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(a) 2-d discrepancy of consecutive pairs of dimensions. (b) 4-d discrepancy of consecutive quads of dimensions.

Figure 1: We show discrepancy curves for all consecutive pairs (a) and quadruplets (b) of the first 48 dimensions of our sampler
vs Sobol’. Our sampler exhibits lower discrepancy for these dimensions. While we used transparency to show superimposed
curves, our discrepancy curves in 2-d show almost exactly the same low-discrepancy behavior, guaranteed by our (0, 2)-sequence
and progressive properties, resulting in an apparent single line.

ABSTRACT
The convergence of Monte Carlo integration is given by the unifor-
mity of samples as well as the regularity of the integrand. Despite
much effort dedicated to producing excellent, extremely uniform,
sampling patterns, the Sobol’ sampler remains unchallenged in
production rendering systems. This is not only due to its reason-
able quality, but also because it allows for integration in (almost)
arbitrary dimension, with arbitrary sample count, while actually
producing sequences thus allowing for progressive rendering, with
fast sample generation and small memory footprint. We improve
over Sobol’ sequences in terms of sample uniformity in consecutive
2-d and 4-d projections, while providing similar practical benefits –
sequences, high dimensionality, speed and compactness. We base
our contribution on a base-3 Sobol’ construction, involving a search
over irreducible polynomials and generator matrices, that produce
(1, 4)-sequences or (2,4)-sequences in all consecutive quadruplets
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of dimensions, and (0, 2)-sequence in all consecutive pairs of di-
mensions. We provide these polynomials and matrices that may
be used as a replacement of Joe & Kuo’s widely used ones, with
computational overhead, for moderate-dimensional problems.
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1 INTRODUCTION
Integrating functions is at the core of many computer graphics –
and other – systems. Perhaps the most common example in our
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community is the case of physically-based rendering, that involves
integrating the rendering equation. This is most often performed
through Monte Carlo integration, involving the evaluation of the
integrand at random locations, or quasi-Monte Carlo integration,
evaluating the integrand for pseudo-random well-located samples.
Quasi-Monte Carlo integration benefits from Koksma-Hlawka’s
inequality: the convergence rate of the Monte Carlo integration
estimator improves with the integrand regularity, and with samples
uniformity. While the regularity of the integrand itself can be some-
what controlled via other variance reduction techniques, we focus
on samples uniformity that does not require knowledge of the inte-
grand. Over the years, much work has been devoted to producing
extremely uniform samples that effectively improve Monte Carlo
convergence rate, e.g., by optimizing samples according to various
criteria. Still, Sobol’ sequences with Joe and Kuo initialization ta-
bles [Joe and Kuo 2008; Sobol’ 1967] and Owen scrambling [Owen
1995] remain used in many production rendering systems and sim-
ulators, despite suboptimal sample uniformity. This is due to many
other advantages offered by this approach that are often overlooked
by other researchers. First, Sobol’s method produces a sequence of
arbitrary length: this allows for progressively refining a rendering
by adding samples while maintaining good Monte Carlo conver-
gence. In many cases, competing methods only offer point sets that
do not allow for progressive rendering, or provide sequences only
up to a finite predetermined number of samples. Second, it works
in (almost) arbitrary dimensions while many approaches remain
low-dimensional or even 2-d. Third, samples are fast to generate,
with a compact representation (a small binary matrix per dimension
and low-order polynomial binary coefficients), while many other
approaches require complex optimizations or storing the precom-
puted points themselves. Nevertheless, other production renderers
may only use the first few dimensions of Sobol’ sequences due to
their “increasingly poor distributions in pairs of higher dimensions”
(regarding Renderman [Christensen et al. 2018]).

Based on this observation, we seek a way to improve Sobol’
samples uniformity on consecutive 2-d and 4-d projections while
preserving their advantages. Sobol’ samples uniformity is guaran-
teed in part by construction, but also via appropriate parameter
search. We leverage both aspects. First, we benefit from the addi-
tional degrees of freedom offered by a construction in base 3 rather
than base 2 [Paulin et al. 2022]. Second, we benefit from other de-
grees of freedom offered by a search over irreducible polynomials
instead of primitive polynomials [Faure and Lemieux 2016]. The
relatively small number of irreducible polynomials still allows us
for a comprehensive search, and allows us for finding solutions
that provide the following desirable properties, that will be detailed
in this paper. We show one quadruplet of dimensions (or quad
hereafter, for short) that is a (1, 4)-sequence with (0, 2)-sequences
pairwise projections, proven by construction. This provides ideal
uniformity as measured in terms of discrepancy. We provide 11
additional quads of dimensions with the similar properties but only
numerically verified up to nearly 59k samples. All quads we present
are compatible: their dimensions do not overlap, and we use them
together to form higher-dimensional sequences that posess (t, s)-
sequence properties guaranteed by the Sobol’ construction, in up
to 48 dimensions. We show that the discrepancy of our sequence

is improved over Sobol’ on these consecutive projections. In ex-
change, a base-3 construction prevents the use of fast xor-based
binary arithmetic, and can incur minor additional costs.

