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Abstract. Periodic recurrence is a prominent behavioural of many bio-
logical phenomena, including cell cycle and circadian rhythms. Although
deterministic models are commonly used to represent the dynamics of pe-
riodic phenomena, it is known that they are little appropriate in the case
of systems in which stochastic noise induced by small population num-
bers is actually responsible for periodicity. Within the stochastic mod-
elling settings automata-based model checking approaches have proven
an effective means for the analysis of oscillatory dynamics, the main idea
being that of coupling a period detector automaton with a continuous-
time Markov chain model of an alleged oscillator. In this paper we address
a complementary aspect, i.e. that of assessing the dependency of oscilla-
tion related measure (period and amplitude) against the parameters of
a stochastic oscillator. To this aim we introduce a framework which, by
combining an Approximate Bayesian Computation scheme with a hybrid
automata capable of quantifying how distant an instance of a stochastic
oscillator is from matching a desired (average) period, leads us to iden-
tify regions of the parameter space in which oscillation with given period
are highly likely. The method is demonstrated through a couple of case
studies, including a model of the popular Repressilator circuit.

Keywords: Stochastic oscillators, Approximate Bayesian Computation, Param-
eter estimation, Hybrid Automata Stochastic Logic, Statistical Model-Checking.

1 Introduction

Oscillations are prominent dynamics at the core of many fundamental biological
processes. They occur at different level and concern different time scales, rang-
ing from ion channels regulated transmission of intercellular electrical signal
driving the heartbeat (with period in the order of one second), to intracellular
calcium oscillations triggering glycogen-to-glucose release in liver cells (with pe-
riods ranging from few seconds to few minutes [3(]), to gene-expression regulated
circadian cycle (with typical period of roughly 24 hours).

Mathematical modelling and computational methods have proved fundamen-
tal to gain a better understanding of the complexity of the mechanisms that
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regulate oscillations [22]. Although continuous-deterministic models (i.e. ODEs)
are more often considered in the literature of biological oscillators, with systems
characterised by low population numbers (e.g., genetic circuits responsible for
circadian rhythms), discrete-stochastic models are more appropriate [24]: when
few molecules are involved the stochasticity of the system becomes important
resulting in noisy periodic behavior. Understanding the effect that an oscillator’s
parameters have on the quality of the oscillations is a relevant research problem.

Contribution. We introduce a methodology for calibrating stochastic models
that exhibit a noisy periodic dynamics. Given a parametric stochastic oscilla-
tor the methodology allows to identify regions of the parameter space with a
positive probability of matching a given target oscillation period. This entails
integrating formal means for noisy periodicity analysis within a parameter infer-
ence approach, more specifically, integrating a period distance meter (formally
encoded as a Hybrid Automaton) within an Approximate Bayesian Computation
scheme. Given some period-related requirements (e.g. mean value and variance
of the oscillation period) the trajectories sampled from the oscillator are classed
through the distance period meter leading us to the approximation of the cor-
responding posterior distribution, that is, to the identification of the region of
the parameter space that are more likely to comply with the considered period-
related requirements.

Paper organisation. The paper is organised as follows: in Section E we overview
the background material our approach relies upon, that includes an overview of
HASL model checking and of ABC algorithms. In Section E we introduce our
approach for calibrating stochastic oscillators w.r.t. to the oscillation period.
The method is then demonstrated through experiments presented in Section H.
Conclusive remarks and future perspective are discussed in Section f.

1.1 Related work

Temporal logic based analysis of stochastic oscillators. The analysis of
oscillatory behaviour entails two complementary aspects: determining whether
a model exhibits recurrent patterns (detection) and assessing relevant period-
icity indicators (e.g. period and amplitude of oscillations). In the continuous-
deterministic settings these can be achieved through a combination of mathe-
matical approaches including structural analysis of the corresponding ODE sys-
tem and stability analysis of its steady-state solutions [22]. As those approaches
clearly do not apply in the discrete-stochastic settings researchers progressively
started looking at alternatives such as the adaptation of model checking to the
analysis of periodicity [ll]. Detection of sustained oscillations through model
checking requires identifying temporal logical formulae that single out infinite
cyclic (non-constant) behaviour. Seminal ideas introduced for (non-probabilistic)
transition systems models [18€] and further developed in [§] included Computa-
tional Tree Logic (CTL) [19] qualitative specifications such as

