 for every n ∈ Z, we obtain

∞ /∈Xσ(G)(n) for each n ∈ Z.
It follows from Lemma 3.13 that ∞ ∈ Extσ(G)(X), so σ(G) is prime too.
However, for each finite subset F of Z, with ∣F ∣ ≥ 2, G − F is disconnected.
It follows that σ(G) − F is decomposable for each finite subset F of Z such
that ∣F ∣ ≥ 2.

We complete this subsection with the following example which is con-
structed from the graph HZ (see Example 8.9) and the graph G defined on
V (G) = Z ∪ {∞} in Remark 8.34. It shows that Proposition 8.24 does not
hold if we do not suppose that the primality graph admits finitely many
trivial components.
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Example 8.35. Consider the graph H defined on V (H) = Z∪ {∞n ∶ n ∈ Z}
and saisfying

● H[Z] =HZ;
● the bijection ZÐ→ {∞n ∶ n ∈ Z}, defined by nz→∞n for each n ∈ Z,

is an isomorphism from PZ onto H[{∞n ∶ n ∈ Z}];
● for every p ∈ Z, {2p,∞0} ∈ E(H).

We prove that σ(H) is prime, critical, but not finitely critical. Precisely,
we show that P(σ(H))[Z] = PZ, P(σ(H))[Z] is a component of P(σ(H)),
and ∞n is isolated in P(σ(H)) for each n ∈ Z.

Set

R = {{∞n} ∶ n ∈ Z}.
Consider the partition

Q = {Z} ∪R
of V (σ(H)) and the function ϕ ∶ V (σ(H))Ð→ Z defined by

ϕ↾Z = IdZ and ϕ(∞n) = 0 for every n ∈ Z.

We verify that σ(H) satisfies assertions (I1),. . . ,(I6) with Q and ϕ. As
seen at the end of Example 8.9, σ(HZ) ∈ FZ. Hence, assertion (I1) holds.
Assertion (I2) holds because Z ∈ Q. For assertion (I3), we obtain

P = {2Z,2Z + 1} ∪R.
It follows from the definition of H that for each n ∈ Z, we have ∞n ←→σ(H)
(2Z) and ∞n ←→σ(H) (2Z + 1). Thus, assertion (I3) holds. Obviously,
assertion (I4) holds. Clearly, (σ(H)/QP )[R] ≃ σ(H)[{∞n ∶ n ∈ Z}]. Since
H[{∞n ∶ n ∈ Z}] ≃ PZ, we obtain that (σ(H)/QP )[R] is prime. Clearly,

2Z + 1 ∈ ⟨R⟩(σ(H)/QP ) (see Notation 3.12).

Furthermore, the function

Z ∪ {∞} Ð→ {0} ∪ {∞n ∶ n ∈ Z}
∞ z→ 0,
n ∈ Z z→ ∞n,

is an isomorphism from the graph G defined in Remark 8.34 onto H[{0} ∪
{∞n ∶ n ∈ Z}]. Since P is a modular partition of σ(H) according to Q,
we have (σ(H)/QP )[R ∪ {2Z}] ≃ σ(H)[{0} ∪ {∞n ∶ n ∈ Z}]. As seen in
Remark 8.34, σ(G) is prime. It follows that (σ(H)/QP )[R∪{2Z}] is prime,
so

2Z ∈ Ext(σ(H)/QP )(R).
It follows from the definition of the generalized quotient (see Definition 8.16)
that

[2Z + 1,{∞0}](σ(H)/QP ) ≠ [2Z + 1,2Z](σ(H)/QP ).

Hence, R∪{2Z} is not a module of σ(H)/QP . It follows from assertion (P2)
of Lemma 3.17 that σ(H)/QP is prime. Therefore, assertion (I5) holds. For
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assertion (I6), consider n ∈ Z. We must show that (σ(H)/QP ) − {∞n} is
decomposable. Suppose that n ≥ 0. We obtain that

(8.24) {∞n+1,∞n+2, . . .} is a component of H − (∞n).
It follows that {{∞n+1},{∞n+2}, . . .} is a nontrivial module of (σ(H)/QP )−
{∞n}. Suppose that n ≤ 0. We obtain that

(8.25) {. . . ,∞n−2,∞n−1} is a component of H − (∞n).
It follows that {. . . ,{∞n−2},{∞n−1}} is a nontrivial module of (σ(H)/QP )−
{∞n}. Thus, assertion (I6) holds. Consequently, assertions (I1),. . . ,(I6)
hold.

Since Q is infinite, (8.8) holds. It follows from Theorem 8.27 that σ is
critical and nonfinitely critical. Precisely, it follows from assertion (J2) of
Proposition 8.30 that P(σ(H))[Z] = PZ and P(σ(H))[Z] is a component of
P(σ(H)). Finally, we verify that for each n ∈ Z, ∞n is isolated in P(σ(H)).
It follows from (8.24) and (8.25) that H−(∞n) admits a module M such that
M and (V (σ(H)) ∖ {∞n}) ∖M are infinite. It follows that (H − (∞n)) − v
is decomposable for every v ∈ (V (σ(H)) ∖ {∞n}). Hence, ∞n is isolated in
P(σ(H)).

Consequently, P(σ(H)) admits a unique nontrivial component and infin-
itely many trivial components.

8.5. Epilogue on assertion (I7). In the next four facts, we complete the
study begun in assertion (I7) of Theorem 8.26, and in Theorem 8.27 when
(8.8) does not hold. Precisely, we are interested in the infinite, critical, and
nonfinitely critical 2-structures the primality graph of which admits one
nontrivial component and one or two trivial ones.

Fact 8.36. Given a 2-structure σ defined on V (σ) = Z ∪ {∞}, σ is criti-
cal, P(σ)[Z] = PZ, and ∞ is isolated in P(σ) if and only if the following
assertions hold

● σ −∞ ∈ FZ;
● ∞←→σ (2Z), ∞←→σ (2Z + 1), and [0,∞]σ ≠ [1,∞]σ;
● at least one of the following two cases occurs:

(8.26)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[0,1]σ = [0,2]σ, [1,2]σ = [1,3]σ,
and

[0,1]σ ≠ [0,∞]σ or [1,2]σ ≠ [1,∞]σ,
or

(8.27)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[1,2]σ = [0,2]σ, [0,1]σ = [1,3]σ,
and

[0,2]σ ≠ [∞,2]σ or [0,1]σ ≠ [∞,1]σ.

Proof. To begin, suppose that σ is critical, P(σ)[Z] = PZ, and ∞ is isolated
in P(σ). First, we verify that σ −∞ ∈ FZ. Let n ∈ Z. Since P(σ)[Z] = PZ
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and ∞ is isolated in P(σ), we have

NP(σ)(n) = {n − 1, n + 1}.
Since σ is critical, it follows from Lemma 4.4 that {n− 1, n+ 1} is a module
of σ − n. By assertion (M2) of Proposition 2.5, {n − 1, n + 1} is a module
of (σ −∞) − n. Since σ is prime, {n − 1, n + 1} is not a module of σ. Since
{n− 1, n+ 1} is a module of σ −n, we obtain n /←→σ {n− 1, n+ 1}. It follows
that {n − 1, n + 1} is not a module of σ −∞. Consequently, σ −∞ ∈ FZ.

Second, we show that ∞ ←→σ (2Z), ∞ ←→σ (2Z + 1), and [0,∞]σ ≠
[1,∞]σ. Let n ∈ Z. As seen above, {2n,2n + 2} is a module of σ − (2n + 1).
Hence, ∞ ←→σ {2n,2n + 2}. It follows that ∞ ←→σ (2Z). Similarly, we
have ∞ ←→σ (2Z + 1). Since σ is prime, Z is not a module of σ. Since
∞←→σ (2Z) and ∞←→σ (2Z + 1), we obtain [0,∞]σ ≠ [1,∞]σ.

Third, we prove that (8.26) or (8.27) hold. Since σ is critical, σ − ∞
is decomposable. Let M be a nontrivial module of σ − ∞. By the third
assertion of Lemma 8.8, M is a nontrivial module of LZ. Thus, M admits
a least or a greatest element. In the first instance, there exists n ∈ Z such
that n,n + 1 ∈ M and M ⊆ {n,n + 1, . . .}. We obtain [0,1]σ = [0,2]σ and
[1,2]σ = [1,3]σ as in the first assertion of Lemma 8.8. Furthermore, since
M∪{∞} is not a module of σ, we obtain [0,1]σ ≠ [0,∞]σ or [1,2]σ ≠ [1,∞]σ.
Therefore, (8.26) holds. Similarly, when M admits a greatest element, (8.27)
holds.

Conversely, suppose that the three assertions above hold. To begin, we
verify that assertions (I1),. . . ,(I5) hold. Set

Q = {Z,{∞}}
and consider the function ϕ ∶ V (σ)Ð→ Z defined by

ϕ↾Z = IdZ and ϕ(∞) = 0.

We obtain
P = {2Z,2Z + 1,{∞}}.

Since σ − ∞ ∈ FZ, σ satisfies assertion (I1) with Q and ϕ. Since Z ∈ Q,
assertion (I2) holds. It follows that σ is locally critical. Furthermore, since
∞ ←→σ (2Z) and ∞ ←→σ (2Z + 1), P is a modular partition of σ according
to Q. Hence, assertion (I3) holds. Since [0,∞]σ ≠ [1,∞]σ, we have

[2Z,{∞}](σ/QP ) ≠ [2Z + 1,{∞}](σ/QP ).

It follows from the definition of the generalized quotient (see Definition 8.16)
that σ/QP is prime. Thus, assertion (I5) holds. Obviously, assertion (I4)
holds.

For a contradiction, suppose that σ admits a nontrivial module M . We
utilize Fact 8.21 with Q′ = Q as follows. Since [0,∞]σ ≠ [1,∞]σ, {2Z,2Z+1}
is not a module of σ/QP . It follows from Fact 8.21 that M ∩ (2Z) ≠ ∅,
M ∩ (2Z + 1) ≠ ∅, and ∞ ∈ M . Thus, M ∖ {∞} is a nontrivial module of
σ−∞. For instance, assume that M ∖{∞} admits a least element n. Hence,
n,n+1 ∈M ∖{∞} and M ∖{∞} ⊆ {n,n+1, . . .}. Since σ−∞ ∈ FZ, we obtain
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that {n,n+1, . . .} is a module of σ−∞. By the first assertion of Lemma 8.8,
we have [0,1]σ = [0,2]σ and [1,2]σ = [1,3]σ. Since M is a module of σ, we
obtain [0,1]σ = [0,∞]σ and [1,2]σ = [1,∞]σ. Hence,

(8.26) does not hold.

Since [0,∞]σ ≠ [1,∞]σ, we have [0,1]σ ≠ [1,2]σ. Since [0,1]σ = [0,2]σ, we
obtain [0,2]σ ≠ [1,2]σ. Thus,

(8.27) does not hold.

It follows that σ is prime.
Since assertions (I3) and (I4) hold, it follows from Lemma 8.29 that σ−n

is decomposable for each n ∈ Z. Since (8.26) or (8.27) hold, {0,1, . . .} is
a module of σ − ∞ or {. . . ,0,1} is a module of σ − ∞. Hence, σ − ∞ is
decomposable. Consequently, σ is critical.

Finally, since assertions (I3), (I4), and (I5) hold, it follows from assertion
(J2) of Proposition 8.30 that P(σ)[Z] is a component of P(σ) and P(σ)[Z] =
PZ. Since P(σ)[Z] is a component of P(σ), ∞ is isolated in P(σ). �

Example 8.37. We consider the tournament TZ defined on V (TZ) = Z∪{∞}
and satisfying

● TZ −∞ = LZ;
● for each n ∈ Z, (∞,2n) ∈ A(TZ) and (2n + 1,∞) ∈ A(TZ).

It follows from Fact 8.36 that σ(TZ) is critical, P(σ(TZ))[Z] = PZ, and ∞
is isolated in P(σ(TZ)). Observe that for n ∈ Z and p ≥ 1, TZ[{2n, . . . ,2n +
2p − 1} ∪ {∞}] is isomorphic to T2p+1 (see Figure 1.2).

Fact 8.38. Given a 2-structure σ defined on V (σ) = N ∪ {∞}, σ is criti-
cal, P(σ)[N] = PN, and ∞ is isolated in P(σ) if and only if the following
assertions hold

● σ −∞ ∈ FN;
● [1,2]σ = [1,∞]σ;
● ∞←→σ (2N), ∞←→σ (2N + 1), and [0,∞]σ ≠ [1,∞]σ;
● at least one of the following two cases occurs:

(8.28) [0,1]σ = [0,2]σ and [0,1]σ ≠ [0,∞]σ,

or

(8.29)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[1,2]σ = [0,2]σ, [0,1]σ = [1,3]σ,
and

[0,2]σ ≠ [∞,2]σ or [0,1]σ ≠ [∞,1]σ.
Although the proof of Fact 8.38 is close to that of Fact 8.36, we provide

it because some differences deserve to be pointed out.

Proof of Fact 8.38. To begin, suppose that σ is critical, P(σ)[N] = PN, and
∞ is isolated in P(σ). First, we verify that σ −∞ ∈ FN. Let n ≥ 1. As seen
in the proof of Fact 8.36, {n − 1, n + 1} is a module of (σ −∞) − n, but not
of σ −∞. Now, we have to show that N ∖ {0,1} is a module of (σ −∞) − 0,
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but N∖ {1} is not a module of σ −∞. Since P(σ)[N] = PN and ∞ is isolated
in P(σ), we have

NP(σ)(0) = {1}.
Since σ is critical, it follows from Lemma 4.4 that V (σ)∖ {0,1} is a module
of σ − 0. In particular, we have

[1,2]σ = [1,∞]σ.
Moreover, by assertion (M2) of Proposition 2.5, N ∖ {0,1} is a module of
(σ−∞)−0. Since σ is prime, V (σ)∖{1} is not a module of σ. Hence, [1,2]σ ≠
[1,0]σ. Therefore, {0} ∪ {2,3, . . .} is not a module of σ −∞. Consequently,
σ −∞ ∈ FN.

Second, we show that ∞ ←→σ (2N), ∞ ←→σ (2N + 1), and [0,∞]σ ≠
[1,∞]σ. Let n ≥ 0. As seen above, {2n,2n + 2} is a module of σ − (2n + 1).
Hence, ∞ ←→σ {2n,2n + 2}. It follows that ∞ ←→σ (2N). Similarly, we
have ∞ ←→σ (2N + 1). Since σ is prime, N is not a module of σ. Since
∞←→σ (2N) and ∞←→σ (2N + 1), we obtain [0,∞]σ ≠ [1,∞]σ.

Third, we prove that (8.28) or (8.29) hold. Since σ is critical, σ − ∞
admits a nontrivial module M . By the second assertion of Lemma 8.10, M
is a module of LN. Since ∣M ∣ ≥ 2, M contains even and odd integers. We
distinguish the following two cases.
Case 1: 0 /∈M .

Since M contains even and odd integers, we obtain

[0,1]σ = [0,2]σ.
Since σ is prime, V (σ) ∖ {0} is not a module of σ. Thus,

[0,1]σ ≠ [0,∞]σ.
It follows that (8.28) holds.

Case 2: 0 ∈M .
Since M is a nontrivial module of LN, there exists n ≥ 1 such that

M = {0, . . . , n}.
We obtain that (8.29) holds.

Conversely, suppose that the four assertions above hold. To begin, we
verify that assertions (I1),. . . ,(I5) hold. Set

Q = {N,{∞}}
and consider the function ϕ ∶ V (σ)Ð→ Z defined by

ϕ↾N = IdN and ϕ(∞) = 0.

We obtain

P = {2N,2N + 1,{∞}}.
Since σ − ∞ ∈ FN, σ satisfies assertion (I1) with Q and ϕ. Since N ∈ Q,
assertion (I2) holds. It follows that σ is locally critical. Furthermore, since
∞←→σ (2N) and ∞←→σ (2N+1), P is a modular partition of σ according to
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Q. Hence, assertion (I3) holds. Moreover, since [1,2]σ = [1,∞]σ, assertion
(I4) holds. Lastly, since [0,∞]σ ≠ [1,∞]σ, we have

[2N,{∞}](σ/QP ) ≠ [2N + 1,{∞}](σ/QP ).

It follows from the definition of the generalized quotient (see Definition 8.16)
that σ/QP is prime. Thus, assertion (I5) holds.

For a contradiction, suppose that σ admits a nontrivial module M . We
utilize Fact 8.21 with Q′ = Q as follows. Since [0,∞]σ ≠ [1,∞]σ, {2N,2N+1}
is not a module of σ/QP . It follows from Fact 8.21 that M ∩ (2Z) ≠ ∅,
M ∩ (2Z + 1) ≠ ∅, and ∞ ∈ M . Thus, M ∖ {∞} is a nontrivial module of
σ − ∞. Since σ − ∞ ∈ FN, M ∖ {∞} is a nontrivial module of LN by the
second assertion of Lemma 8.10. In particular, M ∖ {∞} contains even and
odd integers. We distinguish the following two cases. In each of them, we
obtain a contradiction.
Case 1: 0 /∈M .

Since M contains even and odd integers, we obtain

[0,1]σ = [0,2]σ.
Furthermore, since ∞ ∈M , we obtain

[0,1]σ = [0,∞]σ,
which contradicts the fact that (8.28) holds.

Case 2: 0 ∈M .
Since M is a nontrivial module of LN, there exists n ≥ 1 such that

M = {0, . . . , n}.
We obtain

[0,2]σ = [1,2]σ = [∞,2]σ
and

[0,1]σ = [1,3]σ = [∞,1]σ,
which contradicts the fact that that (8.29) holds.

Consequently, σ is prime.
Since assertions (I3) and (I4) hold, it follows from Lemma 8.29 that σ−n

is decomposable for every n ∈ N. Moreover, since (8.28) or (8.29) hold,
{1,2, . . .} is a module of σ −∞ or {0,1} is a module of σ −∞. Hence, σ −∞
is decomposable. Consequently, σ is critical.

Finally, since assertions (I3), (I4), and (I5) hold, it follows from assertion
(J2) of Proposition 8.30 that P(σ)[N] is a component of P(σ) and P(σ)[N] =
PN. Since P(σ)[N] is a component of P(σ), ∞ is isolated in P(σ). �

Example 8.39. We consider the tournament TN = TZ[N]. It follows from
Fact 8.38 that σ(TN) is critical, P(σ(TN))[N] = PN, and ∞ is isolated in
P(σ(TN)).
Fact 8.40. Given a 2-structure σ defined on V (σ) = Z ∪ {∞,∞′}, σ is
critical, P(σ)[Z] = PZ, and ∞ and ∞′ are isolated in P(σ) if and only if, by
exchanging ∞ and ∞′ if necessary, we have



124 PIERRE ILLE

● σ − {∞,∞′} ∈ FZ;
● ∞←→σ (2Z), ∞←→σ (2Z + 1), and [0,∞]σ ≠ [1,∞]σ;
● ∞′ ←→σ Z and [0,∞′]σ ≠ [∞,∞′]σ;
● at least one of the following two cases occurs:

(8.30)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[0,1]σ = [0,2]σ, [1,2]σ = [1,3]σ,
and

[0,1]σ = [0,∞]σ, [1,2]σ = [1,∞]σ,
or

(8.31)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[1,2]σ = [0,2]σ, [0,1]σ = [1,3]σ,
and

[0,2]σ = [∞,2]σ, [0,1]σ = [∞,1]σ.

Proof. To begin, suppose that σ is critical, P(σ)[Z] = PZ, and ∞ and ∞′

are isolated in P(σ). By Proposition 8.24,

∣{v ∈ {∞,∞′} ∶ v /←→σ Z}∣ = 1.

By exchanging ∞ and ∞′ if necessary, we can assume that ∞ /←→σ Z and
∞′ ←→σ Z. Since σ is prime, Z ∪ {∞} is not a module of σ. Thus, we have
[0,∞′]σ ≠ [∞,∞′]σ.

First, we verify that σ − {∞,∞′} ∈ FZ. Let n ∈ Z. Since P(σ)[Z] = PZ
and ∞ and ∞′ are isolated in P(σ), we have

NP(σ)(n) = {n − 1, n + 1}.
Since σ is critical, it follows from Lemma 4.4 that {n− 1, n+ 1} is a module
of σ − n. By assertion (M2) of Proposition 2.5, {n − 1, n + 1} is a module
of (σ − {∞,∞′}) − n. Since σ is prime, {n − 1, n + 1} is not a module of σ.
Hence, n /←→σ {n− 1, n+ 1}. It follows that {n− 1, n+ 1} is not a module of
σ − {∞,∞′}. Consequently, σ − {∞,∞′} ∈ FZ.

Second, we verify that ∞ ←→σ (2Z) and ∞ ←→σ (2Z + 1). Let n ∈ Z. As
seen above, {2n,2n+2} is a module of σ−(2n+1). Hence, ∞←→σ {2n,2n+2}.
It follows that ∞ ←→σ (2Z). Similarly, we have ∞ ←→σ (2Z + 1). Since
∞ /←→σ Z, we obtain [0,∞]σ ≠ [1,∞]σ.

Third, we prove that (8.30) or (8.31) hold. Since σ is critical, σ −∞′ is
decomposable. Consider a nontrivial module M of σ −∞′. Since [0,∞]σ ≠
[1,∞]σ, we have ∞ ∈M . By assertion (M2) of Proposition 2.5, M ∩ Z is a
module of σ−{∞,∞′}. For a contradiction, suppose that ∣M∩Z∣ = 1. Denote
by n the unique element of M ∩Z. Since ∞←→σ (2Z) and ∞←→σ (2Z+ 1),
we obtain n ←→σ {n − 1, n + 1}, which contradicts σ − {∞,∞′} ∈ FZ. It
follows that ∣M ∩Z∣ ≥ 2. Hence, M ∩Z is a nontrivial module of σ−{∞,∞′}.
For instance, suppose that M ∩Z admits a least element. Since ∞ ∈M , we
obtain that (8.30) holds.

Conversely, suppose that the four assertions above hold. To begin, we
verify that assertions (I1),. . . ,(I5) hold. Set

Q = {Z,{∞},{∞′}}
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and consider the function ϕ ∶ V (σ)Ð→ Z defined by

ϕ↾Z = IdZ, ϕ(∞) = 0, and ϕ(∞′) = 0.

We obtain

P = {2Z,2Z + 1,{∞},{∞′}}.
Since σ−{∞,∞′} ∈ FZ, σ satisfies assertion (I1) with Q and ϕ. Since Z ∈ Q,
assertion (I2) holds. It follows that σ is locally critical. Furthermore, since
∞′ ←→σ Z, ∞ ←→σ (2Z), and ∞ ←→σ (2Z + 1), P is a modular partition
of σ according to Q. Hence, assertion (I3) holds. Since [0,∞]σ ≠ [1,∞]σ,
{2Z,2Z+1} and {2Z,2Z+1,{∞′}} are not modules of σ/QP . Moreover, since
[0,∞′]σ ≠ [∞,∞′]σ, {2Z,2Z+1,{∞}} is not a module of σ/QP . Lastly, since
[0,∞]σ ≠ [1,∞]σ and ∞′ ←→σ Z, {{∞},{∞′}} is not a module of σ/QP . It
follows from the definition of the generalized quotient (see Definition 8.16)
that σ/QP is prime. Thus, assertion (I5) holds. Obviously, assertion (I4)
holds.

To verify that σ is prime, we utilize Fact 8.22 with Q′ = Q as follows.
Clearly, (8.7) holds. Moreover, we have P ′ = P . As previously observed,
σ/QP is prime. Since assertions (I3) and (I4) hold, it follows from Fact 8.22
that σ is prime.

Since assertions (I3) and (I4) hold, it follows from Lemma 8.29 that σ−n
is decomposable for each n ∈ Z. Since (8.30) or (8.31) hold, {0,1, . . .}∪ {∞}
is a module of σ − ∞ or {. . . ,0,1} ∪ {∞} is a module of σ − ∞′. Hence,
σ − ∞′ is decomposable. Lastly, since ∞′ ←→σ Z, σ − ∞ is decomposable.
Consequently, σ is critical.

Finally, since assertions (I3), (I4), and (I5) hold, it follows from assertion
(J2) of Proposition 8.30 that P(σ)[Z] is a component of P(σ) and P(σ)[Z] =
PZ. Lastly, it follows from Corollary 8.3 that ∞ and ∞′ are isolated in
P(σ). �

Fact 8.41. Given a 2-structure σ defined on V (σ) = N ∪ {∞,∞′}, σ is
critical, P(σ)[N] = PN, and ∞ and ∞′ are isolated in P(σ) if and only if, by
exchanging ∞ and ∞′ if necessary, we have

● σ − {∞,∞′} ∈ FN;
● ∞←→σ (2N), ∞←→σ (2N + 1), and [0,∞]σ ≠ [1,∞]σ;
● ∞′ ←→σ N and [0,∞′]σ ≠ [∞,∞′]σ;
● [1,2]σ = [1,∞]σ and [1,2]σ = [1,∞′]σ;
● at least one of the following two cases occurs:

(8.32) [0,1]σ = [0,2]σ and [0,1]σ = [0,∞]σ,

or

(8.33)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[1,2]σ = [0,2]σ, [0,1]σ = [1,3]σ,
and

[0,2]σ = [∞,2]σ, [0,1]σ = [∞,1]σ.
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Proof. To begin, suppose that σ is critical, P(σ)[N] = PN, and ∞ and ∞′

are isolated in P(σ). By Proposition 8.24,

∣{v ∈ {∞,∞′} ∶ v /←→σ N}∣ = 1.

By exchanging ∞ and ∞′ if necessary, we can assume that ∞ /←→σ N and
∞′ ←→σ N. Since σ is prime, N ∪ {∞} is not a module of σ. Thus, we have
[0,∞′]σ ≠ [∞,∞′]σ.

First, we verify that σ − {∞,∞′} ∈ FN. Let n ≥ 1. As seen in the proof
of Fact 8.40, {n − 1, n + 1} is a module of (σ − {∞,∞′}) − n, but not of
σ − {∞,∞′}. Since P(σ)[N] = PN and ∞ and ∞′ are isolated in P(σ), we
have

NP(σ)(0) = {1}.
Since σ is critical, it follows from Lemma 4.4 that V (σ)∖ {0,1} is a module
of σ − 0. In particular, we obtain

(8.34) [1,2]σ = [1,∞]σ and [1,2]σ = [1,∞′]σ.

Furthermore, by assertion (M2) of Proposition 2.5, V (σ)∖{0,1} is a module
of (σ − {∞,∞′}) − 0. Since σ is prime, V (σ) ∖ {1} is not a module of σ.
Hence, 1 /←→σ (V (σ) ∖ {1}). It follows that N ∖ {1} is not a module of
σ − {∞,∞′}. Consequently, σ − {∞,∞′} ∈ FN.

Second, we verify that ∞ ←→σ (2N) and ∞ ←→σ (2N + 1). Let n ∈ N. As
seen above, {2n,2n+2} is a module of σ−(2n+1). Hence ∞←→σ {2n,2n+2}.
It follows that ∞ ←→σ (2N). Similarly, we have ∞ ←→σ (2N + 1). Since
∞ /←→σ Z, we obtain [0,∞]σ ≠ [1,∞]σ.

Third, we prove that (8.32) or (8.33) hold. Since σ is critical, σ − ∞′

admits a nontrivial module M . Since ∞ ←→σ (2N), ∞ ←→σ (2N + 1), and
[0,∞]σ ≠ [1,∞]σ, we have ∞ ∈ M . By assertion (M2) of Proposition 2.5,
M∩N is a module of σ−{∞,∞′}. For a contradiction, suppose that ∣M∩N∣ =
1. Denote by n the unique element of M ∩N. We distinguish the following
two cases. In each of them, we obtain a contradiction.
Case 1: n ≥ 1.

Since ∞←→σ (2N) and ∞←→σ (2N+ 1), we obtain n←→σ {n− 1, n+ 1},
which contradicts σ − {∞,∞′} ∈ FN.

Case 2: n = 0.
We have

[1,0]σ = [1,∞]σ.
By (8.34), we have [1,2]σ = [1,∞]σ. It follows that

[1,0]σ = [1,2]σ,
which contradicts σ − {∞,∞′} ∈ FN.

It follows that ∣M ∩ N∣ ≥ 2. Hence, M ∩ N is a nontrivial module of
σ − {∞,∞′}. By the second assertion of Lemma 8.10, M ∩N is a nontrivial
module of LN. Since ∣M ∩ N∣ ≥ 2, M contains even and odd integers. We
distinguish the following two cases.
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Case 1: 0 /∈M ∩N.
Since M ∩N contains even and odd integers, we obtain

[0,1]σ = [0,2]σ.
Moreover, since ∞ ∈M , we obtain

[0,1]σ = [0,∞]σ.
It follows that (8.32) holds.

Case 2: 0 ∈M .
Since M ∩N is a nontrivial module of LN, there exists n ≥ 1 such that

M ∩N = {0, . . . , n}.
Since ∞ ∈M , we obtain

M = {0, . . . , n} ∪ {∞}.
We obtain that (8.33) holds.

Conversely, suppose that the five assertions above hold. To begin, we
verify that assertions (I1),. . . ,(I5) hold. Set

Q = {N,{∞},{∞′}}
and consider the function ϕ ∶ V (σ)Ð→ Z defined by

ϕ↾N = IdN, ϕ(∞) = 0 and ϕ(∞′) = 0.

We obtain
P = {2N,2N + 1,{∞},{∞′}}.

Since σ−{∞,∞′} ∈ FZ, σ satisfies assertion (I1) with Q and ϕ. Since N ∈ Q,
assertion (I2) holds. It follows that σ is locally critical. Furthermore, since
∞ ←→σ (2N), ∞ ←→σ (2N + 1), and ∞′ ←→σ N, P is a modular partition
of σ according to Q. Hence, assertion (I3) holds. Since [0,∞]σ ≠ [1,∞]σ,
{2N,2N+1} and {2N,2N+1,{∞′}} are not modules of σ/QP . Moreover, since
[0,∞′]σ ≠ [∞,∞′]σ, {2N,2N+1,{∞}} is not a module of σ/QP . Lastly, since
[0,∞]σ ≠ [1,∞]σ and ∞′ ←→σ N, {{∞},{∞′}} is not a module of σ/QP . It
follows from the definition of the generalized quotient (see Definition 8.16)
that σ/QP is prime. Thus, assertion (I5) holds. To verify that assertion (I4)
holds, recall that [1,2]σ = [1,∞]σ and [1,2]σ = [1,∞′]σ. We obtain

1←→σ {2,∞,∞′}.
It follows that assertions (I4) holds.

To verify that σ is prime, we utilize Fact 8.22 with Q′ = Q as follows.
Clearly, (8.7) holds. Moreover, we have P ′ = P . As previously observed,
σ/QP is prime. Since assertions (I3) and (I4) hold, it follows from Fact 8.22
that σ is prime.

Since assertions (I3) and (I4) hold, it follows from Lemma 8.29 that σ−n
is decomposable for each n ∈ N. Since (8.32) or (8.33) hold, {1,2, . . .} ∪
{∞} is a module of σ − ∞ or {0,1} ∪ {∞} is a module of σ − ∞. Hence,
σ − ∞′ is decomposable. Lastly, since ∞′ ←→σ N, σ − ∞ is decomposable.
Consequently, σ is critical.
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Finally, since assertions (I3), (I4), and (I5) hold, it follows from assertion
(J2) of Proposition 8.30 that P(σ)[N] is a component of P(σ) and P(σ)[N] =
PN. Lastly, it follows from Corollary 8.3 that ∞ and ∞′ are isolated in
P(σ). �
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9. Partially critical 2-structures

We consider the following weakening of the notion of a critical structure
(see Definition 4.1).

Definition 9.1. Let σ be a prime 2-structure. Given W ⊆ V (σ), σ is W -
critical if all the elements of W are critical vertices of σ. W -critical

A prime 2-structure σ is partially critical if there exists a proper subset partially critical
X of V (σ) such that σ[X] is prime and σ is (V (σ) ∖X)-critical.

Finite partially critical graphs were characterized by Breiner et al. [5].
Furthermore, finite partially critical tournaments were characterized by Sa-
yar [32] who adapted the examination of partial criticality presented in [5] to
tournaments. A nice presentation of finite and partially critical tournaments
is provided in [2] (see [2, Theorem 2 and Corollary 1] ). Lastly, Belkhechine
et al. [3] characterized the finite or infinite partially critical 2-structures. In
the finite case, they followed the same approach as that of [5].

Theorem 3.19 leads us to introduce the outside graph as follows. The out-
side graph is the main tool to characterize the partially critical 2-structures.
It is frequently used in the study of prime digraphs [22, 25]. We need the
next notation.

Notation 9.2. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X] is
prime. The set of the nonempty subsets Y of V (σ)∖X, such that σ[X ∪Y ]
is prime, is denoted by P(σ,X) (compare with Notation 3.1). Hence, we have

Extσ(X) = {v ∈ V (σ) ∖X ∶ {v} ∈ P(σ,X)} (see Notation 3.12).

Furthermore, suppose that ∣V (σ) ∖X ∣ ≥ 2. By Theorem 3.19, P(σ,X) con-
tains an unordered pair.

Definition 9.3. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. The outside graph Γ(σ,X) is defined on V (Γ(σ,X)) = V (σ) ∖X by outside graph

E(Γ(σ,X)) = {Y ∈ P(σ,X) ∶ ∣Y ∣ = 2}.
By Theorem 3.19, the outside graph Γ(σ,X) is nonempty when σ is prime
and ∣V (σ) ∖X ∣ ≥ 2.

Remark 9.4. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X] is
prime. Given k ∈ {1, . . . , ∣V (σ)∖X ∣−1}, we consider the following statement

(Sk) {Y ∈ P(σ,X) ∶ ∣Y ∣ = k} = ∅.

Clearly, Extσ(X) = ∅ means that statement (S1) holds.
First, we make the following observation. Consider k ∈ {1, . . . , ∣V (σ) ∖

X ∣ − 1} and m ∈ {1, . . . , k − 2} such that k −m ≡ 0 mod 2. If statement (Sk)
holds, then it follows from Corollary 3.20 that statement (Sm) holds.

Second, suppose that σ is (V (σ) ∖X)-critical and

V (σ) ∖X is finite.
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We verify that statement (Sk) holds for each k ∈ {1, . . . , ∣V (σ)∖X ∣−1} such
that k is odd.

To begin, we verify that

(9.1) ∣V (σ) ∖X ∣ is even.

Otherwise, it follows from Corollary 3.20 that σ admits a noncritical vertex
v such that v ∈ V (σ) ∖X, which contradicts the fact that σ is (V (σ) ∖X)-
critical.

Now, consider Y ∈ P(σ,X) such that Y ≠ V (σ) ∖X. Since σ is (V (σ) ∖
X)-critical, σ is (V (σ) ∖ (X ∪ Y ))-critical as well. It follows from (9.1)
that ∣V (σ) ∖ (X ∪ Y )∣ is even. Since ∣V (σ) ∖ X ∣ is even, ∣Y ∣ is even too.
Consequently, statement (Sk) holds for each k ∈ {1, . . . , ∣V (σ)∖X ∣− 1} such
that k is odd.

9.1. Main results. We begin with a hereditary property of primality
through the components of the outside graph.

Theorem 9.5 (Belkhechine et al. [3]). Given a 2-structure σ, consider X ⊊
V (σ) such that σ[X] is prime. Suppose that statement (S3) holds. The
following three assertions are equivalent

(1) σ is prime;
(2) for each component C of Γ(σ,X), σ[X ∪ V (C)] is prime;
(3) for each component C of Γ(σ,X), v(C) = 2 or v(C) ≥ 4 and C is

prime.

Theorem 9.5 allows us to provide a simple and short proof of Theorem 5.8
(see subsection 9.6). Furthermore, Theorem 9.5 is proved for finite graphs
in [25] (see [25, Theorem 17] and [25, Corollary 18]). We pursue with a
hereditary property of partial criticality through the components of the out-
side graph. The next theorem also provides a characterization of partially
critical 2-structures in terms of criticality of the components of their outside
graph.

Theorem 9.6 (Belkhechine et al. [3]). Given a 2-structure σ, consider X ⊊
V (σ) such that σ[X] is prime. Suppose that statement (S5) holds. The
following three assertions are equivalent

(1) σ is (V (σ) ∖X)-critical;
(2) for each component C of Γ(σ,X), σ[X ∪ V (C)] is V (C)-critical;
(3) for each component C of Γ(σ,X), v(C) = 2 or v(C) ≥ 4 and C is

critical.

Remark 9.7. As seen at the beginning of section 8, σ(PZ) is finitely critical.
Set

X = {z ∈ Z ∶ z ≤ 0}.
As for σ(PZ), it follows from Theorem 7.1 that σ(PZ)[X] is prime. Similarly,
σ(PZ)[X ∪{1, . . . , k}] is prime for every k ≥ 1. Consequently, for each k ≥ 1,
statement (Sk) does not hold. Moreover, {1,2} is the only edge of Γ(σ(PZ),X).
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Hence, for every z ≥ 3, z is an isolated vertex of Γ(σ(PZ),X). It follows that
Theorem 9.5 does not hold when statement (S3) is not satisfied. Similarly,
Theorem 9.6 does not hold when statement (S5) is not satisfied.

We introduce a weakening of the partial criticality in the following way.
We obtain the next result by using Theorem 7.4 several times.

Corollary 9.8. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. The following two assertions are equivalent

(1) σ is prime;
(2) for each finite subset F of V (σ) ∖X, there exists F ′ ∈ P(σ,X) such

that F ′ is finite and F ⊆ F ′.

Corollary 9.8 and the fact that statement (S5) is supposed to be satisfied
in Theorem 9.6 lead us to introduce the next definition. The next definition
is a weakening of partial criticality (see Theorem 9.10).

Definition 9.9. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. We say that σ is finitely (V (σ)∖X)-critical if for each finite subset
F of V (σ) ∖X, there exists F ′ ∈ P(σ,X) such that F ′ is finite, F ⊆ F ′, and

σ[X ∪ F ′] is (F ′)-critical.

Theorem 9.10. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. The following two assertions are equivalent

(1) Statement (S5) holds and σ is prime;
(2) σ is finitely (V (σ) ∖X)-critical.

Theorem 9.10 is discussed in Remark 9.57. Precisely, in Remark 9.57,
we provide a prime 2-structure showing that we do not have a compact-
ness theorem with partial criticality. We prove Theorem 9.10 at the end
of subsection 9.5. The last main result ends this subsection. It shows that
Theorem 5.8 is satisfied in the infinite case when the 2-structure σ is also
supposed to be (V (σ) ∖X)-critical.

