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Evolution of Measures in Nonsmooth Dynamical
Systems: Formalisms and Computation

Saroj Prasad Chhatoi, Aneel Tanwani†, Didier Henrion‡

Abstract

This article develops mathematical formalisms and provides numerical methods for
studying the evolution of measures in nonsmooth dynamical systems using the continu-
ity equation. The nonsmooth dynamical system is described by an evolution variational
inequality and we derive the continuity equation associated with this system class using
three different formalisms. The first formalism consists of using the superposition princi-
ple to describe the continuity equation for a measure that disintegrates into a probability
measure supported on the set of vector fields and another measure representing the distri-
bution of system trajectories at each time instant. The second formalism is based on the
regularization of the nonsmooth vector field and describing the measure as the limit of a
sequence of measures associated with the regularization parameter. In doing so, we obtain
quantitative bounds on the Wasserstein metric between measure solutions of the regular-
ized vector field and the limiting measure associated with the nonsmooth vector field. The
third formalism uses a time-stepping algorithm to model a time-discretized evolution of the
measures and show that the absolutely continuous trajectories associated with the continu-
ity equation are recovered in the limit as the sampling time goes to zero. We also validate
each formalism with numerical examples. For the first formalism, we use polynomial opti-
mization techniques and the moment-SOS hierarchy to obtain approximate moments of the
measures. For the second formalism, we illustrate the bounds on the Wasserstein metric for
an academic example for which the closed-form expression of the Wasserstein metric can
be calculated. For the third formalism, we illustrate the time-stepping based algorithm for
measure evolution on an example that shows the effect of the concentration of measures.

Keywords: Nonsmooth dynamical systems, Optimal transport, Polynomial optimization.

1 Introduction

The study of evolution of measures in finite dimensional systems has found relevance in the de-
sign of optimal control problems, understanding the system behavior under uncertainties, and
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several other applications. The primary step in this direction is to understand how the proba-
bilistic initial conditions evolve in time under the action of a vector field. Such questions have
been fairly well studied for single-valued dynamical systems with sufficient regularity (such as
Lipschitz continuity) of the vector field. However, when we relax the regularity assumptions
on the vector field, the question of evolution of measures brings forth some interesting ques-
tions which are of relevance for the applications as well. We are thus motivated to study the
evolution of probability measures for a class of dynamical systems described by differential in-
clusions and in particular where the differential inclusion models the trajectories constrained to
a pre-specified set. We present different mathematical formalisms to study measure evolution
for such dynamical systems and provide corresponding numerical algorithms for simulations.

For an autonomous dynamical system described by an ordinary differential equation (ODE)
with Lipschitz continuous vector field, the time evolution of the measure describing the initial
condition is governed by a linear partial differential equation (PDE), commonly called the
continuity equation or the Liouville equation [1, Section 5.4]. The solution to this PDE, that
is the probability measure describing the distribution at a given time, is the push-forward or
image of the initial probability measure through the flow map at that time. Lipschitz continuity
of the vector field ensures that the flow map of the ODE is invertible, which in turn ensures
that the push-forward measure is the unique solution to the continuity equation. The Cauchy
problem for continuity equation with Sobolev fields was studied by [2]. Continuity equations
corresponding to one-sided Lipschitz vector fields have been studied in [3, 4]. In [5] and
[6], the authors consider fields of bounded variation and discuss the potential nonuniqueness
of solutions to the continuity equation by introducing the notion of superposition principle.
For the differential inclusions with convex set-valued mappings, the reference [7] provides a
generalized superposition principle. For our purposes, the solutions based on the superposition
principle are useful for numerical purposes. We propose a vector field selection from a time-
varying differential inclusion from which we derive a continuity equation suitable for numerical
algorithms. We use the converse statement of the superposition principle to characterize all
possible solutions to the proposed continuity equation.