2 RELATEDWORK
In its simplest form, quasi-Monte Carlo integration consists in
numerically estimating an integral as

𝐼 =

∫
[0,1]𝑠

𝑓 (𝑥)𝑑𝑥 ≈ 1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖 ) = 𝐼 ,

with points𝑋 = {𝑥𝑖 }𝑖=1..𝑛 uniformly spread over the unit 𝑠-dimensional
cube. In this form, the error is bounded by Koksma-Hlavka’s theo-
rem:

|𝐼 − 𝐼 | ≤ 𝑉𝑓 𝐷
∗ (𝑋 ) ,

where 𝑉𝑓 is Hardy and Krause’s variation of 𝑓 measuring its regu-
larity, and 𝐷∗ (𝑋 ) is the star discrepancy of point set 𝑋 measuring
its uniformity.

Much work has been devoted to improving the uniformity of
generated point sets for improving the integration error.

Point sets. Point sets have been numerically optimized specifi-
cally for improving uniformity. Optimal transport has been used
as a measure of uniformity to minimize [De Goes et al. 2012] but
this has remained limited to 2 or 3-dimensions. A sliced optimal
transport variant allows to reach about 20 dimensions [Paulin et al.
2020; Salaün et al. 2022]. By instead optimizing the variance of
the function obtained by summing Gaussians centered at each
sample, Ahmed et al. [Ahmed et al. 2022] reach excellent unifor-
mity, demonstrated up to 8 dimensions. Closer to our work, the
cascaded construction of Paulin et al. [2021] based on alternating
Sobol’ process with bit reversal, guarantees a perfect uniformity
of the point set for projections onto consecutive pairs of dimen-
sions in terms of discrepancy. The discrepancy of the first nested
100 dimensions is numerically optimized, although this does not
guarantee a low discrepancy behavior (see next for a discussion on
low-discrepancy sequences). All these approaches offer excellent
uniformity, which translates into excellent numerical integration
convergence, through Koksma-Hlavka’s theorem but also other
theorems bounding integration error with different kinds of discrep-
ancy measures [Harman 2010], optimal transport metric [Paulin
et al. 2020], or Fourier spectra behavior [Pilleboue et al. 2015]. Their
main drawback is that they do not allow for progressive evaluation
of the integral: once a numerical estimate has been obtained using
a set of samples, refining this computation to improve its accuracy
is not directly possible. This requires throwing away the previous
result and producing a new completely different point set with more
samples. Recently, Ahmed et al. [2023] introduced a method that
allows converting certain point sets to sequences up to a finite
predetermined number of samples. It is unfortunately limited to
two dimensions, and using this process independently on different
pairs of dimensions would deteriorate high-dimensional uniformity
(as illustrated in Sec. 5 with ZeroTwo and Padded samplers). It is
therefore not the solution we are looking for in higher dimensions.

Low-discrepancy sequences (LDS). Matrix-based constructions
allow to produce sequences of points using finite field arithmetic.
Among others, the Sobol’ sequence [Sobol’ 1967] has been most
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widely used. It produces points via modulo 2 matrix-vector multi-
plications, where the per-dimension binary triangular matrix is in
part determined as a preprocess by optimizing generators (the first
𝑒 × 𝑒 upper left part of these matrices, where typically 𝑒 ∈ [1, 18]
depending on the dimension) and the rest of each matrix is ob-
tained using a recursion involving a linear combination of previous
columns weighted by the coefficients of a well-chosen primitive
polynomial. While all these generators and primitive polynomials
were carefully optimized, the obtained uniformity has remained
limited (see Fig. 1 and 4) due to several constraints: the base 2 con-
struction offers limited degrees of freedom and the set of primitive
polynomials is small. However, they satisfy the important prop-
erty of (𝑡, 𝑠)-sequences, described hereafter. A point set of 𝑛 = 𝑏𝑚

samples within the 𝑠-dimensional unit hypercube, where 𝑏 is some
base (𝑏 = 2 for Sobol), is said to be a (𝑡,𝑚, 𝑠)-net if all subintervals
of volume 𝑏𝑡/𝑛 of the form Π𝑠