EG((Xi =k) = EF(X; #k)) N ((Xi # k) = EF(X; = k))) (1)
AG(((Xi = k) = EF(X; # k) AN (X # k) = EF(X; = k))) (2)
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which encode infinite alternation by demanding that for “at least gne path” @)
or for “all paths” (B) of a given model a state condition X; = k¥ can be met
and then left (and, inversely, whenever it is not met X; # k it is possible to
eventually meet it) infinitely often. In the stochastic, continuous_time Markov
chains (CTMCs), settings the Continuous Stochastic Logic (CSL) [2] counterpart
of (f) leads to the following qualitative probabilistic formulae (introduced in [§]):

Poi((Xi = k) = Pso(Xi # k) A((Xi # k) = Pso(X; =k))) (3)

which identifies those states of a CTMC for which the probability of outgoing
paths that infinitely alternate between X; = k and X; # k states adds up to
1. If formulae such as (E) can be used to rule out CTMCs that do not oscillate
sustainably (as they contain at least an absorbing state), they fall short w.r.t.
effectively detecting sustained oscillators as they are satisfied by any ergodic
CTMC regardless whether it actually exhibits sustained oscillations. The prob-
lem is that, in the stochastic settings, a logical characterisation such as (B) is too
weak to allow for distinguishing between models that gather probability mass
on actual oscillatory paths (of given amplitude and period) from those whose
probability mass is concentrated on infinite noisy fluctuations which do not cor-
respond with actual oscillations. Further developments included employing the
probabilistic version of the linear time logic (LTL) [2§] to characterise oscillations
based on a notion of noisy monotonicity [5]: although an improvement w.r.t. to
the limitation of the CSL based characterisation of periodicity this approach still
fails to satisfactorily treat the oscillation detection problem.

Automata-based analysis of stochastic oscillators. To work around the
limited suitability of temporal logic approaches Spieler [31] proposed to employ
a single-clock deterministic timed automata (DTA) as noisy period detector. The
idea is that, through synchronisation with a CTMC model, such DTA is used to
accept noisy periodic paths described as those that infinitely alternate between
crossing a lower threshold L, and a higher threshold H (hence corresponding to
fluctuations of minimal amplitude H—L) and by imposing that such fluctuations
should happen with a period falling in a chosen interval [tg”", ty?] (with H, L,
t;“m and ¢'** being parameters of the DTA). The issues that CSL detector for-
mulae such as (B) suffer from are overcome, as by properly settings thresholds L
and H the DTA rules out non-oscillating ergodic CTMC models. The detection
procedure boils down to computing the probability measure of all CTMC paths
that are accepted by the DTA which is achieved through numerical procedures
(requiring the construction of the CTMC x DTA product process).Spieler’s orig-
inal idea has then further evolved by resorting to the more expressive hybrid
automata as detectors of periodicity [6,[7]. This allowed, on one hand, to account
for more sophisticated oscillation related indicators such as the variance (other
than the mean value) of the period of a stochastic oscillator and also to develop
an alternative, peaks detector, automaton which, differently from Spieler’s period
detector, does not depend on the chosen L and H thresholds.

! the population of species i is k € N
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Parametric verification of stochastic models. Parametric verification of
a probabilistic model is concerned with combining parameter estimation tech-
niques with stochastic model checking, i.e. with studying how the stochastic
model checking problem for a property & is affected by the parameters 6 upon
which a probabilistic model My depends. A number of approaches have been
proposed in the literature such as [15], in which a bounded approximation of
parameter space fulfilling a CSL [2] threshold formula is efficiently determined
through an adaptation of uniformisation, or also [17,23] and, more recently, a
novel ABC-based method [27] that is based on observations even solves param-
eter inference and statistical parameter synthesis in one go.

The framework we introduce in this paper, on the other hand, tackles the esti-
mation problem in stochastic model checking and is in line with the works of Bor-
tolussi et al. [14], where the so-called smoothed model checking (Smoothed MC)
method to estimate the satisfaction probability function of parametric Markov
population models is detailed. The goal here is to obtain a good estimate of
the so-called satisfaction probability function of the considered property @ w.r.t.
to model’s parameter space ©. In our case we rely on hybrid automata-based
adaptations of Approximate Bayesian Computation (ABC) schemes [L1,[12] to
estimate the satisfaction probability function, similarly to [26] where ABC algo-
rithms are combined with statistical model checking to approximate the satis-
faction function of non-nested CSL reachability formulae.

2 Background

We briefly overview the notion of chemical reaction network (CRN) models, of
Hybrid Automata Stochastic Logic (HASL) model checking and the Approxi-
mate_Bayesian Computation (ABC) scheme for parameter estimation that Sec-
tion P relies on.

