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Abstract. The assimilation of data from Earth observation
satellites into numerical models is considered to be the path
forward to estimate snow cover distribution in mountain
catchments, providing accurate information on the mountain-
ous snow water equivalent (SWE). The land surface temper-
ature (LST) can be observed from space, but its potential to
improve SWE simulations remains underexplored. This is
likely due to the insufficient temporal or spatial resolution
offered by the current thermal infrared (TIR) missions. How-
ever, three planned missions will provide global-scale TIR
data at much higher spatiotemporal resolution in the coming
years.

To investigate the value of TIR data to improve SWE es-
timation, we developed a synthetic data assimilation (DA)
experiment at five snow-dominated sites covering a latitudi-
nal gradient in the Northern Hemisphere. We generated syn-
thetic true LST and SWE series by forcing an energy balance
snowpack model with the ERA5-Land reanalysis. We used
this synthetic true LST to recover the synthetic true SWE
from a degraded version of ERA5-Land. We defined differ-
ent observation scenarios to emulate the revisiting times of
Landsat 8 (16 d) and the Thermal infraRed Imaging Satel-
lite for High-resolution Natural resource Assessment (TR-
ISHNA) (3 d) while accounting for cloud cover. We repli-
cated the experiments 100 times at each experimental site to
assess the robustness of the assimilation process with respect
to cloud cover under both revisiting scenarios. We performed
the assimilation using two different approaches: a sequen-
tial scheme (particle filter) and a smoother (particle batch
smoother).

The results show that LST DA using the smoother reduced
the normalized root mean square error (nRMSE) of the SWE
simulations from 61 % (open loop) to 17 % and 13 % for 16 d
revisit and 3 d revisit respectively in the absence of clouds.
We found similar but higher nRMSE values by removing ob-
servations due to cloud cover but with a substantial increase
in the standard deviation of the nRMSE of the replicates,
highlighting the importance of revisiting times in the stability
of the assimilation performance. The smoother largely out-
performed the particle filter algorithm, suggesting that the
capability of a smoother to propagate the information along
the season is key to exploit LST information for snow mod-
elling. Finally, we have compared the benefit of assimilat-
ing LST with synthetic observations of fractional snow cover
area (FSCA). LST DA performed better than FSCA DA in
all the study sites, suggesting that the information provided
by LST is not limited to the duration of the snow season.
These results suggest that the LST data assimilation has an
underappreciated potential to improve snowpack simulations
and highlight the value of upcoming TIR missions to advance
snow hydrology.

1 Introduction

The seasonal snowpack plays a key role in many ecological
and hydrological processes worldwide (Barnett et al., 2005).
Due to its high albedo and insulating capabilities, the exten-
sive snow-covered area of the Northern Hemisphere influ-
ences the Earth climate system (Henderson et al., 2018). In
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mountain regions, the seasonal snowpack is also an important
source of runoff during the summer when the water demand
peaks. Hence, accurate knowledge of the snowpack condi-
tions has an important economic value (Sturm et al., 2017).
The snow cover is also a source of natural hazards such as
floods caused by rain-on-snow events or snow avalanches,
events that are expected to increase due to the impacts of cli-
mate warming (Ballesteros-Cánovas et al., 2018; Musselman
et al., 2018).

Despite its importance, monitoring the snowpack remains
challenging for both scientists and water management agen-
cies. The variable nature of the snowpack makes it chal-
lenging to deploy and maintain dense enough ground-based
monitoring networks (Kinar and Pomeroy, 2015). Therefore,
snow hydrologists have developed methods to take advantage
of satellite remote sensing since the beginning of the Landsat
programme (Rango and Martinec, 1979). Yet, the application
of remote sensing in snow hydrology remains hindered by
the lack of direct observations of the snow water equivalent
(SWE) in mountain regions (Dozier et al., 2016).