𝑗=1 [𝑎 𝑗𝑏
−𝑑 𝑗 , (𝑎 𝑗 + 1)𝑏−𝑑 𝑗 ] for all 𝑗

contain 𝑏𝑡 samples, with 0 ≤ 𝑎 𝑗 < 𝑏𝑑 𝑗 , and 𝑎 𝑗 , 𝑑 𝑗 ∈ N0. Intuitively,
𝑡 = 0 enforces high uniformity since it requires many small in-
tervals each to contain a single point, while larger 𝑡 values only
enforce larger intervals to contain more points. A (𝑡, 𝑠)-sequence is
a sequence that enforces the (𝑡,𝑚, 𝑠)-net property for all possible
values of𝑚.

An advantage of (𝑡, 𝑠)-sequence is that their discrepancy —and
hence integration error— is bounded as a function of 𝑡 [Niederreiter
1992] as:

𝑁𝐷∗
𝑛 (𝑋 ) ≤ 𝑏𝑡

𝑠−1∑︁
𝑖=0

(
𝑠 − 1
𝑖

) (
𝑚 − 𝑡

𝑖

) ⌊
𝑏

2

⌋
, (1)

in base 𝑏 ≥ 3 (a case of interest for our work ; bounds of similar
forms exist for 𝑏 = 2 [Niederreiter 1992]). It is thus of crucial
importance to try and reduce the value of 𝑡 in low-discrepancy
sequences since this bound scales as 𝑏𝑡 .

In MatBuilder [Paulin et al. 2022], an integer linear program is
designed to satisfy various user constraints on generative matrices.
Contrary to Sobol’, these matrices are directly optimized, without
resorting to polynomials, and they show that base-3 constructions
offer significantly improved results due to the largely increased
degrees of freedom. We take inspiration from this work to optimize
Sobol’ generators in base 𝑏 = 3. However, for a set of𝑚 ×𝑚 op-
timized matrices, properties are only enforced up to 𝑏𝑚 samples.
They hence cannot strictly produce “sequences” (where proper-
ties ought to hold for an arbitrary number of added points). We
call these samplers “progressive” as in Ahmed et al. [2023]. In the
work of Faure and Lemieux [2016], a Sobol’ construction based on
irreducible polynomials instead of primitive polynomials is used
for higher degrees of freedom. This construction has subsequently
been used to numerically optimize generators in base 2 [Faure and
Lemieux 2019]1. We also benefit from their result, seeking solutions
for a subset of irreducible polynomials.

Other constructions have been proposed to produce low-discrepancy
sequences, notably benefitting from the extremely high uniformity
of low-dimensional Sobol’ sequences. The ZeroTwo approach pre-
sented in PBRT [Pharr et al. 2023] uses the first two dimensions of

1At the time of writing the result of this optimization is not publicly available. The
authors have graciously provided us with six generators. We selected the best of these
generators according to our criteria for comparison purposes

the Sobol’ sequence, and repeat them along with a random permuta-
tion of points to produce higher dimensional point sets. While pair-
ing randomly loses the sequence property, shuffling indices instead
with an Owen permutation allows to remain a sequence [Burley
2020; Helmer et al. 2021]. The first four dimensions can similarly
be used [Burley 2020]. While these produce sequences with per-
fect projections on consecutive pairs of dimensions, their higher-
dimensional behavior is not LDS anymore and loses benefits for
general higher-dimensional integration problems [Helmer et al.
2021].

3 GENERALIZED SOBOL’ SEQUENCES
For completeness, this section describes the extension of Sobol’
sequences as described in the work of Faure and Lemieux [2016].

The construction is based on the following recipe. The general
idea is to decompose the index of a point (say, point number 𝑖) in a
chosen prime base𝑏: i = (𝑖0, 𝑖1, ..., 𝑖𝑚−1)𝑏 =

∑𝑚−1
𝑘=0 𝑖𝑘𝑏

𝑘 and use this
decomposition to produce point coordinates for each dimension.
For a given dimension 𝑑 , a matrix𝐶𝑑 with coefficients in {0, .., 𝑏−1}
is built such that the coordinate of that point for that dimension
is obtained with the help of the matrix-vector multiplication j =
𝐶𝑑 i𝑇 . The 𝑑’th coordinate of point 𝑖 is then expressed as 𝑥𝑖,𝑑 =∑

𝑘 𝑗𝑘𝑏
−𝑘−1.

