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Abstract. We present a prototype for performing integral elimination
for nonlinear integral equations. This work is motivated by the parameter
estimation problem in control theory.
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1 Introduction

This article is motivated by the parameter estimation problem in control theory
for systems of nonlinear parametric ordinary differential equations. This prob-
lem has been extensively addressed in the differential algebra [18,13] context
following [8] in [15,6] and many other works.

In this algebraic context, a key object is the so-called input/output (I/O)
equation which is a differential equation only involving the parameters, the ob-
served variables (i.e. variables for which experimental data can be obtained) and
their derivatives, and also the (freely chosen) inputs and their derivatives. Dif-
ferential I/O equations can be computed using differential elimination technics
(by eliminating non observed variables) such as [5,11]. They can be sensitive to
noisy experimental data especially if their order of derivation is high. Integrat-
ing those differential I/O equations [3] to obtain integral I/O equations has been
successfully tested in a variety of work (see [4] and references within).

An alternative to integrating the differential I/O equations consists in devel-
oping an elimination theory for integro-differential equations. Integro-differential
operators (which are suited for linear equations) has been studied in [19,16]. A
Gröbner-Shirshov approach has been developed in [2,10] but has not been im-
plemented to our knowledge.

We present a first draft of an integral elimination algorithm. Our approach
is incomplete and still needs an important theoretical development. However it
is already sufficient to handle nontrival examples (see Section 7). The originality
of our approach consists in using new types of reductions and introducing expo-
nential terms during the computations. Our prototype has been implemented in
Python using SymPy.

Organization of the paper. Section 2 explains how to manipulate and order the
so-called integral monomials, and introduces basic rewriting rules. Section 3
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presents more elaborate rewriting rules and an algorithm for reducing a polyno-
mial. Section 4 introduces critical pairs for integral equations. Section 5 presents
methods for introducing exponential terms during the elimination process. Sec-
tion 6 presents Algorithm integral_elimination which performs the integral
elimination. Finally, Section 7 presents two Biology models treated by Algorithm
integral_elimination.

Notations. In all the paper, X is a set of indeterminates (morally representing
time values functions), the set of commutative monomials on X is denoted X∗,
and K denotes a field of constants (such as Q, Q(α), . . . ).

2 Background

In an analysis context with enough assumptions on x(t),
∫ t
0
x(τ)dτ is the prim-

itive of the function x(t) which cancels at t = 0. In an algebraic context, we
can introduce a (formal) operator

∫
which encodes the primitive operator. It

is known that this operator is a Rota-Baxter operator of weight 0 since it sat-
isfies the integration by part (

∫
f) · (

∫
g) =

∫
(f
∫
g) +

∫
(g
∫
f). This last prop-

erty is easily extended to iterated integrals following the shuffle product [17,
section 1.4 page 23] of two words w1 and w2, which is defined as the sum of
all the words obtained by interlacing w1 and w2. As an example (if we omit
the inner parenthesis in the iterated integrals) we have (

∫
f
∫
g) · (

∫
a
∫
b) =∫

f
∫
g
∫
a
∫
b+

∫
f
∫
a
∫
g
∫
b+

∫
f
∫
a
∫
b
∫
g +

∫
a
∫
f
∫
g
∫
b+

∫
a
∫
f
∫
b
∫
g +

∫
a
∫
b
∫
f
∫
g.

2.1 Integral Algebra

We introduce the so-called integral monomials and the so-called integral algebra
in a rather informal way. More rigorous definitions and mathematical construc-
tions (based on tensor product and tensor algebra) can be found in [12,9] where
the authors define their mixed shuffle algebra (which corresponds to our integral
algebra).

Definition 1 (Integral monomial). An integral monomial M on X is an
iterated integral m0

∫
m1

∫
...
∫
me where e ∈ N, and the mi are monomials in X∗.

The length e of M is denoted |M |. When e = 0, an integral monomial is simply
a monomial m0 of X∗. The set of all integral monomials on X is denoted X

∫
.

Example 1. x2, xy,
∫
y2, x

∫
xy
∫
y are integral monomials.

Notation Monomials in X∗ are written in lower case (for example m, m0, m1,
. . . , n0, . . . ) and integral monomials of X

∫
are in upper case (M , M1, . . . ).

One can define a commutative product on our integral monomials in the
following way. Note that the product of integral monomials yield a sum of integral
monomials because of the shuffle product.
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Definition 2 (Product of monomials). Let us consider two integral mono-
mials M = m0

∫
m1

∫
· · ·
∫
me and N = n0

∫
n1
∫
n2
∫
· · ·
∫
nf .

The product of the two monomials M and N , denoted M ·N is defined as

– m0n0 when e = f = 0
– m0n0

∫
n1
∫
n2
∫
· · ·
∫
nf when e = 0 and f 6= 0

– n0m0

∫
m1

∫
· · ·
∫
me when e 6= 0 and f = 0

– m0n0 ·
∑p
i=1 αiIi where the sum

∑p
i=1 αiIi is obtained by developing the

product (
∫
m1

∫
· · ·
∫
me) · (

∫
n1
∫
n2
∫
· · ·
∫
nf ) as described above.

Definition 3 (Integral algebra). The algebra of the so-called integral polyno-
mials is defined as K[X

∫
] where the product is induced by the product of mono-

mials of Definition 2. The product of two polynomials P and Q is denoted P ·Q.

When M is a monomial in X∗, the product simply amounts to multiply the
first monomials n0 in N . In that case, we omit the · in the product M · N to
simplify the notations. The · product notation allows to distinguish between the
iterated integral

∫
(P
∫
Q) simply written

∫
P
∫
Q, and the product of

∫
P times∫

Q which is written
∫
P ·
∫
Q.

Example 2. (x
∫
xy
∫
y) · (y

∫
z) = xy

∫
xy
∫
y
∫
z + xy

∫
xy
∫
z
∫
y + xy

∫
z
∫
xy
∫
y.

Definition 4 (Integral ideal). A set I is an integral ideal of K[X
∫
] if I is an

ideal of the algebra K[X
∫
] and if I is stable by

∫
(i.e. if P ∈ I, then

∫
P ∈ I).

The notion of integral ideal is consistent with the fact that the primitive of
the zero function (which cancels at t = 0) is also the zero function.