Numerical models allow for simulating many snowpack
state variables, including the SWE. However, their accuracy
is primarily constrained by the large uncertainty in the mete-
orological forcing (Raleigh et al., 2015). Recent studies have
suggested that data assimilation (DA) of remotely sensed
products is the path forward to estimate the spatial distri-
bution of relevant snowpack characteristics (Aalstad et al.,
2018; Charrois et al., 2016; Cortés and Margulis, 2017; Mar-
gulis et al., 2016; Smyth et al., 2020; Stigter et al., 2017).
Using DA techniques it is possible to fuse model simulations
and multiple remote sensing datasets to improve the snow-
pack simulations. In particular, the snow cover area has been
assimilated in many case studies due to its widespread avail-
ability (e.g. Baba et al., 2018; Alonso-González et al., 2021).
Yet, the extent of the snow cover provides no direct infor-
mation on the internal state of the snowpack and is blind to
snowpack changes when the pixel is fully snow covered (De
Lannoy et al., 2012).

The ice surface temperature (IST) is a key state variable for
simulating the snowpack evolution. Physically based snow-
pack models solve the energy balance equation iteratively
along the time dimension, estimating the IST at each time
step of the model (Essery, 2015; Liston and Elder, 2006). It is
also a key parameter to estimate the emitted energy as outgo-
ing long-wave radiation. The estimation of the IST allows for
detecting the occurrence of surface melting events, as when
the IST reaches 0 ◦C all the added energy is converted to
melt. Thus, assimilating IST may provide key information
about the timing of the melting events. Also, the assimilation
of the land surface temperature (LST) (i.e. the temperature of
the Earth surface independently of if it is snow covered) may
improve the snowpack simulations by different mechanisms.
The IST is physically bound to the melting point tempera-
ture, while once the snow melts, the LST can exceed 0 ◦C.
Thus the assimilation of the LST may indirectly provide in-

formation about the snow cover area too. Also, it should be
possible to improve the snow simulations by retrieving ther-
mal information when there is no sunlight, like during the
nighttime or during the polar night at high latitudes. A previ-
ous study has shown that IST DA could potentially improve
the surface ice mass balance simulations of the Greenland ice
sheet (Navari et al., 2016), fusing synthetic IST estimations
with the CROCUS snow model. On the other hand, previous
research has suggested few improvements in the SWE simu-
lations after assimilating LST simulations retrieved from the
Meteosat Second Generation (MSG) (∼ 6 km spatial resolu-
tion) in the Alps (Piazzi et al., 2019). However, the coarse
resolution of the LST products of MSG prevents its use in
complex terrain. Also, the rapid variation in LST at hourly
timescales can make it difficult to assimilate this variable us-
ing particle filters as done by Piazzi et al. (2018) and could
be addressed using different algorithms. Thus, more research
is needed to assess the potential of high-resolution LST DA.

The thermal imagery already available only offers coarse
resolution for the snow applications over complex terrain
(MODIS, Sentinel-3) or long revisiting times (Landsat). This
has probably prevented the study of the impact of LST DA,
although recent research has suggested that LST can pro-
vide useful information to retrieve internal snowpack prop-
erties (Colombo et al., 2019), a capability that can be ex-
ploited from satellites (Colombo et al., 2023). The availabil-
ity of high-spatiotemporal-resolution LST products will be
improved in the short term with the appearance of new satel-
lites, such as the French–Indian mission Thermal infraRed
Imaging Satellite for High-resolution Natural resource As-
sessment (TRISHNA) (Lagouarde et al., 2018). TRISHNA
is expected to provide surface temperature measurements at
60 m spatial resolutions every 3 d at the Equator, with an in-
creasing revisiting time towards the poles. Also, given the
agenda of the space agencies, high-resolution thermal in-
frared retrievals will be readily accessible in the near future,
including the Copernicus Land Surface Temperature Moni-
toring (LSTM) (Koetz et al., 2018), which will offer similar
observations to TRISHNA but with improved spectral, spa-
tial and temporal resolutions, and the Surface Biology and
Geology (SBG) satellite (Cawse-Nicholson et al., 2021) from
NASA, which will provide similar high-resolution thermal
infrared (TIR) images of the surface of the Earth. The combi-
nation of these three missions may eventually provide close
to bi-daily (day- and nighttime) high-resolution thermal in-
frared observations of the Earth surface. In this context the
objectives of this work are (i) to test the potential of the LST
to improve the snowpack simulations and (ii) to explore the
effect of increasing the temporal resolution of the observa-
tions.