Theorem 9.11. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. Suppose that statement (S5) holds. Suppose also that σ is (V (σ)∖
X)-critical. For each v ∈ V (σ) ∖X, there exists w ∈ (V (σ) ∖X) ∖ {v} such
that σ − {v,w} is ((V (σ) ∖ {v,w}) ∖X)-critical. In particular, we obtain

for each v ∈ V (σ) ∖X, NP(σ)(v) ∩ (V (σ) ∖X) ≠ ∅ (see Definition 4.3).

We prove Theorem 9.11 at the end of subsection 9.5.

Remark 9.12. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X] is
prime. Suppose that statement (S5) holds. Suppose also that σ is (V (σ) ∖
X)-critical. Lastly, suppose that V (σ)∖X is infinite. Consider a finite and
nonempty subset F of V (σ) ∖X. By applying several times Theorem 9.11,
we obtain a finite subset F ′ of V (σ) ∖X such that F ⊆ F ′ and σ − F ′ is
((V (σ)∖F ′)∖X)-critical. Furthermore, it follows from Corollary 3.20 that
∣F ′∣ is even.
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9.2. Modules of the outside graph. We begin with two preliminary re-
sults on the isolated vertices of an outside graph. We utilize the following
remark.

Remark 9.13. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. It follows from Remark 3.15 that for each B ∈ p(σ,X) ∖{Extσ(X)},
Γ(σ,X)[B] is empty. In other words, if Extσ(X) = ∅, then Γ(σ,X) is multi-
partite with partition p(σ,X) (see Lemma 3.13).

Lemma 9.14 (Breiner et al.9.1[5]). Given a 2-structure σ, consider X ⊊
V (σ) such that σ[X] is prime.

(1) If M is a module of σ such that X ⊆M , then the elements of V (σ)∖
M are isolated vertices of Γ(σ,X).

(2) Given y ∈X, if M is a module of σ such that M ∩X = {y}, then the
elements of M ∖ {y} are isolated vertices of Γ(σ,X).

Proof. For the first assertion, consider a module M of σ such that X ⊆M .
Let v ∈ V (σ) ∖M . Moreover, consider w ∈ (V (σ) ∖X) ∖ {v}. We have to
verify that

σ[X ∪ {v,w}] is decomposable.

By Remark 3.16, (V (σ) ∖M) ⊆ ⟨X⟩σ. It follows from Remark 9.13 that
σ[X ∪ {v,w}] is decomposable when w /∈M . Now, suppose that w ∈M ∖X.
By assertion (M2) of Proposition 2.5, M ∩ (X ∪ {v,w}), which is X ∪ {w},
is a module of σ[X ∪ {v,w}]. Thus, σ[X ∪ {v,w}] is decomposable.

For the second assertion, consider y ∈ X and a module M of σ such that
M ∩X = {y}. Let v ∈ M ∖ {y}. Moreover, consider w ∈ (V (σ) ∖X) ∖ {v}.
We have to verify that

σ[X ∪ {v,w}] is decomposable.

By Remark 3.16, M ∖{y} ⊆Xσ(y). It follows from Remark 9.13 that σ[X ∪
{v,w}] is decomposable when w ∈ M . Now, suppose that w /∈ M . By
assertion (M2) of Proposition 2.5, M ∩ (X ∪ {v,w}), which is {y, v}, is a
module of σ[X ∪ {v,w}]. Thus, σ[X ∪ {v,w}] is decomposable. �

The next result is an immediate consequence of Remark 3.16 and Lemma
9.14.

Corollary 9.15. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. If σ admits a nontrivial module M such that M ∩X ≠ ∅, then
Γ(σ,X) possesses isolated vertices.

Now, we study the modules of the outside graph. We need the following
refinement of the outside partition (see Notation 3.12).

Notation 9.16. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. We consider the following subsets of V (σ) ∖X

9.1Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Lemma 2.7]).
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● for e, f ∈ E(σ),

⟨X⟩(e,f)σ = ⟨X⟩σ ∩N (e,f)
σ (y) (see Notation 3.7),

where y ∈X;
● for e, f ∈ E(σ) and y ∈X,

X(e,f)
σ (y) =Xσ(y) ∩N (e,f)

σ (y) (see Notation 3.7).

The set {Extσ(X)}∪{⟨X⟩(e,f)σ ∶ e, f ∈ E(σ)}∪{X(e,f)
σ (y) ∶ e, f ∈ E(σ), y ∈X}

is denoted by q(σ,X).

Lemma 9.17. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. Suppose that statement (S1) holds. Given M ⊆ (V (σ) ∖X), if M
is a module of σ, then M is a module of Γ(σ,X), and there exist Bp ∈ p(σ,X)
and Bq ∈ q(σ,X) such that M ⊆ Bq ⊆ Bp and M is a module of σ[Bp].

Proof. Consider a module M of σ such that M ∩X = ∅. Let v ∈M . Denote
by Bq the unique block of q(σ,X) containing v. Consider w ∈M ∖ {v}. Since
M is a module of σ such that M ∩X = ∅, we have y ←→σ {v,w} for every
y ∈ X. It follows that w ∈ Bq. Consequently, M ⊆ Bq. Denote by Bp the
unique block of p(σ,X) containing Bq. We obtain

M ⊆ Bq ⊆ Bp.

Since M is a module of σ, M is a module of σ[Bp] by assertion (M2) of
Proposition 2.5.

Lastly, we prove that M is a module of Γ(σ,X). Let w ∈ (V (σ) ∖X) ∖M .
Recall that Extσ(X) = ∅ because statement (S1) holds. If w ∈ Bp, then it
follows from Remark 9.13 that {v,w} /∈ E(Γ(σ,X)) for every v ∈ M . Hence,
suppose that w ∈ (V (σ) ∖X) ∖Bp. Since Extσ(X) = ∅, we distinguish the
following two cases.
Case 1: Bp = ⟨X⟩σ.

Consider y ∈X and u ∈M .
First, suppose that u ←→σ {y,w}. Let v ∈ M . Since M is a module of
σ, we obtain v ←→σ {y,w}. Since v ←→σ X, we obtain v ←→σ X ∪ {w}.
Hence, X ∪ {w} is a module of σ[X ∪ {v,w}]. It follows that {v,w} /∈
E(Γ(σ,X)).
Second, suppose that u /←→σ {y,w}. Let v ∈M . Since M is a module of
σ, we have v /←→σ {y,w}. Thus, X∪{v} is not a module of σ[X∪{y, v}].
It follows from assertion (Q1) of Corollary 3.18 that {v,w} ∈ E(Γ(σ,X)).

Case 2: Bp =Xσ(y), where y ∈X.
Consider u ∈M .
First, suppose that w ←→σ {y, u}. Let v ∈M . Since M is a module of σ,
we obtain w ←→σ {y, v}. Since {y, v} is a module of σ[X ∪{v}], {y, v} is
a module of σ[X ∪ {v,w}]. It follows that {v,w} /∈ E(Γ(σ,X)) for every
v ∈M .
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Second, suppose that w /←→σ {y, u}. Let v ∈ M . Since M is a module
of σ, we obtain w /←→σ {y, v}. Therefore, {y, v} is not a module of
σ[X ∪ {v,w}]. It follows from assertion (Q2) of Corollary 3.18 that
{v,w} ∈ E(Γ(σ,X)). �

The opposite direction in Lemma 9.17 is false. Nevertheless, it is true for
(finite) graphs (see the second assertion of [5, Lemma 2.6]). Moreover, the
opposite direction in Lemma 9.17 is true if we require that statement (S3)
holds (see Corollary 9.19 below). We need the following fact.

Fact 9.18 (Breiner et al.9.2[5]). Given a 2-structure σ, consider X ⊊ V (σ)
such that σ[X] is prime. Suppose that statement (S3) holds. Given distinct
elements u, v,w of V (σ) ∖ X, if {u, v},{u,w} ∈ E(Γ(σ,X)), then {v,w} is
a module of σ[X ∪ {u, v,w}], and hence there exists Bq ∈ q(σ,X) such that
v,w ∈ Bq.

Proof. Since {u, v} ∈ E(Γ(σ,X)), σ[X ∪ {u, v}] is prime. Set

Y =X ∪ {u, v}.

Since statement (S3) holds,

w /∈ Extσ(Y ).

For a contradiction, suppose that w ∈ ⟨Y ⟩σ. We obtain that X ∪ {u, v} is
a module of σ[X ∪ {u, v,w}]. By assertion (M2) of Proposition 2.5, X ∪
{u} is a module of σ[X ∪ {u,w}], which contradicts {u,w} ∈ E(Γ(σ,X)).
Consequently,

w /∈ ⟨Y ⟩σ.
It follows from Lemma 3.13 that there exists z ∈ Y such that

w ∈ Yσ(z).

Hence, {z,w} is a module of σ[X ∪ {u, v,w}]. By assertion (M2) of Propo-
sition 2.5, (X ∪{u,w})∩{z,w} is a module of σ[X ∪{u,w}]. Since {u,w} ∈
E(Γ(σ,X)), (X ∪ {u,w}) ∩ {z,w} is a trivial module of σ[X ∪ {u,w}]. Since
w ∈ (X ∪ {u,w}) ∩ {z,w}, we obtain z /∈ X ∪ {u}. It follows that z = v.
Therefore, w ∈ Yσ(v), that is, {v,w} is a module of σ[X ∪ {u, v,w}]. By
Lemma 9.17, there exists Bq ∈ q(σ,X) such that v,w ∈ Bq. �

The next result follows from Fact 9.18.

Corollary 9.19. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. Suppose that statement (S3) holds. Consider M ⊆ (V (σ) ∖ X)
such that there exist Bp ∈ p(σ,X) and Bq ∈ q(σ,X) with M ⊆ Bq ⊆ Bp. Suppose
that M is a module of σ[Bp]. If M is a module of Γ(σ,X), then M is a
module of σ.

9.2Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Lemma 4.3]).
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Proof. Suppose that M is a module of Γ(σ,X). Consider u, v ∈ M and w ∈
V (σ) ∖M . It suffices to verify that

(9.2) w ←→σ {u, v}.
Since M is a module of σ[Bp], (9.2) holds when w ∈ Bp∖M . Furthermore, by
Remark 9.4, statement (S1) holds because statement (S3) holds. It follows
that

Extσ(X) = ∅.
Since u and v belong to the same block of q(σ,X), (9.2) holds when w ∈ X.
Now, suppose that

w ∈ V (σ) ∖ (X ∪Bp).
Since M is a module of Γ(σ,X), we have

{u,w},{v,w} ∈ E(Γ(σ,X))
or(9.3)

{u,w},{v,w} /∈ E(Γ(σ,X)).
Suppose that {u,w},{v,w} ∈ E(Γ(σ,X)). By Fact 9.18, {u, v} is a module

of σ[X ∪ {u, v,w}], so (9.2) holds.
Lastly, suppose that {u,w},{v,w} /∈ E(Γ(σ,X)). Since Extσ(X) = ∅, we

distinguish the following two cases.
Case 1: Bp = ⟨X⟩σ.

Since {u,w},{v,w} /∈ E(Γ(σ,X)), it follows from assertion (Q1) of Corol-
lary 3.18 that X ∪ {w} is a module of σ[X ∪ {u,w}] and σ[X ∪ {v,w}].
Given y ∈ X, we obtain u ←→σ {y,w} and v ←→σ {y,w}. Since u, v ∈ Bq
and Bq ⊆ ⟨X⟩σ, y ←→σ {u, v}. It follows that (9.2) holds.

Case 2: Bp =Xσ(y), where y ∈X.
Since {u,w},{v,w} /∈ E(Γ(σ,X)), it follows from assertion (Q2) of Corol-
lary 3.18 that {y, u} is a module of σ[X ∪{u,w}], and {y, v} is a module
of σ[X ∪ {v,w}]. Therefore, we have w ←→σ {y, u} and w ←→σ {y,w}.
It follows that (9.2) holds. �

The next fact follows from Lemma 9.17.

Fact 9.20 (Breiner et al.9.3[5]). Given a 2-structure σ, consider X ⊊ V (σ)
such that σ[X] is prime. Suppose that statement (S3) holds. Given Bp,Dp ∈
p(σ,X), consider u ∈ Bp and v,w ∈ Dp such that {u, v} ∈ E(Γ(σ,X)) and
{u,w} /∈ E(Γ(σ,X)).

(1) If Dp = ⟨X⟩σ, then X ∪ {u, v} is a module of σ[X ∪ {u, v,w}].
(2) If Dp = Xσ(y), where y ∈ X, then {y,w} is a module of σ[X ∪

{u, v,w}].
Proof. To begin, we establish two preliminary statements (see (9.4) and
(9.5)). Since {u, v} ∈ E(Γ(σ,X)), σ[X ∪ {u, v}] is prime. Set

Y =X ∪ {u, v}.
9.3Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Lemma 4.4]).



136 PIERRE ILLE

Since statement (S3) holds,

w /∈ Extσ(Y ).
Since {u, v} ∈ E(Γ(σ,X)), we have

(9.4) Bp ≠Dp

by Remark 9.13. For a contradiction, suppose that w ∈ Yσ(u). Hence, {u,w}
is a module of σ[X∪{u, v,w}]. By Remark 9.4, statement (S1) holds because
statement (S3) holds. It follows from Lemma 9.17 applied to σ[X∪{u, v,w}]
that Bp =Dp, which contradicts (9.4). Thus,

w /∈ Yσ(u).
Now, suppose for a contradiction that w ∈ Yσ(v). Hence, {v,w} is a module
of σ[X ∪ {u, v,w}]. It follows from Lemma 9.17 applied to σ[X ∪ {u, v,w}]
that {v,w} is a module of Γ(σ,X), which is impossible because {u, v} ∈
E(Γ(σ,X)) and {u,w} /∈ E(Γ(σ,X)). Therefore,

w /∈ Yσ(v).
Since w /∈ (Yσ(u)∪Yσ(v)), it follows from Lemma 3.13 applied to σ[Y ] that

(9.5) w ∈ ⟨Y ⟩σ or w ∈ Yσ(y), where y ∈X.

First, suppose that Dp = ⟨X⟩σ. If w ∈ Yσ(y), where y ∈X, then w ∈Xσ(y),
and hence w ∈ Yσ(y)∩ ⟨X⟩σ, which contradicts Lemma 3.13. It follows from
(9.5) that w ∈ ⟨Y ⟩σ, that is, X ∪ {u, v} is a module of σ[X ∪ {u, v,w}].

Second suppose that Dp = Xσ(y), where y ∈ X. If w ∈ ⟨Y ⟩σ, then w ∈
⟨X⟩σ, and hence w ∈Xσ(y)∩⟨X⟩σ, which contradicts Lemma 3.13. It follows
from (9.5) that w ∈ Yσ(z), where z ∈ X. Hence, we have w ∈ Xσ(z). We
obtain w ∈ Xσ(y) ∩Xσ(z). By Lemma 3.13, we have y = z. Consequently,
w ∈ Yσ(y), that is, {y,w} is a module of σ[X ∪ {u, v,w}]. �

The next two results follow from Fact 9.20.

Corollary 9.21. Given a 2-structure σ, consider X ⊊ V (σ) such that
σ[X] is prime. Suppose that statement (S3) holds. Let Bq ∈ q(σ,X). For
each v ∈ (V (σ) ∖ X) ∖ Bq, {u ∈ Bq ∶ {u, v} ∈ E(Γ(σ,X))} and {u ∈ Bq ∶
{u, v} /∈ E(Γ(σ,X))} are modules of σ[Bq]. Precisely, if {u ∈ Bq ∶ {u, v} ∈
E(Γ(σ,X))} ≠ ∅ and {u ∈ Bq ∶ {u, v} /∈ E(Γ(σ,X))} ≠ ∅, then the following
two assertions hold.

(1) If Bq = ⟨X⟩(e,f)σ , where e, f ∈ E(σ), then

[{u ∈ Bq ∶ {u, v} /∈ E(Γ(σ,X))},{u ∈ Bq ∶ {u, v} ∈ E(Γ(σ,X))}]σ = (f, e)

(see Notation 2.1).

(2) If Bq =X(e,f)
σ (α), where α ∈X and e, f ∈ E(σ), then

[{u ∈ Bq ∶ {u, v} /∈ E(Γ(σ,X))},{u ∈ Bq ∶ {u, v} ∈ E(Γ(σ,X))}]σ = (e, f).
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Proof. Let v ∈ (V (σ)∖X)∖Bq. Suppose that {u ∈ Bq ∶ {u, v} ∈ E(Γ(σ,X))} ≠
∅ and {u ∈ Bq ∶ {u, v} /∈ E(Γ(σ,X))} ≠ ∅. Consider u+, u− ∈ Bq such that
{u+, v} ∈ E(Γ(σ,X)) and {u−, v} /∈ E(Γ(σ,X)). We distinguish the following
two cases.
Case 1: Bq = ⟨X⟩(e,f)σ , where e, f ∈ E(σ).

By the first assertion of Fact 9.20 applied to u+, u−, v, X ∪ {u+, v} is a

module of σ[X ∪ {u+, u−, v}]. Since u− ∈ ⟨X⟩(e,f)σ , we obtain [u−, u+]σ =
(f, e).

Case 2: Bq =X(e,f)
σ (y), where y ∈X and e, f ∈ E(σ).

By the second assertion of Fact 9.20 applied to u+, u−, v, {y, u−} is a
module of σ[X ∪ {u+, u−, v}]. Hence, [u−, u+]σ = [y, u+]σ. Since u+ ∈
X

(e,f)
σ (y), we obtain [y, u+]σ = (e, f), so [u−, u+]σ = (e, f). �

The proof of the next corollary follows from Corollary 3.18 and Fact 9.20.

Corollary 9.22 (Breiner et al.9.4[5]). Given a 2-structure σ, consider X ⊊
V (σ) such that σ[X] is prime. Suppose that statement (S3) holds. If σ is
prime, then Γ(σ,X) has no isolated vertices.

Proof. We denote by I the set of the isolated vertices of Γ(σ,X). By Re-
mark 9.4, statement (S1) holds because statement (S3) holds. Therefore, we
have Extσ(X) = ∅. By Lemma 3.13, to show that I = ∅, it suffices to verify
that

(9.6) I ∩ ⟨X⟩σ = ∅
and

(9.7) I ∩Xσ(y) = ∅
for each y ∈X.

To verify that (9.6) holds, we show that V (σ)∖ (I ∩ ⟨X⟩σ) is a module of
σ. Consider u ∈ I ∩ ⟨X⟩σ and v ∈ V (σ)∖ (I ∩ ⟨X⟩σ). We verify that X ∪ {v}
is a module of σ[X ∪ {u, v}]. This is clear when v ∈ X because u ∈ ⟨X⟩σ.
Hence, suppose that v /∈X. We distinguish the following two cases.
Case 1: v /∈ ⟨X⟩σ.

Since u ∈ I, we have {u, v} /∈ E(Γ(σ,X)). It follows from assertion (Q1)
of Corollary 3.18 that X ∪ {v} is a module of σ[X ∪ {u, v}].

Case 2: v ∈ ⟨X⟩σ.
Since v ∈ V (σ) ∖ (I ∩ ⟨X⟩σ), we have v /∈ I. Since v /∈ I, there exists
w ∈ V (σ)∖X such that {v,w} ∈ E(Γ(σ,X)). Since u ∈ I, we have {u,w} /∈
E(Γ(σ,X)). By the first assertion of Fact 9.20, X ∪ {v,w} is a module
of σ[X ∪ {u, v,w}]. By assertion (M2) of Proposition 2.5, X ∪ {v} is a
module of σ[X ∪ {u, v}].

In both cases above, X ∪ {v} is a module of σ[X ∪ {u, v}]. It follows that
V (σ) ∖ (I ∩ ⟨X⟩σ) is a module of σ. Since σ is prime, V (σ) ∖ (I ∩ ⟨X⟩σ) is

9.4Breiner et al. [5] proved this lemma for (finite) graphs (see [5, Corollary 4.5]).
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a trivial module of σ. Thus, we obtain V (σ) ∖ (I ∩ ⟨X⟩σ) = V (σ). Hence,
(9.6) holds.

To verify that (9.7) holds, consider y ∈X. We show that {y}∪(I∩Xσ(y))
is a module of σ. Consider u ∈ I ∩Xσ(y) and v ∈ V (σ)∖({y}∪(I ∩Xσ(y))).
We verify that {y, u} is a module of σ[X ∪ {u, v}]. This is clear when
v ∈ X ∖ {y} because u ∈ Xσ(y). Hence, suppose that v /∈ X. We distinguish
the following two cases.
Case 1: v /∈Xσ(y).

Since u ∈ I, we have {u, v} /∈ E(Γ(σ,X)). It follows from assertion (Q2)
of Corollary 3.18 that {y, u} is a module of σ[X ∪ {u, v}].

Case 2: v ∈Xσ(y).
Since v ∈ V (σ) ∖ ({y} ∪ (I ∩Xσ(y))), we have v /∈ I. Since v /∈ I, there
exists w ∈ V (σ) ∖X such that {v,w} ∈ E(Γ(σ,X)). Since u ∈ I, we have
{u,w} /∈ E(Γ(σ,X)). By the second assertion of Fact 9.20, {y, u} is a
module of σ[X ∪ {u, v,w}]. By assertion (M2) of Proposition 2.5, {y, u}
is a module of σ[X ∪ {u, v}].

In both cases above, {y, u} is a module of σ[X ∪ {u, v}]. It follows that
{y}∪ (I ∩Xσ(y)) is a module of σ. Since σ is prime, {y}∪ (I ∩Xσ(y)) is a
trivial module of σ. Thus, we obtain I ∩Xσ(y) = ∅. Hence, (9.7) holds. �

9.3. Blocks of the outside partition and of its refinement.

Lemma 9.23. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X] is
prime. Suppose that statement (S3) holds. Consider e, f ∈ E(σ), and y ∈X.
If Γ(σ,X) does not have isolated vertices, then the following two assertions
hold

(1) if ⟨X⟩(e,f)σ ≠ ∅, then ⟨X⟩(e
′,f ′)

σ = ∅ for any e′, f ′ ∈ E(σ) such that
{e′, f ′} ≠ {e, f};

(2) if X
(e,f)
σ (y) ≠ ∅, then X

(e′,f ′)
σ (y) = ∅ for any e′, f ′ ∈ E(σ) such that

{e′, f ′} ≠ {e, f}.

Proof. Consider e, f, e′, f ′ ∈ E(σ). For the first assertion, suppose that there

exist v ∈ ⟨X⟩(e,f)σ and v′ ∈ ⟨X⟩(e
′,f ′)

σ . We have to prove that

(9.8) {e, f} = {e′, f ′}.
Since v, v′ ∈ ⟨X⟩σ, we have {v, v′} /∈ E(Γ(σ,X)) by Remark 9.13. Fur-

thermore, since Γ(σ,X) does not have isolated vertices, there exist w,w′ ∈
(V (σ) ∖ X) ∖ {v, v′} such that {v,w},{v′,w′} ∈ E(Γ(σ,X)). Suppose that

w = w′. We obtain {w, v},{w, v′} ∈ E(Γ(σ,X)). It follows from Fact 9.18

that (e, f) = (e′, f ′), so (9.8) holds. We obtain the same conclusion when
{v,w′} ∈ E(Γ(σ,X)) or {v′,w} ∈ E(Γ(σ,X)). Thus, suppose that w ≠ w′, and

{v,w′},{v′,w} /∈ E(Γ(σ,X)). It follows from the first assertion of Fact 9.20

applied to v, v′,w′ that X ∪ {v′,w′} is a module of σ[X ∪ {v, v′,w′}]. Since

v ∈ ⟨X⟩(e,f)σ , we obtain [v, v′]σ = (f, e). Similarly, it follows from the first
assertion of Fact 9.20 applied to v, v′,w that [v′, v]σ = (f ′, e′). Therefore,
we have e = f ′ and e′ = f . Consequently, (9.8) holds.
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For the second assertion, suppose that there exist v ∈ X(e,f)
σ (y) and v′ ∈

X
(e′,f ′)
σ (y), where y ∈ X. We have to prove that (9.8) holds. Since v, v′ ∈

Xσ(y), we have {v, v′} /∈ E(Γ(σ,X)) by Remark 9.13. Furthermore, since

Γ(σ,X) does not have isolated vertices, there exist w,w′ ∈ (V (σ)∖X)∖{v, v′}
such that {v,w},{v′,w′} ∈ E(Γ(σ,X)). Suppose that w = w′. We obtain

{w, v},{w, v′} ∈ E(Γ(σ,X)). By Fact 9.18, (e, f) = (e′, f ′), so (9.8) holds. We

obtain the same conclusion when {v,w′} ∈ E(Γ(σ,X)) or {v′,w} ∈ E(Γ(σ,X)).
Now, suppose that w ≠ w′, and {v,w′},{v′,w} /∈ E(Γ(σ,X)). It follows from

the second assertion of Fact 9.20 applied to v, v′,w′ that {y, v} is a module

of σ[X ∪ {v, v′,w′}]. We obtain [v′, y]σ = [v′, v]σ. Since v′ ∈ X(e′,f ′)
σ (y),

we have [y, v′]σ = (e′, f ′). Therefore, we obtain [v′, v]σ = (f ′, e′). Similarly,
it follows from the second assertion of Fact 9.20 applied to v, v′,w that
[v, v′]σ = (f, e). Thus, we have e = f ′ and e′ = f . Consequently, (9.8)
holds. �

Lemma 9.24. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X] is
prime. Suppose that statement (S3) holds. Consider e, f ∈ E(σ) and y ∈ X.
Suppose that

(9.9) e ≠ f.

If Γ(σ,X) does not have isolated vertices, then the following two assertions
hold

(1) if ⟨X⟩(e,f)σ ≠ ∅ and ⟨X⟩(f,e)σ ≠ ∅, then [⟨X⟩(e,f)σ , ⟨X⟩(f,e)σ ]σ = (f, e);

(2) if X
(e,f)
σ (y) ≠ ∅ and X

(f,e)
σ (y) ≠ ∅, then [X(e,f)

σ (y),X(f,e)
σ (y)]σ =

(f, e).

Proof. For the first assertion, consider v ∈ ⟨X⟩(e,f)σ and v′ ∈ ⟨X⟩(f,e)σ . Since
v, v′ ∈ ⟨X⟩σ, we have {v, v′} /∈ E(Γ(σ,X)) by Remark 9.13. Furthermore,

since Γ(σ,X) does not have isolated vertices, there exists w′ ∈ (V (σ) ∖X) ∖
{v, v′} such that {v′,w′} ∈ E(Γ(σ,X)). Suppose for a contradiction that

{v,w′} ∈ E(Γ(σ,X)). We obtain {v,w′},{v′,w′} ∈ E(Γ(σ,X)). It follows
from Fact 9.18 that e = f , which contradicts (9.9). Therefore, we have
{v,w′} /∈ E(Γ(σ,X)). It follows from the first assertion of Fact 9.20 applied to

v, v′,w′ that X ∪{v′,w′} is a module of σ[X ∪{v, v′,w′}]. Since v ∈ ⟨X⟩(e,f)σ ,
we obtain [v′, v]σ = (e, f).

For the second assertion, consider v ∈ X(e,f)
σ (y) and v′ ∈ X(f,e)

σ (y). Since
v, v′ ∈ Xσ(y), we have {v, v′} /∈ E(Γ(σ,X)) by Remark 9.13. Furthermore,

since Γ(σ,X) does not have isolated vertices, there exists w′ ∈ (V (σ) ∖X) ∖
{v, v′} such that {v′,w′} ∈ E(Γ(σ,X)). Suppose for a contradiction that

{v,w′} ∈ E(Γ(σ,X)). We obtain {v,w′},{v′,w′} ∈ E(Γ(σ,X)). It follows
from Fact 9.18 that e = f , which contradicts (9.9). Therefore, we have
{v,w′} /∈ E(Γ(σ,X)). It follows from the second assertion of Fact 9.20 applied

to v, v′,w′ that {y, v} is a module of σ[X ∪ {v, v′,w′}]. Thus, we obtain
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[v, v′]σ = [y, v′]σ. Since v′ ∈ X(f,e)
σ (y), we have [y, v′]σ = (f, e), so [v, v′]σ =

(f, e). �

To state the next result, we use the following notation and definition.

Notation 9.25. Let σ be a 2-structure. For e ∈ E(σ) and W ⊆ V (σ), set

e[W ] = e ∩ (W ×W ).

Given e ∈ E(σ) and W ⊆ V (σ), we do not have e ∈ E(σ[W ]), but we have
e[W ] ∈ E(σ[W ]) when e[W ] ≠ ∅.

Lemma 9.26. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X] is
prime. Suppose that statement (S3) holds. If σ is prime, then the next two
assertions hold.

(1) Let e ∈ E(σ). If ∣⟨X⟩(e,e)σ ∣ ≥ 2, then σ[⟨X⟩σ] is constant and

E(σ[⟨X⟩σ]) = {e[⟨X⟩σ]}.

Similarly, given y ∈ X, if ∣X(e,e)
σ (y)∣ ≥ 2, then σ[Xσ(y)] is constant

and E(σ[Xσ(y)]) = {e[Xσ(y)]}.

(2) Consider distinct e, f ∈ E(σ). If ∣⟨X⟩(e,f)σ ∣ ≥ 2, then σ[⟨X⟩σ] is linear
and

E(σ[⟨X⟩σ]) = {e[⟨X⟩σ], f[⟨X⟩σ]}.

Similarly, given y ∈ X, if ∣X(e,f)
σ (y)∣ ≥ 2, then σ[Xσ(y)] is linear

and E(σ[Xσ(y)]) = {e[Xσ(y)], f[Xσ(y)]}.

Proof. Consider Bq ∈ q(σ,X), with ∣Bq ∣ ≥ 2. There exist e, f ∈ E(σ) such that

Bq = ⟨X⟩(e,f)σ or X
(e,f)
σ (y), where y ∈ X. Consider C ∈ C{e,f}(σ[Bq]) (see

Definition 2.2). We prove that C is a module of σ. We utilize Corollary 9.19
in the following manner. Since Bq ∈ q(σ,X), there exists Bp ∈ p(σ,X) such that
Bq ⊆ Bp. By Lemma 2.4, C is a module of σ[Bq].

Now, we show that C is a module of σ[Bp]. Suppose that e = f . It follows
from Lemma 9.23 that Bq = Bp. Hence, C is a module of σ[Bp]. Suppose
that e ≠ f . If Bq = Bp, then we proceed as previously. Hence, suppose that
Bq ≠ Bp. It follows from Lemma 9.23 that Bp ∖Bq ∈ q(σ,X) and

Bp ∖Bq =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨X⟩(f,e)σ if Bq = ⟨X⟩(e,f)σ

or

X
(f,e)
σ (y) if Bq =X(e,f)

σ (y).

It follows from Lemma 9.24 that Bq is a module of σ[Bp]. Since C is a
module of σ[Bq], it follows from assertion (M3) of Proposition 2.5 that C is
a module of σ[Bp].

Lastly, we prove that C is a module of Γ(σ,X). Since C ⊆ Bp, we have
{c, v} /∈ E(Γ(σ,X)) for c ∈ C and v ∈ Bp ∖C by Remark 9.13. Therefore, we
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have to verify that C is a module of Γ(σ,X)[C ∪ {v}] for each v ∈ (V (σ) ∖
X) ∖Bp. Let v ∈ (V (σ) ∖X) ∖Bp. Set

C+ = C ∩NΓ(σ,X)(v) and C− = C ∖NΓ(σ,X)(v).

For a contradiction, suppose that C− ≠ ∅ and C+ ≠ ∅. It follows from
Corollary 9.21 that [C−,C+]σ = (e, f) or (f, e), which contradicts C ∈
C{e,f}(σ[Bq]). Therefore, C− = ∅ or C+ = ∅, that is, C is a module of
Γ(σ,X)[C ∪{v}] for each v ∈ (V (σ)∖X)∖Bp. Thus, C is a module of Γ(σ,X).

Consequently, C is a module of σ[Bp] and C is a module of Γ(σ,X). It
follows from Corollary 9.19 that C is a module of σ. Since σ is prime, C is
trivial. Hence, we obtain ∣C ∣ = 1 because C ≠ ∅ and C ∩X = ∅. We conclude
as follows by distinguishing the following two cases.
Case 1: e = f .

Recall that Bq = Bp by Lemma 9.23. Hence, all the {e, f}-components
of σ[Bp] are reduced to singletons. It follows from Proposition 2.8 that
σ[Bp] is constant. Precisely, it follows from Lemma 2.4 that (v,w)σ = e
for distinct v,w ∈ Bp. In other words, σ[Bp] is constant and E(σ[Bp]) =
{e[Bp]}.

Case 2: e ≠ f .

For instance, suppose that Bq = ⟨X⟩(e,f)σ . All the {e, f}-components

of σ[⟨X⟩(e,f)σ ] are reduced to singletons. It follows from Proposition 2.8
that σ[Bp] is linear. Precisely, it follows from Lemma 2.4 that (v,w)σ = e
or f for distinct v,w ∈ Bp. In other words, σ[⟨X⟩(e,f)σ ] is linear and

E(σ[⟨X⟩(e,f)σ ]) = {e[⟨X⟩(e,f)σ ], f[⟨X⟩(e,f)σ ]}.
Lastly, suppose that Bq ⊊ Bp. It follows from Lemma 9.23 that Bp∖Bq =
⟨X⟩(f,e)σ . Similarly, we have σ[⟨X⟩(f,e)σ ] is linear and E(σ[⟨X⟩(f,e)σ ]) =
{e[⟨X⟩(f,e)σ ], f[⟨X⟩(f,e)σ ]}. Moreover, we have

[⟨X⟩(e,f)σ , ⟨X⟩(f,e)σ ]σ = (f, e)

by the first assertion of Lemma 9.24. Consequently, σ[⟨X⟩σ] is linear
and E(σ[⟨X⟩σ]) = {e[⟨X⟩σ], f[⟨X⟩σ]}. �

We complete subsection 9.3 with a result on the components of the outside
graph, which follows from Fact 9.18 and the following easy consequence of
Fact 9.20. We use the following notation.

Notation 9.27. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. First, the set {⟨X⟩(e,e)σ ∶ e ∈ E(σ)}∪{X(e,e)

σ (α) ∶ e ∈ E(σ), α ∈X} is
denoted by qs(σ,X). Second, the set q(σ,X) ∖ (qs(σ,X) ∪ {Extσ(X)}) is denoted

by qa(σ,X).

Fact 9.28. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X] is
prime. Suppose that statement (S3) holds. Consider distinct v, v′,w,w′ ∈
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V (σ) ∖X such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{v,w},{v′,w′} ∈ E(Γ(σ,X))
and

{v,w′},{v′,w} /∈ E(Γ(σ,X)).
If there exists Bq ∈ q(σ,X) such that w,w′ ∈ Bq, then Bq ∈ qs(σ,X).

Proof. Since w and w′ belong to the same block of p(σ,X), we have {w,w′} /∈
E(Γ(σ,X)) by Remark 9.13. Besides, there exist e, f ∈ E(σ) such that Bq =
⟨X⟩(e,f)σ or Bq =X(e,f)

σ (y), where y ∈X.

First, suppose that Bq = ⟨X⟩(e,f)σ . By the first assertion of Fact 9.20
applied to v,w,w′, X ∪ {v,w} is a module of σ[X ∪ {v,w,w′}]. Since

w′ ∈ ⟨X⟩(e,f)σ , we have [w′,X]σ = (f, e). It follows that [w′,w]σ = (f, e).
Similarly, it follows from the first assertion of Fact 9.20 applied to v′,w,w′

that [w′,w]σ = (e, f). Thus, we obtain e = f , and hence Bq ∈ qs(σ,X).

Second, suppose that Bq = X(e,f)
σ (y), where y ∈ X. By the second asser-

tion of Fact 9.20 applied to v,w,w′, {y,w′} is a module of σ[X ∪{v,w,w′}].
Thus, we have [w,w′]σ = [w,y]σ. Since w ∈ X(e,f)

σ (y), we have [w,y]σ =
(f, e). We obtain [w,w′]σ = (f, e). Similarly, it follows from the second
assertion of Fact 9.20 applied to v′,w,w′ that [w′,w]σ = (f, e). Therefore
e = f , so Bq ∈ qs(σ,X). �

Proposition 9.29. Given a 2-structure σ, consider X ⊊ V (σ) such that
σ[X] is prime. Suppose that statement (S3) holds. If Γ(σ,X) does not have
isolated vertices, then the following two assertions hold.

(1) For each component C of Γ(σ,X), there exist distinct Bp,Dp ∈ p(σ,X)
and Bq,Dq ∈ q(σ,X) such that Bq ⊆ Bp, Dq ⊆ Dp, and C is bipartite
with bipartition {V (C) ∩Bq, V (C) ∩Dq}.

(2) For a component C of Γ(σ,X) and for Bq ∈ qa(σ,X), if V (C) ∩Bq ≠ ∅,

then Bq ⊆ V (C).

Proof. For the first assertion, consider a component C of Γ(σ,X). Since Γ(σ,X)
does not have isolated vertices, v(C) ≥ 2. Hence, there exist distinct c, d ∈
V (C) such that {c, d} ∈ E(Γ(σ,X)). Furthermore, there exist Bp,Dp ∈ p(σ,X)
and Bq,Dq ∈ q(σ,X) such that c ∈ Bq, d ∈ Dq, Bq ⊆ Bp, and Dq ⊆ Dp. Since
{c, d} ∈ E(Γ(σ,X)), we have Bp ≠Dp by Remark 9.13. Let v ∈ V (C) ∖ {c, d}.
Since C is a component of Γ(σ,X), there exists a sequence v0, . . . , vn of vertices
of C satisfying

● v0 ∈ {c, d};
● vn = v; {v0, . . . , vn} ∩ {c, d} = {v0};
● for i, j ∈ {0, . . . , n}, {vi, vj} ∈ E(Γ(σ,X)) if and only if ∣i − j∣ = 1.

Since v0 ∈ {c, d} and vn ∈ V (C) ∖ {c, d}, we have n ≥ 1. We distinguish the
following two cases.
Case 1: n is even.
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It follows from Fact 9.18 that v0, v2, . . . , vn belong to the same block of
q(σ,X). Since v0 ∈ {c, d} and vn = v, we obtain v ∈ Bq ∪Dq.

Case 2: n is odd.
Set

v−1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

d if v0 = c
and

c if v0 = d.
We have v−1 ∈ Bq∪Dq. By considering the sequence v−1v0 . . . vn, it follows
from Fact 9.18 that v and v−1 belong to the same block of q(σ,X). Hence,
v ∈ Bq ∪Dq.

Therefore, we obtain V (C)∖{c, d} ⊆ Bq ∪Dq, and hence V (C) ⊆ Bq ∪Dq.
By Remark 9.13, C is bipartite with bipartition {V (C) ∩Bq, V (C) ∩Dq}.