The power of Sobol’ construction lies in the way matrices 𝐶𝑑
are obtained and the properties they guarantee on the generated
points. Matrices 𝐶𝑑 are upper triangular, with a non-zero diagonal.
Its upper left 𝑒𝑑 ×𝑒𝑑 block consists of a set of 𝑒𝑑 · (𝑒𝑑 −1)/2 degrees
of freedom ; these values are optimized in order to achieve good
properties on the resulting points, as in the work of Joe and Kuo [Joe
and Kuo 2008]. These first 𝑒𝑑 columns are called generating vectors.
Typically, 𝑒𝑑 increases with the dimension 𝑑 (𝑒1 = 1 while 𝑒100 = 9
in the work of Joe and Kuo [Joe and Kuo 2008]).

Each column {𝑉𝑛}𝑛=𝑒+1..𝑚 of 𝐶𝑑 is obtained as a linear combi-
nation of its 𝑒𝑑 previous columns, plus a shifted column (see Fig. 2).
The coefficients in this combination are given by the coefficients of
a polynomial 𝑝𝑑 (𝑥) =

∑𝑒𝑑
𝑖=0 𝑎𝑖𝑥

𝑖 of degree 𝑒𝑑 :

𝑉𝑛 = �̃�𝑛−𝑒 −
𝑒∑︁
𝑖=1

𝑎𝑒−𝑖𝑉𝑛−𝑖 , (2)

where �̃�𝑛−𝑒 is a column vector consisting first of 𝑒 zero values, and
then the𝑚 − 𝑒 values of 𝑉𝑛−𝑒 (“𝑉[ (𝑒+1) :𝑒𝑛𝑑 ]”). Note that the entire
arithmetic is performed modulo 𝑏.

While in the initial work of Sobol’ these polynomials were taken
as primitive polynomials, Faure and Lemieux [2016] showed that
similar guarantees were obtained using a larger set consisting of ir-
reducible polynomials. Irreducible polynomials simply correspond
to polynomials that cannot be divided by other polynomials other
than themselves and 1 (similarly to prime numbers), while a primi-
tive polynomial of degree𝑚 in base 𝑏 carries the additional restric-
tion that the smallest positive integer 𝑛 such that it divides 𝑥𝑛 − 1
is 𝑛 = 𝑏𝑚 − 1.

In particular, it is shown that for 𝑠 matrices {𝐶0, ...,𝐶𝑠−1} ob-
tained using irreducible polynomials of degrees {𝑒0, ..., 𝑒𝑠−1}, the
value for 𝑡 is bounded by 𝑡 =

∑𝑠−1
𝑑=0 (𝑒𝑑 − 1) [Faure and Lemieux

2016]. This in turn guarantees the low discrepancy of this sequence,
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Figure 2: Example construction of a Sobol’ matrix with a
degree 𝑒 = 3 polynomial 𝑝 (𝑥) = 𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0. To build
column 𝑉6, a linear combination of the 𝑒 previous columns
𝑉3, 𝑉4, 𝑉5 is used, weighted respectively by −𝑎0, −𝑎1 and −𝑎2
(modulo 𝑏), and an additional shifted copy of column𝑉3. This
shifted copy, here called𝑉3 is such that its first 𝑒 components
are 0 and the 𝑖’th value of 𝑉3 (𝑖 > 𝑒) is the 𝑖 − 𝑒’th value of 𝑉3.

though in practice, lower values of 𝑡 may be found for specific gen-
erating vectors. This larger choice of polynomials (over primitive
polynomials) allows to reduce the value of 𝑡 because the degree of
available polynomials grows much more gracefully. Similarly, the
choice of a basis 𝑏 = 3 is guided, in our work, by the added degrees
of freedom hinted at by Paulin et al. [2022] as well as the slower
growth of irreducible polynomials degree.

As an example, the first few primitive polynomials in base 𝑏 = 3
are 𝑥 + 1, 𝑥2 + 𝑥 + 2, 𝑥2 + 2𝑥 + 2, 𝑥3 + 2𝑥 + 1, while the first few
irreducible polynomials in base 𝑏 = 3 are 𝑥 , 𝑥 + 1, 𝑥 + 2, 𝑥2 + 1.
Similarly, the first few irreducible polynomials in base 𝑏 = 2 are
𝑥 , 𝑥 + 1, 𝑥2 + 𝑥 + 1, 𝑥3 + 𝑥 + 1. For primitive polynomials in base 3
and for irreducible polynomials in base 2, the fourth polynomial
is already cubic while for base-3 irreducible polynomials it is only
quadratic.