A convenient approach to emulate future remote sensing
observations is to use an observing system simulation exper-
iment (OSSE). For example, Navari et al. (2016) assessed
the feasibility of integrating ice surface temperatures in a re-
gional climate model estimate of the Greenland ice sheet sur-
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Table 1. Geographical coordinates and elevation (m a.s.l.) of the
ERA5-Land centroids used in the study.

Centroid Longitude Latitude Elevation

Ny-Ålesund (Norway) 12.0◦ 78.9◦ 124
Tromsø (Norway) 19.8◦ 69.5◦ 647
Finse (Norway) 07.5◦ 60.6◦ 147
Gerlachovský štít 20.2◦ 49.2◦ 1479
(Slovakia)
Bigorre (France) 00.1◦ 42.9◦ 1843

face mass balance through an OSSE. Synthetic experiments
were also used to explore the potential of data assimilation
techniques in improving the snowpack simulations (Clark et
al., 2006; Revuelto et al., 2021; Smyth et al., 2019).

Here, we designed an OSSE to evaluate the benefit of fu-
ture remote sensing LST to simulate seasonal SWE. In this
experiment, synthetic LST and SWE data were generated in
several climatic regions. Synthetic LST data were assimi-
lated into a snowpack model under different cloud cover sce-
narios and with different satellite revisit times. The benefit
of assimilating LST was studied by comparing the posterior
(after assimilation) SWE to the synthetic SWE.

2 Data and methods

2.1 Synthetic observations

We selected five sites in snow-dominated regions of Europe,
spanning 40◦ latitude from the Pyrenees mountains to the
Svalbard archipelago. The sites were chosen approximately
every 10◦ latitude to sample different climatic influences.
The southern sites (Gerlachovský štít, Bigorre) are located
in mountain regions (Tatra, Pyrenees), Finse is located on
an elevated plateau (Hardangervidda), and Tromsø and Ny-
Ålesund are in the polar circle. Gerlachovský štít is in eastern
Europe, and its climate is influenced by its continental char-
acteristics; Tromsø and Ny-Ålesund exhibit obvious polar
climates, and Bigorre shows a montane climate with Mediter-
ranean influences.

We used ERA5-Land surface reanalysis data (∼ 9 km spa-
tial resolution) (Muñoz-Sabater et al., 2021) to force the
Flexible Snow Model (FSM2) (Essery, 2015) over 4 consec-
utive hydrological years from 1 September 2017 to 31 Au-
gust 2021. From this simulation, we retrieved the SWE and
LST time series, which were used as the synthetic truth. The
LST was exported at 13:00 local time, corresponding to the
foreseen TRISHNA overpass time. To mimic observational
noise, we added to the LST time series a Gaussian noise with
a mean of 0 and a standard deviation of 1.5 K. This stan-
dard deviation was chosen as an intermediate value between
the reported root mean square error (RMSE) obtained by the
comparison of Landsat 8 with in situ measurements of the

snow surface temperature (RMSE = 2.0 K) (Robledano et
al., 2022) and the expected performance of LST products de-
livered by the TRISHNA mission.

The synthetic true LST time series were downsampled
with a period of 16 and 3 d to emulate revisit times of Land-
sat 8 and TRISHNA respectively. We simulated the impact
of cloud cover on data availability by further removing val-
ues in the synthetic LST time series at random dates selected
from a uniform distribution. We defined four different cloud
cover scenarios with probabilities of 0 %, 25 %, 50 % and
75 %. Following the same strategy we generated synthetic
fractional snow cover area (FSCA) true observations to be as-
similated. The synthetic FSCA observations were degraded
by adding random Gaussian noise with a mean of 0 and a
standard deviation of 0.17 based on Aalstad et al. (2020).