Chemical Reaction Network and discrete-stochastic interpretation.
We consider models that describe the time evolution of biochemical species
X1, Xo,... which interact through a number of reactions Ri, Rs,... forming
a so-called chemical reaction network (CRN) expressed as a system of chemical
equations with the following form:

n k- n
. — . ki + v
Rj.ZainZHZainl
=1 1=1

where a;; (a;;-), are the stoichiometric coefficients of the reactant (product),
species and k; is the kinetic constant of the j-th reaction R; of the CRN. We
assume the discrete stochastic interpretation of CRNs models, i.e. species X;
represent molecules counting (rather than concentrations) hence models consist
of countable states z = (z1,...xz,) € N” representing the combined populations
count while the state transitions consist of time-delayed jumps governed by a
probability distribution function. In case of Exponentially distributed jumps the
underlying class of models is that of continuous-time Markov chains (CTMCs),
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conversely in case of generically distributed jumps we refer to underlying class of
models as of discrete event stochastic process (DESP). A path of a DESP model

. o . ¢ ¢ t
is a (possibly infinite) sequence of jumps denoted o = x° —°0> x! —11> z2 —22> .
R R R

with 2 being the i-th state, ¢; € Rs( being the sojourn-time in the i-th state and
R being the reaction whose occurrence issued the (i+1)-th jump. Notice that
paths of a DESP are cddldg (i.e. step) functions of time (e.g. Figure P). A DESP
depend on a p-dimensional vector of parameters 6 = [0q,...,6,] € © C RP.
which, in the context of this paper, affect the kinetic rate of the reaction chan-
nels. For 8 € @ C RP we denote My the corresponding DESP model. Given My
we let Path(My) denote the set of paths of My. It is well known that a DESP
model My induces a probability space over the set of events 2°%"(Me) where
the probability of a set of paths E € 2F°#"(Mo) ig given by the probability of their
common finite prefix [3]. For My an n-dimensional DESP population model, we
denote dom(My) its state space, and dom;(My) the projection of dom(My)
along the i*" dimension 1<i < n of My. For ¢ a path of an n-dimensional My
we denote o; its projection along the i-th dimension.

LHA EXPR.
A Z

conf: € HASL
width: & "l MODEL

CHECKER

Discrete Event
Stochastic Process

My

[Z—6,Z+6]

Fig. 1: HASL-SMC schema: sampled paths are filtered by a LHA and the ac-
cepted ones used for a confidence interval estimate of the target measure.

2.1 HASL model checking

The procedure for tuning stochastic oscillators we introduce in the remainder
relies on the HASL statistical model checking (SMC) framework. We quickly
overview the basic principles of HASL-SMC referring the reader to the litera-
ture [4] for more details. HASL-SMC is a framework for assessing properties of
stochastic model expressed by means of a linear hybrid automaton (LHA). It
consists of an iterative procedure which takes 3 inputs (Figure [I): a parametric
DESP model My, a LHA A, and a target expression denoted Z and outputs
a confidence interval estimation of the mean value Z of the target measure. At
each iteration the procedure samples a path o € Path(My x A) of the product
process My x A (whose formal semantics is given in [4]), that means that a path
o € Path(My) is sampled and synchronised on-the-fly with A leading to either
acceptance or rejection of ¢. In the synchronisation process, relevant statistics
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of the simulated path are computed and are used to define the target measure
Z of interest (see [10]). This let HASL-SMC be a very expressive formalism that
allows for sophisticated signal-processing-like analysis of a model.

Synchronisation of a model with a LHA. The semantics of the synchronised
process M x A naturally yields a stochastic simulation procedure which is imple-
mented by the HASL model checker. For the sake of space here we only provide
an intuitive (informal) description of such synchronisation based on the example
given in Figure Pl An LHA consists of a set of locations L (with at least one initial
and one final location) a set of real-valued variables V' whose value may evolve,
according to a flow function which map each location to a (real-valued) rate

of change to the variables, during the sojourn in a location. Locations change

through transitions denoted [ 2BV 1 where v is an enabling guard (an in-

equality built on top of variables in V'), E’ is either set of events names (i.e. the
transition is synchronously traversed on occurrence of any reaction in E’ occur-
ring in the path being sampled) or § (i.e. the transition is autonomously traversed
without synchronisation) and U are the variables’ update. A state of My x A is
a 3-tuple (s,l,v), with s the current state of My, I the current location of .4 and

v € RIVI the current values of A’s variables. Therefore if o : s -5 $1 BN S9...
€1 €9
is a path of My the corresponding path o x A € Path(Mjy x A) may be
o
ox A (s1,v) Ly, (s1,11,11) Tl) (s1,l2,1v2) Lz, (s2,13,v3) ... where, the se-
el €2

quence of transitions e; and e; observed on o is interleaved with an autonomous
transition (denoted £) in the product process: i.e. from state (s1,!1, 1) the prod-
uct process jumps to state (s1,l2,v2) (notice that state of My does not change)
before continuing mimicking o.