2.2 Ordering the Integral Monomials

The elements of X
∫
can be totally ordered. In this paper, we define an elimina-

tion ordering on X
∫
. More subtle ordering are certainly possible but are left for

future work.

Definition 5. Fix an ordering on the elements of X. This ordering defines a
lexicographic ordering on X∗ denoted <E. With the same notations as in Defi-
nition 2, we define an ordering <∫ on X

∫
in the following way: M <∫ N if

–
∏e
i=0mi <E

∏f
i=0 ni

– or in case of equality e < f
– or in case of equality (m0,m1, ...me) <revlex (n0, n1, ...nf )

where <revlex is the reverse lexicographic order on tuples induced by <E.

It can be shown that the ordering of Definition 5 is a well-ordering.
Our order is an elimination ordering and as a consequence is different from

the ordering defined in [9, page 5] which first sorts the monomials with respect
to their length.
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Example 3. Simply take X = {x, y} with x > y. Then any monomial only
involving y is smaller than any monomial involving at least one x. Here are some
monomials ordered by <∫ :

1 <∫ y <∫ y
∫

1 <∫
∫
y <∫

∫ ∫
y <∫ x <∫

∫
x <∫

∫ ∫
x <∫ xy <∫ x2.

Definition 6. Fix an ordering <∫ on integral monomials. We denote by P the
leading monomial of an nonzero integral polynomial P i.e. the highest monomial
Mi occurring in P written as

∑d
i=1 αiMi with αi nonzero in K and Mi in X

∫
.

The leading coefficient of P is the coefficient of P .

As a consequence, any nonzero integral polynomial P can be used to rewrite
P into smaller integral monomials.

In the rest of this section and in the next section, we explain how to form
particular polynomials in the ideal generated by P , which are suitable for defining
a reduction process.

The following lemmas 1, 2 and 3 show that our ordering is stable by mul-
tiplication by a monomial of X∗, by integration, and by multiplication by a
monomial of X

∫
.

Lemma 1. Let M , N ∈ X
∫
and u ∈ X∗. Then M <∫ N implies uM <∫ uN .

Proof. – First case: If
∏|M |
i=0mi <E

∏|N |
i=0 ni, then it follows that u

∏|M |
i=0mi <E

u
∏|N |
i=0 ni, which implies that uM <∫ uN

– Second case: If
∏|M |
i=0mi =

∏|N |
i=0 ni and |M | < |N |, then by multiplying by u,

the product of the monomials will still be equal. Moreover, since |M | = |uM |
and |N | = |uN |, we have that |uM | < |uN |. And then, uM <∫ uN .

– Third case: If
∏|M |
i=0mi =

∏|N |
i=0 ni, |M | = |N | and (m0,m1, ...m|M |) <revlex

(n0, n1, ...n|N |). Clearly (um0,m1, ...m|M |) <revlex (un0, n1, ...n|N |) and then
uM <∫ uN .

ut

Lemma 2. Let M , N ∈ X
∫
. Then M <∫ N implies

∫
M <∫ ∫N .

Proof. The proof is similar to Lemma 1. ut

Lemma 3. Let M , N ∈ X
∫

and U ∈ X
∫
, then M <∫ N implies U ·M <∫

U ·N .

Proof. We use the same notation as in Definition 2. If
∏e
i=0mi <E

∏f
i=0 ni

then the proof is immediate. If
∏e
i=0mi =

∏f
i=0 ni and e < f , then the proof is

also immediate. Consider the case
∏e
i=0mi =

∏e
i=0 ni and (m0, . . . ,me) <revlex

(n0, . . . , ne). The case e = 0 cannot occur. Moreover, since
∏e
i=0mi =

∏e
i=0 ni,

we have (m1, . . . ,me) <revlex (n1, . . . , ne). Let us write U = u0
∫
· · ·
∫
us (where

s > 0 since the case s = 0 is proved by Lemma 1). Then the integral monomials
in the product U ·M (resp. U ·N) involve shuffles of (u1, . . . , us) by (m1, . . . ,me)
(resp. (n1, . . . , ne)). We end the proof using Lemma 4. ut
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Lemma 4. Consider three noncommutative words u, v, w on a alphabet Y . Let
< denote the lexicographic order (or the reverse lexicographic order on words). If
u < v, then the maximum word in u�w (w.r.t. <) is smaller than the maximum
word in v� w (where � denotes the shuffle product operation).

Proof. Left to the reader. ut

2.3 Basic Rewriting Rules

Consider a polynomial P in K[X
∫
] with leading monomial P . The following

lemma 5 shows that any integral monomial of the form m0

∫
· · ·
∫
meP (where the

mi are in X∗) can be rewritten using P .

Lemma 5. Let P ∈ K[X
∫
] and monomials m0, . . . ,me taken in X∗. Then

m0

∫
· · ·
∫
meP = m0

∫
· · ·
∫
meP .

Proof. Simple consequence of Lemma 1 and Lemma 2. ut

Example 4. TakeX = {x, y} with x > y. Let P =
∫
x−y (with leading monomial

P =
∫
x) written as the rule

∫
x → y. Then the polynomial

∫
(yP ) has leader∫

y
∫
x, and allows to reduce

∫
y
∫
x into

∫
y2.

The following lemma 6 shows that any integral monomial of the form P ·M
where M is in X

∫
can be rewritten using P .

Lemma 6. Let P ∈ K[X
∫
] and M ∈ X

∫
. Then

P ·M = P ·M.

Proof. Consequence of Lemma 3. ut

Example 5. Following Example 4, take M =
∫
y. Then P ·M = (

∫
x− y) ·

∫
y =∫

x
∫
y +

∫
y
∫
x − y

∫
y. The leading monomial P ·M of P · M is

∫
y
∫
x, which

coincides (as expected by Lemma 6) with the leading monomial of P · M =
(
∫
x) · (

∫
y).

Remark 1. Examples 4 and 5 show that the polynomial P =
∫
x−y can be used

in two different ways to reduce the same monomial
∫
y
∫
x. In some sense, there

is a critical pair between P and itself ! This will be clarified in the next section.