For each site, we created a new degraded meteorological
forcing to run FSM2. First we averaged the ERA5-Land data
from the nearest nine cells (i.e. resampling the spatial reso-
lution from 10 to 30 km approximately). Then, we added au-
tocorrelated Brownian noise in 12 h time windows (the data
assimilation window of ERA5) using the standard deviation
of the variable itself (Supplement Fig. S1). We further per-
turbed the precipitation field after aggregation, dividing the
precipitation by 2. This strong perturbation was chosen to
emulate precipitation biases that are typically found in global
reanalyses and large-scale precipitation products (Beck et al.,
2019), potentially leading to a large underestimation of SWE
in mountain regions (Wrzesien et al., 2019). A similar value
has already been used in previous snow data assimilation ex-
periments (Deschamps-Berger et al., 2022).

2.2 Data assimilation experiments

The degraded meteorological forcing and synthetic LST
were used to feed the Multiple Snow Data Assimilation Sys-
tem (MuSA). MuSA is an open-source ensemble-based data
assimilation toolbox built around FSM2 (Alonso-González et
al., 2022). We used the same initial conditions to run FSM2
within MuSA (soil temperature profile, initial LST and ab-
sence of snow); therefore we did not perform a spin-up. To
emulate the differences between the reality and modelling
pipeline, we used a simplified parameterization scheme of
FSM2 in MuSA (Table 2). The assimilation experiments
were done using a particle batch smoother (PBS) (Margulis
et al., 2015) and a particle filter (PF). Smoother algorithms
are typically used to develop reanalyses, as all time series of
information are available, whereas filtering is used for oper-
ational forecasting where future observations with respect to
the analysis step are not available (Largeron et al., 2020). A
rigorous description of the algorithms, the underlying theory
and implementation details can be found in Alonso-González
et al. (2022).

We performed a final experiment in which we assimilated
fractional snow cover area (FSCA) using a PBS. This exper-
iment has been performed using exactly the same set-up as
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Figure 1. Main workflow of the OSSE.

for the assimilation of LST. This includes running the simula-
tions over the same geographical areas, using the same forc-
ing and cloud cover scenarios, as well as using a different
FSM2 parameterization to generate the synthetic truth and
MuSA. Using exactly the same set-up allows for a simple
comparison between the performance of assimilating LST
and FSCA.

The prior ensemble of FSM2 simulations was composed of
300 particles that were generated by perturbing the air tem-
perature (additive perturbation) and the precipitation (multi-
plicative perturbation). The perturbations were time invari-
ant and were randomly drawn from a normal distribution
of mean µ= 0 and standard deviation σ = 2 (temperature)
and a log-normal distribution with mean µ= 0.45 and stan-
dard deviation σ = 0.8 of the underlying normal distribution
(precipitation). These parameters were chosen to cover the
expected differences between the “true” forcing and the de-
graded forcing (Fig. S2) and were obtained by preliminary
trial-and-error tests. Both PF and PBS are very prone to col-
lapse. Although there are uncertainties in other variables,
keeping a limited number of dimensions helps to prevent the
collapse of the ensembles. In addition, not correcting for the
other variables introduces errors into the simulations, which
also helps to prevent the collapse of the ensembles. The ob-
servation errors prescribed for the synthetic true observations
were the same as those defined to generate the degradation
Gaussian noise.

The PF performs the analysis sequentially, i.e. each time
an observation occurs, and the PBS is a smoother; hence it
assimilates all the available observations in a single time win-

dow, propagating information from the observations forward
and backward in time. Here the assimilation time window
was defined as a hydrological year (i.e. one snow season). In
both the PF and PBS, prior weights of ensemble members
(particles) are updated based on the likelihood, i.e. a mea-
sure of the distance between the predictions of each parti-
cle and the observations. The posterior weights are then used
to estimate posterior statistics from the ensemble, typically
its weighted mean and weighted standard deviation. In the
case of the PF, we used the bootstrap resampling algorithm to
eliminate particles with low weights and to replicate particles
with high weights by sampling with replacement randomly
from the probability distribution of the updated weights. To
prevent the filter from collapsing (all the weight is shared
by a few particles and eventually just one particle), new per-
turbation parameters were drawn from a normal approxima-
tion of the posterior from the previous analysis step at each
new analysis step, instead of resampling both the states of the
model and the parameters.