While in the case of𝑏 = 2, Joe and Kuo have extensively searched
for good generating vectors with primitive polynomials [Joe and
Kuo 2008] and Faure and Lemieux for irreducible polynomials [Faure
and Lemieux 2019], such work has not been conducted for base 3
irreducible polynomials. The generating vectors we propose give
desirable properties and benefit from Faure and Lemieux’ advances
on Sobol’ sequences theory.

4 OPTIMIZING GENERATING VECTORS
BASED ON QUADS

We first list the properties obtained by our sequences. The first 4
dimensions exhibit the following exceptional properties:

• (a) The first pair of dimensions (0, 1) is (0, 2)-progressive (up
to𝑚 = 100)

• (b) The second pair (2, 3) is a (0, 2)-sequence (up to an infinite
number of points)

• (c) Pairs (0, 2) and (0, 3) are (0, 2)-sequence (ditto)
• (d) Pairs (1, 2) and (1, 3) are (1, 2)-sequence (ditto)
• (e) The quad (0, 1, 2, 3) is a (1, 4)-sequence (ditto)

The other quads (4𝑖, 4𝑖 + 1, 4𝑖 + 2, 4𝑖 + 3) exhibit the following
good properties:

• (f) The first pair (4𝑖, 4𝑖+1) is (0, 2)-progressive (up to𝑚 = 10,
i.e., up to 310 ≈ 59𝑘 points)

• (g) The second pair (4𝑖 + 2, 4𝑖 + 3) is (0, 2)-progressive (ditto)
• (h) The quad (4𝑖, 4𝑖+1, 4𝑖+2, 4𝑖+3) is atmost (2, 4)-progressive
(ditto)

The resulting sequence is a (𝑡, 𝑠)-sequence, for some 𝑡 , for any
subset of dimensions – this is granted by design due to Sobol’
properties.

4.1 The first 4 dimensions
Low-dimensional problems are very common in practical applica-
tions, which justifies the search for exceptional properties. Fortu-
nately, the availability of low-order irreducible base-3 polynomi-
als allows us to exhibit such properties. For these first 4 dimen-
sions, we use the first 4 irreducible polynomials in that order:
𝑥, 𝑥2 + 1, 𝑥 + 1, 𝑥 + 2. The four corresponding generating ma-

trices are respectively [1],
[
1 1
0 1

]
, [1], [2]. Reordering polynomials

in this way allows for consecutive pairs of dimensions to remain
(0, 2)-sequences. With these initializations, polynomial x generates
the identity matrix, and x+1 generates the Pascal matrix modulo 3.

Properties (b), (c), (d) and (e) are immediately obtained by the
theorem of Faure and Lemieux [2016] linking 𝑡 with the sum of poly-
nomial degrees (for any generating matrices). Property (e) should
be compared to Sobol’ first four dimensions whose 𝑡 value is 𝑡 = 3
(with 𝑏 = 2) while we obtain 𝑡 = 1 (with 𝑏 = 3). Property (a) has
been numerically tested up to𝑚 = 100. We conjecture that it forms
a (0, 1)-sequence due to the self-similarity of the matrix involved,
though we could not provide formal proof of that. For all practical
purpose, the 𝑡 value is 0 up to 3100 samples.

4.2 The other quadruplets
Contrary to the work of Faure and Lemieux [2019], we do not keep
all irreducible polynomials to form higher dimensional problems,
but we instead exhibit specific good irreducible polynomials with
good generating matrices. Higher degrees irreducible polynomials
make sequence properties harder to satisfy, so we numerically
evaluate properties (f–h) only up to matrix sizes𝑚 = 10 (310 ≈ 59𝑘
points). The value of 𝑡 for a given set of matrices {𝐶𝑖 }𝑖=1..𝑘 and
given point set size 𝑏ℓ can be computed as the value for which the
matrix formed by combining the first 𝑟𝑖 rows and first ℓ columns
of all matrices, with

∑
𝑖 𝑟𝑖 = ℓ − 𝑡 has (full) rank ℓ − 𝑡 in𝐺𝐹 (𝑏), the

Galois Field of order 𝑏 [Niederreiter 1992; Paulin et al. 2023]. This
is numerically tested for all ℓ ≤ 𝑚 = 10, and we thus obtain a 𝑡ℓ
value – a 𝑡 value per point set size.