FEzample 1. Figure E depicts an example of synchronisation between a path of
a toy 3-species, 3-reactions CRN model (left), with a 2-locations LHA (right)
designed for assessing properties of it. The LHA locations are [y (initial) and Iy
(final) while its variables are V' = {¢,x1,n2} with t a clock variable, 21 a real
valued variable (for measuring the average population of A) and ny an integer
variable (for counting the number of occurrences of the Ry reaction). While in [y
the value of variables evolves according to their flow, which is constant and equal
to 1 for clock ¢, while is given by the current population of A for x; (therefore
x1 measures the integral of population A along the synchronising path). The
synchronisation of a path o with A works as follows: A stays in the initial

location [y up until at ¢ = 4 the autonomous transition the synchronisation with

. gt=4,{x1/=4
o ends as soon as the autonomous transition [y M) {1 becomes enabled

(guard t = 4 gets true) hence is fired (by definition autonomous transitions have
priority over synchronised transitions). As long as ¢t < 4 the LHA is in y where

it synchronises with the occurrences of the reactions of the CRN model: on

R1},t<4, .
occurrence of Ry the M x A transition [y LMJF—}» lo (synchronised on

event set {R;}) is fired hence increasing the counter nq, whereas on occurrence

ALL\{R1},t<4,0
—

of any other reaction transition [y lo (synchronised on event
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M A

{R1},t<4,{na++}

R, :A+B % 2B
Ry: B+ C 5 2C
Ry:C+AX1% 24

ALL\{R1},t<4,0

synchronisation of M and A

10 T
9l

#A (poy

8
7
6

5
4l
3
2

1
0

time
path of M. o :(1,2,3) 2% (2,2,2) =% (3,2,1) = (2,3,1) 25 (1,4,1)
- R3 R3 Ry Ry
corresponding path of M x A.
o x A:((1,2,3),1,[0,0,0]) %i ((2,2,2),10,[0.5,0.5,0]) iRi ((3,2,1),10,[2,3.5,0])

T (23,1),00,18,6.5,11) 22 (1,4, 1), 10, [3.5,7.5,2]) =% ((1,4,1), 1, [4,8/4,2])
1 1

Fig. 2: Example of synchronisation of a CRN model with a LHA.

set ALL \ {R;}, where ALL denotes all reactions of the CRN) fires without
updating any variable. Finally on ending the synchronisation with ¢ variable
x1 is update to x1/4 which corresponds to average population of A observed
over the time interval [0, 4]. Such a LHA can therefore be used (through iterated
synchronisation with a sufficiently large number of trajectories) for estimating
the confidence interval of random variables such as the “average population of
A” as well as the “number of R; occurrences” observed over time interval [0, 4].
An example of synchronisation between a path ¢ consisting of 2 occurrences of
Rs (at t = 0.5, t = 2.0 respectively) followed by 2 occurrences of Ry (at ¢t = 3.0
and t = 3.5 respectively) and for which (Ao, By, Co) = (1,2,3) is assumed as
the initial state is depicted at bottom of Figure . The synchronised path shows
the combined evolution of the model’s state, the LHA location and the value of
LHA variables. Notice that when synchronisation ends (I; is reached) variable
x1 is assigned with 8/4 which indeed is the mean population of A along o until
t=4.

2.2 Approximate Bayesian Computation

The framework for tuning of stochastic oscillators we present in the remainder re-
lies on the integration of HASL-based measurements within the class of Bayesian
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inference methods known as Approximate Bayesian Computation (ABC) [25,29].
Generally speaking statistical inference is interested with inferring properties of
an underlying distribution of probability (in our case fy) based on some data
observed through an experiment y..,. Bayesian inference methods, on the other
hand, rely on the Bayesian interpretation of probability, therefore starting from
some prior distribution 7(.), which expresses an initial belief on the distribution
to be estimated over the parameters domain ©, they allow for computing the
posterior distribution m(0|yeszp), that is, the target probability distribution over
O based on the observed data yesp. Formally, in Bayesian statistics, the posterior
distribution is defined by:

— p(yemp|a)7l'(9)
Ty D(Yeupl0)m(07) dOY

7 (0lYeap)

where p(.|0) denotes the likelihood function, that is, the function that measures
how probable y is to be observed given the model’s parameters 6. An inherent
drawback of Bayesian statistics is in that, by definition, the posterior distribution
relies on the accessibility to the likelihood function p(yeszp|@) which, particularly
for complex models, may be too expensive to compute or even intractable. ABC
algorithms have been introduced to tackle this issue, i.e. as a likelihood-free alter-
native to classical Bayesian methods (we refer to [25,29] for exhaustive surveys
of ABC or rejection-sampling methods). The basic idea behind the ABC method
is to obtain an estimate, denoted Tapc,e, of the posterior distribution 7(8|yesp)
through an iterative procedure through which, at each iteration, we draw a pa-
rameter vector # from a prior, i.e. § ~ w(.) , we simulate the model, and we
keep the parameter vector if the corresponding simulation is close enough to the
observations according to a threshold e. These selected parameters are samples
from mapc,. and approximates the posterior distribution: the smaller the €, the
better the approximation. The chosen value of € is crucial for the performance of
ABC algorithm: a small € is needed to achieve a good approximation, however
this may result in high rejection rate leading to cumbersome computations. To
overcome this issue, more elaborate algorithms were proposed, like ABC-SMC
algorithms [9,20].

3 ABC-HASL method for tuning oscillators

We introduce an approach for exploring the parameters space of stochastic oscil-
lators so that a given oscillatory criteria, e.g., the mean duration of the oscillation
period, is met. The approach is based on the Automata-ABC procedure described
in Section . The overall idea is to provide one with the characterisation of
some linear hybrid automaton capable of assessing oscillation related measures
and to plug in the Automata-ABC scheme so that it can effectively be applied
to the analysis the effect the model’s parameters have on the oscillations. We
start off with an overview of preliminary notions necessary for understanding
the functioning of the automata for oscillation related measures.
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3.1 Characterising of noisy periodicity

The mathematical notion of periodic function (i.e. a function f : RT™ — R for
which 3¢, € R such that V¢t € RY, f(¢t) = f(t+1,), with ¢, being the period) is
of little use in the context of stochastic models as paths of a stochastic oscillator
are noisy by nature (e.g. Figure B-left) hence will have (unless in degenerative
cases) zero probability of matching such strict notion of periodicity.

)‘\ MHHM n AHAhthn“h ﬂﬂ”HJ‘fL

Fig.3: A noisy periodic trajectory (left) and the corresponding partition depen-
dent characterisation of noisy period realisations (right).

Therefore to take into account the noisy nature of stochastic oscillators we
resort to a less strict notion of noisy periodicity [31].

Definition 1 (noisy periodic trajectory). For My an n-dimensional DESP
population model let L, H € N, L < H, be two levels establishing the partition
dom;(My) = low U mid U high with low = [0,L), mid = [L,H) and high =
[H,0). A path o € Path(My) is said noisy periodic w.r.t the ith dimension,
and the considered L, H induced partition of dom;(My) if the projection o; visits
the intervals low, mid and high infinitely often.

H/L-crossing points. Given a noisy periodic trace 04 we denote 7, ( 7;1),
the instant of time when o4 enters for the j-th time the low (high) region.
T, = U7, (resp. Th = U;Tj¢) is the set of all low-crossing points (reps. high-
crossing points). Observe that T| and T4 reciprocally induce a partition on each
other. Specifically T, =U. T} where T} is the subset of T) containing the k-th
sequence of contiguous low-crossing points not interleaved by any high-crossing
point. Formally Ty = {7y, ..., Ta1n) |38 =1y < Twrp < Tils Ty, < Tkt )}
Similarly T} is partitioned T} = U, Tyt where T4 is the subset of T containing
the k-th sequence of contiguous high-crossing points not interleaved by any low-
crossing point. For path o4 in Figure § (right) we have that T) =T | UT» UT5, . ..
with TLL = {Tll«? T2¢}7 TQL = {Tg¢}, T3¢ = {T4¢}, while TT :TlTUTQTUTgT ... with
Tiy={m11}, Tor={721}, T35+ ={13+}. Based on H/L crossing points we formalise
the notion of period realisation for a noisy period path.
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Definition 2 (k*"noisy period realisation). For o4 a noisy periodic trajec-
tory with crossing point times T| = Up>1T}y) , respectively Ty = Up>1Ty4, the
realisation of the k'™ noisy period, denoted Ly, is defined as tp, =min(T(p),) —

Figure E (right) shows an example of period realisations: the first two period
realisations, denoted pl and p2, are delimited by the mid-to-low crossing points
corresponding to the first entering of the low region which follows a previous
sojourn in the high region and their duration (as per Definition P]) is t,, =
T3, — T1) Trespectively t,, = 74 — 73;. Notice that the time interval denoted
as p0 does not represent a complete period realisation as there’s no guarantee
that ¢ = 0 corresponds with the actual entering into the low region. Definition
correctly does not account for the first spurious period p0. Relying on the notion
of period realisation we characterise the period average and period variance of a
noisy periodic trace. Observe that the period variance allows us to analyse the
regularity of the observed oscillator, that is, a “regular” (‘irregular”) oscillator
is one whose traces exhibit little (large) period variance.