2.3 Evaluation of the experiments

For each site and each cloud cover scenario, we ran MuSA
and generated a posterior SWE. However, the output of
MuSA is stochastic due to the random generation of the forc-
ing perturbation parameters. Also, the position of the gaps
in the different cloud cover scenarios and the Gaussian and
Brownian noises added to the observations and forcing re-
spectively are random. Therefore, to increase the statistical
robustness of our results, we repeated each assimilation ex-
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Table 2. FSM2 configuration chosen (and configuration number) to generate the synthetic truth and simulations.

Process Synthetic true FSM2 MuSA FSM2

Snow albedo (2) Diagnosed from snow age (1) Diagnosed from LST
Snow thermal conductivity (1) Estimated from density (0) Constant thermal conductivity
Snow density (2) Viscous compaction (0) Constant density
Turbulent exchange (1) Monin–Obukhov stability functions (0) Neutral stability
Snow hydraulics (2) Gravitational drainage (1) Bucket storage
Snow cover fraction (2) Asymptotic function (1) Linear function

Figure 2. Comparison of hourly time series of synthetic true SWE with the open-loop simulations and the posterior SWE after assimilating
LST with a revisit time of 16 or 3 d (0 % cloud cover scenario) using the PBS. Here, the posterior SWE is the average of the 100 replicates,
and the shaded areas represent the 95th to 5th quantile range.

periment 100 times, drawing new gaps and noise for each
replicate of the experiment. This created an ensemble of pos-
terior SWE, which was compared to the synthetic true SWE.

In total, for a given site, MuSA was run 2400 times (100
replicates ×4 cloud cover scenarios ×2 revisit times ×3 DA
experiments). This corresponds to 720 000 FSM2 runs (300
particles by MuSA run), summing up to 3 600 000 FSM2
runs considering the five study areas, which is equivalent to
simulating the snowpack over a period of 14 400 000 years.
To compare the performance of data assimilation, in ev-

ery site regardless of the absolute magnitude of the SWE,
we used the normalized RMSE (nRMSE) as a performance
score:

nRMSE=

√
1
n

∑n
i=1(Predi −Refi)2

Ref
,

where n is the number of samples, Pred the predicted values
and Ref the reference SWE values.
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Figure 3. Comparison of hourly time series of synthetic true SWE with the open-loop simulation, the 100 replicates of posterior SWE after
assimilating LST with a revisit time of 3 d, varying cloud cover scenarios and the average of the experiments in Tromsø.

3 Results

As expected, the degradation of the ERA5-Land meteoro-
logical forcing had a large impact on the open-loop SWE
simulations (Figs. 2 and S3, S4 and S5). In comparison
with the synthetic true SWE, the average normalized RMSE
(nRMSE) was 61 % (after removing the summertime months
of July and August). The degradation of the ERA5-Land
data caused an overall reduction in the simulated SWE, lead-
ing to a shorter snow season at all sites (Fig. 2). However,
the LST assimilation with the PBS substantially improved
the SWE simulations (Fig. 2). This improvement was evi-
dent during both revisit times, although the 3 d revisit sce-
nario (nRMSE = 13%) outperformed the 16 d revisit sce-
nario (nRMSE = 17%).

The posterior SWE series in Fig. 2 were averaged from an
ensemble of 100 replicates under clear-sky conditions. The
uncertainty in the replicates is mostly caused by the differ-
ent random noises in the observations (see Sect. 2 “Data and
methods”). Figure 3 shows every posterior SWE realization
in the case of the Tromsø site under different cloud cover
scenarios when assimilating LST at 3 d resolution. This fig-
ure shows that the spread of the replicates increased with the

cloud cover probability. The standard deviation of the ob-
tained nRMSE values over each cloud cover scenario ranged
from 4 % to 10 % in this particular case.