3 Extended Rewriting Rules and Reduction

We show in this section that a single polynomial P can be used to reduce more
monomials than presented in Lemma 5 and Lemma 6. To do this, we build in the
next two subsections some kind of collisions between polynomials in the ideal
generated by P . Finally, last subsection presents a reducing process. Let us first
introduce some notations and definitions.
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Definition 7. Take an integral monomial M = m0

∫
m1

∫
· · ·
∫
me. We define

M⌊
0
⌉ = m0. When e ≥ 1, we define M⌊

1
⌉ = m1, M⌋

1+
⌉ = m1

∫
· · ·
∫
me,

M⌊
1+
⌉ = ∫m1

∫
. . .
∫
me.

Finally M⌊
2+
⌉ = 1 if e = 1, and M⌊

2+
⌉ = ∫m2

∫
. . .
∫
me if e ≥ 2.

Definition 8. Definition 7 can be extended to polynomials of K[X
∫
] by linearity.

Definition 9. Any polynomial P =
∑d
i=1 αiMi in K[X

∫
] can be uniquely writ-

ten as P = PI + PN with

PI =
∑

Mi
⌊
0

⌉=1

αiMi and PN =
∑

Mi
⌊
0

⌉ 6=1

αiMi.

This just amounts to collect the monomials which directly “starts” with an integral
sign in PI (hence the suffix I), and the others in PN.

3.1 Reduced-Product Rule

Consider a polynomial P in K[X
∫
] and a monomial M in X

∫
. The following

lemma 7 shows that the monomial
∫
(PI
⌋
1+
⌉ · ∫ M) can be rewritten using P .

This is a formalization of Remark 1.

Lemma 7. Let M ∈ X
∫
and P ∈ K[X

∫
] such that PI 6= 0 and P = PI. Then

P ·
∫
M −

∫
(M · P ) =

∫ (
PI
⌋
1+
⌉ · ∫ M

)
.

Proof. Since P ·
∫
M = PI ·

∫
M + PN ·

∫
M =

∫
(PI
⌋
1+
⌉ · ∫ M) +

∫
(M · PI) +

PN ·
∫
M and since

∫
(M · P ) =

∫
(M · PI) +

∫
(M · PN), we obtain P ·

∫
M −∫

(M · P ) =
∫
(PI
⌋
1+
⌉ · ∫ M) + PN ·

∫
M −

∫
(M · PN). Using Lemma 6, and

Lemma 8 (with M = PN, N = PI
⌋
1+
⌉ and U =

∫
M), we have PN ·

∫
M <∫

PN ·
∫
M <∫ ∫ (PI

⌋
1+
⌉ · ∫ M). Similarly,

∫
(M · PN) <∫ ∫ (PI

⌋
1+
⌉ · ∫ M), which

ends the proof. ut

Lemma 8. Let M , N and U in X
∫
then

M <∫
∫
N implies that M · U <∫

∫
(N · U) and

∫
(M · U) <∫

∫ (
N ·

∫
U

)
.

Proof. The proof of both statements is similar to that of Lemma 3. ut

Example 6. TakeX = {x, y} with x > y. Let P =
∫
x−y (with leading monomial

P =
∫
x). Take M = y. We have PI =

∫
x and P = PI =

∫
x. Thus PI

⌋
1+
⌉ = x.

Lemma 7 proves that the monomial
∫
x
∫
y can be rewritten using P .
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3.2 Reduced-Power Rule

This section introduces the Lemma 9 which amounts to apply n times Lemma 7
(where n is a positive integer) in the particular case where

∫
M = P . To do so,

we need to introduce a special power of P denoted P n which can be viewed as
a simplified version of Pn modulo the ideal generated by P .

Definition 10. Consider a nonzero polynomial P in K[X
∫
] written as P =

PI + PN with PI 6= 0, PN 6= 0, and P = PI. For any positive integer n, define

P n = n

∫ (
PI
⌋
1+
⌉ · Pn−1N

)
+ PnN

Lemma 9. With the hypothesis of Definition 10, P n belongs to the integral
ideal generated by P . Moreover,

P n =

∫
PI
⌋
1+
⌉ · PN

n−1
.

Lemma 9 is proved below, since it requires some preliminary results.

Example 7. Take X = {x, y} with x > y. Let P =
∫
x− y. By Definition 10, for

any positive integer n, P n = n
∫
(x(−y)n−1) + (−y)n = (−1)n−1(n

∫
(xyn−1) −

yn). Lemma 9 then shows any term of the form
∫
(xyn−1) is equal to yn modulo

the ideal generated by P .

Lemma 10. Consider A and B in K[X
∫
] and take P =

∫
(B) − A. Then for

any integer n > 0 the polynomial n(
∫
B ·An−1)−An is in the ideal generated by

P .

Remark 2. Lemma 10 can be stated in the following less formal but more intu-
itive way using equalities. If A =

∫
B then An = n

∫
(B ·An−1).

Proof. To make the proof easier to follow, we use equalities and we actually prove
Remark 2 by induction on n. The case n = 1 is clear. We want to show (n +
1)
∫
(B ·An) = An+1 assuming n

∫
(B ·An−1) = An. Multiplying both sides of the

last equality by
∫
B and developing the product yields n

(∫
((B ·An−1) ·

∫
B)
)
+

n
(∫

(B ·
∫
(B ·An−1))

)
= An ·

∫
B = An+1. Using A =

∫
B and the induction

hypothesis ends the proof. ut

Lemma 11. Let A and B in K[X
∫
]. If A <∫ ∫ B and n ≥ 1 then

n

∫
(B ·An−1)−An =

∫
B ·An−1.

Proof. It is straightforward to prove by induction on n using Lemma 8 that

A
n
<∫ ∫ (B ·An−1). Since n ∫ (B ·An−1) = ∫ (B ·An−1) > A

n
, we have

n

∫
(B ·An−1)−An =

∫
(B ·An−1) =

∫
(B ·An−1).

ut
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Proof (of Lemma 9). The first claim of the lemma is a direct consequence of
Lemma 10 by taking A = −PN and B = PI

⌋
1+
⌉. Indeed, (∫ B) − A equals

PI +PN = P . Moreover, n(
∫
B ·An−1)−An is equal to P n up to (−1)n−1. The

second claim of the lemma is a consequence of Lemma 11. ut

3.3 Reduction

This section presents a reduction process for rewriting an integral monomial M
of X

∫
by an integral polynomial P . This reduction process is not complete yet

and would need to be extended in a future work. In particular our reduction
process does not handle the case where M is equal to P ·N for some integral
monomial N in X

∫
.

The following lemma is straightforward (its proof is left to the reader).