In this article, we are particularly concerned with a class of dynamical systems where the
nonsmoothness arises due to the modeling of constraints on state trajectories. Such systems
are described by the inclusion

ẋ(t) ∈ f (x(t))−NS(t)(x(t)) (1)

where NS(x) ∈ Rn denotes the outward normal cone to the set S at the point x ∈ Rn. Since
the normal cone takes a zero value in the interior of S, it is clear that the right-hand side of
(1) is potentially discontinuous at the boundary of the set S. One can also think of (1) as an
evolution variational inequality, described as

〈 ẋ(t)− f (x(t)), y − x(t)〉 ≥ 0,

for all y ∈ S, x(t) ∈ S, t ∈ [0, T], where the brackets denote the inner product between
vectors. Such dynamical systems have been a matter of extensive study in past decades due
to their relevance in engineering and physical systems. The survey article [8], and a research
monograph [9], provide an overview of different research oriented directions in the literature
pertaining to system (1) and its connections to different classes of nonsmooth mathematical
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models. Analysis of such systems requires tools from variational analysis, nonsmooth analysis,
set-valued analysis [10, 11, 12]. For a fixed initial condition, x(0) ∈ S, the question of existence
and uniqueness of solution to system (1) has already been well-established in the literature,
and the origins of such works can be found in [13], see [14] for a recent exposition.

However, if we consider the initial conditions described by a probability measure, then the
evolution of this measure under the dynamics of (1) has received much less attention in the
literature. One can study such problems by considering stochastic versions of (1) by adding a
diffusion term on the right-hand side. Such systems first came up in the study of variational
inequalities arising in stochastic control [15], and in the literature, we can find results on
existence and uniqueness of solutions in appropriate function space. In [16], this is done by
considering Yosida approximations of the maximal monotone operator, whereas [17] provides
a proof based on time-discretization of system (1). These approaches have been generalized for
prox-regular set S in [18], and the case where the drift term contains Young measures [19, 20].
In [21], the authors provide a constructive approximation of measures associated with system
(1) with f ≡ 0, which are based on a generalization of time-stepping algorithm and involves
projecting the density function onto the constraint set with respect to the Wasserstein metric.

The main contribution of this article is to provide different formalisms for describing the evo-
lution of measures for the class of systems considered in (1). In particular, our contribution
lies in studying three different techniques for describing the propagation of probabilistic initial
conditions for system (1) and we provide numerical methods for each of these techniques.

The first approach is based on using the previously mentioned superposition principle. Here,
we consider a continuity equation where the velocity vector field is obtained by a selection of
the set-valued mapping in system dynamics, which results in a (possibly non-unique) solution
to the measure evolution. We develop a converse result which actually shows that all possible
solutions can be associated with a selection of the vector field. The tools used in the process are
similar to the ones appearing in [7], but we develop a specific representation of the continuity
equation in terms of a measure which can be computed numerically using the moment-SOS
(polynomial sums of squares) hierarchy [22] and semi-definite programming based techniques.

The second approach builds on our recent work in [23] where we approximate the dynamics
of system (1) by ODEs with Lipschitz continuous right-hand side. The solution of the conti-
nuity equation associated with each ODE provides a sequence of measures which allows us to
approximate the solution of the measure evolution problem. We show that the limiting mea-
sure can be represented by the pushforward of the unique flow map of system (1) and we
develop quantitive bounds on the Wasserstein distance between the limiting measure and its
approximations obtained from the regularization method.

Finally, another approach we adopt for studying the evolution of measures subject to con-
strained dynamics is based on computing an approximation of the transport maps for sys-
tem (1) via time discretization. Time discretization based techniques are well known for con-
structing solutions to evolution PDEs using the gradient flow structure of the Wasserstein space
[24]. Time discretization schemes have been recently used in [25], which exploits the gradient
flow structure for the system class (4) in the Euclidean space to construct solutions for con-
strained optimization problems. For sweeping processes without the perturbation term, this
approach was adopted in [21] and it generalizes the classical time-stepping algorithm proposed
in [13] to the setting of measures. We use these techniques to construct the solutions of the
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continuity equation associated with system (1). In particular, one computes the distribution
at discrete time instants by interpolating the distribution through the perturbation term, and
then projecting it onto the constraint set with respect to the Wasserstein metric. This scheme
is built on the dynamic viewpoint of optimal transport problems where the absolutely contin-
uous curves in Wasserstein space satisfy the continuity equation. Under certain conditions, we
show that the sequence of time-discretized measures converges to a solution described by the
push-forward of the initial distribution under the transport map.