Figure 4 summarizes the results of the PBS from all ex-
periments under every cloud cover and revisit scenario. In all
cases, the data assimilation significantly reduces the nRMSE
in comparison with the open-loop simulations. In most situ-
ations the nRMSE is always higher for the 16 d revisit com-
pared to the 3 d revisit, but the difference was more pro-
nounced under the 50 % and 75 % cloud cover scenarios. In
addition, the standard deviation of the nRMSE of the 100
replicates is higher for the 16 d compared to the 3 d revisit
scenarios. Both the averaged nRMSE and the standard devi-
ations increase with the cloud cover, with an average nRMSE
for all the sites ranging between 13 % and 16 % in the case of
the 3 d revisit experiments and 17 % and 28 % for the 16 d re-
visit experiments. The results indicate a comparatively lower
reduction in SWE nRMSE when FSCA is assimilated com-
pared to LST assimilation ranging between 27 % and 39 %
in the case of the 3 d revisit experiments and 41 % and 45 %
for the 16 d revisit experiments (Fig. 5), being comparable to
results obtained in previous studies assimilating real obser-
vations (Aalstad et al., 2018) and thus confirming the robust-
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Figure 4. Normalized root mean square error (nRMSE) of the posterior SWE after assimilating LST using the PBS compared with the
synthetic true SWE for each experiment. The bars indicate the mean nRMSE, while the error bars indicate the standard deviation in the
100 replicates.

ness of the OSSE design. Furthermore, the greater dispersion
of nRMSE values suggests an increased sensitivity to cloud
distribution in the case of FSCA compared to LST.

Figure 6 shows the distribution of the mean of the poste-
rior precipitation perturbation parameters obtained from the
100 data assimilation runs using the PBS. It demonstrates
that the assimilation of LST reduces the error in the precipi-
tation forcing, since the posterior parameter distributions ap-
proximate the actual multiplicative perturbation factor of 2
to compensate for the 0.5 scaling factor used to degrade the
input precipitation. However, the difference between the true
precipitation and the degraded precipitation should not ex-
actly be equal to the scaling factor of 2 due to the perturba-

tion strategy used, the fact that we do not correct all forcing
variables and the differences between the FSM2 configura-
tions (Sect. 2) as well as the fact that other components of
the forcing were also degraded and were not included in the
simulation to induce errors in FSM2. As observed in Fig. 4,
the standard deviation of the posterior perturbation parame-
ters of the replicates increases when comparing the 3 d with
the 16 d revisit scenarios and with the cloud cover probabil-
ity.

Whereas the above results show that the PBS algorithm
clearly improved the SWE simulation, it was not the case
with the PF. Figure 7 summarizes the results of the same ex-
periments shown in Fig. 4 but using the PF instead of the

https://doi.org/10.5194/tc-17-3329-2023 The Cryosphere, 17, 3329–3342, 2023
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Figure 5. Normalized root mean square error (nRMSE) of the posterior SWE after assimilating FSCA using the PBS compared with the
synthetic true SWE for each experiment. The bars indicate the mean nRMSE, while the error bars indicate the standard deviation in the
100 replicates.

PBS. In this case the improvement in the average nRMSE
of the posterior simulations is not as obvious with respect
to the open loop as in the PBS experiments. Although in
the medium-latitude cases the nRMSE shows a moderate im-
provement compared with the open loop on average, several
runs among the 100 replicates had a higher nRMSE than the
open-loop run. The revisit or cloud cover scenarios had no
clear effect on the nRMSE. The results in the high-latitude
areas yielded a higher nRMSE standard deviation than in the
medium-latitude regions. This is a consequence of the very
cold conditions in these high-latitude areas, causing some
particles to become glaciers due to the perturbed forcing
(non-zero SWE at the end of the hydrological year).

4 Discussion

Navari et al. (2016) showed the potential of IST data assimi-
lation to improve the surface mass balance of the Greenland
ice sheet in a regional climate simulation with an ensemble
batch smoother. Our study also suggests that the assimila-
tion of LST can improve seasonal snow simulations in sites
with different climate contexts. With the PBS, the improve-
ment was substantial independently of the site; i.e. the cli-
matic context did not exhibit an obvious influence on the
results. However, our results with the PF also support the
conclusions of Piazzi et al. (2019), who did not obtain ob-
vious improvements in the posterior SWE simulations after
assimilating LST using an ensemble Kalman filter. There-
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Figure 6. Boxplots showing the distribution of the posterior precipitation perturbation parameter for each experiment estimated by the PBS.
The dashed line indicates the true perturbation that was applied to the forcing.