Lemma 12 (Reduction of a monomial M by P (simple case)). Consider
M in X

∫
and P in K[X

∫
] with P nonzero. Assume that the leading coefficient of

P is equal to one. If there exists a monomial m in X∗ such that mP =M , then
introduce R =M −mP. Otherwise, if P is in X∗ and if there exists a monomial
m in X∗ such that mP =M⌊

0
⌉, then introduce R =M −mP ·M⌊

1+
⌉.

Then R <∫ M when R 6= 0. Moreover R is equal to M modulo the ideal
generated by P .

Next lemma handles a case where a power of P can be used to rewrite M .

Lemma 13 (Reducing a monomial M by P when P = PI and |M | ≥ 1).
Consider M in X

∫
and M in K[X

∫
] with P and PI nonzero with P = PI.

Assume that the leading coefficient of P is equal to one.
If there exists a positive integer n such that PI

⌊
1
⌉PN

⌊
0
⌉n−1 = M⌊

1
⌉ and

(PI
⌊
2+
⌉) · (PN

⌊
1+
⌉)n−1 =M⌊

2+
⌉ then introduce

R =M − 1

n`n−1P

M⌊
0
⌉P n

where `P is the leading coefficient of PN.
Then R <∫ M when R 6= 0. Moreover R is equal to M modulo the ideal

generated by P .

Proof. Lemma 9 implies P n =
∫ (

PI
⌋
1+
⌉ · PN

n−1
)

=
∫
(PI
⌊
1
⌉PN

n−1⌊
0
⌉BP ) where

BP = (PI
⌊
2+
⌉) · (PN

⌊
1+
⌉)n−1. Using the two equality assumptions, M⌊

0
⌉P n =

M⌊
0
⌉ ∫ (M⌊

1
⌉M⌊

2+
⌉) =M . Finally, it is easy to prove that the leading coefficient

of P n is equal to n`n−1P , which proves the lemma. ut

Example 8. Recall Example 7 where X = {x, y} with x > y and P =
∫
x − y.

Take M =
∫
(xyn−1) for some positive integer n. Applying Lemma 13 yields

R = yn

n .
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The following lemma simply extends Lemma 12 and Lemma 13 by considering
the “suffixes” of M .

Lemma 14 (Reduction of M by P ). Consider M in X
∫
and P in K[X

∫
]

with P nonzero. Denote M = m0

∫
· · ·
∫
me. If a suffix mi

∫
· · ·
∫
me for 0 ≤ i ≤ e

can be reduced by P using either Lemma 12 or Lemma 13, then there exists R
in K[X

∫
] such that R is equal to M modulo P , with R <∫ M when R 6= 0.

Proof. Direct consequence of Lemma 5, 12, and 13. ut

Previous Lemmas can be used to write Algorithm 1 which reduces a poly-
nomial by a set of polynomials. Note that Algorithm 1 terminates since <∫ is a
well-ordering.

Algorithm 1: reduce(Q,T,X)

Input: Q an integral polynomial in K[X
∫
] ;

T a set of integral polynomials of K[X
∫
]

Result: a polynomial R equal to Q modulo the ideal generated by T
begin

R← Q ;
while R contains a monomial M that can be reduced by some polynomial
P of T using Lemma 14 do

reduce M by P in R using Lemma 14 ;
end
return R

end

4 Critical Pairs

Given two integral polynomials P and Q, we want to find an equivalent of the
classical S-polynomials used in the Gröbner basis context. To do so, we look for
monomials M that can be reduced by both P and Q.

Using results from the previous sections, we define three different critical
pairs detailed in Lemmas 15, 16 and 17. More critical pairs could be considered
and are left for future work. Finally, we present Algorithm 2 which extracts all
possible S-polynomials from a set of polynomials R.

In all this section, P and Q are non zero integral polynomials such that

PI 6= 0, PN 6= 0, QI 6= 0 and QN 6= 0

PI and QI have a leading coefficient equal to 1
the leading coefficient of PN (resp. QN) is denoted `P (resp `Q)

(1)

Since the three lemmas below are a bit technical, we first illustrate each
lemma with an example.
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Example 9 (for Lemma 15). Take X = {x, y} with x > y. Let P =
∫
x2 − y

∫
y

and Q =
∫
xy−x. Both equations P and Q can be used to reduce the monomial∫

x2y
∫
y. Indeed, P 2 = (y

∫
y)2 − 2

∫
x2y
∫
y. Moreover, Q 2 = x2 − 2

∫
x2y, and

(Q 2 ·
∫
y −

∫
yQ 2 ) = −2

∫
x2y
∫
y + x2

∫
y −

∫
x2y. Finally introduce S(P,Q) =

− 1
2P

2 −
(
− 1

2Q
2 ·
∫
y −

∫
yQ 2

)
= 1

2 (x
2
∫
y −

∫
x2y − (y

∫
y)2) whose leading

monomial is less than
∫
x2y
∫
y.

Example 10 (for Lemma 16). Take X = {x, y} with x > y. Let P =
∫
x2 − y

∫
y

and Q = x
∫
y−x. Both equations P and Q can be used to reduce the monomial∫

x2y
∫
y. Indeed, P 2 = (y

∫
y)2−2

∫
x2y
∫
y. Moreover,

∫
xyQ =

∫
x2y
∫
y−

∫
xy2.

Finally introduce S(P,Q) = − 1
2P

2 −
∫
xyQ =

∫
x2y − 1

2 (y
∫
y)2 whose leading

monomial is less than
∫
x2y
∫
y.

Example 11 (for Lemma 17). Take X = {x, y} with x > y. Let P = x2y
∫
y + x

and Q = xy3
∫
x + y2. Both equations P and Q can be used to reduce the

monomial x2y3
∫
y
∫
x.

Indeed, x
2y3

x2y P ·
∫
x = y2(x2y

∫
y + x) ·

∫
x = x2y3(

∫
y
∫
x+

∫
x
∫
y) + xy2

∫
x.

Moreover, x
2y3

xy3 Q ·
∫
y = x(xy3

∫
x+ y2) ·

∫
y = x2y3(

∫
y
∫
x+

∫
x
∫
y) + xy2

∫
y.

Finally, introduce S(P,Q) = x2y3

x2y P ·
∫
x − x2y3

xy3 Q ·
∫
y = xy2

∫
x − xy2

∫
y,

whose leading monomial is less than x2y3
∫
y
∫
x.