We test all pairs of irreducible polynomials for up to the first
196 polynomials (of degrees 1 to 6), and for each pair, we test ∼10
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million random generating vectors. We filter and select a subset of
pairs that are (0, 2)-progressive, i.e., 𝑡ℓ = 0 ∀ℓ ∈ {1..𝑚}. We then
exhaustively combine all pairs of generating vectors for dimensions
of the form (𝑖, 𝑗) for a given 𝑖 against all other pairs of generating
vectors for dimensions (𝑘, 𝑙). For these quads (𝑖, 𝑗, 𝑘, 𝑙), we only
keep those whose maximum value of 𝑡ℓ for all ℓ is at most equal
to 2. When multiple solutions exist for the same quad, we finally
keep the one for which this maximum value for 𝑡 = 2 occurs for
the largest value of ℓ . We remove all pairs involving dimension 𝑖

and as well as the pair (𝑘, 𝑙) from the list of pairs to evaluate, and
iterate until no satisfactory quad is found.

This process allows to exhibit 11 quads of dimensions, that, when
combined with the first excellent quadruplet, effectively produces
progressive point sets of up to 48 dimensions.

5 NUMERICAL EXPERIMENTS
We analyze our sequences in terms of their 2-d projections, in terms
of higher-dimensional discrepancies, integration error on synthetic
integrands and integration error for rendering applications. Exten-
sive experiments can be found in our supplementary document for
all pairs and quads of dimensions.

5.1 Base-3 implementation
In our context, all arithmetic over 𝐺𝐹 (3) simply amounts to stan-
dard integer arithmeticmodulo 3 (this is the case in𝐺𝐹 (𝑏)whenever
𝑏 is prime, and as long as we do not require computing inverses).
Base-2 arithmetic offers significant speed, due to bitwise operators.
Notably a base-2 decomposition of a number can be obtained us-
ing bit shifts, and a modulo-2 bitwise addition amounts to a xor
between two numbers. In contrast, a base-3 Sobol’ implementation
requires decomposing a number in base 3, and performing matrix-
vector multiplications and vector shifts, which reduces its efficiency.
We rely on lookup tables to efficiently decompose in base 3 rather
than slower successive divisions. A commonly used speedup in fast
base-2 implementations relies on Gray-code ordering [Antonov and
Saleev 1979]. We similarly benefit from this technique. Gray-code
ordering allows to obtain a coordinate of the next sample point
with a single column vector operation (instead of full matrix-vector
product). The idea is that a single (base-3) digit is altered between
two consecutive Gray-code indices, in such a way that, for a given
dimension, a single column of our matrix affects the corresponding
matrix-vector product.

For rendering applications, Owen scrambling allows to decor-
relate sequences used in different pixels, and could be used to pro-
duce screen-space blue noise error distributions [Heitz and Bel-
cour 2019]. Owen scrambling does not affect the value of 𝑡 , and
would not improve the uniformity of non-optimized projections
(see Fig. 14 in supplementary materials). Base-3 Owen scrambling
is required in our case, and is a trivial extension to base-2 Owen
scrambling [Owen 1995] which proceeds by recursively swapping
halves (and then quarters etc.) of each dimension. For each dimen-
sion separately, a ternary tree (instead of binary) is used to represent
digit permutations. The root of the tree indicates whether the most
significant digit of a point coordinate should be altered, and the
leaves indicate whether the least significant digit should be altered.
At each node of the tree, one permutation of the set {0, 1, 2} among

𝑏! = 6 pseudo-random permutations should be obtained or stored,
and applied to the corresponding digit. We obtain this permutation
by computing the tree’s node index, and use it to index a random
sequence. While similar in nature, the process in base 3 also incurs
additional cost compared to base 2 scrambling due to the lack of
bitwise operations.

We provide our base-3 implementations at https://github.com/
liris-origami/Quad-Optimized-LDS, and pseudo-codes in a supple-
mentary document.