fore, our study provides an explanation of the contrasting
performances found by Navari et al. (2016) and Piazzi et
al. (2019). While Navari et al. (2016) used smoothers, Piazzi
et al. (2019) used a filter. A filter updates the simulations
sequentially, while smoothers update the whole season in a
batch. This in-batch assimilation allows for the propagation
of the information of the observations backward in the simu-
lation time. Also, the performance of the LST data assimila-
tion reported by Piazzi et al. (2019) was probably hampered
by the coarse resolution of the MSG LST products that were
used to update snowpack simulations at the point scale. In
the specific case of the LST, considering the observations of
the whole snow season in a batch may be key to have a posi-
tive impact on the posterior SWE. The trajectory of the LST

in seasonal-snow-dominated regions exhibits a characteris-
tic pattern, as the physical bounds of the IST are different
from the LST. Once the snow melts, the LST can rise above
the water melting point, and therefore the trajectory of the
LST may be a good indicator of the length of the snow sea-
son. However, this should not be the only reason, as Navari
et al.’s (2016) experiments were developed over the Green-
land ice sheet where there is a permanent ice cover. During
the melting season the IST is fixed to the melting point tem-
perature, providing information on the duration of the melt-
ing period. The occurrence of wintertime melt events should
also be visible in the TIR domain. The LST assimilation out-
performed the FSCA assimilation in all study areas in our
experiments. This also suggests that LST may provide more
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Figure 7. Normalized root mean square error (nRMSE) of the posterior SWE after assimilating LST from the PF compared with the synthetic
true SWE for each experiment. The bars indicate the mean nRMSE, while the error bars indicate the standard deviation in the 100 replicates.

information than FSCA. In addition, the lower dispersion of
nRMSE values suggests that LST may be more resilient to
cloud cover distribution than FSCA. The information of the
whole seasonal trajectory of the LST is propagated to the
posterior by using a smoother but not by using a filter. This is
highlighted at the high-latitude study areas, where the polar
conditions made snowmelt impossible at the end of the hy-
drological year for some of the replicates (Fig. S2), leading to
very high nRMSE using the PF (Fig. 7). These results suggest
that the LST may be less beneficial to snowmelt forecasting
applications, where the use of filters is more extended, to up-
date the model as new observations arise, but it should be
regarded as valuable information to improve snow reanaly-
ses which aim to reconstruct snow cover climatologies.

Our results also suggest that even the currently available
thermal infrared estimations of the LST from Landsat mis-
sions have the potential to significantly improve SWE simu-
lations despite a revisit time of 16 d. The emulated revisiting
times of both Landsat and TRISHNA are the expected values
at the Equator and can be lower in other latitudes. Here we
did not study the effect of the spatial resolution but hypoth-
esized that high resolution (i.e. Landsat-like) is needed for
snow cover simulations in the studied regions. Landsat TIR
images have a 100 m resolution, which makes them suitable
to sample the slope scale in mountain terrain, hence result-
ing in homogeneous conditions in the energy balance budget
(Baba et al., 2019). Despite the low revisiting times of the
Landsat mission, Landsat TIR imagery may be useful to im-
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prove SWE simulations using a smoother data assimilation
algorithm, an approach that to our knowledge has not been
explored yet. More research should be carried out on this
topic, especially in the context of joint assimilation experi-
ments where more than one variable is assimilated.

Nevertheless, the change in revisit from 3 to 16 d in our ex-
periments translated into a higher posterior nRMSE. There-
fore, we expect significant progress with TRISHNA observa-
tions, not to mention the enhanced spatial resolution (approx-
imately 60 m). The benefit of the 3 d revisit was particularly
evident under 50 % to 75 % cloud cover. This should be con-
sidered, as previous global estimates of the cloud cover sug-
gest values closer to our highest-cloud-cover scenario (Wylie
et al., 2005). For instance, cloud cover probability in MODIS
products reached 60 % in the Alps and 50 % in the Pyrenees
(Gascoin et al., 2015; Parajka and Blöschl, 2008).