Lemma 15 (Critical pairs: P = PI and Q = QI satisfying (1)).

Let P ,Q ∈ K[X
∫
] such that P = PI and Q = QI. If there exist positive

integers α and β such that PI
⌊
1
⌉PN

α−1⌊
0
⌉ = QI

⌊
1
⌉QN

β−1⌊
0
⌉ , then we define

S(P,Q) =
1

α`α−1P

(
P α ·BQ −

∫
(CQ · P α )

)
︸ ︷︷ ︸

U

− 1

β`β−1Q

(
Q β ·BP −

∫
(CP ·Q β )

)
︸ ︷︷ ︸

V

where BP = (PI
⌊
2+
⌉) · (PN

⌊
1+
⌉)α−1, BQ = (QI

⌊
2+
⌉) · (QN

⌊
1+
⌉)β−1,

CP =

{
0 if BP = 1

BP ⌋
1+
⌉ if BP 6= 1

and CQ =

{
0 if BQ = 1

BQ⌋
1+
⌉ if BQ 6= 1.

Then U = V . Moreover, S(P,Q) <∫ U when S(P,Q) 6= 0.

Proof. We only prove the general case where BP 6= 1 and BQ 6= 1 (the other
cases are in fact particular cases that are not difficult to prove when the general
case is understood).
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Since both BP and BQ start with an integral (more precisely Bp⌊
0
⌉ =

BQ⌊
0
⌉ = 1), we have BP =

∫
CP and BQ =

∫
CQ. Applying Lemma 9 yields

P α =
∫ (

PI
⌋
1+
⌉ · PN

α−1
)

=
∫
(PI
⌊
1
⌉PN

α−1⌊
0
⌉ BP ). Applying Lemma 7 with P α

and
∫
CQ, we get U =

∫
(PI
⌊
1
⌉PN

α−1⌊
0
⌉ BP · (∫ CQ)) = ∫ (PI

⌊
1
⌉PN

α−1⌊
0
⌉ BP ·BQ).

By symmetry on P and Q, we obtain V =
∫
(QI
⌊
1
⌉QN

α−1⌊
0
⌉ BQ ·BP ). Using the

assumption PI
⌊
1
⌉PN

α−1⌊
0
⌉ = QI

⌊
1
⌉QN

β−1⌊
0
⌉ , we get U = V . It is easy to prove that

the leading coefficient of U (resp. V ) is α`α−1P (resp. β`β−1Q ). As a consequence,
the leaders of U and V cancel each other in S(P,Q), thus proving that S(P,Q) <∫
U when S(P,Q) 6= 0. ut

Lemma 16 (Critical pairs: P = PI and Q = QN satisfying (1)).
Let P ,Q ∈ K[X

∫
] such that P = PI and Q = QN. If there exist a positive integer

α and a monomial m in X∗ such that PI
⌊
1
⌉PN

α−1⌊
0
⌉ = mQN

⌊
0
⌉, then we define

S(P,Q) =
1

α`α−1P

(
P α ·BQ −

∫
(CQ · P α )

)
︸ ︷︷ ︸

U

− 1

`Q

∫
(mQ ·BP )︸ ︷︷ ︸

V

where

BP = (PI
⌊
2+
⌉) · (PN

⌊
1+
⌉)α−1, BQ = QN

⌊
1+
⌉ and CQ =

{
0 if BQ = 1

BQ⌋
1+
⌉ if BQ 6= 1.

Then U = V . Moreover S(P,Q) <∫ U when S(P,Q) 6= 0.

Proof. We only prove the lemma in the general case where BP 6= 1 and BQ 6= 1,
so BQ =

∫
CQ. From Lemma 15 proof, we have U =

∫
(PI
⌊
1
⌉PN

α−1⌊
0
⌉ BP ·BQ). On

the other hand V =
∫
(mQ ·BP ) =

∫ (
mQN

⌊
0
⌉BQ ·BP). Using the assumption

PI
⌊
1
⌉PN

α−1⌊
0
⌉ = mQN

⌊
0
⌉, we obtain U = V . Since the leading coefficient of V is

`Q, the leaders of U of V cancel each other in S(P,Q) and S(P,Q) <∫ U when
S(P,Q) 6= 0.

ut

The following lemma is directly inspired by the critical pair defined in the
Gröbner basis context.

Lemma 17 (Critical pairs: P = PN and Q = QN satisfying (1)).
Let P ,Q ∈ K[X

∫
] such that P = PN and Q = QN. We denote by L the least

common multiple (LCM) of PN
⌊
0
⌉ and QN

⌊
0
⌉, i.e. L = LCM(PN

⌊
0
⌉, QN

⌊
0
⌉).
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Let us define
S(P,Q) = L

`PPN⌊
0

⌉ P ·QN
⌊
1+
⌉︸ ︷︷ ︸

U

− L
`QQN⌊

0

⌉ Q · PN
⌊
1+
⌉︸ ︷︷ ︸

V

if QN
⌊
1+
⌉ 6= PN

⌊
1+
⌉

S(P,Q) = L
`PPN⌊

0

⌉ P︸︷︷︸
U

− L
`QQN⌊

0

⌉ Q︸︷︷︸
V

if QN
⌊
1+
⌉ = PN

⌊
1+
⌉

Then U = V , and S(P,Q) <∫ U when S(P,Q) 6= 0.

Proof. The proof is left to the reader. ut

Algorithm 2: critical_pairs(R,X)

Input: R a set of integral polynomials in K[X
∫
] ;

Result: the set S of all S-polynomials that can be obtained from R. Note
that S can be empty.

begin
S ← ∅;
for every pair (P,Q) of polynomials in R do

add S(P,Q) to S if Lemma 15, 16 or 17 applies to P and Q
end
return S;

end

5 Exponentials

In this section, we explain how to encode exponentials of integral polynomi-
als by introducing new indeterminates (called ui and vi). This proves useful in
many examples we have treated. After presenting a small example illustrating
the interest of exponentials, we present some lemmas allowing to encode the
exponentials in an algebraic way. We introduce Algorithm 3 which checks if an
exponential can be introduced, and present Algorithm 4 which updates the sets
of exponentials used in the elimination algorithm (Algorithm 6) presented in the
next section.