5.2 2-d projections
We illustrate the uniformity of our sequences in all pairs of pro-
jections in Fig. 4 as compared to Sobol, ZeroTwo (the first two
dimensions of Sobol’ with random permutations), the ISN-dec LDS
sequence optimized by Faure and Lemieux [2019], the first four
projections of Sobol’ with random permutations as used by Bur-
ley [Burley 2020] for rendering, and the cascaded Sobol’ construc-
tion of Paulin et al. [Paulin et al. 2021]. The approach of Faure and
Lemieux [2019] results in more uniform projections for distant pairs
of dimensions while we improve uniformity on adjacent pairs of
dimensions. Adjacent pairs of cascaded Sobol’ appear more uniform,
but non-adjacent pairs are much less uniform. The ZeroTwo and
Padded Sobol’ (0123) approaches result in white noise behavior for
distant pairs of dimensions. Note that while we illustrate 2-d pro-
jections for 243 (resp. 256 in base 2) samples, behavior may change
for other sample counts. We guarantee 𝑡 = 0 for consecutive 2-d
projections and 𝑡 = 1 or 𝑡 = 2 for consecutive 4-d projections at
least for all sample counts until 𝑚 = 59, 049, but 𝑡 = 0 may be
occasionally achieved by our sampler and others as well for a given
sample count and pair of dimension. Also, 𝑡 = 0 in base 2 involves
a better uniformity than 𝑡 = 0 in base 3, as discrepancy generally
grows with 𝑏 (Eq. 1). While some pairs of non-optimized projec-
tions appear very non-uniform (e.g., dimensions (7,11)), their 2-d
discrepancy remains counterintuitively lower than that of white
noise (see Fig. 5 in supplementary materials). If such structures
need to be avoided, ZeroTwo or Padded Sobol’ remain good candi-
dates in consecutive 2-d or 4-d projections but at the cost of lower
convergence rate (see Sec. 5.3).

We evaluate the 2-d discrepancy and integration error for Gauss-
ian and Heaviside integrands of 2-d consecutive projections as the
number of samples increases. Fig. 3 (top) shows this data for two
pairs, while graphs for all consecutive pairs are shown in supple-
mentary materials. The supplementary materials also showcase
an example of discrepancy above 310 samples (up to 531k sam-
ples), and for sample counts different from powers of 3. Cascaded
Sobol’ [Paulin et al. 2021] offers best uniformity on consecutive
2-d projections as (0, 2)-net property is enforced by construction,
though their method does not result in a sequence. Aside from
cascaded Sobol’, as dimensionality increases, our approach offers
better uniformity and integration error over competitors, including
Faure and Lemieux [2019]. Fig. 1 (a) summarizes all 2-d discrep-
ancy curves on the same graph for our approach and Sobol’ for
comparison.

https://github.com/liris-origami/Quad-Optimized-LDS
https://github.com/liris-origami/Quad-Optimized-LDS
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Figure 3: Left to right. We show 2-d (top 2 rows) and 4-d (bottom 3 rows) discrepancy and integration errors for Gaussian and
Heaviside integrands, for selected subsets of dimensions (resp. first pair and first quad, pair (14, 15), quad (12, 13, 14, 15) and
dimensions(6,7,8,9)). While the dimensions (6,7,8,9) fall in-betwen two quads and were not optimized, its discrepancy and MSE
behaves as a typical 4-d low-discrepancy sequence, unlike those of the Zero-Two quad of the same dimensions. The first two
dimensions of Sobol’, Cascaded, and Zero-Two coincide. Exhaustive results are shown in supplementary materials.
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(a) Sobol’ (b) Faure-Lemieux (c) ZeroTwo

(d) Padded Sobol’ (0123) (e) Cascaded Sobol’ (f) Ours

Figure 4: We show 2-d projections of points for 256 = 28 or 243 = 35 samples of (a) the first 12 dimensions of Sobol’, (b) the
first 12 dimensions of Faure and Lemieux’s ISN-dec [Faure and Lemieux 2019], (c) the first two Sobol’ dimensions, repeated
with a random permutation of sample indices [Pharr et al. 2023], (d) the first four dimensions of Sobol’, repeated with
scrambling [Burley 2020], (e) the cascaded Sobol’ approach of Paulin et al. [Paulin et al. 2021] (not sequence) and our approach.
Here, orange squares display guaranteed (0, 2)-progressive or -sequence properties (note that 𝑡 = 0 has lower uniformity in our
base 3 than base 2 – see Eq. 1 ; we analyze discrepancy in Fig. 3). The green squares belong to optimized quads. Plot for row 𝑖

and column 𝑗 represents a projection over dimensions (𝑖, 𝑗).

5.3 4-d and higher-dimensional discrepancies
As our approach is based on 4-d quads, we similarly evaluate the
discrepancy behavior and integration error for consecutive quads.
This is shown in Fig. 3 (bottom) for selected two quads, and all
quads are shown exhaustively in supplementary materials with
comparisons. Fig. 1 (b) summarizes all 4-d discrepancy curves on
the same graph for our approach and Sobol’ for comparison.