For the second assertion, consider a component C of Γ(σ,X) and an element
Bq of qa(σ,X) such that V (C) ∩ Bq ≠ ∅. Consider v ∈ V (C) ∩ Bq. For a

contradiction, suppose that

Bq ∖ V (C) ≠ ∅,
and consider v′ ∈ Bq ∖ V (C). Since Γ(σ,X) does not have isolated vertices,

there exist u ∈ (V (σ) ∖ X) ∖ {v} and u′ ∈ (V (σ) ∖ X) ∖ {v′} such that
{u, v},{u′, v′} ∈ E(Γ(σ,X)). Furthermore, since C is a component of Γ(σ,X),

with v ∈ V (C) and v′ /∈ V (C), we obtain u ∈ V (C) and u′ /∈ V (C). Therefore,
u ≠ u′, and {u, v′},{u′, v} /∈ E(Γ(σ,X)). It follows from Fact 9.28 that Bq ∈
qs(σ,X), which contradicts Bq ∈ qa(σ,X). Consequently, we have Bq ⊆ V (C). �

9.4. Proofs of Theorems 9.5 and 9.6. We use the following notation.

Notation 9.30. Given a graph Γ, C(Γ) denotes the set of the components
of Γ.

Proof of Theorem 9.5. To begin, suppose that σ is not prime. We prove that
there exists C ∈ C(Γ(σ,X)) such that σ[X∪V (C)] is not prime. First, suppose
that Γ(σ,X) admits isolated vertices. Hence, consider v ∈ V (σ)∖X such that
{v} ∈ C(Γ(σ,X)). Since statement (S3) holds, Extσ(X) = ∅ by Remark 9.4.
Thus σ[X ∪ {v}] is not prime. Second, suppose that Γ(σ,X) does not have
isolated vertices. Since σ is not prime, σ admits a nontrivial module M . It
follows from Corollary 9.15 that M ∩X = ∅. By Lemma 9.17, there exists
Bp ∈ p(σ,X) such that M ⊆ Bp and M is a module of Γ(σ,X). Let u ∈ M .
Since Γ(σ,X) does not have isolated vertices, there exists v ∈ (V (σ)∖X)∖{u}
such that {u, v} ∈ E(Γ(σ,X)). Since M ⊆ Bp, we have v /∈M by Remark 9.13.
Denote by C the component of Γ(σ,X) containing u. We obtain v ∈ V (C)
because {u, v} ∈ E(Γ(σ,X)). Since M is a module of Γ(σ,X), we obtain

{u′, v} ∈ E(Γ(σ,X)) for every u′ ∈ M . Therefore, we have M ⊆ V (C). It
follows that M is a nontrivial module of σ[X ∪ V (C)].

Now, we suppose that there exists C ∈ C(Γ(σ,X)) such that σ[X ∪ V (C)]
is not prime. Since σ[X ∪ V (C)] is not prime, we have v(C) ≠ 2. Assume
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that v(C) ≥ 4. We have to prove that C is not prime. Consider a nontrivial
module M of σ[X ∪ V (C)]. Clearly, σ[X ∪ V (C)] satisfies statement (S3).
Moreover,

Γ(σ[X∪V (C)],V (C)) = C.
Since v(C) ≥ 4, it follows from Corollary 9.15 applied to σ[X ∪ V (C)] that
M ⊆ V (C). By Lemma 9.17 applied to σ[X ∪ V (C)], there exists

Bp ∈ p(σ[X∪V (C)],V (C))

such that M ⊆ Bp and M is a module of C. We have to verify that M ≠
V (C). Let u ∈ M . Since v(C) ≥ 4, there exists v ∈ V (C) ∖ {u} such that
{u, v} ∈ E(C). In particular, we have v ∈ V (C). Since u ∈ Bp, we have
v /∈ Bp by Remark 9.13 applied to σ[X ∪ V (C)]. Since M ⊆ Bp, we obtain
v ∈ V (C) ∖M .

Lastly, we suppose that there exists C ∈ C(Γ(σ,X)) such that v(C) = 1
or v(C) ≥ 3 and C is not prime. We have to prove that σ is not prime.
Therefore, by Corollary 9.22, we can suppose that

(9.10) Γ(σ,X) does not have isolated vertices.

In particular, we obtain v(C) ≥ 3. Consider a nontrivial module M of
C. Clearly, M is a module of Γ(σ,X) because C is a component of Γ(σ,X).
Since Γ(σ,X) does not have isolated vertices by (9.10), it follows from the
first assertion of Proposition 9.29 that there exist distinct Bp,Dp ∈ p(σ,X)
and Bq,Dq ∈ q(σ,X) such that Bq ⊆ Bp, Dq ⊆ Dp, and C is bipartite with
bipartition {V (C) ∩ Bq, V (C) ∩Dq}. Since C is connected, we have M ⊆
V (C) ∩Bq or M ⊆ V (C) ∩Dq. For instance, assume that M ⊆ V (C) ∩Bq.
To conclude, we distinguish the following two cases.
Case 1: Bq ∈ qs(σ,X).

There exists e ∈ E(σ) such that Bq = ⟨X⟩(e,e)σ or X
(e,e)
σ (y), where y ∈

X. If σ[Bp] is not constant, then it follows from the first assertion of
Lemma 9.26 that σ is not prime. Thus, suppose that σ[Bp] is constant.
It follows that any subset of Bp is a module of σ[Bp]. In particular, M
is a module of σ[Bp]. Since M is a module of Γ(σ,X), it follows from
Corollary 9.19 that M is a module of σ.

Case 2: Bq ∈ qa(σ,X).

Since Γ(σ,X) does not have isolated vertices by (9.10), it follows from the
second assertion of Proposition 9.29 that

Bq ⊆ V (C).
In general, M is not a module of σ[Bq], and hence M is not a module of
σ[Bp]. Therefore, we cannot apply Corollary 9.19 to M . Nevertheless,
we construct a superset of M , which is a module of Γ(σ,X) and a module

of σ[Bp]. Consider the set M of the nontrivial modules M ′ of C such
that M ⊆M ′. Set

M̃ =⋃M.
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Clearly, M ∈M. Since M ≠ ∅ and all the elements of M contain M ,
it follows from assertion (M5) of Proposition 2.5 that M̃ is a module

of C. Since C is a component of Γ(σ,X), M̃ is a module of Γ(σ,X). As

previously seen for M , M̃ ⊆ V (C)∩Bq or M̃ ⊆ V (C)∩Dq. Since M ⊆ M̃
and M ⊆ V (C) ∩Bq, we have M̃ ⊆ V (C) ∩Bq. Therefore, M̃ ⊆ Bq. Set

N = {v ∈ Bq ∖ M̃ ∶ v /←→σ M̃}.

We verify that M̃ ∪N is a module of C. It suffices to show that for any
w ∈ V (C) ∩Dq, u ∈ M̃ and v ∈ N , we have {u,w},{v,w} ∈ E(Γ(σ,X))
or {u,w},{v,w} /∈ E(Γ(σ,X)). Since v ∈ N , there exist u′, u′′ ∈ M̃

such that v /←→σ {u′, u′′}. Furthermore, since M̃ is a module of C,
we have {u,w},{u′,w},{u′′,w} ∈ E(Γ(σ,X)) or {u,w},{u′,w},{u′′,w} /∈
E(Γ(σ,X)). For instance, suppose that {u,w},{u′,w},{u′′,w}
∈ E(Γ(σ,X)). By Corollary 9.21, {z ∈ Bq ∶ {z, v} ∈ E(Γ(σ,X))} is a

module of σ[Bq]. Since u,u′, u′′ ∈ {z ∈ Bq ∶ {z, v} ∈ E(Γ(σ,X))} and

v /←→σ {x′, x′′}, we obtain v ∈ {z ∈ Bq ∶ {z, v} ∈ E(Γ(σ,X))}. Hence,

we have {u,w},{u′,w},{u′′,w},{v,w} ∈ E(Γ(σ,X)). Similarly, if {u,w},
{u′,w},{u′′,w} /∈ E(Γ(σ,X)), then if follows from Corollary 9.21 that

{u,w},{u′,w},{u′′,w},{v,w} /∈ E(Γ(σ,X)). Consequently, M̃ ∪ N is a

module of C. It follows from the definition of M̃ that N ⊆ M̃ . There-
fore, we have N = ∅, and hence, M̃ is a module of σ[Bq]. Since Γ(σ,X)
does not have isolated vertices by (9.10), it follows from Lemmas 9.23

and 9.24 that M̃ is a module of σ[Bp]. Lastly, since M̃ is a module of

Γ(σ,X), it follows from Corollary 9.19 that M̃ is a module of σ. �

The next result is an easy consequence of Theorem 9.5.

Corollary 9.31. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. If statement (S5) holds, then Γ(σ,X) does not embed P5 (see Fig-
ure 1.1).

Proof. For a contradiction, suppose that there exists Y ⊆ (V (σ) ∖X) such
that Γ(σ,X)[Y ] ≃ P5. Since P5 is connected, there exists a component C of
Γ(σ,X) such that Y ⊆ V (C). We have

Γ(σ[X∪Y ],X) = Γ(σ,X)[Y ].

Since Γ(σ,X)[Y ] = C[Y ], Γ(σ[X∪Y ],X) is prime. It follows from Theorem 9.5
applied to σ[X ∪Y ] that σ[X ∪Y ] is prime, which contradicts the fact that
statement (S5) holds. �

Since the proof of the next observation is obvious, we omit it.

Observation 9.32. Given a connected and bipartite graph Γ, Γ embeds
K2 ⊕K2 if and only if Γ embeds P5.
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Proof of Theorem 9.6. We make a preliminary observation. Since statement
(S5) holds, it follows from Remark 9.4 that statement (S3) holds as well.

To begin, suppose that the first assertion holds, that is, σ is (V (σ)∖X)-
critical. We have to prove that the second assertion holds. Consider C ∈
C(Γ(σ,X)). By Theorem 9.5 applied to σ, σ[X ∪ V (C)] is prime. We have
to show that σ[X ∪ V (C)] is V (C)-critical. Let c ∈ V (C). Since σ is
(V (σ) ∖X)-critical, σ − c is not prime. We have

Γ(σ−c,X) = Γ(σ,X) − c.
Therefore, we obtain

(9.11) C(Γ(σ−c,X)) = (C(Γ(σ,X)) ∖ {C}) ∪ C(C − c).
Since σ − c is not prime, it follows from Theorem 9.5 applied to σ − c that
there exists C ′ ∈ C(Γ(σ−c,X∖{c})) such that σ[X ∪ V (C ′)] is not prime. By

(9.11), C ′ ∈ (C(Γ(σ,X)) ∖ {C}) ∪ C(C − c). By Theorem 9.5 applied to σ,
σ[X ∪ V (D)] is prime for every D ∈ (C(Γ(σ,X)) ∖ {C}). Thus, we obtain

C ′ ∈ C(C − c). Finally, since

Γ(σ[X∪V (C)]−c,V (C)∖{c}) = C − c,
it follows from Theorem 9.5 applied to σ[X ∪V (C)]−c that σ[X ∪V (C)]−c
is not prime. Consequently, σ[X ∪ V (C)] is V (C)-critical.

To continue, suppose that the second assertion holds. We have to prove
that the third assertion holds. Consider C ∈ C(Γ(σ,X)). By Theorem 9.5
applied to σ, v(C) = 2 or v(C) ≥ 4 and C is prime. Suppose that v(C) ≥ 4
and C is prime. We have to show that C is critical. Let c ∈ V (C). We have
to show that C − c is not prime. If C − c is disconnected, then C − c is not
prime. Thus, suppose that C − c is connected. It follows that

Γ(σ[X∪V (C)]−c,V (C)∖{c}) = C − c.
Since the second assertion holds, σ[X ∪ V (C)] − c is not prime. It follows
from Theorem 9.5 applied to σ[X ∪ V (C)] − c that C − c is not prime.

Lastly, suppose that the third assertion holds. Hence, for every C ∈
C(Γ(σ,X)), we have

(9.12) v(C) = 2 or v(C) ≥ 4 and C is critical.

We have to prove that σ is (V (σ) ∖X)-critical. By Theorem 9.5 applied to
σ, σ is prime. Let v ∈ V (σ) ∖X. We have to prove that σ − v is not prime.
Denote by C the component of Γ(σ,X) containing v. Since σ is prime, it
follows from Corollary 9.22 that Γ(σ,X) has no isolated vertices. By the first
assertion of Proposition 9.29, C is bipartite. Moreover, C does not embed
P5 by Corollary 9.31. It follows from Observation 9.32 that C does not
embed K2 ⊕K2. Therefore,

(9.13) C − v does not embed K2 ⊕K2.

As seen in (9.11),

(9.14) C(C − v) ⊆ C(Γ(σ−v,X)).
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Suppose that C − v admits isolated vertices. By (9.14), Γ(σ−v,X) admits
isolated vertices as well. It follows from Corollary 9.22 that σ − v is not
prime. Finally, suppose that C − v does not admit isolated vertices. Hence,
v(C ′) ≥ 2 for each C ′ ∈ C(C − v). In particular, we do not have v(C) = 2. It
follows from (9.12) that

(9.15) v(C) ≥ 4 and C is critical.

Since v(C ′) ≥ 2 for each C ′ ∈ C(C − v), it follows from (9.13) that C − v
is connected. By (9.14), C − v ∈ C(Γ(σ−x,X)). Furthermore, it follows from
(9.15) that v(C − v) ≥ 3 and C − v is not prime. By Theorem 9.5 applied to
σ − v, σ − v is not prime. �

9.5. Outside graph and half-graph. Given a 2-structure σ, consider X ⊊
V (σ) such that σ[X] is prime. Suppose that statement (S5) holds. Suppose
also that σ is (V (σ) ∖X)-critical. Consider a component C of Γ(σ,X) such
that v(C) ≥ 4. By Remark 9.4, statement (S3) holds because statement (S5)
holds. It follows from Proposition 9.29 that C is bipartite. It follows from
Theorem 9.6 that C is critical. Moreover, since statement (S5) holds, C does
not embed P5 by Corollary 9.31. In Theorem 9.38 below, we characterize
the bipartite graphs Γ such that Γ does not embed P5 and Γ is critical. We
need the following three definitions (see Definitions 9.33, 9.35, and 9.36).

Definition 9.33. We extend to the infinite case the definition of the half-
graph H2m (see Figure 4.1). Given a bipartite graph Γ, with bipartition
{X,Y }, Γ is a half-graph [15] if there exist a linear order L defined on X,
and a bijection ϕ from X onto Y such that

(9.16) E(Γ) = {{x,ϕ(x′)} ∶ x ≤L x′}.
Clearly, a finite half-graph is isomorphic to the graph H2m, where m ≥ 1
(see Figure 4.1).

Remark 9.34. Given a bipartite graph Γ, with bipartition {X,Y }. Suppose
that Γ is a half-graph. There exist a linear order L defined on X, and a
bijection ϕ from X onto Y such that (9.16) holds. Given x, y ∈X, we obtain
that

x ≤L y if and only if NΓ(x) ⊇ NΓ(y).
Therefore, the linear order L is unique.

Furthermore, denote by ϕ(L) the unique linear order defined on Y such
that ϕ is an isomorphism from L onto ϕ(L). We obtain

E(Γ) = {{y,ϕ−1(y′)} ∶ y ≤(ϕ(L)⋆) y′}.

Consequently, Γ is also a half-graph by considering the linear order ϕ(L)⋆
defined on Y (see subsection 1.3), and the bijection ϕ−1 ∶ Y Ð→X.

Definition 9.35. A linear order L is discrete [30] if the following two con-
ditions are satisfied
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(1) for every v ∈ V (L), if v is not the least element of L, then v admits
an immediate predecessor;

(2) for every v ∈ V (L), if v is not the greatest element of L, then v
admits an immediate successor.

Definition 9.36. A half-graph is discrete if the linear order L in Defini-
tion 9.33 is discrete.

In the next observation, we explain how to decompose suitably a discrete
linear order (see Definition 9.35).

Observation 9.37. Given an infinite linear order λ, λ is discrete if and
only if λ admits a modular partition P satisfying the following conditions.

(1) If ∣P ∣ = 1, then λ ≃ LN or (LN)⋆ or LZ.
(2) For each M ∈ P , if M is neither the least nor the greatest element

of the quotient λ/P 9.5 , then λ[M] ≃ LZ.
(3) If ∣P ∣ ≥ 2 and λ/P admits a least element denoted by Min, then

λ[Min] ≃ LN or LZ.
(4) If ∣P ∣ ≥ 2 and λ/P admits a greatest element denoted by Max, then

λ[Max] ≃ (LN)⋆ or LZ.

Idea of proof. For a linear order, both notions of an interval and a module
coincide. Consider an infinite discrete linear order λ. We define on V (λ)
the binary relation ∼ as follows. Given v,w ∈ V (λ), v ∼ w if the smallest
module of λ containing v and w is finite. Clearly, ∼ is an equivalence relation.
Furthermore, the equivalence classes of ∼ are modules of λ. Thus, the set
P of the equivalence classes of ∼ is a modular partition of λ. Since λ is
discrete, it is is easy to verify that for each M ∈ P , λ[M] is isomorphic to
LN, (LN)⋆, or LZ. �

Theorem 9.38 (Belkhechine et al. [3]). Given a bipartite graph Γ, with
v(Γ) ≥ 4, the following assertions are equivalent

(1) Γ is a discrete half-graph;
(2) Γ does not embed P5 and Γ is critical.

Now, we examine Theorem 9.38 in the finite case (see Proposition 9.41).
We need the following result which follows from the characterization of finite
critical 2-structures done in subsection 4.2.

Corollary 9.39. Given a finite and symmetric 2-structure τ , with v(τ) ≥ 5,
τ is critical if and only if τ is isomorphic to σ(H2n), where n ≥ 3.

Proof. To begin, suppose that τ is isomorphic to σ(H2n), where n ≥ 3. By
Corollary 4.20, τ is critical.

Conversely, suppose that τ is critical. By Corollary 4.6, there exists n ≥ 3
such that P(τ) is isomorphic to P2n or there exists n ≥ 3 such that P(τ)
is isomorphic to P2n ⊕ K{2n}, P2n+1, or C2n+1. Since τ is symmetric, it

9.5It is easy to verify that a quotient of a linear order is a linear order as well.
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follows from Propositions 4.23, 4.27, and 4.36 that P(τ) is not isomorphic
to P2n⊕K{2n}, P2n+1, or C2n+1. Consequently, P(τ) is isomorphic to P2n. It
follows from Corollary 4.20 that τ is isomorphic to σ(H2n), where n ≥ 3. �

The next result is an immediate consequence of Corollary 9.39.

Corollary 9.40. Given a finite and bipartite graph Γ, with v(Γ) ≥ 5, Γ is
critical if and only if Γ is a half-graph.

Proof. To begin, suppose that Γ is critical. We obtain that σ(Γ) is sym-
metric and critical. By Corollary 9.39 that σ(Γ) is isomorphic to σ(H2n),
where n ≥ 3. We obtain that Γ is isomorphic to H2n or its complement H2n.
Since n ≥ 3, H2n embeds the complete graph K3. Since Γ is bipartite, we
obtain that Γ is isomorphic to H2n. As seen at the end of Definition 9.33,
H2n is a half-graph.

Conversely, suppose that Γ is a half-graph. As seen at the end of Defini-
tion 9.33, Γ is isomorphic to H2n, where n ≥ 3. By Corollary 9.39, σ(H2n)
is critical. Hence, H2n is critical too. Therefore, Γ is critical. �

Proposition 9.41. For a finite and bipartite graph Γ, with v(Γ) ≥ 4, the
following assertions are equivalent

(1) Γ does not embed P5 and Γ is prime;
(2) Γ is critical;
(3) Γ is a half-graph.

Proof. First, suppose that v(Γ) = 4. We have Γ is prime if and only if Γ is
isomorphic to P4, which is isomorphic to the half-graph H4. Therefore, the
three assertions above are equivalent when v(Γ) = 4.

Second, suppose that v(Γ) = 5. The first assertion does not hold because
(9.17)

a prime and bipartite graph defined on 5 vertices9.6 is isomorphic to P5.

Furthermore, by Corollary 9.40, the last two assertions do not hold because
v(Γ) is odd. Thus, the three assertions above are equivalent when v(Γ) = 5.

Now, suppose that v(Γ) ≥ 6. By Corollary 9.40, the last two assertions
are equivalent. To begin, suppose that the first assertion holds. By (9.17),

(9.18) Γ does not embed a prime graph of size 5.

It follows from Theorem 5.3 that v(Γ) is even. If v(Γ) = 6, then Γ is critical
by (9.18). Hence, suppose that v(Γ) ≥ 7. Since v(Γ) is even, it follows from
Theorem 5.3 and (9.18) that Γ is critical. Consequently, the first assertion
implies the second one.

Lastly, suppose that Γ is both critical and a half-graph. If v(Γ) = 6, then
Γ does not embed P5. Suppose that v(Γ) ≥ 7. Since Γ is a half-graph, v(Γ)
is even. Since Γ is critical, it follows from Corollary 3.20 that Γ does not
embed P5. �

The next result is a consequence of Proposition 9.41 and Theorem 7.1.
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Corollary 9.42. A half-graph Γ, with v(Γ) ≥ 4, is prime.

Proof. There exists a bipartition {X,Y } of V (Γ), a linear order L defined on
X, and a bijection ϕ from X onto Y such that E(Γ) = {{x,ϕ(x′)} ∶ x ≤L x′}.
By Proposition 9.41, we can suppose that Γ is infinite. Consider a finite
subset F of V (Γ). Let X ′ be a finite subset of X such that F ∩X ⊆ X ′,
ϕ−1(F ∩ Y ) ⊆X ′, and ∣X ′∣ ≥ 2. Set

F ′ =X ′ ∪ ϕ(X ′).
Clearly, we have F ⊆ F ′. By considering Y ′ = ϕ(X ′), the linear order
L′ = L[X ′], and the bijection ϕ↾X′ ∶ X ′ Ð→ Y ′, we obtain that Γ[F ′] is a
half-graph. By Proposition 9.41, Γ[F ′] is prime. To conclude, it suffices to
use Theorem 7.1. �

Now, we are ready to demonstrate Theorem 9.38.

Proof of Theorem 9.38. By Proposition 9.41, we can suppose that Γ is infi-
nite.

To begin, suppose that Γ is a discrete half-graph. There exists a biparti-
tion {X,Y } of V (Γ), a discrete linear order L defined on X, and a bijection
ϕ from X onto Y such that E(Γ) = {{x,ϕ(x′)} ∶ x ≤L x′}. By Corollary 9.42,
Γ is prime. Hence, Γ is connected. Since Γ is a half-graph, Γ does not embed
K2 ⊕K2. It follows from Observation 9.32 that Γ does not embed P5. Now,
we have to verify that

(9.19) for every x ∈X, Γ − x is not prime.

First, suppose that x is not the least element of L. Since L is discrete, x
admits an immediate predecessor x−. It is easy to verify that {ϕ(x−), ϕ(x)}
is a module of Γ − x. Second, suppose that x is the least element of L.
Clearly, ϕ(x) is an isolated vertex of Γ − x, so Γ − x is not prime. Thus
(9.19) holds. Similarly, it follows from Remark 9.34 that Γ − y is not prime
for each y ∈ Y . Consequently, Γ is critical.

Conversely, suppose that Γ does not embed P5 and Γ is critical. Since Γ
is bipartite, there exists a bipartition {X,Y } of V (Γ) such that X and Y
are stable sets of Γ. To complete the proof, we establish the next claims.
To begin, we define a linear order L on X as follows.

Definition 9.43. Since Γ is prime, we have NΓ(x) ≠ NΓ(x′) for distinct
x,x′ ∈X. Moreover, since Γ does not embed P5, Γ does not embed K2 ⊕K2

by Observation 9.32. It follows that for distinct x,x′ ∈ X, we have NΓ(x) ⊊
NΓ(x′) or NΓ(x′) ⊊ NΓ(x). Therefore, we can define on X a linear order L
as follows. Given distinct x,x′ ∈X,

x <L x′ if NΓ(x) ⊋ NΓ(x′).

We show that Γ is the half-graph defined from the linear order L (see
Claim 9.51). We have also to define a suitable bijection from X onto Y (see
Definition 9.47). We use the fact that Γ is critical.
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Claim 9.44. Given x ∈ X, if Γ − x is disconnected, then the following
assertions hold

(1) Γ − x admits a unique isolated vertex ix and ix ∈ Y ;
(2) NΓ(x) = Y , so x is the least element of L;
(3) ix is the unique element of V (Γ)∖{x} such that Γ−{x, ix} is prime.

Proof. Since Γ is connected, the set of the isolated vertices of Γ − x is a
module of Γ. Thus, we have

∣{C ∈ C(Γ − x) ∶ v(C) = 1}∣ ≤ 1.

Furthermore, since Γ does not embed K2 ⊕K2, Γ − x admits at most one
nontrivial component. Therefore, we have also

∣{C ∈ C(Γ − x) ∶ v(C) ≥ 2}∣ ≤ 1.

Since Γ − x is disconnected, ∣C(Γ − x)∣ ≥ 2. It follows that Γ − x admits a
unique isolated vertex ix and Γ−{x, ix} is connected. Since ix is an isolated
vertex of Γ − x, {x, ix} ∈ E(Γ) because Γ is connected. Hence, ix ∈ Y .

Now, we verify that NΓ(x) = Y . Let y ∈ Y ∖ {ix}. Since Γ − {x, ix}
is connected, there exits x′ ∈ X ∖ {x} such that {x′, y} ∈ E(Γ). Since
Γ[{x,x′, y, ix}] /≃ K2 ⊕ K2, we obtain {x, y} ∈ E(Γ) or {x′, ix} ∈ E(Γ).
Since ix is isolated in Γ − x, we have {x′, ix} /∈ E(Γ). Therefore, we ob-
tain {x, y} ∈ E(Γ). It follows that NΓ(x) = Y . Hence, x is the least element
of L.

Lastly, we verify that Γ − {x, ix} is prime. Otherwise, Γ − {x, ix} admits
a nontrivial module M . Since Γ − {x, ix} is connected and bipartite with
bipartition {X ∖{x}, Y ∖{ix}}, we have M ⊆X ∖{x} or M ⊆ Y ∖{ix}. Since
NΓ(x) = Y and NΓ(ix) = {x}, M is a module of Γ, which contradicts the
fact that Γ is prime. Consequently, Γ − {x, ix} is prime. Moreover, consider
v ∈ V (Γ)∖{x, ix}. Since ix is isolated in Γ−x, it is also isolated in Γ−{x, v}.
Therefore Γ− {x, v} is not prime. It follows that ix is the unique element of
V (Γ) ∖ {x} such that Γ − {x, ix} is prime. �

Claim 9.45. Let x ∈ X such that Γ − x is connected. For any nontrivial
module M of Γ − x, there exist x−, x+ ∈ Y such that M = {x−, x+}, {x,x−} /∈
E(Γ), and {x,x+} ∈ E(Γ).

Proof. Let M be a nontrivial module of Γ − x. Since Γ − x is connected,
we have M ⊆ X ∖ {x} or M ⊆ Y . In the first instance, M is a module of
Γ. Therefore, we have M ⊆ Y . Set M− = {y ∈ M ∶ {x, y} /∈ E(Γ)} and
M+ = {y ∈ M ∶ {x, y} ∈ E(Γ)}. Clearly, M− and M+ are modules of Γ.
Since Γ is prime and ∣M ∣ ≥ 2, we obtain ∣M−∣ = 1 and ∣M+∣ = 1. Denote
by x− the unique element of M− and denote by x+ the unique element of
M+. We obtain M = {x−, x+}. Furthermore, we have {x,x−} /∈ E(Γ) and
{x,x+} ∈ E(Γ). �

Claim 9.46. Given x ∈X, if Γ − x is connected, then there exist x−, x+ ∈ Y
satisfying the following assertions



152 PIERRE ILLE

(1) {x−, x+} is the only nontrivial module of Γ − x;
(2) {x,x−} /∈ E(Γ) and {x,x+} ∈ E(Γ);
(3) for every u ∈X, if u <L x, then {u,x−} ∈ E(Γ);
(4) for every u ∈X, if x <L u, then {u,x+} /∈ E(Γ);
(5) Γ − {x,x−} and Γ − {x,x+} are prime;
(6) x+ is the unique element of V (Γ)∖{x} such that {x,x+} ∈ E(Γ) and

Γ − {x,x+} is prime.

Proof. Since Γ is critical, Γ−x admits a nontrivial moduleM . By Claim 9.45,
there exist x−, x+ ∈ Y such that M = {x−, x+}, {x,x−} /∈ E(Γ), and {x,x+} ∈
E(Γ). Hence, {x−, x+} is a nontrivial module of Γ − x.

For a contradiction, suppose that M is not the only nontrivial module of
Γ − x. Thus, there exists a nontrivial module N of Γ − x such that N ≠M .
By Claim 9.45, there exist z−, z+ ∈ Y such that N = {z−, z+}, {x, z−} /∈ E(Γ),
and {x, z+} ∈ E(Γ). If M ∩N ≠ ∅, then M ∪N is a nontrivial module of
Γ − x of size 3, which contradicts Claim 9.45. Hence, we have M ∩N = ∅.
We show that M ∪N is a module of Γ − x. Let u ∈ (X ∖ {x}). It suffices
to verify that M ∪N is a module of Γ[M ∪N ∪ {u}]. Suppose that there
exists v ∈M ∪N such that {u, v} ∈ E(Γ). For instance, suppose that v ∈M .
Since M is a module of Γ − x, we have {u,x−},{u,x+} ∈ E(Γ). We obtain
{u,x−} ∈ E(Γ), {x,x−} /∈ E(Γ), and {x, z+} ∈ E(Γ). Since Γ does not embed
K2 ⊕K2, we obtain {u, z+} ∈ E(Γ). Since {z−, z+} is a module of Γ − x,
we have {u, z−} ∈ E(Γ). Therefore, {u,w} ∈ E(Γ) for every w ∈ M ∪ N .
It follows that M ∪N is a module of Γ − x, which contradicts Claim 9.45
because ∣M ∪N ∣ = 4. Consequently, {x−, x+} is the only nontrivial module
of Γ − x. It follows that Γ − {x,x−} and Γ − {x,x+} are prime.

Let u ∈ X such that u <L x. Since u <L x, we have NΓ(u) ⊇ NΓ(x).
Hence, we have {u,x+} ∈ E(Γ) because {x,x+} ∈ E(Γ). Since {x−, x+} is a
module of Γ − x, we obtain {u,x−} ∈ E(Γ).

Let u ∈ X such that x <L u. Since x <L u, we have NΓ(x) ⊇ NΓ(u).
Hence, we have {u,x−} /∈ E(Γ) because {x,x−} /∈ E(Γ). Since {x−, x+} is a
module of Γ − x, we obtain {u,x+} /∈ E(Γ).

As previously seen, Γ − {x,x−} and Γ − {x,x+} are prime. Now, consider
v ∈ V (Γ)∖ {x,x−, x+}. Clearly, {x−, x+} is a nontrivial module of Γ− {x, v},
so Γ− {x, v} is not prime. Since {x,x−} /∈ E(Γ), x+ is the unique element of
V (Γ) ∖ {x} such that {x,x+} ∈ E(Γ) and Γ − {x,x+} is prime. �

Definition 9.47. We define a function ϕ ∶X Ð→ Y as follows. Given x ∈X,

ϕ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ix if Γ − x is disconnected (see Claim 9.44),

or

x+ if Γ − x is connected (see Claim 9.46).

The next claim follows easily from Claims 9.44 and 9.46.

Claim 9.48. For every x ∈ X, ϕ(x) is the unique element of V (Γ) ∖ {x}
such that {x,ϕ(x)} ∈ E(Γ) and Γ − {x,ϕ(x)} is prime.
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In the next two claims, we verify that ϕ is bijective.

Claim 9.49. ϕ is injective.

Proof. Consider distinct u, v ∈ X. For instance, suppose that u <L v. In
particular, v is not the least element of L. It follows from Claim 9.44 that
Γ − v is connected. By Claim 9.46, there exist v−, v+ ∈ Y such that {v, v−} /∈
E(Γ), {v, v+} ∈ E(Γ), and {v−, v+} is the only nontrivial module of Γ − v.
We have ϕ(v) = v+.

First, suppose that Γ − u is disconnected. We have ϕ(u) = iu, where iu
is the unique isolated vertex of Γ − u by Claim 9.44. We obtain {v,ϕ(u)} /∈
E(Γ). Thus, we have ϕ(u) ≠ ϕ(v) because {v,ϕ(v)} ∈ E(Γ) (see Claim 9.48).

Second, suppose that Γ − u is connected. By Claim 9.46, there exist
u−, u+ ∈ Y such that {u,u−} /∈ E(Γ), {u,u+} ∈ E(Γ), and {u−, u+} is the
only nontrivial module of Γ−u. We have ϕ(u) = u+. Since u <L v, it follows
from the fourth assertion of Claim 9.46 applied to u that {v,ϕ(u)} /∈ E(Γ).
Since {v,ϕ(v)} ∈ E(Γ) (see Claim 9.48), ϕ(u) ≠ ϕ(v). �

Claim 9.50. ϕ is surjective.

Proof. Let v ∈ Y . Since Γ is critical, Γ − v is not prime. First, suppose that
Γ − v is disconnected. As in Claim 9.44, we obtain that Γ − v admits an
isolated vertex iv. Thus, we have NΓ(iv) = {v}. Since {iv, ϕ(iv)} ∈ E(Γ),
we obtain ϕ(iv) = (iv)+ = v.

Second, suppose that Γ − v is connected. As in Claim 9.46, there exist
v−, v+ ∈X such that {v−, v+} is the only nontrivial module of Γ−v, {v, v−} /∈
E(Γ), and {v, v+} ∈ E(Γ). Furthermore, Γ − {v, v−} and Γ − {v, v+} are
prime. Thus, we obtain Γ − {v, v+} is prime and {v, v+} ∈ E(Γ). It follows
from Claim 9.48 that v = ϕ(v+). �

It follows from Claims 9.49 and 9.50 that ϕ is bijective.

Claim 9.51. Γ is the half-graph defined from the linear order L, and the
bijection ϕ.

Proof. Consider distinct u,x ∈X. We have to verify that

{u,ϕ(x)} ∈ E(Γ) if and only if u ≤L x.

Suppose that u ≤L x. We obtain NΓ(x) ⊆ NΓ(u). By Claim 9.48, we have
ϕ(x) ∈ NΓ(x). Hence, we obtain ϕ(x) ∈ NΓ(u). Conversely, suppose that
x <L u. In particular, u is not the least element of L. It follows from
Claim 9.44 that Γ − u is connected. By the fourth assertion of Claim 9.46
applied to x, {u,x+} /∈ E(Γ), that is, {u,ϕ(x)} /∈ E(Γ). �

Claim 9.52. Given x ∈X, if x is not the least element of L, then x admits
an immediate predecessor in L.

Proof. Let x ∈ X. Suppose that x is not the least element of L. It follows
from Claim 9.44 that Γ−x is connected. By Claim 9.46, there exist x−, x+ ∈ Y
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such that {x−, x+} is the only nontrivial module of Γ − x, {x,x−} /∈ E(Γ),
and {x,x+} ∈ E(Γ). Furthermore, for every u ∈X, we have

(9.20) if u <L x, then {u,x−} ∈ E(Γ),
by the third assertion of Claim 9.46 applied to x. Set

t = ϕ−1(x−).
By Claim 9.48, {t, ϕ(t)} ∈ E(Γ), that is, {t, x−} ∈ E(Γ). We obtain x− ∈
NΓ(t) ∖NΓ(x). Hence, we have NΓ(t) ⊋ NΓ(x), so t <L x. We prove that t
is the immediate predecessor of x. We must verify that

{u ∈X ∶ t <L u <L x} = ∅.
First, suppose that Γ−t is disconnected. By Claim 9.44, there exists it ∈ Y

such that it is an isolated vertex of Γ− t. Since ϕ(t) = it, it = x−. We obtain
that {u,x−} /∈ E(Γ) for every u ∈ V (Γ) ∖ {t, x−}. It follows from (9.20) that
{u ∈X ∶ t <L u <L x} = ∅.

Second, suppose that Γ−t is connected. By Claim 9.46, there exist t−, t+ ∈
Y such that {t−, t+} is the only nontrivial module of Γ − t, {t, t−} /∈ E(Γ),
and {t, t+} ∈ E(Γ). Furthermore, for every u ∈ X such that t <L u, we have
{u, t+} /∈ E(Γ) by the fourth assertion of Claim 9.46 applied to t. Recall
that t+ = ϕ(t). Since t = ϕ−1(x−), we obtain t+ = x−. Therefore, for every
u ∈ X such that t <L u, we have {u,x−} /∈ E(Γ). It follows from (9.20) that
{u ∈X ∶ t <L u <L x} = ∅. �

By Remark 9.34, Γ is also the half-graph defined from the linear order
ϕ(L)⋆ defined on Y , and the bijection ϕ−1 ∶ Y Ð→ X. The analogue of
Claim 9.52 for ϕ(L)⋆ follows.

Claim 9.53. Given y ∈ Y , if y is not the least element of ϕ(L)⋆, then y
admits an immediate predecessor in ϕ(L)⋆.

The next claim is an immediate consequence of Claims 9.53.

Claim 9.54. Given x ∈ X, if x is not the greatest element of L, then x
admits an immediate successor in L.

It follows from Claims 9.52 and 9.54 that L is discrete, which completes
the proof of Theorem 9.38. �

The next theorem follows from Theorems 9.6 and 9.38.

Theorem 9.55. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. Suppose that statement (S5) holds. Suppose also that σ is (V (σ)∖
X)-critical. For each component C of Γ(σ,X), with v(C) ≥ 3, C is a discrete
half-graph.

Proof. Let C be a component of Γ(σ,X) such that v(C) ≥ 3. By Theorem 9.6,
v(C) ≥ 4 and C is critical. Furthermore, since statement (S5) holds, C does
not embed P5 by Corollary 9.31. Finally, to use Theorem 9.38, we must
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verify that C is bipartite. Indeed, since σ is prime, it follows from Corol-
lary 9.22 that Γ(σ,X) has no isolated vertices. Furthermore, since state-
ment (S5) holds, statement (S3) holds too by Remark 9.4. Therefore, it
follows from Proposition 9.29 that there exist distinct Bp,Dp ∈ p(σ,X) and
Bq,Dq ∈ q(σ,X) such that Bq ⊆ Bp, Dq ⊆Dp, and C is bipartite with biparti-
tion {V (C)∩Bq, V (C)∩Dq}. Therefore, it follows from Theorem 9.38 that
C is a discrete half-graph. �

The next result follows from Theorems 9.5 and 9.6, Proposition 9.41, and
Corollary 9.31. It is the finite version of Theorem 9.10. Moreover, we use it
in the proof of Theorem 9.10.