Example 12. Consider the following system (written in both differential and in-
tegral form) where x is unknown, and y is known{

ẋ = θx

ẏ = xy
←→

{
x = x0 + θ

∫
x

y = y0 +
∫
xy.

(2)

System (2) admits the following differential I/O equation −θ2y + θÿ − ẏ2. We
believe (personal unpublished proof) that no integral I/O equation in y only can
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be deduced from System (2). However, by (informally) introducing u1 = eθt, one
obtains x = x0u1 (by solving the equation in x) and (by a simple substitution)

y = y0 + x0

∫
(u1y)

which is an integral I/O equation in y.

The following lemma will prove useful later to compute a kind of product of
two polynomials.

Lemma 18. Consider polynomials A1, A2, C1 and C2 in K[X
∫
] and two con-

stants k1 and k2 in K. Define P1 = A1− (k1+
∫
C1) and P2 = A2− (k2+

∫
C2).

Then the polynomial

A1 ·A2 − (k1k2 +

∫
(C1 ·A2 +A1 · C2))

belongs to the ideal generated by P1 and P2.

Remark 3. Lemma 18 can be stated in the following less formal but more in-
tuitive way using equalities. If A1 = k1 +

∫
C1 and A2 = k2 +

∫
C2, then

A1 ·A2 = k1k2 +
∫
(C1 ·A2 +A1 · C2).

Proof. To make the proof easier to follow, we use equalities and we actually
prove Remark 3. Developing A1 · A2 = (k1 +

∫
C1)(k2 +

∫
C2) gives A1 · A2 =

k1k2 + k1
∫
C2 + k2

∫
C1 +

∫
(C1 ·

∫
C2) +

∫
(C2 ·

∫
C1). Using

∫
C1 = A1 − k1

and
∫
C2 = A2− k2 in the previous expression yields A1 ·A2 = k1k2 +����k1

∫
C2 +

����k2
∫
C1+

∫
(C1 ·A2)−����k2

∫
C1+

∫
(C2 ·A1)−����k1

∫
C2 = k1k2+

∫
(C1 ·A2+A1 ·C2).

ut

Example 13. If u = 1 +
∫
(uG) and v = 1−

∫
(vG), then uv = 1 by Lemma 18.

The following Lemma 19 presented in an analysis context serves as a prepa-
ration for Lemma 20.

Lemma 19. For any continuous function f(t) on R, denote by I(f(t)) the prim-
itive of f that cancels at t = 0.

Consider three real continuous functions A(t), G(t) and F (t) defined on R.
Assume that A(t) = A(0) + I(A(t)G(t) + F (t)). Let us introduce u(t) = eI(G(t))

and v(t) = e−I(G(t)). Then the following hold

A(t)v(t) = A(0) + I(v(t)F (t)) (3)
A(t) = A(0)u(t) + u(t)I(v(t)F (t)). (4)

Proof. This lemma is easy to prove using derivations: we have A′(t) = A(t)G(t)+
F (t), u′(t) = G(t)u(t) and v′(t) = −G(t)v(t). Equation (3) is satisfied at t = 0
since v(0) = 1. It suffices to prove that the derivative of (3) is equal to 0. We
have (A(t)v(t) − (A(0) + I(v(t)F (t))))′ = A′(t)v(t) + A(t)v′(t) − v(t)F (t) =
(A(t)G(t) + F (t))v(t)−A(t)G(t)v(t)− v(t)F (t) = 0 which proves Equation (3).
Since u(t)v(t) = 1, Equation (4) is proved by multiplying Equation (3) by u(t).

ut
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The exponential u(t) = eI(G(t)) in Lemma 19 can be encoded in an algebraic
way by introducing the integral equation u = 1+

∫
(uG). The following Lemma 20

restates Lemma 19 in an algebraic context.

Lemma 20. Take three polynomials A, G and F in K[X
∫
] and a constant A0

in K. Define P = A− (A0 +
∫
(A ·G+ F )).

Introduce two new fresh indeterminates u and v (and add them to X), and
consider the two polynomials Pu = u− (1 +

∫
(uG)) and Pv = v − (1−

∫
(vG)).

Then the polynomials Av− (A0+
∫
(vF )) and A− (A0u+u

∫
(vF )) belong to

the integral ideal generated by P , Pu and Pv.

Proof. Applying Lemma 18 on P and Pu implies that Av−(A0+
∫
(−vA·G+v(A·

G+ F )) = Av − (A0 +
∫
(vF )) is in the ideal generated by P and Pu. Applying

Lemma 18 on Pu and Pv implies that uv− 1 is in the ideal generated by Pu and
Pv. As a consequence, u(Av− (A0+

∫
(vF )))−A(uv−1) = A− (A0u+u

∫
(vF ))

is in the ideal generated by P , Pu and Pv. ut

5.1 Algorithms find_A_A0_G_F and update_exp

Algorithm 3 takes an integral polynomial P and tries to write it in the form
P = A−(A0+

∫
(A ·G+ F )) where A0 is in K, A,G,F are in K[X

∫
], and A and

G nonzero. When this succeeds, by Lemma 20, a new polynomial A − (A0u +
u
∫
(vF )) can be introduced where u and v are new indeterminates encoding

u = e
∫
G and v = e−

∫
G. Note the cases A = 0 and G = 0 are excluded since

they do not introduce any useful equations.

Example 14. Let P = x+y−2−
∫
x
∫
y−

∫
y
∫
y−

∫
y2. Algorithm 3 succeeds and

returns A = x+ y, A0 = 2, G =
∫
y and F = y2.

Algorithm 4 takes as input a set T ′ of integral polynomials and a set E
of triples (ui, vi, Qi). Algorithm 4 is used by Algorithm 6 which performs the
integral elimination. The set T ′ is the set of generators under construction. The
set E describes the exponential terms introduced so far, where ui (resp. vi)
encodes eQi (resp. e−Qi). Algorithm 4 mainly updates T ′ and E by finding new
interesting exponentials.

6 Integral Elimination Prototype

We present Algorithm 6 which performs the integral elimination. It follows a
classical Knuth-Bendix approach by completing a set T with critical pairs until
the set T stabilises. An originality of Algorithm 6 is that exponential terms are
detected and added during the process.