Definition 3 (period average). For o4 a noisy periodic trajectory the period
average of the first n€N period realisations, denoted t,(n), is defined as t,(n)=
LS 1 tp,, where t,, is the k-th period realisation.

Observe that for a sustained oscillator, the average value of the noisy-period,
in the long run, corresponds to the limit ¢, = lim,,_, t,(n).

Definition 4 (period variance). For o4 a noisy periodic trajectory the period
variance of the first n € N period realisations, denoted sfp (n), is defined as
s%p (n) = - >0 (tp, — tp(n))?, where t,, is the k-th period realisation and

t,(n) is the period average for the first n period realisations.

Based on the period average and variance we now introduce a notion of distance
of noisy periodic path from a target mean period value. We will employ such
distance in the HASL-based adaptation of the ABC method for inferring the
parameters of an oscillator.

Definition 5 (distance from target period). For g4 a noisy periodic tra-
jectory and t_p(Obs) € Rso a target mean period duration we define the distance

of o4 from t;(Obs) w.r.t. the first n€N period realisations as
© i (obs) 52 (n)
_ _ _ £ (n) — & tp
dist(oA,n,tp(Obs)) = dist(t,(n), s (n),tp(Obs)) = min(‘ p(n)_ P |, -
13 tp(obs) tp(obs)

(4)
where t,(n) (sfp (n)) denotes the mean value (the variance) of the first n periods
detected along o4 (as per Def. @ and Def. )

% tp, could alternatively be defined as t,, = min(T (1)) — min(Tky), that is, w.r.t.
crossing into the high region, rather than into the low region. It is straightforward
to show that both definitions are semantically equivalent, i.e., the average value of
tp, measured along a trace is equivalent with both definitions.
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Notice that distance (H) establishes a form of multi-criteria selection of param-
eters as both the mean value and the variance of the detected periods are con-
strained. For example with a 10% tolerance (i.e. € = 0.1 in ABC terms) only the
parameters 8 € © that issue a relative error (w.r.t. the target mean period) not
above 0.1 are selected.

3.2 An automaton for the distance from a target period

— (obs)
We introduce a LHA named A%,  (Figure H) for assessing the distance (as per

Definition f|) between the mean period measured on paths of DESP oscillator

(

My and a target period duration ¢, %) The automaton consists of three main

At—p (obs)

E(n<N),{na=A} L<na<H

Z ,
Lt 7N

E,(n<N Atop=0){na=A} E,(n<N).{top:=1,n4=A} high

E,(n=—1Atop=1), {n++,t:=0,top:=0
A=
E.(0<n<1Atop=1), {n++,top:=0
ty:=f(tp,n),tp :=0,na=A}
E,(2<n<N Atop =1), {n++,top:=0
Zp::f(tp,n),stp =9(fi, tpn), by :=0,na=A}

=p

E,(n<N),
{na=A}

s “19)ps1p

“
14
‘(v

1

d, '}

(sq0)

f, (n=N), »
d::dist(tp,s%r,tp ’

(

Fig.4: Aper: an LHA for selecting noisy periodic traces (with respect to an
observed species A) related to partition low = (—o0o, L], mid = (L,H) and
high = [H, +00).

locations low, mid and high (corresponding to the regions of the partition
of A’s domain induced by thresholds L < H). Its functioning is as follows:
processing starts in either of the 3 state (which are all initial) depending on
the initial state of the oscillator (population of oscillating species A is stored in
na which is initialised through autonomous transitions before unfolding of path
o begins). Detection of one period realisation (as of Definition P|) correspond
with the completion of a loop from low to high and back to low locations. The
analysis of the simulated trajectory ends by entering location end as soon as
the N-th period has been detected. Table ayreport about some of the variables

— (obs
(see [[10] for the complete list) that AjZ,  uses to store relevant statistics of
the simulated path. Variable d is updated with the computed distance (as per
Definition H) on detection of the N-th period.
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name|domain update definition description
n N increment counter of detected periods
tp R>o0 reset duration last period
— = tp. n+tt .
tp R>o f(@pitp,n) = Pob period mean
2 2 7 n—1 .2 | (p—tp)° : :
Stp R>o |g(st,, tp,tp,n) = n=5 - 8¢, + ~2—F period variance
(00 /sE, . .
dp R>o m1n(”{p(+s)7 W) distance from target period

=(obs)
Table 1: Variables of the A2,  automaton.