Corollary 9.56. Given a 2-structure σ, consider X ⊊ V (σ) such that σ[X]
is prime. Suppose that

V (σ) ∖X is finite.

The following two assertions are equivalent

(1) Statement (S5) holds and σ is prime;
(2) σ is (V (σ) ∖X)-critical.

Proof. To begin, suppose that σ is (V (σ) ∖X)-critical. In particular, σ is
prime. Furthermore, by Remark 9.4, statement (S5) holds.

Conversely, suppose that statement (S5) holds and σ is prime. Since
statement (S5) holds, we can use Theorem 9.6 to prove that σ is (V (σ)∖X)-
critical. Consider a component C of Γ(σ,X) such that v(C) ≥ 3. We have to
show that C is critical. Since σ is prime, it follows from Theorem 9.5 that
v(C) ≥ 4 and C is prime. Moreover, since statement (S5) holds, it follows
from Corollary 9.31 that C does not embed P5. By Proposition 9.41, Γ is
critical. It follows from Theorem 9.6 that σ is (V (σ) ∖X)-critical. �

Proof of Theorem 9.10. To begin, suppose that σ is finitely (V (σ) ∖ X)-
critical. Let v ∈ V (σ) ∖ X. Since σ is finitely (V (σ) ∖ X)-critical, there
exists a finite subset F of V (σ) ∖ X such that σ[X ∪ F ] is F -critical. It
follows from Corollary 9.56 that statement (S5) holds and σ is prime.

Conversely, suppose that statement (S5) holds and σ is prime. We prove
that σ is finitely (V (σ) ∖X)-critical. Let F be a finite subset of V (σ) ∖X.
We have to find a finite subset F ′ of V (σ)∖X such that F ⊆ F ′ and σ[X∪F ′]
is (F ′)-critical. We distinguish the following two cases.
Case 1: V (σ) ∖X is finite.

It follows from Corollary 9.56 that σ is (V (σ) ∖X)-critical. Hence, we
can consider V (σ) ∖X for F ′.

Case 2: V (σ) ∖X is infinite.
By Corollary 9.8, there exists a finite subset F ′ of V (σ) ∖X such that
F ⊆ F ′ and σ[X∪F ′] is prime. Since statement (S5) holds, it follows from
Corollary 9.56 applied to σ[X ∪ F ′] that σ[X ∪ F ′] is (F ′)-critical. �

As announced in subsection 9.1, we discuss Theorem 9.10 in the next
remark by using Theorems 9.6 and 9.38.
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Remark 9.57. We denote by LQ the usual linear order on the set of rational
numbers. Obviously, LQ is not discrete. We consider the graph G defined
on {0,1,2,3} ∪ ({0,1} ×Q) by

E(G) = {{0,1},{1,2},{2,3}} ∪ {{1, (1, q)} ∶ q ∈ Q}
∪ (⋃

q∈Q
{{(0, q), (1, r)} ∶ r ≥ q}).

Set X = {0,1,2,3}, Y = {0}×Q and Z = {1}×Q. We have G[X] is prime be-
cause G[X] = P4 (see Fact 2.6). We consider the 2-structure σ(G) associated
with G. Since G[X] is prime, σ(G)[X] is prime too. We have

Y = ⟨X⟩σ(G), Z =Xσ(G)(0), and p(σ(G),X) = {Y,Z}.

Furthermore, it follows from Corollary 3.18 that

(9.21) Γ(σ(G),X) = G[Y ∪Z].
We verify that σ(G) is finitely (V (σ)∖X)-critical (see Definition 9.9) with-
out being (V (σ) ∖X)-critical.

First, we show that statement (Sk) holds for every odd integer k ≥ 1.
Let W be a finite and nonempty subset of Y ∪ Z such that W ∈ P(σ,X)
(see Notation 9.2). We have to show that W is even. If W ∩ Y = ∅, then
{0} ∪W is a module of σ(G)[X ∪W ] because Z =XσG(0). Hence, we have
W ∩ Y ≠ ∅. We denote the elements of W ∩ Y by (0, q0), . . . , (0, qm), where
m ≥ 0, in such a way that q0 < ⋯ < qm, when m ≥ 1. Set

Z− = {j < q0 ∶ (1, j) ∈W}.
Since Z = Xσ(G)(0), {0} ∪ ({1} ×Z−) is a module of σ(G)[X ∪W ]. Hence,
we have Z− = ∅. Set

Z+ = {j ≥ qm ∶ (1, j) ∈W}.
We obtain that {1} × Z+ is a module of σ(G)[X ∪W ]. Hence, we have
∣Z+∣ ≤ 1. If Z+ = ∅, then (X ∪W ) ∖ {(0, qm)} is a module of σ(G)[X ∪W ]
because (0, qm) ∈ ⟨X⟩σ(G). Thus, we obtain ∣Z+∣ = 1. Therefore, ∣W ∣ = 2 if
m = 0. Now, suppose that m ≥ 1. Set

Zi = {qi ≤ j < qi+1 ∶ (1, j) ∈W}
for i = 0, . . . ,m − 1. Given i = 0, . . . ,m − 1, we have {1} × Zi is a module
of σ(G)[X ∪W ]. Hence, we have ∣Zi∣ ≤ 1. Moreover, {(0, qi), (0, qi+1)}
is a module of σ(G)[X ∪ W ] if Zi = ∅. Therefore, we obtain ∣Zi∣ = 1.
Consequently, Z− = ∅, ∣Z+∣ = 1, and ∣Zi∣ = 1 for i = 0, . . . ,m − 1. Thus,
∣W ∩Z ∣ =m + 1, and hence ∣W ∣ = 2m + 2.

Second, we prove that σG is finitely (V (σ)∖X)-critical. Let F be a finite
subset of Y ∪Z. There exists a finite subset F ′ of Q such that ∣F ′∣ ≥ 2 and
F ⊆ ({0,1}×F ′). We have G[{0,1}×F ′] ≃H2×∣F ′∣ (see Figure 4.1). It follows

from Proposition 9.41 that G[{0,1}×F ′] is critical. Set F̃ = {0,1}×F ′. We
obtain that

(9.22) F ⊆ F̃ and G[F̃ ] is critical.
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It follows from (9.21) and (9.22) that Γ(σ(G)[X∪F̃ ],F̃ ) is critical. Since state-

ment (S5) holds, it follows from Theorem 9.6 that σ(G)[X∪F̃ ] is F̃ -critical.
Consequently, σ(G) is finitely (V (σ) ∖X)-critical.

Third, we verify that σ(G) is not (V (σ(G)) ∖ X)-critical. To begin,
we verify that G[Y ∪ Z] is a nondiscrete half-graph. Clearly, G[Y ∪ Z] is
bipartite with bipartition {Y,Z}. Consider the bijection ϕ ∶ Y Ð→ Z, which
maps (0, q) to (1, q) for each q ∈ Q. Moreover, consider the linear order LY
defined on Y as follows. Given distinct q, r ∈ Q, (0, q) <LY (0, r) if q <LQ r.
Clearly, G[Y ∪Z] is the half-graph defined from LY and ϕ. Recall that the
linear order LY is unique by Remark 9.34. Since LY ≃ LQ, G[Y ∪Z] is not
discrete.

Since statement (S5) holds, Γ(σ(G),X) does not embed P5 by
Corollary 9.31. Since G[Y ∪ Z] is a nondiscrete half-graph, Γ(σ(G),X) is
a nondiscrete half-graph by (9.21). It follows from Theorem 9.38 that
Γ(σ(G),X) is not critical. Clearly, G[Y ∪Z] is connected. Therefore, Γ(σ(G),X)
is connected by (9.21). Since statement (S5) holds, it follows from Theo-
rem 9.6 that σ(G) is not (V (σ) ∖ X)-critical. Since σ(G) is finitely
(V (σ(G)) ∖X)-critical, it follows from Theorem 9.10 that σ(G) is prime.
Consequently, there exists v ∈ V (σ(G))∖X such that σ(G)− v is prime. In
fact, we have σ(G) −w is prime for every w ∈ V (σ(G)) ∖X.

Proof of Theorem 9.11. Since statement (S5) holds, we can use Theorem 9.6
as follows. Let v ∈ V (σ) ∖X. Denote by C the component of Γ(σ,X) such
that v ∈ V (C). By Theorem 9.6 applied to σ, v(C) = 2 or v(C) ≥ 4 and C
is critical.

First, suppose that v(C) = 2. We have

Γ(σ−V (C),X) = Γ(σ,X) − V (C).
Therefore, the components of Γ(σ−V (C),X) are the components of Γ(σ,X) that
are distinct from C. Let D be a component of Γ(σ,X) such that D ≠ C. By
Theorem 9.6 applied to σ, v(D) = 2 or v(D) ≥ 4 and D is critical. It follows
from Theorem 9.6 applied to σ−V (C) that σ−V (C) is ((V (σ)∖X)∖V (C))-
critical. Hence, we consider for w the unique element of V (C) ∖ {v}.

Second, suppose that v(C) ≥ 4 and C is critical. By Theorem 9.55, C is a
discrete half-graph. As seen in the proof of Theorem 9.55, there exist distinct
Bq,Dq ∈ q(σ,X) such that C is bipartite with bipartition {V (C)∩Bq, V (C)∩
Dq}. For instance, assume that v ∈ V (C) ∩Bq. Since C is a discrete half-
graph, there exists a discrete linear order L defined on V (C) ∩ Bq and a
bijection ϕ ∶ V (C) ∩Bq Ð→ V (C) ∩Dq such that C is defined from L and
ϕ (see Definition 9.33). By Claim 9.48, C − {v,ϕ(v)} is prime. Hence,
C −{v,ϕ(v)} is connected. Consequently, the components of Γ(σ−{v,ϕ(v)},X)
are the components of Γ(σ,X) that are distinct from C and C−{v,ϕ(v)}. Let
D be a component of Γ(σ,X) such that D ≠ C. By Theorem 9.6 applied to σ,
v(D) = 2 or v(D) ≥ 4 and D is critical. If v(C) = 4, then v(C−{v,ϕ(v)}) = 2
and it follows from Theorem 9.6 applied to σ−{v,ϕ(v)} that σ−{v,ϕ(v)} is
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((V (σ) ∖X) ∖ {v,ϕ(v)})-critical. Lastly, suppose that v(C) ≥ 5. To apply
Theorem 9.6 to σ − {v,ϕ(v)}, we must verify that v(C − {v,ϕ(v)}) ≥ 4 and
C − {v,ϕ(v)} is critical. Since C is a half-graph with v(C) ≥ 5, we have
v(C) ≥ 6, and hence v(C − {v,ϕ(v)}) ≥ 4. Clearly, L − v is a discrete linear
order. Moreover, C − {v,ϕ(v)} is the half-graph defined from L − x and
the bijection ϕ↾(V (C)∩Bq)∖{v} ∶ (V (C)∩Bq)∖ {v}Ð→ (V (C)∩Dq)∖ {ϕ(v)}.

Therefore, C − {v,ϕ(v)} is a discrete half-graph. By Theorem 9.38, C −
{v,ϕ(v)} is critical. Consequently, it follows from Theorem 9.6 applied to
σ − {v,ϕ(v)} that σ − {v,ϕ(v)} is ((V (σ) ∖X) ∖ {v,ϕ(v)})-critical. �

9.6. Proofs of Theorems 5.8 and 5.9.

Proof of Theorem 5.8. Let σ be a prime 2-structure. Consider X ⊊ V (σ)
such that σ[X] is prime. Suppose that V (σ)∖X is finite and ∣V (σ)∖X ∣ ≥ 6.

For a contradiction, suppose that for each proper subset Y of V (σ) ∖X,
we have

(9.23) if σ[X ∪ Y ] is prime, then ∣V (σ) ∖ (X ∪ Y )∣ is odd.

For Y = ∅ in (9.23), we obtain ∣V (σ)∖X ∣ is odd. Hence, we have ∣V (σ)∖X ∣ ≥
7. For Y ⊊ (V (σ) ∖X), with ∣Y ∣ = 5, it follows from (9.23) that σ[X ∪ Y ]
is not prime. Consequently, statement (S5) holds. Since ∣V (σ) ∖X ∣ is odd,
there exists a component C of Γ(σ,X) such that v(C) is odd. Since statement
(S5) holds, statement (S3) holds too by Remark 9.4. Since σ is prime, it
follows from Theorem 9.5 that σ[X ∪ V (C)] is prime. We have

V (σ) ∖X = V (C) ∪ (V (σ) ∖ (X ∪ V (C))).
Since ∣V (σ) ∖ X ∣ and v(C) are odd, we obtain that ∣V (σ) ∖ (X ∪ V (C))∣
is even. It follows from (9.23) that V (C) = V (σ) ∖ X. Thus, Γ(σ,X) is
connected. Since σ is prime, it follows from Theorem 9.5 that Γ(σ,X) is
prime. Furthermore, since σ is prime, it follows from Corollary 9.22 that
Γ(σ,X) has no isolated vertices. Since statement (S3) holds, it follows from
Proposition 9.29 that C is bipartite. Finally, since statement (S5) holds,
Γ(σ,X) does not embed P5 by Corollary 9.31. It follows from Proposition 9.41
that Γ(σ,X) is a half-graph, which is impossible because v(Γ(σ,X)) = ∣V (σ)∖
X ∣ and ∣V (σ) ∖X ∣ is odd.

Consequently (9.23) does not hold. Therefore, there exists Y ⊊ (V (σ)∖X)
such that σ[X∪Y ] is prime and ∣V (σ)∖(X∪Y )∣ is even. Recall that V (σ)∖X
is finite, so V (σ)∖ (X ∪Y ) is as well. It follows from Corollary 3.20 applied
to σ[X∪Y ] that there exist distinct v,w ∈ V (σ)∖(X∪Y ) such that σ−{v,w}
is prime. �

Proof of Theorem 5.9. Since statement S1 or statement S2 hold, we have

(9.24) qa(σ,X) ≠ ∅.

By Theorem 5.8, we can assume that ∣V (σ)∖X ∣ = 4 or 5. If ∣V (σ)∖X ∣ = 4,
then it suffices to apply Theorem 3.19. Hence, suppose that ∣V (σ)∖X ∣ = 5.
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For a contradiction, suppose that statement (S3) holds. It follows from
Theorem 9.5 that for each component C of Γ(σ,X), we have v(C) = 2 or
v(C) ≥ 4 and C is prime. Since ∣V (σ) ∖ X ∣ = 5, we obtain that Γ(σ,X)
is connected. Thus, Γ(σ,X) is prime. Since σ is prime, it follows from
Corollary 9.22 that Γ(σ,X) has no isolated vertices. Since statement (S3)
holds, it follows from the first assertion of Proposition 9.29 that p(σ,X) =
q(σ,X), and q(σ,X) has two elements, denoted by Bq and Dq. Moreover,
Γ(σ,X) is bipartite, with bipartition {Bq,Dq}. Since Γ(σ,X) is prime and
bipartite, we have Γ(σ,X) ≃ P5. Hence, Γ(σ,X) embeds K2 ⊕K2. Thus, there

exists distinct v, v′ ∈ Bq and distinct w,w′ ∈ Dq such that {v,w},{v′,w′} ∈
E(Γ(σ,X)) and {v,w′},{v′,w} /∈ E(Γ(σ,X)). It follows from Fact 9.28 that
Bq,Dq ∈ qs(σ,X), which contradicts (9.24).

Consequently, statement (S3) does not hold. Therefore, there exists Y ⊆
(V (σ) ∖X) such that ∣Y ∣ = 3 and σ[X ∪ Y ] is prime, which completes the
proof because ∣X ∣ = 5. �
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10. The Rigollet-Thomassé theorem

The aim of this section is to demonstrate the following theorem.

Theorem 10.1 (Rigollet and Thomassé10.1 [29]). Given an infinite prime
2-structure σ, there exists X ⊆ V (σ) such that 10.2

(RT)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

X ≠ V (σ),
X is equipotent to V (σ),

and

σ[X] is prime.

Observation 10.2. Let σ be an infinite prime 2-structure. Suppose that σ
is not finitely critical (see Definition 8.1). Hence, there exists a finite and
nonempty subset F of V (σ) such that σ − F is prime. Clearly, V (σ) ∖ F is
a proper subset of V (σ) and V (σ) ∖ F is equipotent to V (σ). Therefore,
Theorem 10.1 holds for infinite prime 2-structure that are not finitely critical.

Rigollet and Thomassé [29] associated the following digraph with a critical
2-structure.

Definition 10.3. Consider an infinite prime 2-structure σ. The criticality
digraph C(σ) of σ is defined on V (C(σ)) = V (σ) as follows. Given distinctcriticality digraph
v,w ∈ V (σ), (w, v) ∈ A(C(σ)) if σ−v admits a nontrivial module containing
w.

10.1. Modular decomposition in the infinite case.

Notation 10.4. We associate with each 2-structure σ the set Υ(σ) of the
modules of σ that are maximal under inclusion among the proper modules
of σ. (Note that Υ(σ) can be empty when σ is infinite.)

Proposition 10.5. Let σ be a connected 2-structure. If Υ(σ) ≠ ∅, then
Υ(σ) is a modular partition of σ and σ/Υ(σ) is prime.

Proof. Since σ is connected, it follows from Proposition 2.12 that σ is un-
cuttable.

First, we prove that

(10.1) ⋃Υ(σ) = V (σ).

Consider M ∈ Υ(σ). Let v ∈ V (σ) ∖M. Consider the family Nv of the
proper modules of σ containing v. Set

N =⋃Nv.

10.1Rigollet and Thomassé [29] proved this theorem for infinite digraphs.
10.2We use the axiom of choice to prove Theorem 10.1. We also use the axiom of choice

to prove some of the preliminary results that follow, and we mention its use in their proofs
only.
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It is easy to verify that N is a proper module of σ. Indeed, consider x, y ∈ N
and w ∈ V (σ) ∖N . We have to verify that

w ←→σ {x, y}.

Since x, y ∈ N , there exist N,N ′ ∈ Nv such that x ∈ N and y ∈ N ′. Since
N,N ′ ∈ Nv, we have v ∈ N ∩ N ′. By assertion (M5) of Proposition 2.5,
N ∪N ′ is a module of σ. Since w /∈ N , we have w /∈ N ∪N ′. It follows that
w ←→σ N ∪ N ′. In particular, we have w ←→σ {x, y}. Therefore, N is a
module of σ. For a contradiction, suppose that N = V (σ). Hence, there
exists N ∈ Nv such that N ∩M ≠ ∅. By assertion (M5) of Proposition 2.5,
N ∪M is a module of σ. Since v ∈ N ∖M, we have M ⊊ N ∪M. It follows
from the maximality ofM that N ∪M = V (σ). Since N ∖M ≠ ∅, it follows
from assertion (M6) of Proposition 2.5 that M ∖N is a module of σ. Since
N ∪M = V (σ), we have M ∖N = V (σ) ∖N . Consequently, N is a modular
cut of σ. Since v ∈ N and N ≠ V (σ), N is a nontrivial modular cut of σ,
which contradicts the fact that σ is uncuttable. It follows that

N ≠ V (σ).

Hence, (10.1) holds.
Second, we show that Υ(σ) is a modular partition of σ. Since (10.1) holds,

it suffices to verify that the elements of Υ(σ) are pairwise disjoint. Consider
M,N ∈ Υ(σ) such that M ∩N ≠ ∅. By assertion (M5) of Proposition 2.5,
M ∪N is a module of σ. For a contradiction, suppose that M ∪N = V (σ).
Since N ≠ V (σ), we haveM∖N ≠ ∅. By assertion (M6) of Proposition 2.5,
N ∖M is a module of σ. SinceM∪N = V (σ), we have N ∖M = V (σ)∖M.
Thus, M is a nontrivial modular cut of σ, which contradicts the fact that
σ is uncuttable. It follows that

M ∪N ≠ V (σ).

It follows from the maximality ofM andN thatM =M∪N andN =M∪N .
Consequently, we have M = N . It follows that Υ(σ) is a modular partition
of σ.

Third, we prove that σ/Υ(σ) is prime. Since σ is uncuttable, we have
∣Υ(σ)∣ ≥ 3. Let Ψ be a module of σ/Υ(σ) such that ∣Ψ∣ ≥ 2. We must verify
that Ψ = Υ(σ). By the second assertion of Lemma 2.10, ⋃Ψ is a module
of σ. Let M ∈ Ψ. Since ∣Ψ∣ ≥ 2, we have M ⊊ ⋃Ψ. It follows from the
maximality of M that ⋃Ψ = V (σ). Hence, we obtain Ψ = Υ(σ). �

The following fact is useful to utilize Proposition 10.5.

Fact 10.6. Let σ be a 2-structure. Consider X ⊊ V (σ) such that σ[X] is
prime. Let M be a module of σ. If X ⊆M , then

(V (σ) ∖ ⟨X⟩σ) ⊆M (see Notation 3.12).

Consequently, σ − ⟨X⟩σ is connected.
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Proof. To begin, consider a module M of σ such that X ⊆ M . Let v ∈
(V (σ) ∖ ⟨X⟩σ). By Lemma 3.13, v ∈ Extσ(X) or v ∈ Xσ(y), where y ∈ X.
First, suppose that v ∈ Extσ(X). Set

Y =X ∪ {v}.
Since v ∈ Extσ(X), σ[Y ] is prime. By assertion (M2) of Proposition 2.5,
M ∩ Y is a module of σ[Y ]. Since X ⊆ (M ∩ Y ), we obtain M ∩ Y = Y .
Thus, v ∈M . Second, suppose that v ∈Xσ(y), where y ∈X. Set

Y = (X ∖ {y}) ∪ {v}.
Since v ∈ Xσ(y), {y, v} is a module of σ[X ∪ {v}]. It follows that σ[Y ] is
isomorphic to σ[X]. Hence, σ[Y ] is prime. By assertion (M2) of Proposi-
tion 2.5, M ∩Y is a module of σ[Y ]. Since (X ∖ {y}) ⊆ (M ∩Y ), we obtain
M ∩ Y = Y . Therefore, v ∈M . Consequently, (V (σ) ∖ ⟨X⟩σ) ⊆M .

Now, we prove that σ − ⟨X⟩σ is uncuttable. Consider a modular cut C
of σ − ⟨X⟩σ. By exchanging C and (V (σ) ∖ ⟨X⟩σ) ∖C if necessary, we can
assume that ∣C∩X ∣ ≥ 2. Since C∩X is a module of σ[X] by assertion (M2) of
Proposition 2.5, we obtain X ⊆ C. It follows from the first assertion above
that (V (σ) ∖ ⟨X⟩σ) ⊆ C. Hence, C is a trivial modular cut of σ − ⟨X⟩σ.
It follows that σ − ⟨X⟩σ is uncuttable. By Proposition 2.12, σ − ⟨X⟩σ is
connected. �

10.2. Extreme vertices. Rigollet and Thomassé [29] introduced the fol-
lowing definition.

Definition 10.7. Consider a critical 2-structure σ. A vertex v of σ is
extreme if there exists w ∈ V (σ) ∖ {v} such that V (σ) ∖ {v,w} is a moduleextreme
of σ − v. The set of the extreme vertices of σ is denoted by E (σ).

For instance, as seen in Example 8.11, σ(HN) is a prime element of FN.
Hence, σ(HN) is critical. Furthermore, {2,3, . . .} is a module of σ(HN) − 0.
Therefore, 0 is an extreme vertex of σ(HN).

We use the next notation to prove Proposition 10.9.

Notation 10.8. Consider an infinite critical 2-structure σ. By using the
axiom of choice, we obtain a function

FE (σ) ∶ E (σ)Ð→ V (σ)
satisfying for each v ∈ E (σ), v ≠ FE (σ)(v) and

FE (σ)(v)←→σ V (σ) ∖ {v,FE (σ)(v)} (see Notation 2.1),

that is, V (σ) ∖ {v,FE (σ)(v)} is a module of σ − v.

Lastly, observe that FE (σ) is injective. Indeed, consider distinct v, v′ ∈
E (σ). If FE (σ)(v) = FE (σ)(v′), then V (σ) ∖ {FE (σ)(v)} is a module of σ,
which contradicts the fact that σ is prime. Consequently, FE (σ) is injective.

Proposition 10.9. Given an infinite critical 2-structure σ, V (σ) and
V (σ) ∖ E (σ) are equipotent.
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Proof. Clearly, if E (σ) is finite, then V (σ) and V (σ)∖E (σ) are equipotent
because V (σ) is infinite. Thus, suppose that E (σ) is infinite.

To begin, we show that FE (σ) does not contain cycles. Otherwise, there
exists extreme vertices v0, . . . , vn of σ, where n ≥ 1, such that FE (σ)(v0) =
v1,. . . , FE (σ)(vn−1) = vn, and FE (σ)(vn) = v0. We obtain that V (σ) ∖
{FE (σ)(vi) ∶ i ∈ {0, . . . , n}} is a module of σ, which contradicts the fact
that σ is prime. Consequently, FE (σ) does not contain cycles.

Now, given v ∈ E (σ), we prove that
(10.2)

if FE (σ)(v) ∈ E (σ) and (FE (σ))2(v) ∈ E (σ), then (FE (σ))3(v) /∈ E (σ).
For a contradiction, suppose that there exists v ∈ E (σ) such that

FE (σ)(v), (FE (σ))2(v), (FE (σ))3(v) ∈ E (σ).
Set

v = (FE (σ))0(v) and FE (σ)(v) = (FE (σ))1(v).
Since FE (σ) does not contain cycles, (FE (σ))0(v), (FE (σ))1(v), (FE (σ))2(v),
(FE (σ))3(v), and (FE (σ))4(v) are pairwise distinct. For i = 0,1,2,3, there
exist ei+1, fi+1 ∈ E(σ) such that

(10.3) [(FE (σ))i+1(v), V (σ) ∖ {(FE (σ))i(v), (FE (σ))i+1(v)}]σ = (ei+1, fi+1).
Moreover, for i = 0,1,2,3, we have

(10.4) (ei+1, fi+1) ≠ [(FE (σ))i+1(v), (FE (σ))i(v)]σ
because V (σ) ∖ {(FE (σ))i+1(v)} is not a module of σ. Using (10.3) and
(10.4), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(FE (σ))1(v), (FE (σ))3(v)]σ = (e1, f1),
[(FE (σ))2(v), (FE (σ))3(v)]σ = (e2, f2),
[(FE (σ))3(v), (FE (σ))1(v)]σ = (e3, f3),
and

[(FE (σ))3(v), (FE (σ))2(v)]σ ≠ (e3, f3).
Therefore, we have

(10.5) (e1, f1) ≠ (e2, f2).
Using (10.3), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(FE (σ))1(v), (FE (σ))4(v)]σ = (e1, f1),
[(FE (σ))2(v), (FE (σ))4(v)]σ = (e2, f2),
[(FE (σ))4(v), (FE (σ))1(v)]σ = (e4, f4),
and

[(FE (σ))4(v), (FE (σ))2(v)]σ = (e4, f4).
It follows that

(e1, f1) = (e2, f2),
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which contradicts (10.5). Consequently, (10.2) holds.
To conclude, set

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E 0(σ) = {v ∈ E (σ) ∶ FE (σ)(v) /∈ E (σ)},
E 1(σ) = {v ∈ E (σ) ∖ E 0(σ) ∶ (FE (σ))2(v) /∈ E (σ)},
and

E 2(σ) = {v ∈ E (σ) ∖ (E 0(σ) ∪ E 1(σ)) ∶ (FE (σ))3(v) /∈ E (σ)}.
By (10.2), {E 0(σ),E 1(σ),E 2(σ)} is a partition of E (σ). Since E (σ) is
infinite, we obtain

(10.6) ∣E (σ)∣ = max(∣E 0(σ)∣, ∣E 1(σ)∣, ∣E 2(σ)∣).
We obtain ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

FE (σ)(E 0(σ)) ⊆ V (σ) ∖ E (σ),
FE (σ)(E 1(σ)) ⊆ E 0(σ),
and

FE (σ)(E 2(σ)) ⊆ E 1(σ).
Since FE (σ) is injective, we obtain

∣E 2(σ)∣ ≤ ∣E 1(σ)∣ ≤ ∣E 0(σ)∣ ≤ ∣V (σ) ∖ E (σ)∣.
It follows from (10.6) that ∣E (σ)∣ ≤ ∣V (σ) ∖ E (σ)∣. Therefore, we have
∣V (σ)∣ = ∣V (σ) ∖ E (σ)∣. �

The next result follows from Proposition 10.5.

Corollary 10.10. Let σ be an infinite critical 2-structure. Consider distinct
v,w ∈ V (σ). If v /∈ E (σ) and (w, v) /∈ A(C(σ)), then {w} ∈ Υ(σ−v), Υ(σ−v)
is a modular partition of σ − v, and (σ − v)/Υ(σ − v) is prime.

Proof. Since (w, v) /∈ A(C(σ)), we have {w} ∈ Υ(σ−v). For a contradiction,
suppose that σ − v is not connected. There exist e, f ∈ E(σ − v) such that
σ − v is not {e, f}-connected. Consider X ∈ C{e,f}(σ − v) (see Definition 2.2)
such that w ∈ X. It follows from Lemma 2.4 that X is a module of σ − v.
Since (w, v) /∈ A(C(σ)), we have

X = {w}.
Using Proposition 2.8, we distinguish the following two cases. In each of
them, we obtain a contradiction.
Case 1: e = f .

By Proposition 2.8, (σ−v)/C{e}(σ−v) is constant. Since {w} ∈ C{e}(σ−v),
we obtain C{e}(σ − v)∖ {{w}} is a module of (σ − v)/C{e}(σ − v). By the
second assertion of Lemma 2.10, (V (σ)∖{v})∖{w} is a module of σ−v,
which contradicts v /∈ E (σ).
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Case 2: e ≠ f .
By Proposition 2.8, (σ − v)/C{e,f}(σ − v) is linear. Given ε ∈ E((σ −
v)/C{e,f}(σ−v)), (σ−v)/C{e,f}(σ−v) is the 2-structure associated to the
linear order (C{e,f}(σ − v), ε) (see Remark 1.3). Set

X − = {Y ∈ C{e,f}(σ − v) ∶ (Y,X) ∈ ε}.
Clearly, X − ∪ {{w}} is a module of (σ − v)/C{e,f}(σ − v). By the second
assertion of Lemma 2.10, ⋃(X − ∪ {{w}}) is a module of σ − v. Since
(w, v) /∈ A(C(σ)), we obtain

⋃(X − ∪ {{w}}) = {w} or ⋃(X − ∪ {{w}}) = V (σ) ∖ {v}.

We obtain that {w} is the least vertex or the greatest vertex of the
linear order (C{e,f}(σ − v), ε). In both cases, it follows from the second
assertion of Lemma 2.10 that (V (σ) ∖ {v}) ∖ {w} is a module of σ − v,
which contradicts v /∈ E (σ).

Consequently, σ − v is connected. It follows from Proposition 10.5 that
Υ(σ − v) is a modular partition of σ − v and (σ − v)/Υ(σ − v) is prime. �

Corollary 10.10 leads us to introduce the following notation.

Notation 10.11. Consider an infinite critical 2-structure σ. Set

W (σ) = V (σ) ∖ E (σ).
We consider the following subsets of W (σ). First, we denote by W∅(σ) the
set of v ∈W (σ) such that Υ(σ−v) = ∅. Second, we denote by Wδ(σ) the set
of v ∈ W (σ) such that σ − v is not connected. Third, we denote by Wπ(σ)
the set of v ∈W (σ) such that Υ(σ − v) is a modular partition of σ − v and
(σ − v)/Υ(σ − v) is prime.

Let v ∈Wδ(σ). Since σ − v is not connected, there exist ev, fv ∈ E(σ − v)
such that σ−v is not {ev, fv}-connected. Hence, there exist e, f ∈ E(σ) such
that ev = e ∩ (V (σ − v) × V (σ − v)) and fv = f ∩ (V (σ − v) × V (σ − v)). We
denote {e, f} by λ(v).

Observation 10.12. Consider an infinite critical 2-structure σ. It follows
from Proposition 10.5 that

W (σ) =W∅(σ) ∪Wδ(σ) ∪Wπ(σ).
Furthermore, we have

(W∅(σ) ∪Wδ(σ)) ∩Wπ(σ) = ∅.
Clearly, we have W∅(σ) ∩Wπ(σ) = ∅. To verify that Wδ(σ) ∩Wπ(σ) = ∅,
it suffices to show that if v ∈ Wδ(σ) and Υ(σ − v) is a modular partition
of σ − v, then ∣Υ(σ − v)∣ = 2. Indeed, consider v ∈ Wδ(σ) and Υ(σ − v) is
a modular partition of σ − v. Since v ∈ Wδ(σ), σ − v is not connected. It
follows from Proposition 2.12 that σ − v admits a nontrivial modular cut C.
Set

P = {M ∈ Υ(σ − v) ∶M ∩C ≠ ∅}.
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Since C is a nontrivial modular cut, C ≠ ∅, and hence, P ≠ ∅. By the first
assertion of Lemma 2.10, P is a module of (σ − v)/Υ(σ − v). By the second
assertion of Lemma 2.10, ∪P is a module of (σ − v). It follows from the
maximality of the elements of Υ(σ − v) that ∣P ∣ = 1 or P = Υ(σ − v). For a
contradiction, suppose that P = Υ(σ − v). Since C is a nontrivial modular
cut of σ − v, there exists M ∈ Υ(σ − v) such that M ∖ C ≠ ∅. Consider
N ∈ Υ(σ − v) ∖ {M}. Since P = Υ(σ − v), N ∩C ≠ ∅. By assertion (M5) of
Proposition 2.5, C ∪N is a module of σ − v. Since P = Υ(σ − v), M ∩C ≠ ∅.
Thus, we have N ⊊ C ∪N . Furthermore, since M ∖C ≠ ∅, we obtain

N ⊊ (C ∪N) ⊊ V (σ − v),
which contradicts the maximality of N . It follows that ∣P ∣ = 1. Therefore,
there exists M ∈ Υ(σ − v) such that C ⊆ M . Similarly, there exists N ∈
Υ(σ−v) such that (V (σ−v)∖C) ⊆ N . Since Υ(σ−v) is a modular partition
of σ − v, we obtain Υ(σ − v) = {M,N}.

Lastly, note that we can have

W∅(σ) ∩Wδ(σ) ≠ ∅.
Consider the 2-structure σ(TZ) introduced in Example 8.37. We have

σ(TZ) −∞ = σ(LZ).
Consequently, we have ∞ ∈W∅(σ(TZ)) ∩Wδ(σ(TZ)).
10.3. The criticality digraph.

Fact 10.13. Let σ be an infinite prime 2-structure. Consider distinct v,w ∈
V (σ). Suppose that σ − v admits a nontrivial module Mv and σ −w admits
a nontrivial module Mw. If w /∈Mv and v /∈Mw, then ∣Mv ∩Mw∣ ≤ 1.

Proof. Suppose that w /∈ Mv and v /∈ Mw. We obtain that Mv ∩Mw is a
module of σ. Since σ is prime, we have ∣Mv ∩Mw∣ ≤ 1. �

Fact 10.14. Let σ be an infinite prime 2-structure. Consider distinct v,w ∈
V (σ). Suppose that σ − v admits a nontrivial module Mv and σ −w admits
a nontrivial module Mw. If w ∈Mv and v /∈Mw, then Mv ∩Mw ≠ ∅.

Proof. For a contradiction, suppose that Mv ∩Mw = ∅. We verify that Mw

is a module of σ. Since Mw is a module of σ − w, we have only to verify
that w ←→σ Mw (see Notation 2.1). Thus, consider x, y ∈Mw. Since Mv is
a nontrivial module of σ − v, ∣Mv ∣ ≥ 2, and hence there exists w′ ∈Mv ∖ {w}.
Since Mv is a module of σ − v, we have [w,x]σ = [w′, x]σ and [w,y]σ =
[w′, y]σ. Furthermore, we have [w′, x]σ = [w′, y]σ because Mw is a module
of σ − w. Therefore, we obtain [w,x]σ = [w,y]σ. It follows that Mw is
a module of σ, which contradicts the fact that σ is prime. Consequently,
Mv ∩Mw ≠ ∅. �

Fact 10.15. Let σ be an infinite prime 2-structure. Consider distinct u,v,
w ∈ V (σ). Suppose that u, v ∈ W (σ) and (v, u) ∈ A(C(σ)). If σ − v admits
a nontrivial module Mv such that w ∈Mv and u /∈Mv, then σ − u admits a
nontrivial module containing v and w.
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Proof. Since (v, u) ∈ A(C(σ)), σ − u admits a nontrivial module Mu con-
taining v. We can conclude if w ∈Mu. Hence, suppose that w /∈Mu. Thus,
we have w ∈Mv ∖Mu. By Fact 10.14, Mu ∩Mv ≠ ∅. Since u /∈ (Mu ∪Mv),
we obtain that Mu ∪Mv is a module of σ − u. We distinguish the following
two cases to verify that Mu ∪Mv is a nontrivial module of σ − u.
Case 1: ∣Mu ∖Mv ∣ ≥ 2.

We show that Mv ∖Mu is a module of σ. Clearly, for every x ∈ V (σ) ∖
(Mv ∪ {v}), we have x ←→σ Mv ∖ Mu (see Notation 2.1). Consider
x ∈ (Mu∩Mv)∪{v}. Since ∣Mu∖Mv ∣ ≥ 2, there exists x′ ∈ (Mu∖Mv)∖v.
Let y, z ∈Mv∖Mu. SinceMu is a module of σ−u, we have [x, y]σ = [x′, y]σ
and [x, z]σ = [x′, z]σ. Furthermore, since Mv is a module of σ−v, we have
[x′, y]σ = [x′, z]σ. It follows that [x, y]σ = [x, z]σ. Thus, x←→σ Mv ∖Mu

for every x ∈ (Mu ∩Mv) ∪ {v}. Consequently, Mv ∖Mu is a module
of σ. Since σ is prime, Mv ∖Mu is a trivial module of σ. Hence, we
obtain Mv ∖Mu = {w}. If Mu ∪Mv is a trivial module of σ − u, then
Mu∪Mv = V (σ)∖{u}, and hence Mu = V (σ)∖{u,w}, which contradicts
u /∈ E (σ). Therefore, Mu ∪Mv is a nontrivial module of σ − u.

Case 2: ∣Mu ∖Mv ∣ ≤ 1.
Since v ∈ Mu ∖Mv, we obtain Mu ∖Mv = {v}. If Mu ∪Mv is a trivial
module of σ−u, then Mu∪Mv = V (σ)∖{u}, and hence Mv = V (σ)∖{u, v},
which contradicts v /∈ E (σ). Therefore, Mu ∪Mv is a nontrivial module
of σ − u.