Our algorithm still has many flaws. We do not know whether it terminates
or not. The reduction part and the detection of critical pairs are not exhaustive.
Moreover, we miss a Composition-Diamond lemma like in [2,9]. As a conse-
quence, our algorithm may miss some equations.
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Algorithm 3: find_A_A0_G_F(P,X)

Input: a polynomial P in K[X
∫
]

Result: FAIL or (A,A0, G, F ) such that P = A− (A0 +
∫
(A ·G+ F )) with

A0 is in K, A,G, F are in K[X
∫
], and A and G nonzero.

begin
// We only deal with a simple case where A is in K[X]
try to write P as A− (A0 +

∫
Q) where A is a nonzero polynomial in K[X]

with no constant term, A0 is in K and Q is in K[X
∫
] ;

return FAIL if it is not possible ;
Write Q =

∑
αiMi with αi in K and Mi in X

∫
;

// Since {A} is a Gröbner basis (for the ordering <E), one can
decompose each Mi

⌊
0
⌉ in the following way:

Decompose each Mi
⌊
0
⌉ as Mi

⌊
0
⌉ = qiA+ ri where ri is the normal form of

Mi
⌊
0
⌉ w.r.t. {A} ;

G←
∑
αiqiMi

⌊
1+
⌉ ; F ←

∑
αiriMi

⌊
1+
⌉ ;

if G = 0 then return FAIL;
return (A,A0, G, F ) ;

end

However, our algorithm produces encouraging results (see Section 7). More-
over, it is to our knowledge the only implemented algorithm which performs
integral elimination. Our algorithm has been coded in Python using SymPy.

We terminate this section by running Algorithm 6 on System (2) by taking
F = {x−(x0+θ

∫
x), y−(y0+

∫
xy)}, X = x > y and K = Q(θ, x0, y0). We write

the polynomials of T , T ′, TE and C as rewriting rules. The triplets (ui, vi, Qi)
will be written as ui = eQi .

After Line 6, we have

T ′ :

{
θ
∫
x

R1−−→ x− x0∫
xy

R2−−→ y − y0
and X ′ = x > y.

After Lines 7 and 8, we have

TE :

{
x

R3−−→ x0u1

y0u2
R4−−→ y

,E :

{
u1 = eθ

∫
1

u2 = e
∫
x and X ′ = u2 > v2 > x > y > u1 > v1.

The set T ′ gets enlarged with TE at Line 9. After Line 10, we have

C :

{
x −→ x0 + θx0

∫
u1

−x0
∫
u1y −→ y0 − y.

After Line 11, T ′ is enlarged with the two new equations{
−θx0

∫
u1

R5−−→ x0 − x0u1
−x0

∫
u1y

R6−−→ y0 − y.
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Algorithm 4: update_exp(T ′, E,X)

Input: T ′ set of integral polynomials of K[X
∫
] ;

E set of triples (ui, vi, Qi) in X ×X ×K[X
∫
]

Result: TE , E
′

begin
TE ← ∅ ; E′ ← E;
for every P ∈ T ′ do

if find_A_A0_G_F(P,X) succeeds and returns (A,A0, G, F ) then
if
∫
G is different from all Qi then

// The following lines are based on Lemma 20, and
encodes ui = e

∫
G, vi = e−

∫
G

introduce two new variables uk and vk which are not in E′ ;
add (uk, vk,

∫
G) to E′;

Pexp ← A− (A0uk + uk

∫
(vkF ));

add Pexp to TE ;
end
return TE , E

′

end

After Lines 12 and 13 (u2 is reduced by R1 then R3), we have

E′ :

{
u1 = eθ

∫
1

u2 = e
1
θ (x0u1−x0)

and X ′ = x > y > u2 > v2 > u1 > v1.

Consequently, we have found the following two equations involving y and θ

y − y0u2 = 0 and y − y0 − x0
∫
u1y = 0.

7 Examples

We present two examples handled by our implementation in Python. Both ex-
amples take less than two minutes on a computer equipped with a single CPU
Ryzen 7 Pro 5875U. Note that the kind of integral I/O equations we obtain
seem suitable for parameter estimation [14] even if they contain complicated
exponential terms.

7.1 Intra-host Model of Malaria (taken from [1])
ẋ = 1− x− βxm
ẏ = βxm− y
ṁ = y −m− βxm

We assume that the only known indeterminate is y. As a consequence, we
want to eliminate x and m in order to obtain an I/O equation in y and β. The
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Algorithm 5: extend_X_with_exp(X,E)

Input: X = [x1, . . . , xn] ordered by x1 > · · · > xn ;
E = [(u1, v1, Q1), . . . , (um, vm, Qm)] where the ui and vi are indeterminates,
and where the Qi are integral polynomials over x1, . . . , xn, u1, v1, . . . , um, vm.
Result: a list X ′ ordered decreasingly of n+ 2m indeterminates obtained by

inserting the ui and vi in X at the rightmost positions such that each
ui (resp. vi) is greater than any variable in Qi.

begin
If needed, reorder E such that each Qi does not involve any uj or vj with
j > i. This can be done by a topological sort. ;
X ′ ← X ;
for i from 1 to m do

if Qi involves at least one indeterminate in X ′ then
find the highest indeterminate w in Qi w.r.t. the ordering on X ′ ;
insert ui and vi just before w in the list X ′ ;

else
insert ui and vi at the end of X ′;

end
return X ′ ;

end

differential I/O equation (computed with the Differential Algebra package [5])
is