3.3 HASL-ABC method for tuning oscillators

To calibrate the period of noisy oscillators we adapt the HASL-based version of
the ABC method [12] so that it operates with A, automaton.

Algorithm 1: Rejection sampling HASL-ABC Algorithm

Require: (My)pco parametric DESP, 7 prior,
N: number of particles, e: tolerance level, Ay, distance period LHA
Ensure: (G(i))lgigN drawn from 75 5
fori=1:N do
repeat
0~
d' ~ (dp, Aper) x Mo
until d’ < e
00 «— ¢
end for

Algorithm ﬁ] describes the general HASL-based version of the ABC method.
Further from the usual arguments of the ABC scheme (i.e. a parametric model
My, a prior distribution over its parameters, the target number of particles IV
and the level of tolerance €) it also takes as input an HASL automaton A and
an expression Y representing a distance measure computed over the paths of
the product process My X Ape,. The output is the N values 6 of accepted
parameters which represent samples from the posterior distribution. By using

automaton A;,”e:?bb) and the distance from the target period t_p(ObS) as expression
Y = last(d) (with d as in Table E]) the algorithm computes an estimation of the
posterior w.r.t. to target period. In order to improve the convergence we also
developed a sequential version of the HASL-based ABC (see [L3]).

4 Case studies

We demonstrate the HASL-ABC procedure for tuning stochastic oscillator on
two examples of stochastic oscillators.
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A synthetic 3-ways oscillator. The CRN in (E) represents a model of synthetic
sustained oscillator called doping 3-way oscillator [L6].

R:A+B 9B Ry:B+C 2 20 R3:C+A %524

Ri:Da+C =5 Da+A Rs:Dp+A-2 Dg+B Rg:Dc+B 2 De+C

()
It consists of 3 main species A, B and C forming a positive feedback loop
(through reactions Ry, Ra, R3) plus 3 corresponding invariant (doping) species
D4, Dg, Dc whose goal is to avoid extinction of the main species (through re-
actions Ry, Rs5, Rg). It can be shown that the total population is invariant and
that the model yields sustained noisy oscillation for the 3 main species, whose
period and amplitude depend on the model’s parameters r 4, rp and r¢ (as well
as on the total population). Figure f (left) depicts a simulated trajectory show-
ing the oscillatory character of species A together with the period realisations
induced by a given partition (L = 300 and H = 360). The corresponding loca-
tion changes of the synchronised automaton Ay, as the trajectory is unfolded
are depicted in different colors.

Oscillatory trajectory of Doping3wayOscillatorModel

A (low loc)

450 A (mid loc)
+ A lhighloc)
n

Y A /\

350 010

Species A

300 A A A A s A A

n=30 n=00, n=10 n=20 n=30/ n=40 n=50 005 |
250 ‘
000
2 3
rA

Fig.5: The noisy periodic character of species A (left) and the posterior distri-
bution for a single-parameter estimation experiment of the 3-ways oscillator.

Experiment 1. This is a 1-dimensional experiment in which we considered
So = (A(), BQ7 Co, (DA)(), (DB>0, (Dc)()) = (333, 333, 333, 10, 10, 10) as initial
state, we fixed the rate constants rp = rc = 1.0, and estimated the posterior
distribution for r 4 considering a uniform #/(0, 10) prior and a target mean period
t;,(Obs) = 0.01. For the automaton A,., the noisy-period dependent partition we
considered is L = 300 and H = 360 while for each trajectory we observed N =4
periods. For the ABC algorithm we used N = 1000 particles and considered a
20% tolerance (e = 0.2). Figure B (right) shows the resulting automaton-ABC
posterior (histogram and Kernel density estimation) . We observe that 1) the
posterior support being included in the prior’s [0.0,4.0] C [0,10.0], we have re-
duced the parameter space to a subset where it is probable to obtain trajectories

408

406

04
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with a mean period of 0.01 (relative to a 20% tolerance) and 2) the posterior
has only one mode, which is quite sensible, as having fixed rp and r¢c, one
would expected the mean period duration being directly linked to the kinetics
of reaction R;, which is only parametrised by r4. Experiment 2. This is a 3-
dimensional version of the previous experiment in which we considered the same
uniform prior for the 3 parameters ra, 7y, 7c ~ U(0,10). Figure E (left) shows
the correlation plot matrix of the resulting automaton-ABC posterior, where
each one-dimensional histogram on the diagonal of plot matrix represents the
marginal distribution of each parameter, whereas the two-dimensional marginal
distribution are given in the upper triangular part of the matrix (e.g., plot on po-
sition (1,3) refers to the marginal distribution p(ra4, rc|t;,(0bs))) and the scatter
plots of the two-dimensional marginal distributions are in the lower triangular
matrix. Based on the diagonal plots we observe that most of the parameters that
results in a period close to the target one (t;,(Obs) = 20) are within the support
[0,4] x [0,3] x [0,4] and, furthermore the particles form a 3D parabolic shape
since the three two-dimensional projections have a parabolic shape, according to
plots in the upper triangular part of Figure j. Also, one can notice that for each
two-dimensional histogram, the area near the point (1,1) is a high probability
area, which is consistent with the previous one-dimensional experiment.