Consequently, Mu ∪Mv is a nontrivial module of σ − u containing v and
w. �

The next result follows from Fact 10.15.

Corollary 10.16. Let σ be an infinite prime 2-structure. Consider distinct
u, v,w ∈ V (σ). Suppose that u, v ∈ W (σ). If (v, u), (w, v) ∈ A(C(σ)) and
(u, v) /∈ A(C(σ)), then σ−u admits a nontrivial module containing v and w.

The next result follows from Corollary 10.16.

Corollary 10.17. Let σ be an infinite prime 2-structure. Consider dis-
tinct u, v,w ∈ W (σ) (see Notation 10.11). If (v, u), (w, v) ∈ A(C(σ)) and
(u, v), (v,w) /∈ A(C(σ)), then (w,u) ∈ A(C(σ)) and (u,w) /∈ A(C(σ)).

Proof. Suppose that (v, u), (w, v) ∈ A(C(σ)) and

(10.7) (u, v), (v,w) /∈ A(C(σ)).
Since (v, u), (w, v) ∈ A(C(σ)) and (u, v) /∈ A(C(σ)), we obtain (w,u) ∈
A(C(σ)) by Corollary 10.16.

For a contradiction, suppose that (u,w) ∈ A(C(σ)). Since (w, v) ∈
A(C(σ)) and (v,w) /∈ A(C(σ)), it follows from Corollary 10.16 that (u, v) ∈
A(C(σ)), which contradicts (10.7). Consequently, we have (u,w) /∈ A(C(σ)).

�

The next result is an immediate consequence of Corollary 10.10 and No-
tation 10.11.



168 PIERRE ILLE

Corollary 10.18. Let σ be an infinite critical 2-structure. Consider v ∈
W (σ). If v ∈ W∅(σ) ∪Wδ(σ), then (w, v) ∈ A(C(σ)) for every w ∈ V (σ) ∖
{v}.

Corollary 10.18 leads us to introduce the following notation.

Notation 10.19. Let σ be an infinite critical 2-structure. Given v,w ∈
W (σ), v ∼σ w means v = w or v ≠ w and (v,w), (w, v) ∈ A(C(σ)). Clearly,
∼σ is a symmetric and reflexive binary relation defined on V (σ) ∖ E (σ). It
follows from Corollary 10.18 that v ∼σ w for any v,w ∈W∅(σ) ∪Wδ(σ).

In the next lemmas, we examine the binary relation ∼σ.

Lemma 10.20. Let σ be an infinite critical 2-structure. Consider distinct
v,w ∈W (σ). If v ∼σ w and v ∈Wπ(σ), then w ∈Wπ(σ).

Proof. Since (w, v) ∈ A(C(σ)) and v ∈ Wπ(σ), there exists Mv ∈ Υ(σ − v)
such that w ∈Mv and ∣Mv ∣ ≥ 2. Consider the set X of X ⊆ (V (σ) ∖ {v,w})
such that ∣X ∩M ∣ = 1 for each M ∈ Υ(σ − v). Using the axiom of choice, we
obtain

X ≠ ∅.
Since v ∈ Wπ(σ), (σ − v)/Υ(σ − v) is prime. It follows that σ[X] is prime
for each X ∈ X .

Let X ∈ X . We show that

(10.8) (V (σ) ∖ (X ∪ {v})) ⊆ ⋃
z∈X

Xσ(z) (see Notation 3.12).

Let u ∈ (V (σ) ∖ (X ∪ {v})). Since u ≠ v, there exists Nv ∈ Υ(σ − v) such
that u ∈ Nv. By denoting by z the unique element of Nv ∩X, we obtain
u ∈Xσ(z). Hence, (10.8) holds.

Consider a nontrivial module Mw of σ −w containing v. For each X ∈ X ,
we show that

(10.9) ∣Mw ∩X ∣ ≤ 1.

As seen in Remark 3.16, we have ∣Mw ∩X ∣ ≤ 1 or X ⊆Mw. It follows from
Fact 10.6 and (10.8) that ∣Mw ∩X ∣ ≤ 1. Hence, (10.9) holds.

Given X ∈ X , we show that there exists y ∈X such that

(10.10) v ∈Xσ(y).
Since (v,w) ∈ A(C(σ)), σ − w admits a nontrivial module Mw containing
v. By (10.9), ∣Mw ∩ X ∣ ≤ 1. Clearly, if ∣Mw ∩ X ∣ = 1, then (10.10) holds
by denoting the unique element of Mw ∩ X by y. Hence, suppose that
Mw ∩X = ∅. Let u ∈Mw ∖ {v}. Since u ≠ v and u ≠ w, it follows from (10.8)
that u ∈Xσ(y), where y ∈X. We verify that v ∈Xσ(y) too. Let z ∈X ∖{y}.
Since u ∈ Xσ(y), we have z ←→σ {y, u} (see Notation 2.1). Furthermore,
since Mw ∩X = ∅, we have z /∈Mw. It follows that z ←→σ {u, v}. Therefore,
we obtain z ←→σ {y, v}. Consequently, {y, v} is a module of σ[X ∪ {v}].
Hence, v ∈Xσ(y), so (10.10) holds.
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Now, we show that Υ(σ − w) ≠ ∅. Consider any nontrivial module Mw

of σ − w containing v. By (10.9), we have ∣Mw ∩X ∣ ≤ 1. By (10.10), there
exists y ∈ X such that v ∈ Xσ(y). It follows from Remark 3.16 that Mw ⊆
({y}∪Xσ(y)). Consequently, there existsMw ∈ Υ(σ−w) such that v ∈Mw.

Lastly, we prove that w ∈Wπ(σ). Consider again Mv ∈ Υ(σ−v) such that
w ∈Mv and ∣Mv ∣ ≥ 2. There exists X ∈ X such that w /∈ X ∩Mv. It follows
from (10.8) and (10.10) that

(V (σ) ∖X) ⊆ ⋃
z∈X

Xσ(z).

Therefore, it follows from Fact 10.6 that σ−w is connected. Since Υ(σ−w) ≠
∅, it follows from Proposition 10.5 that w ∈Wπ(σ). �

The next result follows from Lemma 10.20.

Corollary 10.21. Let σ be an infinite critical 2-structure. Given distinct
v,w ∈Wπ(σ), if v ∼σ w, then there exists X ⊆ (V (σ) ∖ {v,w}) satisfying

● σ[X] is prime;
● there exist distinct y, z ∈X such that v ∈Xσ(y) and w ∈Xσ(z);
● Υ(σ−v) = {({y}∪Xσ(y))∖{v},{z}∪Xσ(z))}∪{{u} ∶ u ∈X∖{y, z}};
● Υ(σ−w) = {{y}∪Xσ(y)), ({z}∪Xσ(z))∖{w}}∪{{u} ∶ u ∈X∖{y, z}};
● p(σ,X) = {Xσ(y),Xσ(z)} and E(Γ(σ,X)) = {{v,w}}.

Proof. As in the proof of Lemma 10.20, consider the set X of X ⊆ V (σ) ∖
{v,w} such that ∣X ∩Mv ∣ = 1 for each Mv ∈ Υ(σ − v). Using the axiom of
choice, we obtain X ≠ ∅. Since v ∈Wπ(σ), Υ(σ − v) is a modular partition
of σ−v and (σ−v)/Υ(σ−v) is prime. It follows that σ[X] is prime for each
X ∈ X .

Let X ∈ X . It follows from (10.8) and (10.10) (see the proof of Lemma
10.20) that

(10.11) (V (σ) ∖X) ⊆ ⋃
y∈X

Xσ(y) (see Notation 3.12).

In particular, there exist y, z ∈ X such that v ∈ Xσ(y) and w ∈ Xσ(z). For
each t ∈X ∖ {y}, we have

(10.12) ({t} ∪Xσ(t)) ∈ Υ(σ − v).

Indeed, consider u ∈ Xσ(t). Since t ≠ y, we have u ≠ v. Thus, there exists
Mu
v ∈ Υ(σ − v) such that u ∈ Mu

v . Since X ∈ X , there exists t′ ∈ X such
that Mu

v ∩X = {t′}. We obtain u ∈Xσ(t′). It follows from Lemma 3.13 that
t′ = t. Therefore, t ∈Mu

v for each u ∈ Xσ(t). Since Mu
v is a module of σ − v

for each u ∈Xσ(t), it is not difficult to verify that

⋃
u∈Xσ(t)

Mu
v
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is a module of σ−v. Let u ∈Xσ(t). Since t ∈Mu
v , it follows from Remark 3.16

that (Mu
v ∖ {t}) ⊆Xσ(t). We obtain

⋃
u∈Xσ(t)

Mu
v = {t} ∪Xσ(t).

It follows from the maximality of the elements of Υ(σ−v) that ({t}∪Xσ(t)) ∈
Υ(σ − v). Hence, (10.12) holds. Similarly, we have

(10.13) (({y} ∪Xσ(y)) ∖ {v}) ∈ Υ(σ − v).
By Lemma 10.20, we have w ∈ Wπ(σ). Hence, Υ(σ − w) is a modular

partition of σ − w and (σ − w)/Υ(σ − w) is prime. Now, we establish the
analogues of (10.12) and (10.13) for Υ(σ − w). We verify that for each
Mw ∈ Υ(σ −w), we have

(10.14) ∣Mw ∩X ∣ ≤ 1 (see (10.9) in the proof of Lemma 10.20).

We can assume that ∣Mw∣ ≥ 2, so Mw is a nontrivial module of σ − w. As
seen in Remark 3.16, we have ∣Mw ∩X ∣ ≤ 1 or X ⊆Mw. For a contradiction,
suppose that X ⊆ Mw. Let u ∈ V (σ − w) ∖Mw. Since X ⊆ Mw, we have
u ∈ ⟨X⟩σ (see Notation 3.12). By (10.11), u ∈Xσ(t), where t ∈X. We obtain
u ∈Xσ(t)∩⟨X⟩σ, which contradicts Lemma 3.13. It follows that ∣Mw∩X ∣ ≤ 1.
Hence, (10.14) holds. Consequently, there exists Y ⊆ V (σ) ∖ {w} such that
for each Mw ∈ Υ(σ −w), the following three assertions hold

● ∣Y ∩Mw∣ = 1;
● if ∣Mw ∩X ∣ = 1, then Mw ∩ Y =Mw ∩X;
● if v ∈ Mw, then ∣Mw∣ ≥ 2 because (v,w) ∈ A(C(σ)), so that we can

require that ∣Y ∩ (Mw ∖ {v})∣ = 1.

It follows that

X ⊆ Y ⊆ (V (σ) ∖ {v,w}).
Since (σ −w)/Υ(σ −w) is prime, σ[Y ] is prime. We show that

(10.15) X = Y.
For a contradiction, suppose that there exists u ∈ Y ∖ X. There exists
Mu
w ∈ Υ(σ − w) such that u ∈ Mu

w. Since Mu
w ∩ Y = {u} and u /∈ X, we

have Mu
w ∩X = ∅. It follows from (10.11) that Mu

w ⊆ Xσ(t), where t ∈ X.
Moreover, it follows from (10.12) and (10.13) that ({t} ∪Xσ(t)) ∖ {v} is a
module of σ−v. By assertion (M2) of Proposition 2.5, (({t}∪Xσ(t))∖{v})∩Y
is a module of σ[Y ]. Since X ⊆ Y ⊆ (V (σ) ∖ {v,w}) and Mu

w ⊆ Xσ(t), we
obtain (({t}∪Xσ(t))∖{v})∩Y = ({t}∪Xσ(t))∩Y and u, t ∈ ({t}∪Xσ(t))∩Y .
Furthermore, given t′ ∈ (X ∖ {t}), we have t′ ∈ Y ∖ ({t}∪Xσ(t)). Therefore,
({t}∪Xσ(t))∩Y is a nontrivial module of σ[Y ], which contradicts the fact
that σ[Y ] is prime. Consequently, (10.15) holds. The analogues of (10.12)
and (10.13) for Υ(σ − w) follow. They are proved as previously. For each
t ∈X ∖ {z}, we have

(10.16) ({t} ∪Xσ(t)) ∈ Υ(σ −w).
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Similarly, we have

(10.17) (({z} ∪Xσ(z)) ∖ {w}) ∈ Υ(σ −w).
It follows that for every t ∈X ∖ {y, z}, we have

(10.18) Xσ(t) = ∅.
Indeed, let t ∈X∖{y, z}. It follows from (10.12) that {t}∪Xσ(t) is a module
of σ − v. Moreover, {t} ∪Xσ(t) is a module of σ −w by (10.16). Therefore,
{t} ∪Xσ(t) is a module of σ. Since σ is prime, we have Xσ(t) = ∅. Hence,
(10.18) holds. It follows from (10.12) and (10.13) that

Υ(σ − v) = {({y} ∪Xσ(y)) ∖ {v},{z} ∪Xσ(z))} ∪ {{u} ∶ u ∈X ∖ {y, z}}.
Similarly, we have

Υ(σ −w) = {{y} ∪Xσ(y)), ({z} ∪Xσ(z)) ∖ {w}} ∪ {{u} ∶ u ∈X ∖ {y, z}}.
It follows from (10.11) that

p(σ,X) = {Xσ(y),Xσ(z)}.
Suppose for a contradiction that y = z. Since {y}∪Xσ(y) is a module of σ−w
by (10.16) and {z}∪Xσ(z) is a module of σ−v by (10.12), {y}∪Xσ(y)∪Xσ(z)
is a module of σ, which contradicts the fact that σ is prime. It follows that

y ≠ z.
Since {y} ∪Xσ(y) is a module of σ −w, we obtain {u,u′} /∈ E(Γ(σ,X)) (see

Definition 9.3) for any u ∈ Xσ(y) and u′ ∈ Xσ(z) ∖ {w}. Similarly, since
{z} ∪ Xσ(z) is a module of σ − v, we obtain {u,u′} /∈ E(Γ(σ,X)) for any

u ∈ Xσ(y) ∖ {v} and u′ ∈ Xσ(z). By Theorem 3.19, Γ(σ,X) is nonempty.
Therefore, we have

E(Γ(σ,X)) = {{v,w}}. �

Lemma 10.22. Let σ be an infinite critical 2-structure. Consider distinct
v,w ∈W (σ). If v ∼σ w and v ∈Wδ(σ), then w ∈Wδ(σ) and λ(v) = λ(w).

Proof. Suppose that v ∼σ w and v ∈ Wδ(σ). Since v ∈ Wδ(σ), there exist a
nontrivial modular cut Cv of σ − v and e, f ∈ E(σ) such that [Cv, V (σ − v)∖
Cv]σ = (e, f), where λ(v) = {e, f}. For instance, assume that w ∈ Cv. Since
v /∈ E (σ), we have ∣Cv ∣ ≥ 2 and ∣V (σ − v) ∖Cv ∣ ≥ 2.

First, we prove that w ∈Wδ(σ). Since (W∅(σ)∪Wδ(σ))∩Wπ(σ) = ∅ (see
Observation 10.12), it follows from Lemma 10.20 that w /∈Wπ(σ). Suppose
that w ∈ W∅(σ). We must show that w ∈ Wδ(σ). Since w ∈ W∅(σ), σ − w
admits a proper module Mw such that v ∈Mw, Mw∩Cv ≠ ∅, and Mw∩(V (σ−
v) ∖Cv) ≠ ∅. For a contradiction, suppose that (V (σ − v) ∖Cv) ∖Mw ≠ ∅.
Since Mw ∩Cv ≠ ∅, we obtain [Mw, (V (σ − v) ∖Cv) ∖Mw]σ = (e, f). Since
[Cv, V (σ − v)∖Cv]σ = (e, f), we obtain [Mw ∪Cv, (V (σ − v)∖Cv)∖Mw]σ =
(e, f). Since v,w ∈ Mw ∪ Cv, Mw ∪ Cv is a nontrivial module of σ, which
contradicts the fact that σ is prime. Consequently, we have (V (σ−v)∖Cv) ⊆
Mw. Since Mw is a proper module of σ −w, we have (Cv ∖ {w}) ∖Mw ≠ ∅.
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Since (V (σ − v) ∖ Cv) ⊆ Mw and [Cv, V (σ − v) ∖ Cv]σ = (e, f), we obtain
[(Cv ∖ {w}) ∖Mw,Mw]σ = (e, f). It follows that w ∈Wδ(σ).

Second, suppose for a contradiction that λ(v) ≠ λ(w). There exist a
nontrivial modular cut Cw of σ −w and e′, f ′ ∈ E(σ) such that [Cw, V (σ −
w)∖Cw]σ = (e′, f ′), where λ(w) = {e,′ f ′}. Since w /∈ E (σ), we have ∣Cw∣ ≥ 2
and ∣V (σ − w) ∖ Cw∣ ≥ 2. For instance, assume that Cv ∩ Cw ≠ ∅. Let
u ∈ Cv ∩Cw. Since [u,V (σ−w)∖Cw]σ = (e′, f ′), [u,V (σ−v)∖Cv]σ = (e, f),
and {e, f} ≠ {e,′ f ′}, we obtain (V (σ − w) ∖ Cw) ∩ (V (σ − v) ∖ Cv) = ∅.
Therefore, we have (V (σ)∖(Cw∪{w})) ⊆ (Cv∪{v}). Since w ∈ Cv, we obtain
(V (σ) ∖Cw) ⊆ (Cv ∪ {v}). Hence, we have also (V (σ − v) ∖Cv) ⊆ Cw. Let
u′ ∈ (V (σ−v)∖Cv). Since [u′,Cv]σ = (f, e) and [u′, V (σ−w)∖Cw]σ = (e′, f ′),
we obtain Cv ∩ (V (σ −w)∖Cw) = ∅. We obtain Cv ⊆ (Cw ∪ {w}). It follows
that V (σ − v) ⊆ (Cw ∪ {w}). Thus, we have (V (σ − w) ∖ Cw) ⊆ {v}, which
contradicts the fact that w /∈ E (σ). It follows that λ(v) = λ(w). �

Lemma 10.23. Given an infinite critical 2-structure σ, we have ∣W∅(σ) ∖
Wδ(σ)∣ ≤ 1. Moreover, if ∣W∅(σ)∖Wδ(σ)∣ = 1, then ∣W∅(σ)∣ = 1 and Wδ(σ) =
∅.

Proof. To begin, suppose that there exist distinct v,w ∈ W∅(σ) ∖Wδ(σ).
Let x ∈ V (σ)∖ {v,w}. Since Υ(σ − v) = ∅, there exists a proper module Mv

of σ − v such that x,w ∈Mv. Similarly, there exists a proper module Mw of
σ −w such that x, v ∈Mw. It is easy to verify that Mv ∪Mw is a module of
σ. Since σ is prime, we obtain

(10.19) Mv ∪Mw = V (σ).

We show that Mv is a nontrivial modular cut of σ − v. Recall that Mv is a
proper module of σ − v. By (10.19),

(10.20) V (σ − v) ∖Mv = (Mw ∖ {v}) ∖Mv.

By assertion (M2) of Proposition 2.5, Mw ∖ {v} and Mv ∖ {w} are modules
of σ − {v,w}. Since w /∈ E (σ), it follows from (10.19) that ∣Mv ∖Mw∣ ≥ 2.
Hence, we have (Mv ∖ {w}) ∖Mw, which is (Mv ∖ {w}) ∖ (Mw ∖ {v}), is
nonempty. It follows from assertion (M6) of Proposition 2.5 that (Mw ∖
{v})∖ (Mv ∖ {w}), which is (Mw ∖ {v})∖Mv, is a module of σ − {v,w}. To
prove that (Mw ∖ {v}) ∖Mv is a module of σ − v, it remains to verify that
w ←→σ ((Mw ∖ {v})∖Mv) (see Notation 2.1). Let y, z ∈ ((Mw ∖ {v})∖Mv).
Since Mv is a module of σ−v and y ≠ v, we have [w,y]σ = [x, y]σ. Similarly,
we have [w, z]σ = [x, z]σ. Since (Mw∖{v})∖Mv is a module of σ−{v,w}, we
have [x, y]σ = [x, z]σ. It follows that [w,y]σ = [w, z]σ. Thus, (Mw∖{v})∖Mv

is a module of σ − v. It follows from (10.20) that Mv is a modular cut of
σ − v. Since Mv is a proper module of σ − v containing x and w, Mv is a
nontrivial modular cut of σ − v. Therefore, v ∈Wδ(σ). It follows that

∣W∅(σ) ∖Wδ(σ)∣ ≤ 1.
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Now, suppose that there exists v ∈ W∅(σ) ∖Wδ(σ). Suppose for a con-
tradiction that Wδ(σ) ≠ ∅, and consider w ∈Wδ(σ). It follows from Corol-
lary 10.18 that v ∼σ w, which contradicts Lemma 10.22. Consequently, we
have

Wδ(σ) = ∅,
and hence

W∅(σ) = {v}.
�

10.4. Proof of Theorem 10.1. The next result follows from Corollary
10.10 and Fact 10.13.

Proposition 10.24. Given an infinite critical 2-structure σ, consider dis-
tinct v,w ∈ W (σ). If (w, v), (v,w) /∈ A(C(σ)), then (RT) holds (see Theo-
rem 10.1).

Proof. Suppose that (w, v), (v,w) /∈ A(C(σ)). It follows from
Corollary 10.10 that {w} ∈ Υ(σ − v) and (σ − v)/Υ(σ − v) is prime. Us-
ing the axiom of choice, consider X ⊆ V (σ) ∖ {v} such that ∣X ∩M∣ = 1 for
eachM ∈ Υ(σ−v). We have σ[X] ≃ (σ−v)/Υ(σ−v). Hence, σ[X] is prime.
Consequently, (RT) holds when X is equipotent to V (σ).

Now, suppose that X is strictly subpotent to V (σ). We have

(10.21) ∣V (σ)∣ = sup{∣M∣ ∶M ∈ Υ(σ − v)}.
We show that

(10.22) ∣Υ(σ −w)∣ ≥ ∣M∣
for every M ∈ Υ(σ − v)}. This is obvious when ∣M∣ = 1. Hence, consider
M ∈ Υ(σ − v)} such that ∣M∣ ≥ 2. Since (v,w) /∈ A(C(σ)), it follows from
Corollary 10.10 that {v} ∈ Υ(σ − w) and (σ − w)/Υ(σ − w) is prime. Let
N ∈ Υ(σ − w) such that M ∩N ≠ ∅. Since {v} ∈ Υ(σ − w) and v /∈M, we
have v /∈ N . It follows from Fact 10.13 that ∣M ∩ N ∣ = 1. Therefore, we
obtain

∣Υ(σ −w)∣ ≥ ∣M∣,
so (10.22) holds. It follows from (10.21) that ∣Υ(σ − w)∣ ≥ ∣V (σ)∣. Using
the axiom of choice, consider Y ⊆ V (σ) ∖ {w} such that ∣Y ∩O∣ = 1 for each
O ∈ Υ(σ − w). We obtain that ∣Y ∣ = ∣Υ(σ − w)∣ and σ[Y ] is prime. Since
∣Υ(σ −w)∣ ≥ ∣V (σ)∣, we have ∣Y ∣ = ∣V (σ)∣. Consequently, (RT) holds. �

The next result follows from Corollary 10.16. We use the following nota-
tion.

Notation 10.25. Recall that LN denotes the usual linear order on N. We
denote by L̂N the linear order defined on N∪{∞} such that L̂N[N] = LN and

(n,∞) ∈ A(L̂N) for every n ∈ N.

Lemma 10.26. Given an infinite critical 2-structure σ, C(σ)−E (σ) embeds

neither L̂N nor its dual (L̂N)⋆.
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Proof. First, suppose for a contradiction that there exist a sequence (vn)n≥0
of elements of V (σ) ∖ E (σ) and v∞ ∈ V (σ) ∖ E (σ) such that the bijection

N ∪ {∞} Ð→ {vn ∶ n ≥ 0} ∪ {v∞}
n ≥ 0 z→ vn,
∞ z→ v∞

is an isomorphism from L̂N onto C(σ)[{vn ∶ n ≥ 0} ∪ {v∞}]. Let n ≥ 2.
We have (vn, v∞), (v0, vn) ∈ A(C(σ)), and (v∞, vn) /∈ A(C(σ)). By Corol-
lary 10.16, σ − vn admits a nontrivial module Mn containing v0 and vn−1.
Note that v∞ /∈Mn because (v∞, vn) /∈ A(C(σ)). Set

M = ⋃
n≥2

Mn.

Since

v0 ∈ ⋂
n≥2

Mn

and {vn ∶ n ≥ 2} ⊆ M , it is not difficult to verify that M is a module of
σ. Since v∞ /∈ Mn for every n ≥ 2, we have M ≠ V (σ). Moreover, since
M2 ⊆ M , we have ∣M ∣ ≥ 2. It follows that M is a nontrivial module of σ,
which contradicts the fact that σ is prime. Consequently, C(σ)−E (σ) does

not embed L̂N.
Second, suppose for a contradiction that there exist a sequence (vn)n≥0

of elements of V (σ) ∖ E (σ) and v∞ ∈ V (σ) ∖ E (σ) such that the bijection

N ∪ {∞} Ð→ {vn ∶ n ≥ 0} ∪ {v∞}
n ≥ 0 z→ vn,
∞ z→ v∞

is an isomorphism from (L̂N)⋆ onto C(σ)[{vn ∶ n ≥ 0} ∪ {v∞}]. Since σ is
critical, σ − v∞ admits a nontrivial module M∞. Let w ∈ M∞. We have
(w, v∞) ∈ A(C(σ)). Moreover, for each n ≥ 0, we have (v∞, vn) ∈ A(C(σ))
and (vn, v∞) /∈ A(C(σ)). By Corollary 10.16, σ − vn admits a nontrivial
module Mn containing v∞ and w. Set

M = ⋂
n≥2

Mn.

It is not difficult to verify that M is a module of σ. Since v0 /∈M0, we have
v0 /∈ M , so M ≠ V (σ). Moreover, since w, v∞ ∈ M , we have ∣M ∣ ≥ 2. It
follows that M is a nontrivial module of σ, which contradicts the fact that
σ is prime. Consequently, C(σ) − E (σ) does not embed (L̂N)⋆. �

Remark 10.27. Let L be an infinite linear order. Suppose that L embeds
neither L̂N nor its dual (L̂N)⋆. We show that L is isomorphic to LN, (LN)⋆,
or LZ. Indeed, using the axiom of countable choice, we obtain a countable
subset W of V (L). It follows from the infinite Ramsey’s theorem that L[W ]
embeds LN or (LN)⋆. By exchanging L and L⋆ if necessary, we can assume
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that L embeds LN. Hence, there exists a sequence (vn)n≥0 of vertices of L

N Ð→ {vn ∶ n ≥ 0}
n ≥ 0 z→ vn

is an isomorphism from LN onto L[{vn ∶ n ≥ 0}]. Set

V − = {v ∈ V (σ) ∖ {vn ∶ n ≥ 0} ∶ v < v0 mod L}
and for each n ≥ 0, set

Vn = {v ∈ V (σ) ∖ {vn ∶ n ≥ 0} ∶ vn < v < vn+1 mod L}.
Let v ∈ V (σ) ∖ {vn ∶ n ≥ 0}. Since L does not embed L̂N, there exists n ≥ 0
such that v < vnmod L. Therefore, we have

(V (σ) ∖ {vn ∶ n ≥ 0}) = V − ∪ (⋃
n≥0

Vn).

For a contradiction, suppose that there exists n ≥ 0 such that Vn is infinite.
As previously, L[Vn] embeds LN or (LN)⋆, which contradicts the fact that

L embeds neither L̂N nor its dual (L̂N)⋆. Therefore, Vn is finite for every
n ≥ 0. Set

V + = {vn ∶ n ≥ 0} ∪ (⋃
n≥0

Vn).

It follows that

(10.23) L[V +] ≃ LN.

Moreover, we have

(10.24) V (L) = V − ∪ V +.

If V − is finite, then L ≃ LN too. Hence, suppose that V − is infinite. As
previously, L[V −] embeds LN or (LN)⋆. Since L does not embed L̂N, L[V −]
embeds (LN)⋆. Therefore, there exists a sequence (wn)n≥0 of element of V −

N Ð→ {vn ∶ n ≥ 0}
n ≥ 0 z→ wn

is an isomorphism from (LN)⋆ onto L[{wn ∶ n ≥ 0}]. Set

W0 = {v ∈ V − ∶ w0 < v mod L}
and for each n ≥ 1, set

Wn = {v ∈ V − ∶ wn < v < wn−1 mod L}.
Since L does not embed neither L̂N nor its dual (L̂N)⋆, we have

V − = ⋃
n≥0

Wn

and Wn is finite for each n ≥ 0. Consequently, L[V −] ≃ (LN)⋆. It follows
from (10.23) and (10.24) that L ≃ LZ.

The next result follows from Corollary 10.21.

Proposition 10.28. Let σ be an infinite critical 2-structure. Given distinct
v,w ∈Wπ(σ), if v ∼σ w, then (RT) holds (see Theorem 10.1).
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Proof. It follows from Corollary 10.21 that there exists X ⊆ V (σ) ∖ {v,w}
satisfying

● σ[X] is prime;
● there exist distinct y, z ∈X such that v ∈Xσ(y) and w ∈Xσ(z);
● Υ(σ−v) = {({y}∪Xσ(y))∖{v},{z}∪Xσ(z))}∪{{u} ∶ u ∈X∖{y, z}};
● Υ(σ−w) = {{y}∪Xσ(y)), ({z}∪Xσ(z))∖{w}}∪{{u} ∶ u ∈X∖{y, z}};
● p(σ,X) = {Xσ(y),Xσ(z)} and E(Γ(σ,X)) = {{v,w}}.

We verify that

(10.25)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

({y} ∪Xσ(y))←→σ (({z} ∪Xσ(z)) ∖ {w}) (see Notation 2.1)

and

(({y} ∪Xσ(y)) ∖ {v})←→σ ({z} ∪Xσ(z)).
Indeed, consider u ∈ Xσ(y) and u′ ∈ Xσ(z). Suppose that u ≠ v or u′ ≠
w. Since E(Γ(σ,X)) = {{v,w}}, we have {u,u′} /∈ E(Γ(σ,X)). It follows

from assertion (P3) of Lemma 3.17 that {y, u} and {z, u′} are modules of
σ[X ∪ {u,u′}]. Therefore, we obtain [u,u′]σ = [y, z]σ. Moreover, since
u ∈ Xσ(y), we have [u, z]σ = [y, z]σ. Similarly, we have [y, u′]σ = [y, z]σ
because u′ ∈ Xσ(z). It follows that (10.25) holds. Moreover, consider W ⊆
({y} ∪ Xσ(y)) and W ′ ⊆ ({z} ∪ Xσ(z)) such that v ∈ W and w ∈ W ′. If
∣W ∣ ≥ 2 or ∣W ′∣ ≥ 2, then

(10.26) W /←→σ W ′.

Indeed, it follows from (10.25) that (W ∖ {v}) ←→σ W ′ and W ←→σ (W ′ ∖
{w}). Precisely, since W ⊆ ({y} ∪ Xσ(y)) and W ′ ⊆ ({z} ∪ Xσ(z)), we
have [W ∖ {v}),W ′]σ = [y, z]σ and [W,W ′ ∖ {w}]σ = [y, z]σ. Since {v,w} ∈
E(Γ(σ,X)), it follows from assertion (P3) of Lemma 3.17 that {y, v} is not
a module of σ[X ∪ {v,w}] or {z,w} is not a module of σ[X ∪ {v,w}]. Fur-
thermore, {y, v} is a module of σ[X ∪ {v,w}] if and only if {z,w} is a
module of σ[X ∪ {v,w}]. For instance, assume that {y, v} is not a module
of σ[X ∪ {v,w}]. We obtain [y,w]σ ≠ [v,w]σ. Since w ∈ Xσ(z), we have
[y,w]σ = [y, z]σ. Therefore, we obtain [v,w]σ ≠ [y, z]σ. It follows that
(10.26) holds.

Clearly, if X is equipotent to V (σ), then (RT) holds. Hence, suppose that
X is strictly subpotent to V (σ). Consequently, {y}∪Xσ(y) or {z}∪Xσ(z)
are equipotent to V (σ). For instance, assume that {y}∪Xσ(y) is equipotent
to V (σ).

We prove that

(10.27) ∣Xσ(z)∣ ≥ 2.

Otherwise, suppose that Xσ(z) = {w}. We verify that z /∈ E (σ). Set

Y = (X ∖ {z}) ∪ {w}.
Since w ∈ Xσ(z), σ[Y ] is isomorphic to σ[X], so σ[Y ] is prime. Let u′ ∈
(Xσ(y) ∖ {v}). Since E(Γ(σ,X)) = {{v,w}}, we have {w,u′} /∈ E(Γ(σ,X)).
It follows from assertion (P3) of Lemma 3.17 that {y, u′} is a module of
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σ[X ∪ {u′,w}]. By assertion (M2) of Proposition 2.5, {y, u′} is a module of
σ[Y ∪ {u′}]. Therefore, u′ ∈ Yσ(y). It follows that

(Xσ(y) ∖ {v}) ⊆ Yσ(y).
Since {v,w} ∈ E(Γ(σ,X)), we obtain [v,w]σ ≠ [y,w]σ. Thus, v /∈ Yσ(y). It
follows that

(10.28)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Yσ(y) =Xσ(y) ∖ {v}
and

p(σ−z,Y ) = {Xσ(y) ∖ {v},{v}}.
Given a nontrivial module Mz of σ − z, we verify that

Mz ⊆ (({y} ∪Xσ(y)) ∖ {v})
or(10.29)

there exists t ∈ (Y ∖ {y,w}) such that Mz = {t, v}.
Let Mz be a nontrivial module of σ − z. As seen in Remark 3.16, we have
∣Mz ∩ Y ∣ ≤ 1 or Y ⊆Mz. Suppose that ∣Mz ∩ Y ∣ ≤ 1. It follows from (10.28)
that Mz ⊆ (({y} ∪ Xσ(y)) ∖ {v}) or there exists t ∈ (Y ∖ {y}) such that
Mz = {t, v}. If t = w, then {y,w} is a module of σ[Y ], which contradicts the
fact that σ[Y ] is prime. Thus, t ∈ (Y ∖ {y,w}). Consequently, (10.29) holds
when ∣Mz ∩ Y ∣ ≤ 1. In the other case, we have a nontrivial module Mz of
σ − z such that Y ⊆Mz. By Fact 10.6, we have Yσ(y) ⊆Mz, and hence

v ←→σ (V (σ) ∖ {z,w}).
In particular, we have

v ←→σ (({y} ∪Xσ(y)) ∖ {v}).
Clearly, we have

t←→σ (({y} ∪Xσ(y)) ∖ {v})
for every t ∈X ∖ {y, z}. Moreover, by (10.25), we have

w ←→σ (({y} ∪Xσ(y)) ∖ {v}).
It follows that ({y}∪Xσ(y))∖{v} is a module of σ, which contradicts the fact
that σ is prime. Therefore, (10.29) holds. It follows that σ−z is uncuttable.
In particular, we have z /∈ E (σ).

To obtain a contradiction when Xσ(z) = {w}, we distinguish the following
two cases.
Case 1: (v, z) /∈ A(C(σ)).

Consider a nontrivial module Mz of σ − z. Since (v, z) /∈ A(C(σ)), it
follows from (10.29) that Mz ⊆ ({y}∪ (Xσ(y)∖{v})). Since Mz ⊆ ({y}∪
Xσ(y)), we have z ←→σ Mz. It follows that Mz is a nontrivial module
of σ, which contradicts the fact that σ is prime.
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Case 2: (v, z) ∈ A(C(σ)).
Since (z, v) ∈ A(C(σ)), we have v ∼σ z. By Lemma 10.20, z ∈ Wπ(σ).
Furthermore, by Corollary 10.21, there exists Z ⊆ (V (σ) ∖ {v, z}) satis-
fying

● σ[Z] is prime;
● there exist distinct y′, z′ ∈ Z such that v ∈ Zσ(y′) and z ∈ Zσ(z′);
● Υ(σ − v) = {({y′} ∪ Zσ(y′)) ∖ {v},{z′} ∪ Zσ(z′)} ∪ {{u} ∶ u ∈
Z ∖ {y′, z′}};

● Υ(σ − z) = {{y′} ∪ Zσ(y′)), ({z′} ∪ Zσ(z′)) ∖ {z}} ∪ {{u} ∶ u ∈
Z ∖ {y′, z′}};

● p(σ,Z) = {Zσ(y′), Zσ(z′)} and E(Γ(σ,Z)) = {{v, z}}.

Recall that

Υ(σ − v) = {({y} ∪Xσ(y)) ∖ {v},{z} ∪Xσ(z))} ∪ {{u} ∶ u ∈X ∖ {y, z}}.
Since Xσ(z) = {w}, we have {z,w} ∈ Υ(σ − v). Since {y} ∪ Xσ(y) is
equipotent to V (σ), ({y}∪Xσ(y))∖{v} is an infinite element of Υ(σ−v).
It follows that

{z′} ∪Zσ(z′) = {z,w}.
Moreover, since ({y} ∪Xσ(y)) ∖ {v} is an infinite element of Υ(σ − v) ∖
{{z′} ∪Zσ(z′) = {z,w}}, we have

({y} ∪Xσ(y)) ∖ {v} = ({y′} ∪Zσ(y′)) ∖ {v}.
Therefore, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y′ ∈ (({y} ∪Xσ(y)) ∖ {v}),
v ∈ Zσ(y′),
and

w ∈ Z,
which contradicts (10.26) with W = {y′, v} and W ′ = {w}.