In supplementarymaterials, we illustrate 6-, 8- and 12-dimensional
discrepancies in Fig. 7, 8 and 9. Zero-Two and Padded Sobol’ have
the same slope as white noise sampling due to the random pairing
of blocks of dimensions.

5.4 Rendering
We performed rendering experiments, in 6-d and 10-d. In the first
experiments shown in Fig. 5 (top two rows), the scenes only have
direct illumination. The first two dimensions are used for sampling

light sources and the next two dimensions for sampling the BRDF ;
a multi-sample MIS estimation is used to combine these estimators.
The next two dimensions are used to sample within each pixel. The
second experiment, shown in Fig. 5 (bottom row), adds one bounce
of indirect lighting, involving 4 additional dimensions. Here, the
first two dimensions are used for sampling within pixels, the next
two dimensions for sampling light sources, the next two dimensions
for sampling the BRDF (used both for MIS estimation of direct
lighting like in the 6-d case, and for generating an indirect ray if
the direct ray did not find a light source), the next four dimensions
are used similarly at the next light bounce (sampling light sources
and BRDF). In practice, dimension order did not significantly affect
results. For direct light only, we improve the rendering error over
other state-of-the-art samplers [Burley 2020; Faure and Lemieux
2019; Paulin et al. 2021; Pharr et al. 2023; Sobol’ 1967] on the simpler
scene (middle row), while in the more complex scene (top row),
Sobol’ with Owen scrambling, Faure and Lemieux’ and cascaded
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Figure 5: We show rendering experiments in 6-d (top two
rows) involving pixel sampling and MIS for direct lighting,
and in 10-d (bottom) additionally involving indirect lighting.
This result shows the importance of optimized 4-d unifor-
mity. We compare against White Noise, Sobol’ with Owen
scrambling, Cascaded Sobol’ [Paulin et al. 2021], ZeroTwo
involving the first two Sobol’ dimensions [Pharr et al. 2023],
Padded Sobol’ (0123) that involves the first four dimensions
of Sobol’ [Burley 2020], the irreducible base-2 Sobol’ table
ISN-dec of Faure and Lemieux [2019].

Sobol’ perform similarly to our method. In the case of indirect
light (bottom row), we perform better than ZeroTwo [Pharr et al.
2023] that involves the first two Sobol’ dimensions, and similarly
to the approach of Burley [2020] that involves the first four Sobol’
dimensions (padded Sobol’ (0123)). This underlines the importance
of uniformity on consecutive quads. Neither the padded Sobol’ of
Burley [2020] nor cascaded Sobol’ [Paulin et al. 2021] guarantee
higher dimensional uniformity, although they work remarkably
well on this example.

6 DISCUSSIONS AND CONCLUSION
We provide evidence for the existence of (0, 2)-progressive pairs of
dimensions in base 𝑏 = 3 when using irreducible polynomials in
Sobol’ construction [Faure and Lemieux 2016], that can be combined
to form (2, 4)-progressive quads. These quads allow for reducing
the discrepancy in higher-dimensional problems and effectively
reduce integration errors. We provide initialization tables in supple-
mentary materials for moderate dimensions only (48 dimensions,
as compared to the 10k dimensions of Joe & Kuo [2008] or 16,510
in the work of Faure and Lemieux [2019]). This limitation is not
fundamentally linked to our approach, but by computer power and
fine optimization of our unoptimized search implementation. The
base-3 construction requires a base-3 Owen scrambling for ren-
dering applications as well as modulo 3 arithmetic, which reduce

speed compared to efficient bitwise operations. It also implies that
sample counts of highest quality correspond to powers of 3, which
grows faster than more commonly used powers of 2. Finally, aside
from the first four dimensions, the only other criteria we enforced
concerned sample sizes of up to nearly 59k samples. While we do
not guarantee the best possible behavior for more than 59,049 sam-
ples and outside of the quadruplets of dimensions we optimized, a
reasonable uniformity is guaranteed due to Sobol’ construction that
enforces the (𝑡, 𝑠)-sequence property and Faure and Lemieux’s re-
sult bounding 𝑡 by a sum of polynomial degrees [Faure and Lemieux
2016].

Within the context of moderate-dimensional problems where
high uniformity in specific pairs of dimensions is desired, such as
expected from rendering applications, our sampler should provide
benefits for reducing integration error. We extensively tested our
sampler based on a discrepancy metric and synthetic integrands,
and offered preliminary experiments that exhibit such benefit in
practice. We believe our sampler can spur further research in low
discrepancy sampling.
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