. = 1%
200 -
< 5 100
100 r 50
o | L o RN
0 2 4 6 8 0 5000
- 5
- 2 150
3 100
2 [ 8
1 50
0 | ——

0
12 3 4 5 6 01 2 3 4 5

4

400
300 40 200

200 X

100 \ \
0 2 4 6 8 123 45 6 2 4 6 0 5000 01 2 3 45 12 3 4 5
rA B rC [+

rC
bonaa
n
Eynww
et
8838

o

3-way oscillator repressilator

Fig. 6: Correlation plots of posterior distribution obtained through Aper-ABC
for the 3D experiment of 3-way oscillator (left) and repressilator (right).

Repressilator. We consider an infinite-state model (E) of a synthetic genetic
network known_as Repressilator developed to reproduce oscillatory behaviours
within a cell [21]. It consists of 3 proteins P, Py, P; forming a negative feed-
back loop, with P; repressing P’s transcription gene G, P, repressing Ps’s
transcription and so on.
R1:Gy -Cl% G1+ My R2:Gs -CE% Go + My R3:G3 ::i) Gs + M3
RA:M S My+P Ry My B My+ Py R6:Ms 2 Ms+ Py
R7:M; = R8: Mz = () R9: M3 = ()
R10: Py =0 R11: P, 50 R12: Py 50

(6)
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Following [21] we assumed mass-action dynamics with a common rate con-
stant 3 for translation reactions (R4, Rs, Rg) and 1 for species degradation (R7 to
Rj12). Conversely transcription reactions (R1, Ry, R3) are assumed to follow a Hill
function dynamics given by the follow parameter definitions r = ﬁ + v,
ry = ﬁ + ag and r3 = ﬁ + ag, where n is the Hill coefficient,
« is related to transcription growth and g is the parameter related to the
minimum level of transcription growth. The parameter space is 4-dimensional
with § = (o, 8,m,09) € R* Each parameter affects the resulting oscillation
Experiment 1. This is a 3-dimensional experiment in which we considered
Sp = ((]\41)07 (MQ)O, (Mg)o, (131)07 (PQ)(), (Pg)g) = (0, 07 O, 5, 0, 15) as initial state,
we fixed ap = 0, and estimated the posterior distribution for the remaining
parameters considering the following priors: a ~ U(50,5000), 8 ~ U(0.1,5.0),
n ~ U(0.5,5.0). The target mean period was t;,(ObS) = 20, while the noisy-period
dependent partition was set at L = 50 and H = 200. For the ABC algorithm
we used N = 1000 particles and considered a 10% tolerance (e = 0.1). Figure
(right) shows the correlation plot of the resulting automaton-ABC posterior. We
observe that with this setting the Repressilator oscillations are most sensitive to
parameter n as its marginal posterior is much narrower than that of o and g (i.e.
varying n induces more instability than a and ). More experiments, including
a 4 dimensional one, are illustrated in [10]

5 Conclusion

We introduced a methodology that given a parametric, discrete-state stochastic
oscillator model, allows for inferring regions of the parameter space that exhibit a
positive probability to match a desired mean oscillation period. Such framework
relies on a formal characterisation of noisy periodicity which is assessed through
a meter encoded by a hybrid automaton. Parameter inference is then obtained
by plugging of such an automaton-meter within a ABC scheme. The added value
of such a rather cumbersome formalism is in terms of automation, generality and
separation of concerns. The period meter automaton, being completely config-
urable, can straightforwardly be generated automatically, therefore avoiding an
annoying overhead to the end user. This combined with the fact that the frame-
work inherently takes care of synchronising the model with the automaton results
in a highly configurable and generic approach, one in which different oscillation
tuning criteria can easily be taken into account as long as they can be encoded
into a corresponding meter automaton. Notice that alternative approaches that
are not based on formal methods, such as e.g., those based on auto-correlation
analysis, although effective, are not easily adaptable as they require the imple-
mentation of a customised, hard-coded procedure where periodicity indicators
are obtained by offline analysis of trajectories sampled from the model.

Future developments include the integration of oscillation-amplitude amongst
the criteria for tuning oscillators through a peak detector automaton [f].
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