Consequently, (10.27) holds. Consider u′ ∈ Xσ(z) ∖ {w}. We show that
u′ ∈Wπ(σ) and

(10.30) {{u} ∶ u ∈ {y} ∪Xσ(y)} ⊆ Υ(σ − u′),
which allows us to conclude because {y} ∪ Xσ(y) is equipotent to V (σ).
Let Mu′ be a nontrivial module of σ − u′. For a contradiction, suppose
that X ⊆ Mu′ . Since Mu′ is a nontrivial module of σ − u′, there exists
u ∈ (V (σ) ∖ {u′}) ∖Mu′ . Since p(σ,X) = {Xσ(y),Xσ(z)}, we get u ∈ Xσ(t),
where t = y or z. Set

Y = (X ∖ {t}) ∪ {u}.
Since {t, u} is a module of σ[X ∪ {u}], σ[Y ] is isomorphic to σ[X]. It
follows that σ[Y ] is prime. By assertion (M2) of Proposition (2.5), Mu′ ∩Y
is a module of σ[Y ]. We have (X ∖ {t}) ⊆ (Mu′ ∩ Y ), so ∣Mu′ ∩ Y ∣ ≥ 2.
Furthermore, we have u ∈ (Y ∖(Mu′ ∩Y )). Therefore, Mu′ ∩Y is a nontrivial
module of σ[Y ], which contradicts the fact that σ[Y ] is prime. It follows
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that X ∖Mu′ ≠ ∅. It follows from Remark 3.16 that we obtain ∣Mu′ ∩X ∣ ≤ 1.
Since p(σ,X) = {Xσ(y),Xσ(z)}, we obtain

Mu′ ⊆ ({y} ∪Xσ(y)) or Mu′ ⊆ ({z} ∪Xσ(z)).
It follows that u′ /∈ E (σ) and σ − u′ is uncuttable. By Proposition 2.12,
σ − u′ is connected. Moreover, for t ∈ X ∖ {y, z}, we obtain {t} ∈ Υ(σ − u′).
It follows from Proposition 10.5 that u′ ∈ Wπ(σ). Finally, we establish
(10.30). For a contradiction, suppose that there exists Mu′ ∈ Υ(σ − u′)
such that Mu′ ⊆ ({y} ∪ Xσ(y)) and ∣Mu′ ∣ ≥ 2. Since w /∈ Mu′ , we have
w ←→σ Mu′ . Since ∣Mu′ ∣ ≥ 2, it follows from (10.26) that v /∈Mu′ . Therefore,
we obtain u′ ←→σ Mu′ by (10.25). Hence, Mu′ is a module of σ, which
contradicts the fact that σ is prime. It follows that (10.30) holds. Since
{y}∪Xσ(y) is equipotent to V (σ), Υ(σ −u′) is equipotent to V (σ) as well.
Since u′ ∈Wπ(σ), (σ−u′)/Υ(σ−u′) is prime. Consequently, (RT) holds. �

The next result follows from Corollary 10.16, Remark 10.27, and Propo-
sition 10.28.

Proposition 10.29. Let σ be an infinite critical 2-structure. If Wπ(σ) ≠ ∅,
then (RT) holds.

Proof. Suppose that Wπ(σ) ≠ ∅. To begin, we show that (RT) holds when
Wπ(σ) is finite. Indeed, suppose that Wπ(σ) is finite. By Proposition 10.9,
W (σ) is equipotent to V (σ). Thus, W (σ) ∖Wπ(σ) is equipotent to V (σ).
Let v ∈ Wπ(σ). Since (σ − v)/Υ(σ − v) is prime, it suffices to verify that
Υ(σ − v) is equipotent to W (σ) ∖Wπ(σ). Consider w ∈W (σ) ∖Wπ(σ). By
Corollary 10.18, we have (v,w) ∈ A(C(σ)). It follows from Lemma 10.20
that (w, v) /∈ A(C(σ)). Hence, {w} ∈ Υ(σ − v). Therefore, we have

{{w} ∶ w ∈W (σ) ∖Wπ(σ)} ⊆ Υ(σ − v).
It follows that Υ(σ − v) is equipotent to W (σ) ∖Wπ(σ), so Υ(σ − v) is
equipotent to V (σ). Consequently, (RT) holds.

In the sequel, we suppose that Wπ(σ) is infinite. By Corollary 10.17
and Propositions 10.24 and 10.28, we can assume that C(σ)[Wπ(σ)] is a
linear order. Furthermore, by Lemma 10.26, C(σ)[Wπ(σ)] embeds neither

L̂N nor its dual (L̂N)⋆. It follows from Remark 10.27 that C(σ)[Wπ(σ)] is
isomorphic to LN, (LN)⋆, or LZ.

First, suppose that C(σ)[Wπ(σ)] is isomorphic to LN or LZ. In particular,
observe thatWπ(σ) is countable. There exists a sequence (vn)n≥0 of elements
of Wπ(σ) such that the function

N Ð→ {vn ∶ n ≥ 0}
n ≥ 0 z→ vn

is an isomorphism from LN onto C(σ)[{vn ∶ n ≥ 0}]. For a contradiction,
suppose that W∅(σ) ∪Wδ(σ) ≠ ∅. Consider w ∈W∅(σ) ∪Wδ(σ). Let n ≥ 0.
By Corollary 10.18, we have (vn,w) ∈ A(C(σ)). It follows from Lemma 10.20
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that (w, vn) /∈ A(C(σ)). Consequently, we obtain C(σ)[{vn ∶ n ≥ 0}∪{w}] ≃
L̂N, which contradicts Lemma 10.26. It follows that

W∅(σ) ∪Wδ(σ) = ∅,

so

W (σ) =Wπ(σ).
It follows from Proposition 10.9 that V (σ) is countable. Since v0 ∈Wπ(σ),
Υ(σ − v0) is a modular partition of σ − v0 and (σ − v0)/Υ(σ − v0) is prime.
Let n ≥ 1. Since (vn, v0) /∈ A(C(σ)), we have {vn} ∈ Υ(σ − v0). Consider
X ⊆ V (σ − v0) such that ∣X ∩M ∣ = 1 for every M ∈ Υ(σ − v0). We obtain
that X is a countable proper subset of V (σ) such that σ[X] is prime. Thus,
(RT) holds.

Second, suppose that C(σ)[Wπ(σ)] is isomorphic to (LN)⋆. There exists
a sequence (vn)n≥0 of elements of Wπ(σ) such that

Wπ(σ) = {vn ∶ n ≥ 0}

and the function
N Ð→ {vn ∶ n ≥ 0}

n ≥ 0 z→ vn

is an isomorphism from (LN)⋆ onto C(σ)[Wπ(σ)].
Let w ∈ W∅(σ) ∪ Wδ(σ). As seen previously, we obtain that {w} ∈

Υ(σ − v0). Thus, W∅(σ) ∪Wδ(σ) is subpotent to Υ(σ − v0). Suppose that
W∅(σ)∪Wδ(σ) is infinite. Since Wπ(σ) is countable, we obtain that W (σ)
is equipotent to W∅(σ)∪Wδ(σ). It follows from Proposition 10.9 that V (σ)
is equipotent to W∅(σ) ∪Wδ(σ). Since W∅(σ) ∪Wδ(σ) is subpotent to
Υ(σ − v0), it follows from Bernstein–Schröder theorem that Υ(σ − v0) is
equipotent to V (σ). Consider X ⊆ V (σ−v0) such that ∣X ∩M ∣ = 1 for every
M ∈ Υ(σ − v0). We obtain that X is proper subset of V (σ) such that X
is equipotent to V (σ) and σ[X] is prime. Therefore, (RT) holds. In the
sequel of the proof, we suppose that W∅(σ) ∪Wδ(σ) is finite. Since Wπ(σ)
is countable, W (σ) is countable as well. It follows from Proposition 10.9
that V (σ) is countable.

To continue, we show that for each p ≥ 0,

(10.31) {vm ∶m > p} is a module of σ[Wπ(σ)] − vp.

Indeed, consider p ≥ 0. Let q ≥ p + 2. We have (vp+1, vp), (vq, vp) ∈ A(C(σ))
and (vp, vp+1) /∈ A(C(σ)). By Corollary 10.16, σ − vp admits a nontrivial
module M q

p containing vp+1 and vq. Since vp ∈Wπ(σ), Υ(σ−vp) is a modular
partition of σ−vp and (σ−vp)/Υ(σ−vp) is prime. Denote by Mp the unique
element of Υ(σ − vp) containing vp+1. It follows from the maximality of
Mp that M q

p ⊆ Mp. By assertion (M2) of Proposition 2.5, Mp ∩ ({vn ∶ n ≥
0} ∖ {vp}) is a module of σ[{vn ∶ n ≥ 0}] − vp. We obtain

{vm ∶m > p} ⊆ (Mp ∩ ({vn ∶ n ≥ 0} ∖ {vp})).
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Let m < p. Since (vm, vp) /∈ A(C(σ)), we have {vm} ∈ Υ(σ − vp), so vm /∈Mp.
Hence, when p ≥ 1, we have

(10.32) {v0, . . . , vp−1} ∩Mp = ∅.
It follows that

(10.33) (Mp ∩ (Wπ(σ) ∖ {vp})) = {vm ∶m > p}.
Hence, (10.31) holds. Consider Xp ⊆ V (σ − vp) such that ∣Xp ∩Np∣ = 1 for
every Np ∈ Υ(σ−vp). We have σ[Xp] is prime. Since Mp ∈ Υ(σ−vp), denote
by yp the unique element of Xp ∩Mp. We obtain

(10.34) (Mp ∖ {yp}) ⊆ (Xp)σ(yp) (see Notation 3.12).

Since {vm} ∈ Υ(σ − vp) for each m < p, we obtain

(10.35) {vm ∶m < p} ⊆Xp.

As previously seen, it follows from Lemma 10.20 that

(10.36) (W∅(σ) ∪Wδ(σ)) ⊆Xp.

Let w ∈ V (σ − vp) ∖ Xp. There exists Np ∈ Υ(σ − vp) such that w ∈ Np.
We obtain w ∈ (Xp)σ(z), where z denotes the unique element of Xp ∩Np.
It follows from Lemma 3.13 that V (σ − vp) ∩ ⟨Xp⟩σ = ∅. For a contradic-
tion, suppose that there exists Np ∈ (Υ(σ − vp) ∖ {Mp}) such that ∣Np∣ ≥
2. Let w ∈ Np ∖ Xp. It follows from (10.33), (10.35), and (10.36) that
w /∈ W (σ), that is, w ∈ E (σ). Hence, V (σ) ∖ {w,FE (σ)(w)} is a mod-
ule of σ − w (see Notation 10.8). We have ∣Xp∣ ≥ 3 because σ[Xp] is
prime. Thus, ∣(V (σ) ∖ {w,FE (σ)(w)}) ∩ Xp∣ ≥ 2. Since σ[Xp] is prime,
we obtain Xp ⊆ (V (σ) ∖ {w,FE (σ)(w)}). It follows from Fact 10.6 that
(V (σ) ∖ {vp,w}) ⊆ (V (σ) ∖ {w,FE (σ)(w)}). We obtain vp = FE (σ)(w). In
particular, we obtain vp ←→σ Mp (see Notation 2.1). Hence, Mp is a nontriv-
ial module of σ, which contradicts the fact that σ is prime. Consequently,
we have

(10.37) (V (σ − vp) ∖Mp) ⊆Xp.

Finally, we show that for each p ≥ 1,

(10.38) vp /←→σ {vp+1, vp+2} (see Notation 2.1).

Otherwise, there exists p ≥ 1 such that vp ←→σ {vp+1, vp+2}. Recall that
Mp denotes the unique element of Υ(σ − vp) containing vp+1. By (10.31),
{vm ∶ m > p + 1} is a module of σ[Wπ(σ)] − vp+1. We obtain vp ←→σ {vm ∶
m > p + 1}. Since vp ←→σ {vp+1, vp+2}, we have vp ←→σ {vm ∶ m > p}.
It follows from (10.33) that vp ←→σ (Mp ∩ (Wπ(σ) ∖ {vp})). Since σ is
prime, Mp is not a module of σ. Therefore, vp /←→σ Mp. Thus, there exists
w ∈ Mp such that vp /←→σ {vp+1,w}. Since vp ←→σ {vm ∶ m > p}, we have
w /∈ {vm ∶ m > p}. It follows from (10.35) that w /∈ {vm ∶ m < p}. We
obtain w /∈ Wπ(σ). Furthermore, it follows from (10.36) that w /∈ W∅(σ) ∪
Wδ(σ). We obtain w ∈ E (σ). Hence, V (σ) ∖ {w,FE (σ)(w)} is a module
of σ − w (see Notation 10.8). As previously, it follows from Fact 10.6 that
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(V (σ) ∖ {vp,w}) ⊆ (V (σ) ∖ {w,FE (σ)(w)}) and we obtain vp = FE (σ)(w).
By (10.33), we have vp, vp+1 ∈ M0. Recall that X0 is a subset of V (σ − v0)
such that ∣X0 ∩N0∣ = 1 for every N0 ∈ Υ(σ − v0). Furthermore, y0 denotes
the unique element of X0 ∩M0. Hence, we can assume that y0 = vp+1 so
that y0 ≠ vp and y0 ≠ w. It follows from (10.34) that vp ∈ (X0)σ(vp+1).
Since (vp, v0), (w, vp) ∈ A(C(σ)) and (v0, vp) /∈ A(C(σ)), it follows from
Corollary 10.16 that σ − v0 admits a nontrivial module N0 containing vp
and w. It follows from the maximality of M0 that N0 ⊆M0. In particular,
we have w ∈ M0. Since V (σ) ∖ {w, vp} is a module of σ − w, we obtain
vp ∈ ⟨X0⟩σ. Therefore, we have vp ∈ (X0)σ(vp+1)∩ ⟨X0⟩σ, which contradicts
Lemma 3.13. Consequently, (10.38) holds.

To conclude, we verify that σ[Wπ(σ)∖{v0}] is prime. Let M be a module
of σ[Wπ(σ)∖{v0}] such that ∣M ∣ ≥ 2. We have to show that M = {vn ∶ n ≥ 1}.
Given m < n, we prove that

(10.39) if vm, vn ∈M and vn+1 /∈M , then vn+2 ∈M.

Suppose that vm, vn ∈M and vn+1 /∈M . It follows from (10.31) and (10.38)
that vm ←→σ {vn+1, vn+2} and vn /←→σ {vn+1, vn+2}. Since vm, vn ∈ M and
vn+1 /∈M , we obtain vn+2 ∈M . Hence, (10.39) holds. Given m < n, we verify
that

(10.40) if vm, vn ∈M , then vn+1 ∈M.

Suppose that vm, vn ∈ M . For a contradiction, suppose that vn+1 /∈ M . By
(10.39), vn+2 ∈ M . Let r ≥ n + 3. By (10.38), vn+1 /←→σ {vn+2, vn+3}. By
(10.31), {vm ∶ m > n + 2} is a module of σ[Wπ(σ)] − vn+2. Thus, we have
vn+1 ←→σ {vn+3, vr}. It follows that vn+1 /←→σ {vn+2, vr}. Therefore, vr /∈M
for every r ≥ n + 3, which contradicts (10.39). It follows that vn+1 ∈ M .
Hence, (10.40) holds.

Consider

p = min({n ≥ 1 ∶ vn ∈M}),
and

q = min({n ≥ 1 ∶ vn ∈ (M ∖ vp}}).
For a contradiction, suppose that p ≥ 2. It follows from (10.31) and (10.38)
that vp−1 /←→σ {vp, vq}. Thus, we have p = 1. Proceeding by induc-
tion, it follows from (10.40) that vr ∈ M for every r ≥ q + 1. By (10.38),
vq−1 /←→σ {vq, vq+1}. Since vq, vq+1 ∈ M , we have vq−1 ∈ M . It follows from
the minimality of q that q − 1 = 1. Therefore, we obtain M = {vn ∶ n ≥ 1}.
It follows that σ[Wπ(σ) ∖ {v0}] is prime. Since V (σ) is countable, (RT)
holds. �

We use the following definition and remark in the proof of the next propo-
sition.

Definition 10.30. A 2-structure σ is a directed path on Z if V (σ) = Z anddirected path
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there exist distinct e, f ∈ E(σ) satisfying

(10.41)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

for any n ∈ Z and p ≥ 2, [n,n + p]σ = (e, f)
and

for every n ∈ Z, [n,n + 1]σ ≠ (e, f).

Remark 10.31. Let σ be a directed path on Z. There exist distinct e, f ∈
E(σ) satisfying (10.41). Let M be a module of LZ such that ∣M ∣ ≥ 5. We
verify that σ[M] is prime. Indeed, let N be a module of σ[M] such that
∣N ∣ ≥ 2. We must show that N = M . Consider m,n ∈ N such that m < n
and N ∩ {p ∈ Z ∶ m ≤ p ≤ n} = {m,n}. Suppose that m − 1 ∈ M . Since
[m − 1,m]σ ≠ (e, f) and [m − 1, n]σ = (e, f), we obtain m − 1 ∈ N . By
proceeding by induction, we obtain

(M ∩ {. . . ,m − 1,m}) ⊆ N.
Similarly, we obtain

(M ∩ {n,n + 1, . . .}) ⊆ N.
Since N ∩ {p ∈ Z ∶m ≤ p ≤ n} = {m,n}, we have

N =M ∩ ({. . . ,m − 1,m} ∪ {n,n + 1, . . .}).
For a contradiction, suppose that n > m + 1. Since [m,m + 1]σ ≠ (e, f)
and [m − 1,m + 1]σ = (e, f), we obtain m − 1 /∈ M . Similarly, we have
n + 1 /∈ M . It follows that M = {p ∈ Z ∶ m ≤ p ≤ n} and N = {m,n}. Since
∣M ∣ ≥ 5, we have n ≥ m + 4. Since [m,m + 2]σ = (e, f), [n,m + 2]σ = (f, e),
and e ≠ f , we obtain [m,m + 2]σ ≠ [n,m + 2]σ, which contradicts the fact
that N is a module of σ[M]. Consequently, we have n = m + 1. Since
N =M ∩ ({. . . ,m − 1,m} ∪ {n,n + 1, . . .}), we have N =M .

Proposition 10.32. Let σ be an infinite critical 2-structure. If there exists
v ∈Wδ(σ) such that ∣λ(v)∣ = 2 (see Notation 10.11), then (RT) holds.

Proof. Suppose that there exists u ∈ Wδ(σ) such that ∣λ(u)∣ = 2. Hence,
there exist distinct e, f ∈ E(σ) such that λ(u) = {e, f}. By Corollary 10.18
and Lemma 10.22, we have

(10.42)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

W (σ) =Wδ(σ)
and

for every v ∈Wδ(σ), λ(v) = {e, f}.
Let v ∈Wδ(σ). There exist ev, fv ∈ E(σ − v) such that σ − v is not {ev, fv}-
connected. Moreover, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ev = e ∩ (V (σ − v) × V (σ − v))
and

fv = f ∩ (V (σ − v) × V (σ − v)).
We show that

(10.43) ∣C{ev ,fv}(σ − v)∣ = 2.
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Otherwise, suppose that ∣C{ev ,fv}(σ − v)∣ ≥ 3 (see Definition 2.2). It follows
from Proposition 2.8 there exist a modular partition {Xv, Yv, Zv} of σ − v
such that [Xv, Yv ∪ Zv]σ = (e, f) and [Yv, Zv]σ = (e, f). Since σ is prime,
σ is {e, f}-connected. Thus, there exists xv ∈ Xv and zv ∈ Zv such that
[xv, v]σ ≠ (e, f) and [v, zv]σ ≠ (e, f). Therefore, for every w ∈ Yv, σ − w is
{e, f}-connected. It follows from (10.42) that Yv ⊆ E (σ). Consider w ∈ Yv.
Since w ∈ E (σ), there exists FE (σ)(w) ∈ V (σ)∖{w} (see Notation 10.8) such
that

FE (σ)(w)←→σ V (σ) ∖ {w,FE (σ)(w)} (see Notation 2.1).

Suppose that ∣Yv ∣ ≥ 2. Let w ∈ Yv. Since [Xv, Yv ∖ {w}]σ = (e, f) and
[Yv∖{w}, Zv]σ = (e, f), we have FE (σ)(w) /∈ Yv. For a contradiction, suppose
that FE (σ)(w) ∈ Zv. Since [Xv, Zv]σ = (e, f) and [w,Zv]σ = (e, f), we
obtain that V (σ) ∖ {FE (σ)(w)} is a module of σ, which contradicts the
fact that σ is prime. It follows that FE (σ)(w) /∈ Zv. Similarly, we have
FE (σ)(w) /∈ Xv. Therefore, we obtain FE (σ)(w) = v. Since FE (σ) is injective
(see Notation 10.8), we have ∣Yv ∣ = 1. Denote by w the unique element of
Yv. We have FE (σ)(w) = v. Since [v, xv]σ ≠ (f, e) and [v, zv]σ ≠ (e, f), there

exist e′, f ′ ∈ E(σ) such that [v, V (σ)∖{v,w}]σ = (e′, f ′) and {e′, f ′} ≠ {e, f}.
It follows that σ − u is {e, f}-connected for every u ∈ Xv ∪ Zv. By (10.42),
u /∈ W (σ) for every u ∈ Xv ∪ Zv. Since Yv ⊆ E (σ), we obtain W (σ) = {v},
which contradicts Proposition 10.9. Consequently, (10.43) holds for each
v ∈Wδ(σ).

Let v ∈ Wδ(σ). By (10.43), there exists a unique nontrivial modular cut
Cv of σ − v such that

[Cv, V (σ − v) ∖Cv]σ = (e, f).
We define a digraph Lδ(σ) on V (Lδ(σ)) = Wδ(σ) as follows. Given dis-

tinct v,w ∈Wδ(σ),
(v,w) ∈ A(Lδ(σ)) if (Cv ∪ {v}) ⊆ Cw.

We verify that Lδ(σ) is a linear order. Clearly, Lδ(σ) is a partial order.
Consider distinct v,w ∈Wδ(σ). We prove that

(10.44)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w ∈ Cv if and only if (w, v) ∈ A(Lδ(σ))
and

v ∈ (V (σ −w) ∖Cw) if and only if (w, v) ∈ A(Lδ(σ)).

Clearly, if (w, v) ∈ A(Lδ(σ)), then (Cw ∪ {w}) ⊆ Cv, so w ∈ Cv. Conversely,
suppose that w ∈ Cv. Since σ is prime, σ is {e, f}-connected. Thus, there
exists xv ∈ Cv and yv ∈ V (σ−v)∖Cv such that [xv, v]σ ≠ (e, f) and [v, yv]σ ≠
(e, f). We distinguish the following two cases.
Case 1: There exists tv ∈ Cv ∖ {w} such that [tv, v]σ ≠ (e, f).

[tv, v]σ ≠ (e, f). We obtain that (V (σ − v) ∖ Cv) ∪ {v, tv} is {e, f}-
connected. Therefore, we have (V (σ − v) ∖ Cv)) ∪ {v, tv} ⊆ Dw, where
Dw = Cw or V (σ−w)∖Cw. Let u ∈ (V (σ−w)∖Dw). Since [u,V (σ−v)∖
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Cv]σ = (e, f), we obtain Dw = V (σ −w) ∖Cw, and hence (V (σ) ∖Cv) ⊆
(V (σ −w) ∖Cw). It follows that (w, v) ∈ A(Lδ(σ)).

Case 2: w = xv and [Cv ∖ {w}, v]σ = (e, f).
Since w /∈ E (σ), there exists zv ∈ (V (σ) ∖Cv) such that [zv, v]σ ≠ (e, f).
Since [v, yv]σ ≠ (e, f), we obtain that (V (σ − v) ∖ Cv) ∪ {v}, which is
V (σ) ∖ Cv, is {e, f}-connected. Therefore, we have (V (σ) ∖ Cv) ⊆ Dw,
where Dw = Cw or V (σ − w) ∖ Cw. Let u ∈ V (σ − w) ∖ Dw. Since
[u,V (σ − v) ∖ Cv]σ = (e, f), we obtain Dw = V (σ − w) ∖ Cw. Thus, we
have (Cw ∪ {w}) ⊆ Cv, so (w, v) ∈ A(Lδ(σ)).

It follows that w ∈ Cv if and only if (w, v) ∈ A(Lδ(σ)). We show similarly
that v ∈ (V (σ − w) ∖ Cw) if and only if (w, v) ∈ A(Lδ(σ)). Hence, (10.44)
holds. It follows that (w, v) ∈ A(Lδ(σ)) or (v,w) ∈ A(Lδ(σ)). Consequently,
Lδ(σ) is a linear order.

Now, we prove that Lδ(σ) does not embed L̂N. Otherwise, there exist a
sequence (vn)n≥0 of elements of W (σ) and v∞ ∈W (σ) such that the bijection

N ∪ {∞} Ð→ {vn ∶ n ≥ 0} ∪ {v∞}
n ≥ 0 z→ vn,
∞ z→ v∞

is an isomorphism from L̂N onto Lδ(σ)[{vn ∶ n ≥ 0}∪ {v∞}]. For each n ≥ 0,
we have

(10.45)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(Cvn ∪ {vn}) ⊆ Cvn+1
and

(Cvn+1 ∪ {vn+1}) ⊆ Cv∞ .
Set

C = ⋃
n≥0

Cvn .

It follows from (10.45) that C is a nontrivial module of σ, which contradicts

the fact that σ is prime. Consequently, Lδ(σ) does not embed L̂N.

To pursue, we prove that Lδ(σ) does not embed (L̂N)⋆. Otherwise, there
exist a sequence (vn)n≥0 of elements of W (σ) and v∞ ∈W (σ) such that the
bijection

N ∪ {∞} Ð→ {vn ∶ n ≥ 0} ∪ {v∞}
n ≥ 0 z→ vn,
∞ z→ v∞

is an isomorphism from (L̂N)⋆ onto Lδ(σ)[{vn ∶ n ≥ 0} ∪ {v∞}]. For each
n ≥ 0, we have

(10.46)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(Cvn+1 ∪ {vn+1}) ⊆ Cvn
and

(Cv∞ ∪ {v∞}) ⊆ Cvn .
Set

C = ⋂
n≥0

Cvn .
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It follows from (10.46) that C is a nontrivial module of σ, which contradicts

the fact that σ is prime. Consequently, Lδ(σ) does not embed (L̂N)⋆.

It follows that Lδ(σ) embeds neither L̂N nor its dual (L̂N)⋆. By (10.42),
we have W (σ) = Wδ(σ). It follows from Proposition 10.9 that Lδ(σ) is an
infinite linear order. By Remark 10.27, Lδ(σ) is isomorphic to LN, (LN)⋆,
or LZ. Given v,w ∈Wδ(σ) such that v <Lδ(σ)w, we prove that

(10.47)
σ = (e, f) if and only if there exists u ∈Wδ(σ) such that

v <Lδ(σ)u <Lδ(σ)w

Consider v,w ∈Wδ(σ) such that v <Lδ(σ)w. To begin, suppose that there
exists u ∈ Wδ(σ) such that v <Lδ(σ) u <Lδ(σ)w. By (10.44), we have v ∈ Cu
and w ∈ (V (σ−u)∖Cu). Hence, we have [v,w]σ = (e, f). Conversely, suppose
that [v,w]σ = (e, f). By (10.44), we have w ∈ (V (σ−v)∖Cv). Hence, we have
[w,Cv]σ = (f, e). Since [w, v]σ = (f, e), we obtain [w,Cv ∪ {v}]σ = (f, e).
Since (v,w) ∈ A(Lδ(σ)), we have Cv ∪ {v} ⊆ Cw. Since w /∈ E (σ), Cw
is a nontrivial module of σ − w. Since Cw is not a nontrivial module of
σ, there exists u ∈ (Cw ∖ (Cv ∪ {v})) such that [w,u]σ ≠ (f, e). Since
u ∈ (Cw ∖ (Cv ∪ {v})), it follows from (10.44) that v <Lδ(σ)u <Lδ(σ)w.

For a contradiction, suppose that E (σ) ≠ ∅. As seen at the end of the
proof of Proposition 10.9, {E 0(σ),E 1(σ),E 2(σ)} is a partition of E (σ) and
∣E 2(σ)∣ ≤ ∣E 1(σ)∣ ≤ ∣E 0(σ)∣. It follows that E 0(σ) ≠ ∅. Hence, there exists
u ∈ E (σ) such that FE (σ)(u) /∈ E (σ), so FE (σ)(u) ∈ W (σ). Since Lδ(σ) is
isomorphic to LN, (LN)⋆, or LZ, there exist v,w ∈W (σ) such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w <Lδ(σ)v <Lδ(σ)FE (σ)(u)
and

{t ∈W (σ) ∶ v <Lδ(σ) t <Lδ(σ)FE (σ)(u)} = ∅.
or

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

FE (σ)(u) <Lδ(σ)v <Lδ(σ)w
and

{t ∈W (σ) ∶ FE (σ)(u) <Lδ(σ) t <Lδ(σ)v} = ∅.
In the first instance, it follows from (10.47) that [w,FE (σ)(u)]σ = (e, f) and
[v,FE (σ)(u)]σ ≠ (e, f), which contradicts FE (σ)(u)←→σ V (σ)∖{u,FE (σ)(u)}
(see Notation 10.8). Similarly, the second instance leads to a contradiction.
It follows that

E (σ) = ∅,
so we have

V (σ) =Wδ(σ).
Lastly, suppose for a contradiction that Lδ(σ) is isomorphic to LN. There

exists a sequence (vn)n≥0 of elements of V (σ) such that

N Ð→ {vn ∶ n ≥ 0}
n z→ vn
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is an isomorphism from LN onto Lδ(σ). Let n ≥ 0. It follows from (10.47)
that [vn, vn+1]σ ≠ (e, f) and [vn, vn+p]σ = (e, f) for every p ≥ 2. Conse-
quently, there exists a directed path τ on Z (see Definition 10.30) such that
σ is isomorphic to τ[N]. By Remark 10.31, σ−v0 is prime, which contradicts
the fact that σ is critical. Similarly, if Lδ(σ) is isomorphic to (LN)⋆, then σ
is not critical. It follows that Lδ(σ) is isomorphic to LZ. Hence, there exists
a sequence (vn)n∈Z of elements of V (σ) such that

ϕ ∶ Z Ð→ {vn ∶ n ≥ 0}
n z→ vn

is an isomorphism from LZ onto Lδ(σ). It follows from (10.47) that ϕ
is an isomorphism from σ onto a directed path on Z. By Remark 10.31,
σ[{vn ∶ n ≥ 0}] is prime, so (RT) holds. �

Proposition 10.33. Let σ be an infinite critical 2-structure. If there exists
v ∈Wδ(σ) such that ∣λ(v)∣ = 1 (see Notation 10.11), then (RT) holds.

Proof. Suppose that there exists u ∈ Wδ(σ) such that ∣λ(u)∣ = 1. Hence,
there exists e ∈ E(σ) such that λ(u) = {e}. By Lemma 10.22, we have

(10.48)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

W (σ) =Wδ(σ)
and

for every v ∈Wδ(σ), λ(v) = {e}.
Let v ∈ Wδ(σ). There exists ev ∈ E(σ − v) such that σ − v is not {ev}-
connected. Moreover, we have ev = e ∩ (V (σ − v) × V (σ − v)). For each
w ∈ V (σ)∖{v}, we denote by Cwv the unique element of C{ev}(σ−v) containing
w.

We prove that E (σ) = ∅. Otherwise, as observed in the proof of Propo-
sition 10.32, there exists u ∈ E (σ) such that FE (σ)(u) ∈ W (σ). For conve-
nience, set

v = FE (σ)(u).
Let Dv ∈ (C{ev}(σ−v)∖{Cuv }). Since σ is {e}-connected, there exists w ∈Dv

such that ≺v,w≻σ≠ {e}. Since v ←→σ V (σ) ∖ {u, v} (see Notation 10.8), we
obtain ≺v, t≻σ≠ {e} for each t ∈ V (σ)∖{u, v}. Hence, for each t ∈ V (σ −v)∖
Cuv , σ − t is {et}-connected, where et = e ∩ (V (σ − t) × V (σ − t)). It follows
from (10.48) that t ∈ E (σ). Thus, we have W (σ) ⊆ (Cuv ∪ {v}). It follows
from Proposition 10.9 that W (σ) ∖ {v} is infinite. Let w ∈ (W (σ) ∖ {v}).
Recall that ≺ v, t ≻σ≠ {e} for each t ∈ V (σ) ∖ {u, v}. Hence, σ − {u,w} is
{e{u,w}}-connected, where e{u,w} = e∩(V (σ−{u,w})×V (σ−{u,w})). Since
σ − w is not {ew}-connected, we obtain [u,V (σ − {u,w})]σ = (e, e), which
contradicts the fact that w /∈ E (σ). Consequently, we have E (σ) = ∅, so

(10.49) V (σ) =W (σ).
Consider distinct v,w ∈ V (σ). We show that

(10.50) Cwv ∪Cvw = V (σ).
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Let Dv ∈ (C{ev}(σ−v)∖{Cwv }). Since σ is {e}-connected, there exists u ∈Dv

such that ≺u, v≻σ≠ {e}. It follows that

(10.51) V (σ) ∖Cwv is {e}-connected.

Since v ∈ (V (σ)∖Cwv ), we obtain (V (σ)∖Cwv ) ⊆ Cvw. It follows that (10.50)
holds.

We conclude as follows. Consider distinct v,w ∈ V (σ). By (10.50), we
have Cwv ∪Cvw = V (σ). By exchanging v and w if necessary, we can assume
that Cwv is equipotent to V (σ). We verify that σ[Cwv ] is prime. For a
contradiction, suppose thatM is a nontrivial module of σ[Cwv ]. Clearly, M is
a module of σ−v. Since σ is prime, there exists t ∈M such that ≺t, v≻σ≠ {e}.
Let s ∈ M ∖ {t}. Since Cwv is {e}-connected and M is a module of σ[Cwv ],
σ[Cwv ] − s is {e}-connected as well. Since ≺ t, v ≻σ≠ {e} and t ∈ (Cwv ∖ {s}),
we obtain that (Cwv ∖ {s}) ∪ {v} is {e}-connected. Moreover, by (10.51),
V (σ) ∖Cwv is {e}-connected. Since v ∈ (V (σ) ∖Cwv ) ∩ ((Cwv ∖ {s}) ∪ {v}),

(V (σ) ∖Cwv ) ∪ ((Cwv ∖ {s}) ∪ {v}),
which is V (σ)∖{s}, is {e}-connected, which contradicts (10.48) and (10.49).
Consequently, σ[Cwv ] is prime. It follows that (RT) holds. �

Theorem 10.1 follows easily:

Proof of Theorem 10.1. Let σ be an infinite prime 2-structures. Clearly,
if σ is not critical, then (RT) holds. Hence, suppose that σ is critical. By
Proposition 10.9, V (σ) and W (σ) are equipotent.

By Proposition 10.29, if Wπ(σ) ≠ ∅, then (RT) holds. Thus, suppose that

Wπ(σ) = ∅.
By Observation 10.12, we have

W (σ) =W∅(σ) ∪Wδ(σ).
SinceW∅(σ)∪Wδ(σ) is infinite, it follows from Lemma 10.23 thatW∅(σ) ⊆

Wδ(σ), so
W (σ) =Wδ(σ).

Finally, it follows from Propositions 10.32 and 10.33 that (RT) holds. �
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A. Proof of Theorem 5.21

We need the next two results to prove Theorem 5.21. The next lemma
has to be compared with Corollary 5.14.

Lemma A.1. Let σ be a 2-structure such that v(σ) ≥ 7. If σ is prime, and
neither critical nor almost critical, then there exists v ∈ V (σ) such that σ−v
is prime and noncritical (that is, v ∈ S (σ) ∖Sc(σ)).

Proof. Since σ is not critical, we have S (σ) ≠ ∅. If ∣S (σ)∣ ≥ 2, then it
suffices to apply Theorem 5.10. Now, suppose that S (σ) admits a unique
element denoted by x. Since σ is not almost critical, we have Sc(σ) = ∅. It
follows that σ − x is prime and noncritical. �

Proposition A.2. Let σ be a 2-structure such that v(σ) ≥ 7. If σ is prime,
and neither critical nor almost critical, then there exists v ∈ V (σ) such that
σ − v is prime, and neither critical nor almost critical, as well.

The proof of Proposition A.2 is long and technical. We decompose it into
several claims.

The beginning of the proof of Proposition A.2. By Lemma A.1,

S (σ) ∖Sc(σ) ≠ ∅.
If there exists v ∈ S (σ) ∖ Sc(σ) such that ∣S (σ − v)∣ ≥ 2, then it follows
from Theorem 5.10 applied to σ − v that σ − v is prime, and neither critical
nor almost critical.

To continue, suppose that

(A.1) ∣S (σ − v)∣ ≤ 1 for every v ∈ S (σ) ∖Sc(σ).
Given v ∈ S (σ) ∖Sc(σ), we have S (σ − v) ≠ ∅ because v /∈ Sc(σ). Thus,
for every v ∈ S (σ) ∖Sc(σ), S (σ − v) admits a unique element. Consider
the function f ∶ S (σ)∖Sc(σ)Ð→ V (σ), which maps each v ∈ S (σ)∖Sc(σ)
to the unique element of S (σ − v).

Given v ∈ S (σ) ∖ Sc(σ), if f(v) /∈ Sc(σ − v), then σ − v is prime, and
neither critical nor almost critical. Lastly, suppose that

(A.2) S (σ − v) = Sc(σ − v) = {f(v)} for every v ∈ S (σ) ∖Sc(σ).
Let v ∈ S (σ)∖Sc(σ). It follows from Theorem 5.13 applied to σ−v that

(A.3) v(σ) = 2n + 2, where n ≥ 3,

and there exists an isomorphism ϕv from (σ − v) − f(v) onto an element τv
of R2n satisfying (5.7).

Observation A.3. Recall that if (A.1) or (A.2) does not hold, then we can
conclude as above. In the sequel, we suppose that (A.1) and (A.2) hold. We
establish the new claims below in order to finally obtain a contradiction.

Claim A.4. We have f ∶ S (σ) ∖Sc(σ)Ð→ V (σ) ∖S (σ).
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Proof. Otherwise, there exists v ∈ S (σ) ∖ Sc(σ) such that f(v) ∈ S (σ).
Since σ − {v, f(v)} is prime, we have f(v) ∈ S (σ) ∖Sc(σ). It follows that
(f ○ f)(v) = v.

As seen in the proof of Theorem 5.13, ϕv and ϕf(v) are isomorphisms from

P(σ−{v, f(v)}) onto P2n. We obtain that ϕf(v)○(ϕv)−1 is an automorphism
of P2n. We have

(A.4) Aut(P2n) = {Id{0,...,2n−1}, π2n} (see Notation 4.21).

It follows that

ϕf(v) = ϕv or π2n ○ ϕv.
Recall that (5.7) holds for ϕv and ϕf(v). Therefore, if ϕf(v) = ϕv, then
{v, f(v)} is a module of σ, which contradicts the fact that σ is prime. Sup-
pose that ϕf(v) = π2n ○ ϕv. Since (5.7) holds for ϕf(v), we have

[v, (ϕf(v))−1({2i ∶ i ∈ {0, . . . , n − 1}})]σ = [(ϕf(v))−1(0), (ϕf(v))−1(2)]σ.

Since ϕf(v) = π2n ○ ϕv, we obtain

[v, (ϕv)−1({2i + 1 ∶ i ∈ {0, . . . , n − 1}})]σ = [(ϕv)−1(2n − 1), (ϕv)−1(2n − 3)]σ.