4β2y3ẏ3 + 12β2y2ẏ4 + 12β2yẏ5 + 4β2ẏ6 − 12β2y2ẏ3

−24β2yẏ4 − 12β2ẏ5 + 12β2yẏ3 + 12β2ẏ4 − 8βy3ẏ2 + 4βy3ẏÿ

+βy3ÿ2 − 32βy2ẏ3 − 4βy2ẏ2
...
y + 3βy2ẏÿ2 − 37βyẏ4 − 6βyẏ3ÿ

−8βyẏ3 ...y + 6βyẏ2ÿ2 − 13βẏ5 − 2βẏ4ÿ − 4βẏ4
...
y

+4βẏ3ÿ2 − 4β2ẏ3 + 16βy2ẏ2 − 8βy2ẏÿ − 2βy2ÿ2 + 52βyẏ3

+10βyẏ2ÿ + 8βyẏ2
...
y − 6βyẏÿ2 + 34βẏ4 + 14βẏ3ÿ

+8βẏ3
...
y − 6βẏ2ÿ2 − 8βyẏ2 + 4βyẏÿ + βyÿ2 − 20βẏ3

−10βẏ2ÿ − 4βẏ2
...
y + 3βẏÿ2 + 4y3ẏ − 4y3ÿ + 20y2ẏ2 − 4y2ẏÿ

+4y2ẏ
...
y − 6y2ÿ2 − 2y2ÿ

...
y + 29yẏ3 + 11yẏ2ÿ + 12yẏ2

...
y

−5yẏÿ2 + yẏÿ
...
y + yẏ

...
y 2 − yÿ2 ...y + 10ẏ4 + 2ẏ3ÿ + 7ẏ3

...
y

−7ẏ2ÿ2 + ẏ2ÿ
...
y + ẏ2

...
y 2 − ẏÿ3 − 2ẏÿ2

...
y

+ÿ4 − 4y2ẏ + 4y2ÿ − 20yẏ2 − 4yẏ
...
y + 10yÿ2 + 2yÿ

...
y − 25ẏ3 − 25ẏ2ÿ

−10ẏ2 ...y + ẏÿ2 − 5ẏÿ
...
y − ẏ ...y 2 + 4ÿ3 + ÿ2

...
y = 0

(5)
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Algorithm 6: integral_elimination(F,X)

Input: F a set of polynomials in K[X
∫
] ;

X a list of known indeterminates ordered decreasingly.
Result: if the algorithm stops, it returns an encoding of exponentials E, and

a set of polynomials T that generates an ideal containing the one
generated by F . Moreover, F probably involves polynomials with
small leading monomials.

1 begin
2 T ← F ; E ← ∅ ; X ′ ← X ;
3 finished ← false ;
4 while not(finished) do
5 auto reduce T ;
6 T ′ ← T ;
7 TE , E

′ ← update_exp(T ′, E,X ′) ;
8 X ′ ← extend_X_with_exp(X,E′) ;
9 T ′ ← T ′ ∪ TE ;

10 C ← critical_pairs(T ′, X ′) ;
11 For each Q ∈ C, add reduce(Q,T ′, X ′) to T ′ if reduce(Q,T ′, X ′) 6= 0 ;
12 replace in E′ each (ui, vi, Qi) by (ui, vu, reduce(Qi, T

′, X ′)) ;
13 X ′ ← extend_X_with_exp(X,E′) ;
14 E ← E′ ;
15 if T = T ′ then finished ← true;
16 else T ← T ′;
17 end
18 return (E, T ) ;
19 end

After introducing u1 = e−t and v1 = et, Algorithm 6 computes

−βm0

∫
(u1y)− βx0

∫
(u1y)− 2βy0

∫
(u1y) + βm0x0

∫ (
u21
)

+βm0y0

∫ (
u21
)
+ βy0x0

∫ (
u21
)
+ βy20

∫ (
u21
)
+ β

∫ (
y2
)

−β
∫ (

u1y

∫
v1y

)
− β

∫ (
u1y

∫
v1

)
+ βx0

∫ (
u21

∫
v1y

)
+βy0

∫ (
u21

∫
v1y

)
+ βm0

∫ (
u21

∫
v1

)
+ βy0

∫ (
u21

∫
v1

)
+β

∫ (
u21

∫
v1y

∫
v1

)
+ β

∫ (
u21

∫
v1

∫
v1y

)
+ y0 − y −

∫
y = 0.

(6)

The prototype was not able to find any I/O equations without introducing ex-
ponentials. A non trivial step during the computation consists in introducing an
exponential thanks to an intermediate equation y +m = y0 +m0 −

∫
m which

produces y+m = (y0+m0)u1+u1
∫
v1y. This last equation permits to rewritem.

The same process also occurs for the x variable. Rewriting x and m terminates
the elimination process quickly.
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7.2 SIWR Model - Cholera (taken from [7])

Ṡ = µ− βISI − βWSw − µS + αR

İ = βWSW + βISI − γI − µI
Ẇ = ξ(I −W )

Ṙ = γI − µR− αR
y = κI

We assume that the only known indeterminate is y. As a consequence, we
want to eliminate S, I, W and R in order to obtain an I/O equation in y
and the parameters. A differential I/O equation is computed in [7] using the
StructuralIdentifiability package in Julia. This equation is huge and is a
sum of 209 350 terms containing y(t)10, ẏ(t)10, ÿ(t)8, ...

y (t)5, ....
y (t)4...

After introducing the following exponentials

– u1 = e−ζ
∫
1

– u2 = e−(α+µ)
∫
1

– u3 = e
−
(
µ
∫
1+

βI
κ

∫
y+

βW
κ

∫
y− βWκ e−ζ

∫
1(
∫
yeζ

∫
1)+ βWw(0)

ζ − βWw(0)

ζ e−ζ
∫

1
)

and v1,v2, v3 their respective inverses, Algorithm 6 computes 4 equations only
involving y. The biggest of them involves all parameters and is equal to

−αβIγ
∫ (

u3y

∫
u2v3

∫
v2y

)
− αβIκr0

∫ (
u3y

∫
u2v3

)
−αβW γκw0

∫ (
u1u3

∫
u2v3

∫
v2y

)
− αβW γζ

∫ (
u1u3

∫
u2v3

∫
v1y

∫
v2y

)
−αβW γζ

∫ (
u1u3

∫
u2v3

∫
v2y

∫
v1y

)
− αβW γζ

∫ (
u1u3

∫
v1y

∫
u2v3

∫
v2y

)
−αβWκ2r0w0

∫ (
u1u3

∫
u2v3

)
− αβWκζr0

∫ (
u1u3

∫
u2v3

∫
v1y

)
−αβWκζr0

∫ (
u1u3

∫
v1y

∫
u2v3

)
− βIκmu

∫ (
u3y

∫
v3

)
− βIκs0

∫
(u3y)

−βWκ2muw0

∫ (
u1u3

∫
v3

)
− βWκ2s0w0

∫
(u1u3)− βWκmuζ

∫ (
u1u3

∫
v1y

∫
v3

)
−βWκmuζ

∫ (
u1u3

∫
v3

∫
v1y

)
− βWκζs0

∫ (
u1u3

∫
v1y

)
+γκ

∫
(y)− κ2i0 + κmu

∫
(y) + κy = 0

Note that our I/O equations are much more compact than the differential ones.
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