In any case, under both revisit scenarios, the cloud cover
decreased the precision of the replicates of the posterior
SWE, i.e. the variability between repeated experiments, but
the average was only marginally affected. In other words, the
cloud cover reduced the robustness of the data assimilation,
but even regions with a persistent cloud cover could benefit
from LST assimilation. The different replicates of each ex-
periment exhibited different results, with a variance that in-
creased with the number of gaps introduced into the synthetic
LST observations, suggesting that not all the combinations of
observations are equally informative. This was also obvious
regarding the posterior precipitation perturbation parameters,
as the standard deviation of the different replicates increased
with the percentage of cloud cover.

Despite the promising potential of the LST to improve
SWE simulation, some limitations of the current study in-
herent to the synthetic nature of the OSSE should be taken
into consideration. The synthetic nature of the experiment
could lead to an overestimation of the value of LST assimi-
lation. This effect is mitigated in our experiment as typically
done in OSSEs by (i) the degradation of all forcing variables,
while only temperature and precipitation were corrected, and
(ii) the different FSM2 parameterizations used to create the
synthetic truth. The simulation of the cloud cover scenarios
was generated by selecting random dates from a uniform dis-
tribution. However, in some regions the cloud cover exhibits
marked seasonal patterns (Sudmanns et al., 2020) that may
pose a challenge to updating the snowpack simulations even
with smoothers if cloud cover is more frequent during key
periods in the snow season. Also, the surface temperature ob-
servation in complex terrain may differ from the simulated
temperature due to intra-pixel variability as a consequence
of variable snow and/or mixed-pixel conditions (Robledano
et al., 2022; Lundquist et al., 2018). But this issue is greatly
limited by the expected increase in resolution. In light of the
results of this work, the next step is to conduct experiments
using real remote sensing observations, although the general
lack of data may complicate the interpretation of the results.

5 Conclusions

The motivation for the study of LST data assimilation is the
upcoming launch of high-resolution thermal infrared spatial
missions with an improved revisit time and resolution in the
next few years. We implemented a synthetic data assimila-
tion experiment to study the potential of LST in improving
SWE simulations along a latitudinal gradient in the Northern
Hemisphere. The methodology was based on the generation
of synthetic LST estimations and true SWE estimates, as well
as a prior ensemble of SWE simulations generated by forcing
FSM2 with degraded meteorological fields. The MuSA snow
data assimilation software was used to generate SWE poste-
rior time series using the particle batch smoother and particle
filter algorithms to be compared with synthetic true SWE.

The results suggest that the assimilation of LST has great
potential to improve seasonal snowpack simulations across
all the tested sites. Gap-free LST series improved the av-
erage nRMSE of the open-loop simulations from 61 % to
17 % and 13 % for the 16 d and 3 d revisiting times respec-
tively. However, a lower revisit frequency caused an increase
in the variance of the nRMSE when the runs were replicated
100 times, showing that the performance of the assimilation
would depend on cloud cover scenarios. This conclusion was
more evident with high-cloud-cover scenarios, highlighting
the importance of the revisit time in thermal infrared remote
sensing to reduce the uncertainty in the updated SWE.

The type of data assimilation was also key to explain the
role of LST in improving SWE simulations. The particle
batch smoother strongly improved the simulations, whereas
the particle filter was much less effective and could even
cause a degradation of the simulations. This effect could be
interpreted as a consequence of the strong seasonal signal
of the LST, which reflects the duration of the snow season.
But the lower performance shown by the FSCA assimilation
suggests that the LST assimilation provides more than just
information on snow duration.

Overall, our results encourage a more systematic use of the
current LST products within snow data assimilation studies,
especially if the objective is to perform a snow reanalysis,
which can benefit from observations acquired over an entire
snow season.

Code and data availability. The MuSA v1.0 code is available at
https://github.com/ealonsogzl/MuSA/tree/v1.0 (last access: 8 Au-
gust 2023; DOI: https://doi.org/10.5281/zenodo.7014570, Alonso-
González, 2022). The original FSM2 code is found at https://github.
com/RichardEssery/FSM2 (Essery, 2015) and in the MuSA repos-
itory with slight modifications to the original version. ERA5-Land
data are available for download from the Copernicus Climate Data
Store (https://cds.climate.copernicus.eu/, Copernicus Climate Data
Store, 2023).
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