Since τv is critical, with P(τv) = P2n, it follows from Proposition 4.15 that

[(ϕv)−1(2n − 1), (ϕv)−1(2n − 3)]σ = [(ϕv)−1(2), (ϕv)−1(0)]σ.

Therefore, we obtain

[v, (ϕv)−1({2i + 1 ∶ i ∈ {0, . . . , n − 1}})]σ = [(ϕv)−1(2), (ϕv)−1(0)]σ.

Since (5.7) holds for ϕv, we have

[f(v), (ϕv)−1({2i + 1 ∶ i ∈ {0, . . . , n − 1}})]σ = [(ϕv)−1(2), (ϕv)−1(0)]σ.

It follows that

[f(v), (ϕv)−1({2i + 1 ∶ i ∈ {0, . . . , n − 1}})]σ
= [v, (ϕv)−1({2i + 1 ∶ i ∈ {0, . . . , n − 1}})]σ.

Similarly, we have

[f(v), (ϕv)−1({2i ∶ i ∈ {0, . . . , n − 1}})]σ
= [v, (ϕv)−1({2i ∶ i ∈ {0, . . . , n − 1}})]σ.

Consequently, {v, f(v)} is a module of σ, which contradicts the fact that σ
is prime. �

Claim A.5. The function f is injective.

Proof. Otherwise, there exist distinct v,w ∈ S (σ)∖Sc(σ) such that f(v) =
f(w). By Claim A.4, f(v) ∈ V (σ) ∖ S (σ). Since σ − {v, f(v)} and σ −
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{w, f(v)} are prime, it follows from Lemma 4.4 that {v,w} is a module of
σ − f(v). Therefore, the bijection

ψ ∶ V (σ) ∖ {w, f(v)} Ð→ V (σ) ∖ {v, f(v)}
v z→ w

x ∈ V (σ) ∖ {v,w, f(v)} z→ x,

is an isomorphism from (σ − w) − f(v) onto (σ − v) − f(v). Thus, we can
choose ϕv ○ ψ for ϕw. As shown in the proof of Theorem 5.13, ϕv and
ϕv ○ ψ satisfy (5.7). Since w ∈ S (σ) and f(v) ∈ V (σ) ∖S (σ), there exists
p ∈ {0, . . . ,2n − 1} such that ϕv(w) = p. Observe that π2n ○ ϕv (see (A.4))
is also an isomorphism from (σ − v) − f(v) onto (τv)⋆, with (τv)⋆ ∈ R2n,
satisfying (5.7). Therefore, we can assume that

w = (ϕv)−1(2t),
where t ∈ {0, . . . , n − 1}. Since ϕv satisfies (5.7), we obtain

[f(v),w]σ = [(ϕv)−1(0), (ϕv)−1(2)]σ.
Since n ≥ 3 by (A.3), there exist k, l ∈ {0, . . . , n − 1} such that k < l and
p ∈ {2i ∶ i ∈ {0, . . . , n − 1}} ∖ {2k,2l}. Since ϕv satisfies (5.8), we obtain

[f(v),w]σ = [(ϕv)−1(2k), (ϕv)−1(2l)]σ.
Since ϕw, that is, ϕv ○ ψ satisfies (5.7), we obtain [f(v), (ϕv ○ ψ)−1({2i ∶
i ∈ {0, . . . , n − 1}})]σ = [(ϕv ○ ψ)−1(0), (ϕv ○ ψ)−1(2)]σ. Furthermore, since
ϕv ○ ψ satisfies (5.8), we obtain [(ϕv ○ ψ)−1(0), (ϕv ○ ψ)−1(2)]σ = [(ϕv ○
ψ)−1(2k), (ϕv ○ ψ)−1(2l)]σ. Since p ∈ {2i ∶ i ∈ {0, . . . , n − 1}} ∖ {2k,2l}, we
obtain

(ϕv)−1(2k), (ϕv)−1(2l) ∈ V (σ) ∖ {v, f(v),w}.
Thus, ψ−1((ϕv)−1(2k)) = (ϕv)−1(2k) and ψ−1((ϕv)−1(2l)) = (ϕv)−1(2l). It
follows that

[f(v), (ϕv ○ ψ)−1({2i ∶ i ∈ {0, . . . , n − 1}})]σ = [(ϕv)−1(2k), (ϕv)−1(2l)]σ.
Since (ϕv)−1(2p) = w and ψ−1(w) = v, we have v ∈ (ϕv ○ ψ)−1({2i ∶ i ∈
{0, . . . , n − 1}}). Consequently, we obtain

[f(v), v]σ = [(ϕv)−1(2k), (ϕv)−1(2l)]σ.
Hence [f(v), v]σ = [f(v),w]σ. Since {v,w} is a module of σ − f(v), {v,w}
is a module of σ, which contradicts the fact σ is prime. It follows that f is
injective. �

Claim A.6. For every v ∈ S (σ) ∖Sc(σ), NP(σ)(f(v)) = {v}.

Proof. Otherwise, consider v ∈ S (σ) ∖Sc(σ) such that NP(σ)(f(v)) ≠ {v}.
By Claim A.4, f(v) ∈ V (σ) ∖ S (σ). It follows from Lemma 4.4 that
dP(σ)(f(v)) ≤ 2. Since σ − {v, f(v)} is prime, we have v ∈ NP(σ)(f(v)),
and hence

dP(σ)(f(v)) = 2.
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Since v ∈ NP(σ)(f(v)), there exists w ∈ V (σ) ∖ {v, f(v)} such that

NP(σ)(f(v)) = {v,w}.

For a contradiction, suppose that w ∈ S (σ). Since σ − {f(v),w} is prime,
we obtain w ∈ S (σ)∖Sc(σ), and f(w) = f(v), which contradicts Claim A.5.
It follows that

w /∈ S (σ).
Observe that π2n ○ϕv (see (A.4)) is also an isomorphism from (σ − v)− f(v)
onto (τv)⋆, with (τv)⋆ ∈ R2n, satisfying (5.7). Therefore, we can assume
that

w = (ϕv)−1(2p),
where p ∈ {0, . . . , n−1}. Since w /∈ S (σ), we have dP(σ)(w) ≤ 2 by Lemma 4.4.
Since σ − {f(v),w} is prime, we obtain

dP(σ)(w) = 1 or 2.

We distinguish the following two cases. Each of them leads to a contradic-
tion.
Case 1: dP(σ)(w) = 1.

Since σ − {f(v),w} is prime, we have

NP(σ)(w) = {f(v)}.
It follows from Lemma 4.4 that

(A.5) f(v)←→σ {(ϕv)−1(i) ∶ i ∈ {0, . . . ,2n − 1}} ∖ {(ϕv)−1(2p)},
which contradicts the fact that ϕv is an isomorphism satisfying (5.7).
Indeed, since n ≥ 3 by (A.3), there exists q ∈ {0, . . . , n − 1} ∖ {p}. Since
(5.7) is satisfied by ϕv, we have

[f(v), (ϕv)−1(2q)]σ = [(ϕv)−1(0), (ϕv)−1(2)]σ,
and

[f(v), (ϕv)−1(2q + 1)]σ = [(ϕv)−1(2), (ϕv)−1(0)]σ.
Since τv ∈ R2n, we have (0,2)τv ≠ (2,0)τv by Remark 5.12. Hence, we
have [0,2]τv ≠ [2,0]τv . Since ϕv is an isomorphism from (σ − v) − f(v)
onto τv, we obtain

(A.6) [(ϕv)−1(0), (ϕv)−1(2)]σ ≠ [(ϕv)−1(2), (ϕv)−1(0)]σ.
It follows that

[f(v), (ϕv)−1(2q)]σ ≠ [f(v), (ϕv)−1(2q + 1)]σ,
which contradicts (A.5).

Case 2: dP(σ)(w) = 2.
Since f(v) ∈ NP(σ)(w), there exists u ∈ V (σ) ∖ {f(v),w} such that

NP(σ)(w) = {u, f(v)}.
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Since S (σ − v) = {f(v)} and σ − {u,w} is prime, we obtain u ≠ v.
Therefore, we have

u = (ϕv)−1(i),
where i ∈ {0, . . . ,2n − 1} ∖ {2p}. By Lemma 4.4, {f(v), (ϕv)−1(i)} is a
module of σ −w, that is,

(A.7) {f(v), (ϕv)−1(i)} is a module of σ − (ϕv)−1(2p).

Since (5.7) is satisfied by ϕv, we have

≺f(v), (ϕv)−1(j)≻σ=≺(ϕv)−1(0), (ϕv)−1(2)≻σ
for every j ∈ {0, . . . ,2n − 1}. It follows that

≺(ϕv)−1(i), (ϕv)−1(j)≻σ=≺(ϕv)−1(0), (ϕv)−1(2)≻σ
for every j ∈ {0, . . . ,2n − 1} ∖ {2p, i}. Since ϕv is an isomorphism from
(σ−v)−f(v) onto τv, we have ≺i, j≻τv=≺0,2≻τv for every j ∈ {0, . . . ,2n−
1}∖{2p, i}. Since τv ∈R2n, it follows from (4.4) that ≺i,2p≻τv=≺0,1≻τv .
We obtain p = 0 and i = 1. It follows from (A.7) that

(A.8) {f(v), (ϕv)−1(1)} is a module of σ − (ϕv)−1(0).

Since τv ∈ R2n, τv is critical and P(τv) = P2n. It follows from Propo-
sition 4.15 that [1,3]τv = [0,2]τv . Since ϕv is an isomorphism from
(σ − v) − f(v) onto τv, we obtain

[(ϕv)−1(1), (ϕv)−1(3)]σ = [(ϕv)−1(0), (ϕv)−1(2)]σ,

Since (5.7) is satisfied by ϕv, we have

[f(v), (ϕv)−1(3)]σ = [(ϕv)−1(2), (ϕv)−1(0)]σ.

By (A.6), [(ϕv)−1(0), (ϕv)−1(2)]σ ≠ [(ϕv)−1(2), (ϕv)−1(0)]σ. It follows
that

[(ϕv)−1(1), (ϕv)−1(3)]σ ≠ [f(v), (ϕv)−1(3)]σ,
which contradicts (A.8). �

Claim A.7. We have ∣S (σ) ∖Sc(σ)∣ = 1.

Proof. Otherwise, consider distinct v,w ∈ S (σ) ∖Sc(σ). Since f is injec-
tive, we have f(v) ≠ f(w). Furthermore, it follows from Claim A.6 that
NP(σ)(f(v)) = {v} and NP(σ)(f(w)) = {w}. As previously noted, by consid-
ering ϕv ○ π2n (see (A.4)) instead of ϕv, we can assume that

w = (ϕv)−1(2p),

where p ∈ {0, . . . , n−1}. Since NP(σ)(f(w)) = {w}, it follows from Lemma 4.4
that

w ←→σ ((ϕv)−1({0, . . . ,2n − 1}) ∖ {w, f(w)}) ∪ {v, f(v)}.
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Since w = (ϕv)−1(2p), we obtain p = n−1 and ϕv(f(w)) = 2n−1. Therefore,
we have

[w, ((ϕv)−1({0, . . . ,2n − 1}) ∖ {w, f(w)}) ∪ {v, f(v)}]σ =
[(ϕv)−1(2), (ϕv)−1(0)]σ.

As observed in Remark 5.16, NP(σ−v)(f(v)) = ∅, and P(σ − v) − f(v) =
P(σ − {v, f(v)}). Since ϕv is an isomorphism from P(σ − {v, f(v)}) onto
P2n, we obtain

NP(σ−v)((ϕv)−1(2n − 2)) = {(ϕv)−1(2n − 3), (ϕv)−1(2n − 1)}.

It follows from Lemma 4.4 that {(ϕv)−1(2n−3), (ϕv)−1(2n−1)} is a module
of (σ − v) − ((ϕv)−1(2n − 2)), that is, (σ − v) −w. Since NP(σ)(f(v)) = {v},
it follows from Lemma 4.4 that

v ←→σ V (σ) ∖ {v, f(v)}.
Consequently, {(ϕv)−1(2n − 3), (ϕv)−1(2n − 1)} is a module of σ −w, which
contradicts the fact that w ∈ S (σ). �

The end of the proof of Proposition A.2. We conclude as follows. By Claim
A.7, S (σ) ∖Sc(σ) admits a unique element denoted by v. By Claim A.6,
NP(σ)(f(v)) = {v}. Thus, σ − {v, f(v)} is prime. Set

X = V (σ) ∖ {v, f(v)}.
Moreover, we have f(v) /∈ S (σ) by Claim A.4. Since NP(σ)(f(v)) = {v} by
Claim A.6, it follows from Lemma 4.4 that

(A.9) v ←→σ V (σ) ∖ {v, f(v)},
that is, v ∈ ⟨X⟩σ.

We prove that

[(ϕv)−1(1), V (σ) ∖ {(ϕv)−1(0),(ϕv)−1(1)}]σ =
[(ϕv)−1(0), (ϕv)−1(2)]σ.(A.10)

Since (5.7) is satisfied by ϕv, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[f(v), (ϕv)−1({2i ∶ i ∈ {0, . . . , n − 1}})]σ = [ϕ−1(0), ϕ−1(2)]σ,
and

[f(v), (ϕv)−1({2i + 1 ∶ i ∈ {0, . . . , n − 1}})]σ = [ϕ−1(2), ϕ−1(0)]σ.

Since [(ϕv)−1(0), (ϕv)−1(2)]σ ≠ [(ϕv)−1(2), (ϕv)−1(0)]σ by (A.6), we obtain
f(v) /∈ ⟨X⟩σ. Since σ is prime, it follows from (A.9) that

(A.11) [v, V (σ) ∖ {v, f(v)}]σ ≠ [v, f(v)]σ.
Since ϕv is an isomorphism from P(σ − {v, f(v)}) onto P2n, we obtain that
σ[X] − {(ϕv)−1(0), (ϕv)−1(1)} is prime. Set

Y =X ∖ {(ϕv)−1(0), (ϕv)−1(1)}.
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Since v ∈ ⟨X⟩σ, we have v ∈ ⟨Y ⟩σ. As previously, since (5.7) is satisfied by
ϕv, it follows from (A.6) that f(v) /∈ ⟨Y ⟩σ. Since (A.11) holds, it follows
from statements (P1) and (P2) of Lemma 3.17 that σ[Y ∪ {v, f(v)}] = σ −
{(ϕv)−1(0), (ϕv)−1(1)} is prime. Hence,

(ϕv)−1(1) ∈ NP(σ)((ϕv)−1(0)).

For a contradiction, suppose that (ϕv)−1(0) ∈ S (σ). Since σ − {(ϕv)−1(0),
(ϕv)−1(1)} is prime, we obtain (ϕv)−1(0) ∈ S (σ)∖Sc(σ), which contradicts
Claim A.7. It follows that

(ϕv)−1(0) /∈ S (σ).
Since (ϕv)−1(1) ∈ NP(σ)((ϕv)−1(0)), it follows from Lemma 4.4 that

dP(σ)((ϕv)−1(0)) = 1 or 2.

For a contradiction, suppose that dP(σ)((ϕv)−1(0)) = 2. There exists w ∈
V (σ)∖{(ϕv)−1(0), (ϕv)−1(1)} such that NP(σ)((ϕv)−1(0)) = {(ϕv)−1(1),w}.

Since NP(σ)(f(v)) = {v} by Claim A.6, we have (ϕv)−1(0) /∈ NP(σ)(f(v)).
Thus w ≠ f(v). Furthermore, since S (σ − v) = {f(v)}, we have (ϕv)−1(0) /∈
S (σ−v), and hence (ϕv)−1(0) /∈ NP(σ)(v). Therefore, w ≠ v. It follows that

w ∈ Y . Since {(ϕv)−1(1),w} is a module of σ − (ϕv)−1(0) by Lemma 4.4,
we obtain (ϕv)−1(1) ∈ Yσ(w). But, since ϕv is an isomorphism from P(σ −
{v, f(v)}) onto P2n, we have NP(σ−{v,f(v)})((ϕv)−1(0)) = {(ϕv)−1(1)}. Since
σ−{v, f(v)} is critical, it follows from Lemma 4.4 applied to σ−{v, f(v)} that
(V (σ)∖ {v, f(v)})∖ {(ϕv)−1(0), (ϕv)−1(1)} is a module of (σ − {v, f(v)})−
(ϕv)−1(0). We obtain ϕ−1(1) ∈ ⟨Y ⟩σ. Consequently, ϕ−1(1) ∈ Yσ(w) ∩ ⟨Y ⟩σ,
which contradicts Lemma 3.13. It follows that

NP(σ)((ϕv)−1(0)) = {(ϕv)−1(1)}.

Since (ϕv)−1(0) /∈ S (σ), it follows from Lemma 4.4 that

V (σ) ∖ {(ϕv)−1(0), (ϕv)−1(1)}
is a module of σ − (ϕv)−1(0). Since ϕv is an isomorphism from σ − {v, f(v)}
onto an element of R2n, we have

[(ϕv)−1(1), (ϕv)−1(3)]σ = [(ϕv)−1(0), (ϕv)−1(2)]σ.
It follows that (A.10) holds. In particular, we have

(A.12) [(ϕv)−1(1), v]σ = [(ϕv)−1(0), (ϕv)−1(2)]σ.
Similarly, we have

[(ϕv)−1(2n − 2), V (σ) ∖ {(ϕv)−1(2n − 1),(ϕv)−1(2n − 2)}]σ =
[(ϕv)−1(2), (ϕv)−1(0)]σ.

In particular, we obtain

[(ϕv)−1(2n − 2), v]σ = [(ϕv)−1(2), (ϕv)−1(0)]σ.



196 PIERRE ILLE

By (A.6), we have [(ϕv)−1(0), (ϕv)−1(2)]σ ≠ [(ϕv)−1(2), (ϕv)−1(0)]σ.
Therefore, it follows from (A.12) that

v /←→σ {(ϕv)−1(1), (ϕv)−1(2n − 2)},
which contradicts (A.9). �

Proof of Theorem 5.21. We proceed by induction on v(σ) − v(τ) ≥ 1. The
result is obvious when v(σ)− v(τ) = 1. Hence, suppose that v(σ)− v(τ) ≥ 2.
Since v(τ) ≥ 5, we have v(σ) ≥ 7.

For convenience, we denote by N (σ) the set of v ∈ V (σ) such that σ − v
is prime, and neither critical nor almost critical. By Proposition A.2,

N (σ) ≠ ∅.
To beginA.1, we prove that there exists X ⊊ V (σ) such that

(A.13)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ[X] ≃ τ
and

(V (σ) ∖X) ∩S (σ) ≠ ∅.
Consider Y ⊆ V (σ) such that σ[Y ] ≃ τ , and suppose that σ−u is decompos-
able for every u ∈ V (σ) ∖ Y . It follows from Corollary 3.21 that there exist
distinct v,w ∈ V (σ) ∖ Y such that σ − {v,w} is prime. Thus, τ embeds into
σ − {v,w}. Denote by C the component of P(σ) containing v and w. For
a contradiction, suppose that V (C) ⊆ V (σ) ∖ S (σ). By Proposition 4.5,
∣V (σ)∖V (C)∣ ≤ 1, so ∣S (σ)∣ ≤ 1. Since σ is not critical, we have ∣S (σ)∣ = 1.
By Theorem 5.13, C is the unique component of P(σ) such that v(C) ≥ 2.
If V (C) ∩ S (σ) = ∅, then it follows from Theorem 5.13 that σ is almost
critical. Consequently, we have V (C) ∩ S (σ) ≠ ∅. Therefore, there exist
distinct vertices c0, . . . , cp of C satisfying

● {c0, c1} = {v,w};
● p ≥ 2, {c0, . . . , cp−1} ⊆ V (σ) ∖S (σ), and cp ∈ S (σ);
● for i ∈ {0, . . . , p − 1}, {ci, ci+1} ∈ E(P(σ)).

Let i ∈ {1, . . . , p − 1}. We have ci−1, ci+1 ∈ NP(σ)(ci). Since ci /∈ S (σ),
it follows from Lemma 4.4 that NP(σ)(ci) = {ci−1, ci+1}, and {ci−1, ci+1} is
a module of σ − ci. Thus, σ − {ci−1, ci} ≃ σ − {ci, ci+1}. It follows that
σ−{c0, c1} ≃ σ−{cp−1, cp}, that is, σ−{v,w} ≃ σ−{cp−1, cp}. Since τ embeds
into σ−{v,w}, τ embeds into σ−{cp−1, cp} as well. Since cp ∈ S (σ), (A.13)
holds.

Now, we consider X ⊆ V (σ) such that (A.13) holds. There exists

v ∈ (V (σ) ∖X) ∩S (σ).
If there exists w ∈ (V (σ) ∖ X) ∩ N (σ) ≠ ∅, then it suffices to apply the
induction hypothesis to σ −w. Hence, suppose that

(V (σ) ∖X) ∩N (σ) = ∅.

A.1From here until (⋆) (see page 197), the proof is similar to that of Theorem 5.19.
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Thus, v /∈ N (σ). Since N (σ) ≠ ∅, consider

(⋆) x ∈X ∩N (σ).

Since σ − v is prime, σ − v is critical or almost critical. We distinguish the
following two cases.
Case 1: σ − v is critical.

Since v(σ) − v(τ) ≥ 2, we have X ⊊ V (σ − v). Since σ − v is critical, it
follows from Corollary 3.21 that there exist distinct w,w′ ∈ V (σ − v)∖X
such that {w,w′} ∈ E(P(σ − v)). Thus, τ embeds into (σ − v) − {w,w′}.
First, suppose that there exists y ∈ (V (σ) − v) ∖ {x} such that {x, y} ∈
E(P(σ − v)). Since {x, y},{w,w′} ∈ E(P(σ − v)), it follows from Corol-
lary 4.8 that (σ−v)−{x, y} ≃ (σ−v)−{w,w′}. Therefore, τ embeds into
(σ − v) − {x, y} as well. To conclude, it suffices to apply the induction
hypothesis to σ − x.
Second, suppose that x is an isolated vertex of P(σ − v). It follows from
Corollary 4.6 that there exists n ≥ 3 such that P(σ − v) ≃ P2n ⊕K{2n}.
In particular, we obtain that v(σ) is even. In another vein, it follows
from Corollary 5.5 (and Remark 5.6) that there exists e ∈ E(P(σ − v)) ∩
E(P(σ)). Since e,{w,w′} ∈ E(P(σ − v)), it follows from Corollary 4.8
that (σ−v)−e ≃ (σ−v)−{w,w′}. Therefore, τ embeds into (σ−v)−e, and
hence τ embeds into σ−e. Since e ∈ E(P(σ)), σ−e is prime. Furthermore,
since e ∈ E(P(σ − v)), (σ − e) − v is prime. Thus, σ − e is not critical.
Lastly, since v(σ − e) is even, it follows from Theorem 5.13 that σ − e
is not almost critical. To conclude, it suffices to apply the induction
hypothesis to σ − e.

Case 2: σ − v is almost critical.
There exists w ∈ V (σ − v) such that

S (σ − v) = Sc(σ − v) = {w}.

It follows from Theorem 5.13 that v(σ) = 2n + 2, where n ≥ 3, and there
exists an isomorphism ϕ from (σ − v) − w onto an element ρ of R2n

satisfying (5.7).
We can conclude when w /∈ X. Indeed, suppose that X ⊆ V (σ) ∖ {v,w}.
It follows from the first statement of Fact 5.18 that w ∈ Extσ(X). In
what follows, we suppose that

w ∈X.

First, suppose that

x ≠ w.
Since P(ρ) = P2n, ϕ is an isomorphism from P((σ−v)−w) onto P2n. Since
x ≠ w, there exists y ∈ V (σ − v)∖ {x,w} such that {x, y} ∈ E(P((σ − v)−
w)). As observed in Remark 5.16, we have P((σ − v)−w) = P(σ − v)−w.
Thus

{x, y} ∈ E(P(σ − v)),
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so (σ − v) − {x, y} is prime. Furthermore, since X ⊊ V (σ − v), it follows
from Corollary 3.21 that there exist u,u′ ∈ V (σ − v) ∖X such that (σ −
v)− {u,u′} is prime. Since S (σ − v) = {w} and w ∈X, we obtain u ≠ u′.
Hence

{u,u′} ∈ E(P(σ − v)).
It follows from the second statement of Fact 5.18 that (σ − v) − {x, y} ≃
(σ−v)−{u,u′}. It follows that τ embeds into (σ−v)−{x, y}. Therefore,
τ embeds into σ − x. To conclude, it suffices to apply the induction
hypothesis to σ − x.
Second, suppose that

x = w.
Set

Y = V (σ) ∖ {v,w}.
Since Sc(σ − v) = {w}, σ[Y ] is critical. Furthermore, σ[Y ∪ {v}] is
prime because σ[Y ∪ {v}] = σ − x. It follows that v ∈ Sc(σ[Y ∪ {v}]).
By Corollary 5.5 (and Remark 5.6), there exists e ∈ E(P(σ[Y ∪ {v}])) ∩
E(P(σ[Y ])). Set

Z = Y ∖ e.
We have σ[Z] is prime. Since e ∈ E(P(σ[Y ∪ {v}]), we obtain σ[Y ∪
{v}]) − e = (σ − e) − x is prime. Since (σ − e) − x = σ[Z ∪ {v}], we have
v ∈ Extσ(Z). Furthermore, it follows from the first statement of Fact 5.18
that x ∈ Extσ(Z). Since (σ−e)−x = σ[Z∪{v}] and (σ−e)−v = σ[Z∪{x}],
we obtain that

(A.14) (σ − e) − v and (σ − e) − x are prime.

Since (σ − v) − e is prime, we have e ∈ E(P(σ − v)). In another vein,
it follows from Corollary 3.21 applied to σ − v that there exist u,u′ ∈
V (σ − v)∖X such that (σ − v)− {u,u′} is prime. Since S (σ − v) = {w},
we obtain u ≠ u′. Hence, {u,u′} ∈ E(P(σ − v)). Therefore, we obtain
e,{u,u′} ∈ E(P(σ−v)). By the second statement of Fact 5.18, (σ−v)−e ≃
(σ − v) − {u,u′}. Since τ embeds into (σ − v) − {u,u′},

(A.15) τ embeds into (σ − v) − e.
Finally, we distinguish the following two subcases.
Subcase 2.1 : σ − e is decomposable.

Since σ − e = σ[Z ∪ {v, x}], it follows from statement (P5) of
Lemma 3.17 that {v, x} is a module of σ−e. It follows that (σ−e)−x ≃
(σ − e) − v. By (A.15), τ embeds into (σ − e) − v. Consequently, τ
embeds into (σ−e)−x. To conclude, it suffices to apply the induction
hypothesis to σ − x because x ∈ N (σ).

Subcase 2.2 : σ − e is prime.
It follows from (A.14) that

v, x ∈ S (σ − e).
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Consequently, σ−e is neither critical nor almost critical. Moreover, it
follows from (A.15) that τ embeds into σ − e. To conclude, it suffices
to apply the induction hypothesis to σ − e. �



200 PIERRE ILLE

B. Proofs of Propositions 5.27, 5.28, and 5.29

Proof of Proposition 5.27. Consider s ∈ Sc(τ) such that P(τ − s) ≃ P2n ⊕
K{2n}. Therefore, v(σ) = 2n + 2. Since v(σ) ≥ 7, we obtain

n ≥ 3.

Up to isomorphism, we can assume that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V (τ) = {0, . . . ,2n + 1},
s = 2n + 1,

and

P(τ − (2n + 1)) = P2n ⊕K{2n}.

For a contradiction, suppose that

(B.1) ∣Sc(τ)∣ ≥ 2,

and consider t ∈ Sc(τ) ∖ {2n + 1}. By Corollary 5.25, NP(τ−(2n+1))(t) =
NP(τ−t)(2n + 1), and NP(τ−(2n+1))(t) ≠ ∅. Since NP(τ−(2n+1))(t) ≠ ∅, t ≠ 2n.
Moreover, since v(τ) ≥ 8, it follows from Corollary 5.25 that τ−t ≃ τ−(2n+1).
Therefore, P(τ − t) ≃ P2n⊕K{2n}. Consider an isomorphism ϕ from P(τ − t)
onto P2n ⊕K{2n}. Since NP(τ−t)(2n + 1) ≠ ∅, ϕt(2n + 1) ≠ 2n.

Since τ − (2n + 1) is critical and P(τ − (2n + 1)) = P2n ⊕K{2n}, it follows
from Theorem 4.24 that

τ − (2n + 1) = σ(T2n+1),
where n ≥ 3. Furthermore, since π̂2n ∈ Aut(σ(T2n+1)) by Remark 4.26, we
can assume that n ≤ t ≤ 2n−1. Similarly, there exists an isomorphism ϕ from
τ−t onto σ(T2n+1) such that n ≤ ϕ(2n+1) ≤ 2n−1. Since NP(τ−(2n+1))(t) ≠ ∅,
it follows from Lemma 4.4 that dP(τ−(2n+1))(t) = 1 or 2.

The following observation is useful in what follows. Let x, y ∈ {0, . . . ,2n}
such that x < y < 2n.

(B.2) If {ϕ−1(x), ϕ−1(y)} ∩ {2n,2n + 1} = ∅, then ϕ−1(x) < ϕ−1(y).
Indeed, we have

(x, y)σ(T2n+1) = (ϕ−1(x), ϕ−1(y))τ−t
because ϕ is an isomorphism from τ − t onto σ(T2n+1)

= (ϕ−1(x), ϕ−1(y))τ−(2n+1) because 2n + 1 /∈ {ϕ−1(x), ϕ−1(y)}
= (ϕ−1(x), ϕ−1(y))σ(T2n+1) because τ − (2n + 1) = σ(T2n+1)
= (ϕ−1(x), ϕ−1(y))σ(T2n+1)−(2n) because 2n /∈ {ϕ−1(x), ϕ−1(y)}.

Since x < y < 2n, we obtain

(x, y)σ(T2n+1)−(2n) = (ϕ−1(x), ϕ−1(y))σ(T2n+1)−(2n).

Since T2n+1 − (2n) = L2n and x < y, we have ϕ−1(x) < ϕ−1(y).
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First, suppose that dP(τ−(2n+1))(t) = 1, and denote by u the unique element
of NP(τ−(2n+1))(t). Since n ≤ t ≤ 2n − 1, we obtain t = 2n − 1, and hence u =
2n−2. Since NP(τ−(2n+1))(t) = NP(τ−t)(2n+1), we have NP(τ−t)(2n+1) = {u},
that is, NP(τ−t)(2n + 1) = {2n − 2}. Since n ≤ ϕ(2n + 1) ≤ 2n − 1, we obtain

ϕ(2n + 1) = 2n − 1 and ϕ(2n − 2) = 2n − 2.

Furthermore, since {t, u} ∈ E(P(τ − (2n + 1))), it follows from Lemma 4.40
that (τ − (2n + 1)) − {t, u} is critical, and

E(P((τ − (2n + 1)) − {t, u})) = E(P(τ − (2n + 1))) ∖ {{2n − 3, u},{t, u}}.
Similarly, (τ − t) − {2n + 1, u} is critical, and

E(P((τ − t) − {2n + 1, u})) = E(P(τ − t)) ∖ {{ϕ−1(2n − 3), u},{2n + 1, u}}.
Thus, 2n is the unique isolated vertex of P((τ − (2n + 1)) − {t, u}), that is,
P(τ − {t, u,2n + 1}). Analogously, ϕ−1(2n) is the unique isolated vertex of
P(τ − {t, u,2n + 1}). Therefore,

ϕ(2n) = 2n.

Recall that τ − (2n+ 1) = σ(T2n+1), and ϕ is an isomorphism from τ − t onto
σ(T2n+1). Consequently, ϕ↾{0,...,2n−3} is an automorphism of σ(T2n+1)−{2n−
2,2n−1,2n}, that is, σ(T2n+1−{2n−2,2n−1,2n}). Since T2n+1−{2n−2,2n−
1,2n} is linear, σ(T2n+1 − {2n − 2,2n − 1,2n}) is rigid. Hence,

ϕ↾{0,...,2n−3} = Id{0,...,2n−3}.

Since ϕ(2n − 2) = 2n − 2 and ϕ(2n) = 2n, we obtain that {2n − 1,2n + 1},
that is, {s, t} is a module of τ , which contradicts the fact that τ is prime.
It follows that dP(τ−s)(t) ≠ 1.

Second, suppose that dP(τ−s)(t) = 2. Since dP(τ−s)(t) ≠ 1, t ≠ 2n−1. Hence,
n ≤ t ≤ 2n − 2. Similarly, by setting j = ϕ(2n + 1), we have n ≤ j ≤ 2n − 2.
Recall that NP(τ−(2n+1))(t) = NP(τ−t)(2n + 1) by Corollary 5.25. It follows
that

{ϕ−1(j − 1), ϕ−1(j + 1)} = {t − 1, t + 1}.
It follows from (B.2) that

ϕ−1(j − 1) = t − 1 and ϕ−1(j + 1) = t + 1.

Since {t − 2, t − 1},{t − 1, t},{t, t + 1} ∈ E(P(τ − (2n + 1))), it follows from
Lemma 4.39 that (τ − (2n + 1)) − {t, t + 1} is critical, and

E(P((τ − (2n + 1)) − {t − 1, t}))
= (E(P(τ − (2n + 1))) ∖ {{k, k + 1} ∶ k ∈ {t − 2, t − 1, t}})
∪ {{t − 2, t + 1}}

= {{k, k + 1} ∶ k ∈ {0, . . . , t − 3} ∪ {t + 1, . . . ,2n − 2}}(B.3)

∪ {{t − 2, t + 1}}.
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Similarly, we obtain (τ − t) − {2n + 1, ϕ−1(j − 1)} is critical, and

E(P((τ − t) − {2n + 1, ϕ−1(j − 1)}))
= {{ϕ−1(k), ϕ−1(k + 1)} ∶ k ∈ {0, . . . , j − 3} ∪ {j + 1, . . . ,2n − 2}}(B.4)

∪ {{ϕ−1(j − 2), ϕ−1(j + 1)}}.
Since ϕ−1(j − 1) = t − 1, we have

(τ − (2n + 1)) − {t − 1, t} = (τ − t) − {2n + 1, ϕ−1(j − 1)}.
Set

µ = τ − {t, t + 1,2n + 1}.
It follows from (B.3) that

(B.5) NP(µ)(t + 1) =
⎧⎪⎪⎨⎪⎪⎩

{t − 2} if t = 2n − 2

{t − 2, t + 2} if t < 2n − 2.

Similarly, it follows from (B.4) that

(B.6) NP(µ)(ϕ−1(j + 1)) =
⎧⎪⎪⎨⎪⎪⎩

{ϕ−1(j − 2)} if j = 2n − 2

{ϕ−1(j − 2), ϕ−1(j + 2)} if j < 2n − 2.

Since ϕ−1(j + 1) = t + 1, we obtain t = 2n − 2 if and only if j = 2n − 2.
To begin, suppose that t = 2n − 2 and j = 2n − 2. By (B.5) and (B.6), we

have ϕ−1(2n−4) = 2n−4. By proceeding by induction, it follows from (B.3)
and (B.4) that

ϕ−1(l) = l
for every l ∈ {0, . . . ,2n − 4}. Since ϕ−1(j − 1) = t − 1 and ϕ−1(j + 1) = t + 1,
we obtain

ϕ−1(l) = l
for every l ∈ {0, . . . ,2n − 3} ∪ {2n − 1}. Recall that τ − (2n + 1) = σ(T2n+1),
and ϕ is an isomorphism from τ − t onto σ(T2n+1). Since ϕ(2n+ 1) = 2n− 2,
we obtain ϕ−1(2n) = 2n. It follows that {2n − 2,2n + 1} is a module of τ ,
which contradicts the fact that τ is prime.

Now, suppose that t < 2n− 2 and j < 2n− 2. By (B.5) and (B.6), we have
{ϕ−1(j − 2), ϕ−1(j + 2)} = {t − 2, t + 2}. It follows from (B.2) that

ϕ−1(j − 2) = t − 2 and ϕ−1(j + 2) = t + 2.

It follows from (B.3) that

NP(µ)(t − 2) = {t − 3, t + 1}.
Similarly, it follows from (B.4) that

NP(µ)(ϕ−1(j − 2)) = {ϕ−1(j − 3), ϕ−1(j + 1)}.
Since ϕ−1(j + 1) = t + 1 and ϕ−1(j − 2) = t − 2, we obtain ϕ−1(j − 3) = t − 3.
By proceeding by induction, we obtain

ϕ−1(j − k) = t − k
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for every k ∈ {2, . . . ,min(t, j)}. For instance, suppose that t ≤ j. We obtain
ϕ−1(j − t) = 0. Since dP(µ)(0) = 1, we have dP(µ)(ϕ−1(j − t)) = 1. Hence,
j − t = 0 or 2n − 1. Since j < 2n − 2, we obtain j = t. Thus, we have

ϕ−1(l) = l
for every l ∈ {0, . . . , t − 2}. Similarly, we obtain

ϕ−1(l) = l
for every l ∈ {t + 1, . . . ,2n − 1}. Since ϕ−1(j − 1) = t − 1 and j = t, we obtain

ϕ−1(l) = l
for every l ∈ {0, . . . ,2n − 1} ∖ {t}. Recall that τ − (2n + 1) = σ(T2n+1), and
ϕ is an isomorphism from τ − t onto σ(T2n+1). We obtain ϕ−1(2n) = 2n. It
follows that {t,2n+ 1} is a module of τ , which contradicts the fact that τ is
prime. �

Proof of Proposition 5.28. Consider s ∈ Sc(σ) such that P(σ − s) ≃ P2n+1.
Therefore, v(σ) = 2n + 2. Since v(σ) ≥ 7, we obtain

n ≥ 3.

Up to isomorphism, we can assume that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

V (σ) = {0, . . . ,2n + 1},
s = 2n + 1,

and

P(σ − (2n + 1)) = P2n+1.

Since σ − (2n + 1) is critical and P(σ − (2n + 1)) = P2n+1, it follows from
Proposition 4.27 that

(B.7)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(0,1)σ ≠ (1,0)σ,
and,

[0,1]σ ≠ [0,2]σ.
Furthermore, for any p, q ∈ {0, . . . ,2n} such that p < q, we have

(B.8) [p, q]σ =
⎧⎪⎪⎨⎪⎪⎩

[0,2]σ if p and q are even,

[0,1]σ otherwise.

Suppose that ∣Sc(σ)∣ ≥ 2. Consider any element t of Sc(σ) ∖ {s}. Since
π2n+1 ∈ Aut(P2n+1) (see Notation 4.21), we can assume that

n ≤ t ≤ 2n.

