

Autonomic Approach to the Runtime Management of HPC Cluster Resources

Quentin Guilloteau

▶ To cite this version:

Quentin Guilloteau. Autonomic Approach to the Runtime Management of HPC Cluster Resources. LIG PhD Day, Apr 2022, Grenoble, France. hal-04570283

HAL Id: hal-04570283 https://hal.science/hal-04570283v1

Submitted on 7 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Autonomic Approach to the Runtime Management of HPC **Clusters Resources**

Quentin GUILLOTEAU, Olivier RICHARD, Eric RUTTEN

Univ. Grenoble Alpes, Inria, CNRS, LIG, F-38000 Grenoble France

Gricad

• Grenoble Mesocenter • 169 TFLOPS • 5700 CPUs on

Various Job Behaviours

 \hookrightarrow Variability \implies Requires **Runtime Management**

Research Problem

Use Control Theory tools to dynamically **harvest idle HPC**

resources in a non-intrusive way for the users

MAPE-K Loop & Control Theory

Auto-regulating Dynamical Systems given high-level objectives

 \hookrightarrow Control Theory as an Interpretation of the MAPE-K Loop

several clusters • > 1200 users

non-intrusive way for the users

Managed element

Measure Sensor

Control Theory drives system to a desired state by adapting inputs while minimizing delay, overshoot, or steady-state error and ensuring control stability

Idle HPC Resources \implies Lost Computing Power \hookrightarrow How to Harvest?

Perturbations from Harvesting

Cannot simply submit huge amount of jobs. \nearrow Harvesting \implies \nearrow Perturbations (e.g., I/O) \hookrightarrow Trade-off to exploit

File-System Load (loadavg)

Open-Loop & Identification

Response to Perturbations

Exploiting the Trade-Off

Perspectives

Adaptive Controllers to deal with different I/O Profiles

- Interaction with Scheduler to anticipate the arrival of new Priority jobs
- Minimize the amount of Best-effort jobs killed (also represents lost computing power)
- Reproductible Experiments with Nix and NixOS

References

Q. Guilloteau, O. Richard, B. Robu and E. Rutten. *Controlling* the Injection of Best-Effort Tasks to Harvest Idle Computing Grid Resources, ICSTCC 2021, hal-03363709

Time (s)

Figure: Response of the closed-loop system (top) to a synthetic step perturbation to keep the load of the File-System around the value 6. Bottom is the number of jobs submitted by CiGri.

Figure: Writing Overhead of an application (MADbench2) Benchmark) with CiGri based on Reference Value

 \hookrightarrow We have Control over the Degradation and Harvesting with the choice of Reference Value

Acknowledgements: Experiments presented in this poster were carried out using the Grid'5000 testbed, supported by Inria and including CNRS, RENATER and several Universities as well as other organizations (see https://www.grid5000.fr).

Laboratoire d'Informatique de Grenoble