It follows from Corollary 5.25 that

(B.9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

NP(σ−(2n+1))(t) = NP(σ−t)(2n + 1)
and

P(σ − t) ≃ P2n+1.
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As above, since P(σ − t) ≃ P2n+1, there exists an isomorphism ϕ from σ −
t onto τ , where τ is a critical 2-structure such that P(τ) = P2n+1. By
Proposition 4.27,

(B.10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(ϕ−1(0), ϕ−1(1))σ ≠ (ϕ−1(1), ϕ−1(0))σ
and

[ϕ−1(0), ϕ−1(1)]σ ≠ [ϕ−1(0), ϕ−1(2)]σ.
Furthermore, for any p, q ∈ {0, . . . ,2n} such that p < q, we have

(B.11) [ϕ−1(p), ϕ−1(q)]σ =
⎧⎪⎪⎨⎪⎪⎩

[ϕ−1(0), ϕ−1(2)]σ if p and q are even,

[ϕ−1(0), ϕ−1(1)]σ otherwise.

Similarly, we can assume that n ≤ ϕ(2n + 1) ≤ 2n.
For a contradiction, suppose that

(B.12) dP(σ−(2n+1))(t) = 1.

Since n ≤ t ≤ 2n, we have t = 2n. Hence

NP(σ−(2n+1))(2n) = {2n − 1}.
It follows from (B.9) that ϕ(2n+1) = 2n, NP(σ−(2n))(2n+1) = {ϕ−1(2n−1)},
and

ϕ(2n − 1) = 2n − 1.

It follows from Lemma 4.40 that (σ − (2n + 1)) − {2n − 1,2n} is critical and

E(P((σ − (2n + 1)) − {2n − 1,2n}))
= E(P(σ − (2n + 1))) ∖ {{k, k + 1} ∶ k ∈ {2n − 2,2n − 1}}
= {{k, k + 1} ∶ k ∈ {0, . . . ,2n − 3}}
= E(P2n−1).

Thus, we obtain

P(σ − {2n − 1,2n,2n + 1}) = P2n−1.

Similarly, τ − {2n − 1,2n} is critical and

P(τ − {2n − 1,2n})) = P2n−1.

Observe that (ϕ−1)↾{0,...,2n−2} is an isomorphism from P(τ − {2n − 1,2n})),
which is P2n−1, onto P(σ−{2n,2n+1, ϕ−1(2n−1)}). Since ϕ(2n−1) = 2n−1,
we have

σ − {2n − 1,2n,2n + 1} = σ − {2n,2n + 1, ϕ−1(2n − 1)}.
It follows that

ϕ↾{0,...,2n−2} ∈ Aut(P2n−1).
Therefore, we obtain

ϕ↾{0,...,2n−2} = Id{0,...,2n−2} or π2n−1.

We distinguish the following two cases. In each of them, we obtain a con-
tradiction.
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Case 1: ϕ↾{0,...,2n−2} = Id{0,...,2n−2}.
Since ϕ(2n − 1) = 2n − 1, we obtain

(B.13) ϕ(k) = k

for each k ∈ {0, . . . ,2n− 1}. We verify that {2n,2n+ 1} is a module of σ.
Let p ∈ {0, . . . ,2n − 1}. For instance, assume that p is even. We obtain

[p,2n + 1]σ = [ϕ−1(p), ϕ−1(2n)]σ by (B.13)

= [ϕ−1(0), ϕ−1(2)]σ by (B.11)

= [0,2]σ by (B.13)

= [p,2n]σ by (B.8).

Similarly, we have [p,2n + 1]σ = [p,2n]σ when p is odd. It follows that
{2n,2n+ 1} is a module of σ, which contradicts the fact that σ is prime.

Case 2: ϕ↾{0,...,2n−2} = π2n−1.
We obtain

(B.14) ϕ(k) = 2n − 2 − k

for each k ∈ {0, . . . ,2n − 2}. Therefore, we have

(0,1)σ = (ϕ−1(2n − 2), ϕ−1(2n − 3))σ by (B.14)

= (ϕ−1(1), ϕ−1(0))σ by (B.11)

= (ϕ−1(2n − 1), ϕ−1(2n − 2))σ by (B.11)

= (2n − 1, ϕ−1(2n − 2))σ
because ϕ−1(2n − 1) = 2n − 1

= (2n − 1,0)σ by (B.14)

= (1,0)σ by (B.8).

It follows that (0,1)σ = (1,0)σ, which contradicts (B.7).
Consequently, (B.12) does not hold. Therefore, dP(σ−(2n+1))(t) = 2. Since

n ≤ t ≤ 2n, we have n ≤ t ≤ 2n − 1. Set

j = ϕ(2n + 1).

By (B.9), NP(σ−(2n+1))(t) = NP(σ−t)(2n + 1). Hence, n ≤ j ≤ 2n − 1 and

{ϕ−1(j − 1), ϕ−1(j + 1)} = {t − 1, t + 1}.

It follows that

(B.15) ϕ−1(j − 1) = t − 1 and ϕ−1(j + 1) = t + 1

or

(B.16) ϕ−1(j − 1) = t + 1 and ϕ−1(j + 1) = t − 1.



206 PIERRE ILLE

Suppose that (B.15) holds. We prove that

(B.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = j,
t = n,
n is odd,

and

for each l ∈ {0, . . . , n − 2} ∪ {n + 2, . . . ,2n}, ϕ(l) = 2n − l.
Recall that P(σ − (2n + 1)) = P2n+1. By Lemma 4.39,

E(P((σ − (2n + 1)) − {t − 1, t}))
= (E(P(σ − (2n + 1)))

∖ {{k, k + 1} ∶ k ∈ {t − 2, t − 1, t}}) ∪ {{t − 2, t + 1}}.
It follows that

E(P(σ − {t − 1, t,2n + 1}))
= {{k, k + 1} ∶ k ∈ {0, . . . , t − 3} ∪ {t + 1, . . . ,2n − 1}}(B.18)

∪ {{t − 2, t + 1}}.
(Note that if t = 2n − 1, then

E(P(σ − {t − 1, t,2n + 1}))
= {{k, k + 1} ∶ k ∈ {0, . . . , t − 3}} ∪ {{t − 2, t + 1}}.)

Similarly, we have

E(P(σ − {ϕ−1(j − 1), t,2n + 1}))
= {{ϕ−1(k), ϕ−1(k + 1)} ∶ k ∈ {0, . . . , j − 3} ∪ {j + 1, . . . ,2n − 1}}(B.19)

∪ {{ϕ−1(j − 2), ϕ−1(j + 1)}}.
(Note that if j = 2n − 1, then

E(P(σ − {ϕ−1(j − 1), t,2n + 1}))
= {{ϕ−1(k), ϕ−1(k + 1)} ∶ k ∈ {0, . . . , j − 3}}(B.20)

∪ {{ϕ−1(j − 2), ϕ−1(j + 1)}}.)
Since (B.15) holds, we have

(B.21) E(P(σ − {t − 1, t,2n + 1})) = E(P(σ − {ϕ−1(j − 1), t,2n + 1}).
We show that ϕ−1(j − 2) ≠ t − 2. Otherwise, we have ϕ−1(j − 2) = t − 2.
By proceeding by induction, it follows from (B.18), (B.19), and (B.21) that
ϕ−1(j − k) = t − k for k ∈ {1, . . . ,min(t, j)}. It follows that t = j. Hence,
ϕ(l) = l for l ∈ {0, . . . , t − 1}. Analogously, by proceeding by induction, we
obtain ϕ(l) = l for l ∈ {t + 1, . . . ,2n}. Thus, {t,2n + 1} is a module of σ,
which contradicts the fact that σ is prime. It follows that

ϕ−1(j − 2) ≠ t − 2.
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Since ϕ−1(j + 1) = t + 1 by (B.15), it follows from (B.18) and (B.19) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ≤ 2n − 2,

j ≤ 2n − 2,

ϕ−1(j + 2) = t − 2,

and

ϕ−1(j − 2) = t + 2.

By proceeding by induction, it follows from (B.18), (B.19), and (B.21) that
ϕ−1(j + k) = t − k for k ∈ {2, . . . ,min(t,2n − j)}. Since t, j ∈ {n, . . . ,2n − 2},
we have min(t,2n−j) = 2n−j. For k = 2n−j, we obtain ϕ−1(2n) = t−2n+j.
Therefore, t − 2n + j = 0 or 2n. Since t ≤ 2n − 2 and j ≤ 2n − 2, we have
t + j = 2n. Since t ≥ n and j ≥ n, we obtain

t = j and t = n.
It follows that for k ∈ {2, . . . , n}, we have

(B.22)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ−1(n + k) = n − k
and (similarly)

ϕ−1(n − k) = n + k.
For a contradiction with (B.17), suppose that n is even. We obtain

(0,1)σ = (ϕ−1(2n), ϕ−1(2n − 1))σ by (B.22)

= (ϕ−1(n + 1), ϕ−1(n − 1))σ by (B.11)

= (n + 1, n − 1)σ by (B.15) (because t = j and t = n)

= (1,0)σ by (B.8),

which contradicts (B.7). It follows that n is odd. It follows from (B.22) that
ϕ(l) = 2n− l for each l ∈ {0, . . . , n− 2}∪ {n+ 2, . . . ,2n}. Hence, (B.17) holds.
Set

ψ = π2n+1 ○ ϕ.
Clearly, ψ is another isomorphism from P(σ − t) onto P2n+1. As previously
for ϕ, we obtain that for any p, q ∈ {0, . . . ,2n} such that p < q,

(B.23) [ψ−1(p), ψ−1(q)]σ =
⎧⎪⎪⎨⎪⎪⎩

[ψ−1(0), ψ−1(2)]σ if p and q are even,

[ψ−1(0), ψ−1(1)]σ otherwise.

Since (B.17) holds, we obtain

(B.24) ψ(l) = l for each l ∈ {0, . . . , n − 2} ∪ {n + 2, . . . ,2n}.

Since n ≥ 3, we have [0,1]σ = [ψ−1(0), ψ−1(1)]σ. Furthermore, we have

[0,2]σ = [0,2n]σ by (B.8)

= [ψ−1(0), ψ−1(2n)]σ by (B.24)

= [ψ−1(0), ψ−1(2)]σ by (B.23).
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It follows from (B.8) and (B.23) that

[p, q]σ = [ψ−1(p), ψ−1(q)]σ
for any p, q ∈ {0, . . . ,2n} such that p < q. Therefore, ψ−1 is an isomorphism
from σ − (2n + 1) onto σ − t. Finally, since t = j and t = n, it follows from
(B.15) that

(B.25) ψ(n − 1) = n + 1 and ψ(n + 1) = n − 1.

It follows from (B.24) and (B.25) that ψ−1 satisfies (5.24).
Lastly, suppose that (B.16) holds. Since (B.16) holds, we have σ − {t, t +

1,2n + 1} = σ − {t, ϕ−1(j − 1),2n + 1}. Thus, we have

(B.26) E(P((σ − (2n+ 1))− {t, t+ 1}) = E(P((σ − t)− {ϕ−1(j − 1),2n+ 1}).
Set

µ = σ − {t, t + 1,2n + 1}.
To conclude, we distinguish the following two cases.
Case 1: t = 2n − 1.

It follows from Lemma 4.40 applied to (σ − (2n + 1)) − {2n − 1,2n} that

(B.27) E(P(µ)) = {{k, k + 1} ∶ k ∈ {0, . . . ,2n − 3}}.
Thus,

(B.28) NP(µ)(2n − 2) = {2n − 3}.
If j < 2n − 1, then it follows from (B.19) that

NP(µ)(ϕ−1(j + 1)) = {ϕ−1(j − 2), ϕ−1(j + 2)},
which contradicts (B.28) because ϕ−1(j+1) = 2n−2 by (B.16). Therefore,
j = 2n − 1. It follows from (B.20) that

NP(µ)(ϕ−1(2n)) = {ϕ−1(2n − 3)}.
Since (B.16) holds, we have ϕ−1(2n) = 2n − 2. It follows that

ϕ−1(2n − 3) = 2n − 3.

By proceeding by induction, it follows from (B.26), (B.27), and (B.28)
that

ϕ−1(2n − k) = 2n − k
for each k ∈ {3, . . . ,2n}. We obtain that for each k ∈ {0, . . . ,2n − 3},

(B.29) ϕ(k) = k.
Since n ≥ 3, we obtain

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[0,1]σ = [ϕ−1(0), ϕ−1(1)]σ
and

[0,2]σ = [ϕ−1(0), ϕ−1(2)]σ.
It follows from (B.8) and (B.11) that

[p, q]σ = (ϕ−1(p), ϕ−1(q)]σ
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for any p, q ∈ {0, . . . ,2n} such that p < q. Therefore, ϕ−1 is an iso-
morphism from σ − (2n + 1) onto σ − t. Since t = 2n − 1, we have
NP(σ−(2n+1))(t) = {2n−2,2n}. It follows from (B.16) that ϕ−1(2n) = 2n−2

and ϕ−1(2n − 2) = 2n. Consequently, ϕ−1 satisfies (5.24).
Case 2: t < 2n − 1.

Recall that P(σ − (2n + 1)) = P2n+1. It follows from Lemma 4.39 applied
to (σ − (2n + 1)) − {t, t + 1} that

E(P(µ)) ={{k, k + 1} ∶ k ∈ {0, . . . , t − 2} ∪ {t + 2, . . . ,2n − 1}}(B.30)

∪ {{t − 1, t + 2}}.
We obtain

NP(µ)(t − 1) = {t − 2, t + 2}.
Since (B.16) holds, we have

ϕ−1(j + 1) = t − 1.

If j = 2n − 1, then it follows from (B.20) that

NP(µ)(ϕ−1(j + 1)) = {ϕ−1(j − 2)}.
Therefore, we have

j < 2n − 1.

It follows from (B.19) that

NP(µ)(ϕ−1(j + 1)) = {ϕ−1(j − 2), ϕ−1(j + 2)}.
Therefore, we have

(B.31) ϕ−1(j − 2) = t − 2 and ϕ−1(j + 2) = t + 2

or

(B.32) ϕ−1(j − 2) = t + 2 and ϕ−1(j + 2) = t − 2.

For a contradiction, suppose that (B.32) holds. By proceeding by induc-
tion, it follows from (B.30), (B.19), and (B.26) that

ϕ−1(j + k) = t − k
for each k ∈ {1, . . . ,min(t,2n − j)}. Since t, j ∈ {n, . . . ,2n}, we have
min(t,2n−j) = 2n−j. Thus, for k = 2n−j, we obtain ϕ−1(2n) = t+j−2n. It
follows that t+j = 2n or 4n. Since n ≤ t < 2n−1 and n ≤ j ≤ 2n, we obtain
t+j = 2n, and hence, t = n and j = n. Therefore, for each l ∈ {0, . . . , n−1},
we have ϕ−1(2n − l) = l. Symmetrically, we obtain ϕ−1(l) = 2n − l for
l ∈ {0, . . . , n−1}. It follows that for each p ∈ {0, . . . , n−1}∪{n+1, . . . ,2n},
we have

(B.33) ϕ−1(2n − p) = p.
Set

ψ = π2n+1 ○ ϕ.
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Clearly, ψ is another isomorphism from P(σ − t) onto P2n+1. By Propo-
sition 4.27, for any p, q ∈ {0, . . . ,2n} such that p < q, we have

(B.34) [ψ−1(p), ψ−1(q)]σ =
⎧⎪⎪⎨⎪⎪⎩

[ψ−1(0), ψ−1(2)]σ if p and q are even,

[ψ−1(0), ψ−1(1)]σ otherwise.

It follows from (B.33) that for each p ∈ {0, . . . , n−1}∪{n+1, . . . ,2n}, we
have

(B.35) ψ−1(p) = p.
Since n ≥ 3, we have [0,1]σ = [ψ−1(0), ψ−1(1)]σ and [0,2]σ = [ψ−1(0),
ψ−1(2)]σ. It follows from (B.8) and (B.34) that for each p ∈ {0, . . . ,
n − 1} ∪ {n + 1, . . . ,2n}, we have

[p, t]σ = [ψ−1(p),2n + 1]σ.
We obtain that {t,2n+1} is a module of σ, which contradicts the fact that
σ is prime. Consequently, (B.32) does not hold. Hence, (B.31) holds.
By proceeding by induction, it follows from (B.30), (B.19), and (B.26)
that ϕ−1(j − k) = t − k for each k ∈ {2, . . . ,min(t, j)}. Therefore, t = j.
Symmetrically, we obtain ϕ−1(t+k) = t+k for each k ∈ {2, . . . ,2n− t}. It
follows that for l ∈ {0, . . . , t − 2} ∪ {t + 2, . . . ,2n}, we have

(B.36) ϕ−1(l) = l.
For a contradiction, suppose that t is even. Since n ≥ 3 and t ≥ n, we
have t ≥ 3. By (B.36), we have

(B.37)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕ−1(0) = 0

and

ϕ−1(1) = 1.

We obtain

(0,1)σ = (t − 1, t + 1)σ by (B.8)

= (ϕ−1(t + 1), ϕ−1(t − 1))σ by (B.16) (because t = j)
= (ϕ−1(1), ϕ−1(0))σ by (B.11)

= (1,0)σ by (B.37),

which contradicts (B.7). It follows that t is odd. By (B.36),

[0,1]σ = [ϕ−1(0), ϕ−1(1)]σ.
Furthermore, we have

[0,2]σ = [0,2n]σ by (B.8)

= [ϕ−1(0), ϕ−1(2n)]σ by (B.36)

= [ϕ−1(0), ϕ−1(2)]σ by (B.11).
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It follows from (B.8) and (B.11) that

[p, q]σ = [ϕ−1(p), ϕ−1(q)]σ
for any p, q ∈ {0, . . . ,2n} such that p < q. Therefore, ϕ−1 is an isomor-
phism from σ − s onto σ − t. By (B.16), we have ϕ−1(t + 1) = t − 1 and
ϕ−1(t − 1) = t + 1. It follows from (B.36) that ϕ−1 satisfies (5.24).

To conclude, we verify that Sc(σ) = {t,2n + 1}. As shown above, (5.24)
holds. For a contradiction, suppose that there exists t′ ∈ Sc(σ)∖ {t,2n+ 1}.
By what precedes, (5.24) holds also when t is replaced by t′. It follows that
{t, t′} is a module of σ−(2n+1), which contradicts the fact that σ−(2n+1)
is prime. �

Remark B.1. Let σ be a prime 2-structure with v(σ) ≥ 7. Suppose that
there exist distinct s, t ∈ Sc(σ). Suppose also that P(σ − s) ≃ P2n+1. By
Proposition 5.28,

Sc(σ) = {s, t}.
Moreover, consider an isomorphism ϕs from P(σ − s) onto P2n+1. It follows
from Proposition 5.28 that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ϕs(t) is odd

and

(ϕs(0), ϕs(2))σ = (ϕs(2), ϕs(0))σ.

Proof of Proposition 5.29. Consider s ∈ Sc(σ) such that P(σ − s) ≃ P2n.
Therefore, v(σ) = 2n + 1. Since v(σ) ≥ 7, we obtain

n ≥ 3.

Suppose that there exists t ∈ Sc(σ) ∖ {s}. We verify that we can assume
that (5.25) holds. Let ϕs be an isomorphism from P(σ − s) onto P2n. Since
π2n ∈ Aut(P2n) (see Notation 4.21), we can assume that

n ≤ ϕs(t) ≤ 2n − 1.

Denote by τs the unique 2-structure defined on {0, . . . ,2n − 1} such that
ϕs is an isomorphism from σ − s onto τs. Since ϕs is an isomorphism from
P(σ − s) onto P2n, τs is critical and P(τs) = P2n. Here, we can assume
that V (σ) = {0, . . . ,2n}, s = 2n, and ϕs = Id{0,...,2n−1}. Thus, we have
t ∈ {n, . . . ,2n−1} and P(σ− (2n)) = P2n, so (5.25) holds. Furthermore, note
that τs = σ − (2n).

It follows from Proposition 4.15 that

(B.38) ≺0,1≻σ≠≺0,2≻σ (see Notation 1.1).

Moreover, for any p, q ∈ {0, . . . ,2n − 1} such that p < q, we have

(B.39) [p, q]σ =
⎧⎪⎪⎨⎪⎪⎩

[0,1]σ if p is even and q is odd,

[0,2]σ otherwise.
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It follows from Corollary 5.25 that

(B.40) NP(σ−(2n))(t) = NP(σ−t)(2n).
Since v(σ − (2n)) = 2n, it follows from Corollary 4.6 that P(σ − t) ≃ P2n. As
above, there exists an isomorphism ϕ from σ − t onto τ , where τ is a critical
2-structure such that P(τ) = P2n. It follows from Proposition 4.15 that

(B.41) ≺ϕ−1(0), ϕ−1(1)≻σ≠≺ϕ−1(0), ϕ−1(2)≻σ .
Furthermore, for any p, q ∈ {0, . . . ,2n − 1} such that p < q, we have

(B.42) [ϕ−1(p), ϕ−1(q)]σ =
⎧⎪⎪⎨⎪⎪⎩

[ϕ−1(0), ϕ−1(1)]σ if p is even and q is odd,

[ϕ−1(0), ϕ−1(2)]σ otherwise.

Similarly, we can assume that n ≤ ϕ(2n) ≤ 2n − 1.
To begin with case 1, suppose that

dP(σ−(2n))(t) = 1.

Since n ≤ t ≤ 2n − 1, we have

t = 2n − 1.

By (B.40), dP(σ−t)(2n) = 1. Similarly, we have

ϕ(2n) = 2n − 1.

Moreover, it follows from (B.40) that

(B.43) ϕ−1(2n − 2) = 2n − 2.

It follows from Lemma 4.40 that (σ − (2n)) − {2n − 2,2n − 1} is critical and

E(P((σ − (2n)) − {2n − 2,2n − 1}))
= E(P(σ − s)) ∖ {{k, k + 1} ∶ k ∈ {2n − 3,2n − 2}}
= {{k, k + 1} ∶ k ∈ {0, . . . ,2n − 4}}.

Observe that P(σ − {2n − 2,2n − 1,2n}) = P2n−2. Clearly, (ϕ−1)↾{0,...,2n−3} is

an isomorphism from P2n−2 onto P(σ−{ϕ−1(2n−2),2n−1,2n}). By (B.43),
we have

σ − {ϕ−1(2n − 2),2n − 1,2n} = σ − {2n − 2,2n − 1,2n}.
It follows that

(ϕ−1)↾{0,...,2n−3} ∈ Aut(P2n−2).
Therefore, we obtain

(B.44) ϕ↾{0,...,2n−3} = Id{0,...,2n−3} or π2n−2 (see Notation 4.21).

For a contradiction, suppose that

(B.45) ϕ↾{0,...,2n−3} = Id{0,...,2n−3}.

By (B.43), we have

(B.46) ϕ(k) = k
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for each k ∈ {0, . . . ,2n−2}. We verify that {2n−1,2n} is a module of σ. Let
v ∈ {0, . . . ,2n − 2}. For instance, assume that v is even. We obtain

[v,2n − 1]σ = [0,1]σ by (B.39)

= [ϕ−1(0), ϕ−1(1)]σ by (B.46)

= [ϕ−1(v), ϕ−1(2n − 1)]σ by (B.42)

= [v,2n]σ because ϕ(v) = v by (B.46),

and ϕ(2n) = 2n − 1.

Similarly, we have [v,2n − 1]σ = [v,2n]σ when v is odd. It follows that
{2n − 1,2n} is a module of σ, which contradicts the fact that σ is prime.
Consequently, (B.45) does not hold. By (B.44), we have

(ϕ−1)↾{0,...,2n−3}) = π2n−2.

We obtain

(B.47) ϕ−1(k) = 2n − 3 − k.

for each k ∈ {0, . . . ,2n − 3}. Therefore, we have

(0,2)σ = (ϕ−1(2n − 3), ϕ−1(2n − 5))σ by (B.47)

= (ϕ−1(2n − 2), ϕ−1(2n − 5))σ by (B.42)

= (2n − 2,2)σ by (B.43) and (B.47)

= (2,0)σ by (B.39).

Moreover, set

ψ = π2n ○ ϕ.

Clearly, ψ is another isomorphism from P(σ− t) onto P2n. As previously for
ϕ, we obtain that for any p, q ∈ {0, . . . ,2n} such that p < q,
(B.48)

[ψ−1(p), ψ−1(q)]σ =
⎧⎪⎪⎨⎪⎪⎩

[ψ−1(0), ψ−1(1)]σ if p is even and q is odd,

[ψ−1(0), ψ−1(2)]σ otherwise.

Since ϕ−1(2n−1) = 2n, it follows from (B.43) and (B.47) that ψ−1 is defined
by

(B.49)

{0, . . . ,2n − 1} Ð→ {0, . . . ,2n − 2} ∪ {2n}
0 z→ 2n,
1 z→ 2n − 2,

2 ≤ k ≤ 2n − 1 z→ k − 2.
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We obtain

[ψ−1(0), ψ−1(1)]σ = [2n,2n − 2]σ by (B.49)

= [ϕ−1(2n − 1), ϕ−1(2n − 2)]σ
= [ϕ−1(2n − 3), ϕ−1(2n − 4)]σ by (B.42)

= [0,1]σ by (B.47).

Similarly, we have

[ψ−1(0), ψ−1(2)]σ = [2n,0]σ by (B.49)

= [ϕ−1(2n − 1), ϕ−1(2n − 3)]σ by (B.47)

= [ϕ−1(2n − 3), ϕ−1(2n − 5)]σ by (B.42)

= [0,2]σ by (B.47).

It follows from (B.48) and (B.39) that

[ψ−1(p), ψ−1(q)]σ = [p, q]σ
for any p, q ∈ {0, . . . ,2n − 1} such that p < q. Consequently, ψ−1 is an
isomorphism from σ − (2n) onto σ − (2n − 1). Hence, (5.26) holds.

To continue with case 2, suppose that

dP(σ−(2n))(t) = 2.

Since n ≤ t ≤ 2n−1, we have n ≤ t ≤ 2n−2. Thus, NP(σ−(2n))(t) = {t−1, t+1}.
Set

j = ϕ(2n).
Recall that n ≤ j ≤ 2n − 1. By (B.40), NP(σ−t)(2n) = {t − 1, t + 1}. Hence,
n ≤ j ≤ 2n − 2 and

{ϕ−1(j − 1), ϕ−1(j + 1)} = {t − 1, t + 1}.

It follows that

(B.50) ϕ−1(j − 1) = t − 1 and ϕ−1(j + 1) = t + 1

or

(B.51) ϕ−1(j − 1) = t + 1 and ϕ−1(j + 1) = t − 1.

For a contradiction, suppose that (B.50) holds. Recall that

E(P(σ − (2n))) = {{k, k + 1} ∶ k ∈ {0, . . . ,2n − 2}}.

By Lemma 4.39,

E(P((σ − (2n)) − {t − 1, t}))
= {{k, k + 1} ∶ k ∈ {0, . . . , t − 3} ∪ {t + 1, . . . ,2n − 2}}(B.52)

∪ {{t − 2, t + 1}}.
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Similarly, we have

E(P(σ − {t, ϕ−1(j − 1),2n}))
= {{ϕ−1(k), ϕ−1(k + 1)} ∶ k ∈ {0, . . . , j − 3} ∪ {j + 1, . . . ,2n − 2}}(B.53)

∪ {{ϕ−1
t (j − 2), ϕ−1(j + 1)}}.

Since (B.50) holds, we have

(B.54) E(P(σ − {t − 1, t,2n})) = E(P(σ − {t, ϕ−1(j − 1),2n}).
We distinguish the following two cases. Both lead us to a contradiction.
Case 1: ϕ−1(j − 2) = t − 2.

By proceeding by induction, we obtain ϕ−1(j − k) = t − k for k ∈
{2, . . . ,min(j, t)}. It follows that j = t. Similarly, we obtain that ϕ−1(l) =
l for k ∈ {t+2, . . . ,2n−1}. Since (B.50) holds, we obtain (ϕt)−1(l) = l for
l ∈ {0, . . . ,2n − 1} ∖ {t}. It follows from (B.39) and (B.42) that {t,2n} is
a module of σ, which contradicts the fact that σ is prime.

Case 2: ϕ−1(j − 2) ≠ t − 2.
Since ϕ−1(j + 1) = t + 1, it follows from (B.52), (B.53), and (B.54) that
t ≤ 2n − 3, j ≤ 2n − 3, and

ϕ−1(j − 2) = t + 2 and ϕ−1(j + 2) = t − 2.

By proceeding by induction, we obtain ϕ−1(j − k) = t + k for k ∈ {2, . . . ,
min(j,2n − t − 1)}. Since t, j ∈ {n, . . . ,2n − 3}, we have

min(j,2n − t − 1) = 2n − t − 1.

For k = 2n− t−1, we obtain j+ t−2n+1 = 0 or 2n−1, which is impossible
because j, t ∈ {n, . . . ,2n − 3}.

Consequently, (B.50) does not hold. Therefore, (B.51) holds. Recall that

E(P(σ − {t, ϕ−1(j − 1),2n}))
= {{ϕ−1(k), ϕ−1(k + 1)} ∶ k ∈ {0, . . . , j − 3} ∪ {j + 1, . . . ,2n − 2}}(B.55)

∪ {{ϕ−1(j − 2), ϕ−1(j + 1)}}.
Furthermore, by Lemma 4.39, we have

E(P((σ − (2n)) − {t, t + 1}))
= {{k, k + 1} ∶ k ∈ {0, . . . , t − 2} ∪ {t + 2, . . . ,2n − 2}}(B.56)

∪ {{t − 1, t + 2}}.
Since (B.51) holds, we obtain

(B.57) E(P(σ − {t, t + 1,2n})) = E(P(σ − {t, ϕ−1(j − 1),2n}).
Set

µ = σ − {t, t + 1,2n}.
Since ϕ−1(j + 1) = t − 1, we obtain

(B.58) NP(µ)(t − 1) = NP(µ)(ϕ−1(j + 1)).
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For a contradiction, suppose that

ϕ−1(j − 2) = t + 2.

Since dP(µ)(ϕ−1(j − 2)) = 2, we have dP(µ)(t + 2) = 2, so t ≤ 2n − 4. By

proceeding by induction, we obtain ϕ−1(j−k) = t+k for k ∈ {2, . . . ,min(j,2n−
t − 1)}. Since j ≥ n and t ≥ n, we have min(j,2n − t − 1) = 2n − t − 1. For
k = 2n− t−1, we obtain ϕ−1(j + t+1−2n) = 2n−1. Thus, j + t+1−2n = 0 or
2n − 1, which is impossible because j, t ∈ {n, . . . ,2n − 2}. Consequently, we
have

(B.59) ϕ−1(j − 2) = t − 2.

By proceeding by induction, we obtain ϕ−1(j − k) = t − k for k ∈ {2, . . . ,
min(j, t)}. It follows that j = t. We obtain

(B.60) ϕ−1(l) = l for l ∈ {0, . . . , t − 2}.

Since t ≥ n and n ≥ 3, we obtain

[ϕ−1(0), ϕ−1(1)]σ = [0,1]σ.
Similarly, if t ≥ 4, then [ϕ−1(0), ϕ−1(2)]σ = [0,2]σ. Hence, suppose that
t = 3. We obtain t ≤ 2n − 3 because n ≥ 3. It follows from (B.58) that

(B.61) {t − 2, t + 2} = {ϕ−1(j − 2), ϕ−1(j + 2)}.
Since ϕ−1(j − 2) = t − 2 by (B.59), we have ϕ−1(j + 2) = t + 2. Recall that
j = t. By proceeding by induction, we obtain

(B.62) ϕ−1(l) = l for l ∈ {t + 2, . . . ,2n − 1}.

We have

[ϕ−1(0), ϕ−1(2)]σ = [ϕ−1(1), ϕ−1(2n − 1)]σ by (B.42)

= [1,2n − 1]σ by (B.60) and (B.62)

= [0,2]σ by (B.39).

Therefore, we have

[ϕ−1(0), ϕ−1(1)]σ = [0,1]σ and [ϕ−1(0), ϕ−1(2)]σ = [0,2]σ.

It follows from (B.39) and (B.42) that

[ϕ−1(p), ϕ−1(q)]σ = [p, q]σ
for any p, q ∈ {0, . . . ,2n − 1} such that p < q. Consequently, ϕ−1 is an
isomorphism from σ − (2n) onto σ − t. Moreover, ϕ−1 is defined by

{0, . . . ,2n − 1} Ð→ {0, . . . ,2n} ∖ {t}
t z→ 2n because t = j and ϕ(2n) = j,

t − 1 z→ t + 1 by (B.51),
t + 1 z→ t − 1 by (B.51),

v ∈ V (σ) ∖ {t − 1, t, t + 1,2n} z→ v by (B.60) and (B.62).

Consequently, (5.27) holds.
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We conclude as follows. For a contradiction, suppose that there exists
u ∈ Sc(σ) ∖ {t,2n}. We distinguish the following two cases.
Case 1: dP(σ−(2n))(t) = dP(σ−(2n))(u).

First, suppose that

dP(σ−(2n))(t) = 1.

Thus, (5.26) holds. In particular, we have t = 2n − 1. It follows that
u = 0. Since {0,1} ∈ E(P(σ − (2n))), (σ − (2n)) − {0,1} is prime. Set

X = V (σ) ∖ {0,1,2n}.
It follows from (5.26) that 2n ∈ Extσ(X). Hence σ − {0,1} is prime,
which contradicts 0 ∈ Sc(σ).
Second, suppose that dP(σ−(2n))(t) = 2. We have t, u ∈ {1, . . . ,2n − 2}.
For instance, assume that t < u. We obtain that (5.27) holds, but also
(5.27) holds after replacing t by u. Precisely, the function

θt ∶ {0, . . . ,2n − 1} Ð→ {0, . . . ,2n} ∖ {t}
t z→ 2n,

t − 1 z→ t + 1,
t + 1 z→ t − 1,

v ∈ V (σ) ∖ {t − 1, t, t + 1,2n} z→ v,

is an isomorphism from σ − (2n) onto σ − t. Similarly, the function

θu ∶ {0, . . . ,2n − 1} Ð→ {0, . . . ,2n} ∖ {u}
u z→ 2n,

u − 1 z→ u + 1,
u + 1 z→ u − 1,

v ∈ V (σ) ∖ {u − 1, u, u + 1,2n} z→ v,

is an isomorphism from σ−(2n) onto σ−u. We distinguish the following
three subcases.
Subcase a: t ≤ u − 3.

Since NP(σ−(2n))(u) = {u − 1, u + 1}, it follows from Lemma 4.4 that
{u − 1, u + 1} is a module of (σ − (2n)) − u. In particular, we have

[t, u − 1]σ = [t, u + 1]σ.
Moreover, we have

[t, u − 1]σ = [2n,u − 1]σ by applying θt

= [u,u + 1]σ by applying (θu)−1,

and

[t, u + 1]σ = [2n,u + 1]σ by applying θt

= [u,u − 1]σ by applying (θu)−1.

It follows that

[u,u − 1]σ = [u,u + 1]σ.
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Since {u − 1, u + 1} is a module of (σ − (2n)) − u, {u − 1, u + 1} is a
module of σ − (2n), which contradicts 2n ∈ S (σ).

Subcase b: t = u − 2.
Since NP(σ−(2n))(t + 1) = {t, t + 2}, it follows from Lemma 4.4 that
{t, t + 2} is a module of (σ − (2n)) − (t + 1). Furthermore, we have

[t + 1, t + 2]σ = [t − 1, t + 2]σ by applying (θt)−1

= [t − 1,2n]σ by applying θu

= [t + 1, t]σ by applying (θt)−1

= [t + 3, t]σ by applying θu

= [t + 1, t]σ by (B.39).

Therefore, {t, t + 2} is a module of (σ − (2n)), which contradicts
2n ∈ S (σ).

Subcase c: t = u − 1.
First, suppose that t is even. We obtain

[0,1]σ = [t, t + 1]σ by (B.39)

= [2n, t − 1]σ by applying θt

= [t + 1, t − 1]σ by applying (θu)−1

= [2,0]σ by (B.39),

which contradicts (B.38). Second, suppose that t is odd. We have
1 ≤ t ≤ 2n − 3. If t ≤ 2n − 5, then t + 4 ≤ 2n − 1 and we obtain

[0,1]σ = [t + 1, t + 4]σ by (B.39)

= [2n, t + 4]σ by applying θu

= [t, t + 4]σ by applying (θt)−1

= [0,2]σ by (B.39),

which contradicts (B.38). If t ≥ 2n−4, then t = 2n−3, u = 2n−2, and
we obtain

[0,1]σ = [0, t]σ by (B.39)

= [0,2n]σ by applying θt

= [0, t + 1]σ by applying (θu)−1

= [0,2]σ by (B.39),

which contradicts (B.38).
Case 2: dP(σ−(2n))(t) ≠ dP(σ−(2n))(u).

For instance, assume that

dP(σ−(2n))(t) = 1 and dP(σ−(2n))(u) = 2.
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We have t = 2n − 1 and 1 ≤ u ≤ 2n − 2. We obtain that (5.26) holds, and
(5.27) holds after replacing t by u. Precisely, the function

θt ∶ {0, . . . ,2n − 1} Ð→ {0, . . . ,2n − 2} ∪ {2n}
0 z→ 2n,
1 z→ 2n − 2,

2 ≤ k ≤ 2n − 1 z→ k − 2,

is an isomorphism from σ − (2n) onto σ − t. Furthermore, the function

θu ∶ {0, . . . ,2n − 1} Ð→ {0, . . . ,2n} ∖ {u}
u z→ 2n,

u − 1 z→ u + 1,
u + 1 z→ u − 1,

v ∈ V (σ) ∖ {u − 1, u, u + 1,2n} z→ v,

is an isomorphism from σ−(2n) onto σ−u. We distinguish the following
three subcases.
Subcase a: u ≤ 2n − 4.

Since NP(σ−(2n))(u) = {u − 1, u + 1}, it follows from Lemma 4.4 that
{u − 1, u + 1} is a module of (σ − (2n)) − u. Furthermore, we have

[2n,u − 1]σ = [0, u + 1]σ by applying (θt)−1

= [0, u + 3]σ by (B.39)

= [2n,u + 1]σ by applying θt.

Therefore, {u − 1, u + 1} is a module of σ − u, which contradicts u ∈
S (σ).

Subcase b: u = 2n − 3.
We obtain

[0,1]σ = [0, u]σ by (B.39)

= [0,2n]σ by applying θu

= [2,0]σ by applying (θt)−1,

which contradicts (B.38).
Subcase c: u = 2n − 2.

We obtain

[0,1]σ = [0,3]σ by (B.39)

= [2n,1]σ by applying θt

= [2n − 2,1]σ by applying (θu)−1

= [2,0]σ by (B.39),

which contradicts (B.38).
Both cases above lead us to a contradiction. Consequently, Sc(σ) =

{t,2n}. �
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