Finally, we address the computational aspects for each of the three formalisms with the help
of academic examples. The proposed continuity equation could be seen as an infinite dimen-
sional linear program problem in the space of measures. We use the moment-SOS hierarchy to
approximate the moments of the measures and we provide an illustration of this method. For
the second formalism based on functional regularization, we explicitly, for a one dimensional
case, compute the Wasserstein distance between the measure solutions to the nonsmooth sys-
tem and to approximation obtained by regularization method. For the last formalism based on
time-stepping algorithm for measures, we consider an example of a two-dimensional system
based on time-space discretization and then evolving the measures using the given algorithm.

2 Preliminaries and Overview

2.1 Measure Evolution

Consider the dynamical system described by an ordinary differential equation (ODE):

ẋ = f (t, x). (2)

If the vector field f : R≥0×Rn→ Rn is such that f (·, x) is Lebesgue measurable for each x ∈ Rn

and f (t, ·) is Lipschitz continuous for each t ∈ R ≥ 0, then there exists a unique absolutely
continuous function x : R≥0 → Rn that solves (2). Consequently, we consider the flow map
X t : Rn → Rn parameterized by t ∈ R≥0 having the property that x(t) = X t(x0) for each
x0 ∈ Rn. It is also of interest to study the evolution of probability measures for system (2)
when the initial condition is described by a probability distribution on Rn, that is, x(0) ∼ µ0,
where µ0 ∈ P (Rn), the set of probability measures on Rn. In words, the law of the random
variable x(0) is the probability measure µ0. The resulting measure µt ∈ P (Rn), for t ∈ R≥0, is
defined by the continuity equation, also called the Liouville equation, a linear partial differential
equation (PDE) which models the transport of a distribution along the flow of trajectories of
the underlying system and preserves the mass of the distribution. For the cases where the
vector field f (t, x) is Lipschitz in x for each t, the continuity equation reads

∂tµt +∇ · ( f (t, ·)µt) = 0 (3)

where ∇· is the divergence operator. The equation is to be understood in the weak sense, i.e.
∫

[∂tϕ(t, x)+∇xϕ(t, x)· f (t, x)]dµ(t, x) = 0 whereϕ ∈ C 1([0, T]×Rn) and∇x is the gradient
operator. Furthermore, a measure µt solving (3) can be represented as the push-forward of µ0

under the mapping X t , denoted µt = X t #µ0. Here, and throughout this article, for a function
g : Rn → Rm and a measure µ0 supported on a set in Rn the push-forward of µ0 under the
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mapping g is denoted by g#µ0 and it is defined as g#µ0(A) := µ0({x ∈ Rn : g(x) ∈ A}) for
every measurable set A⊂ Rm.

In this work, we particularly consider the class of following differential inclusions:

ẋ(t) ∈ f (t, x)−NS(t)(x), x(0)∼ µ0 (4)

where f : [0, T] × Rn → Rn is a vector field, S : [0, T] ⇒ Rn is a set-valued mapping, and
NS(t)(x) denotes the outward normal cone to the convex set S(t) at x ∈ S(t). We impose the
following assumptions on system class (4) so that the system is well-posed.

Assumption 1. There exists L f > 0 such that

| f (t, x1)| ≤ L f (1+ |x1|),
| f (t, x1)− f (t, x2)| ≤ L f |x1 − x2|

for all x1, x2 ∈ Rn.

Assumption 2. The mapping S : [0, T] ⇒ Rn is closed and convex-valued for each t ∈ [0, T],
and S(·) varies in a Lipschitz continuous manner with time, i.e., there exists a constant Ls such
that

dH(S(t), S(s))≤ Ls|t − s|

where dH(A, B) := max
¦

supx∈B dist(x , A), supx∈A dist(x , B)
©

is the Hausdorff distance between
the sets A and B.

Under these two assumptions, several references in the literature prove the existence and
uniqueness of solutions to (4) with x(0) ∈ S(0) ⊂ Rn, see for example [8] for an overview.
In this article, we are interested in studying the evolution of measures for system class (4).
The PDE considered in (3) cannot be readily obtained in that case and we study three different
principles to describe the evolution of measures for our system (4). In the remainder of this
section, we provide an overview of these techniques from the existing literature. In the later
sections, we develop each of these techniques for system class (4).

2.2 Superposition Principle

In the first instance, we look at (4) as a differential inclusion with a set-valued right-hand side
in the dynamics. In this regard, we see that the evolution of measures is described using the
superposition principle for the differential inclusions of the form

ẋ(t) ∈ F(t, x(t)) (5)

where F : R≥0×Rn⇒Rn is a set-valued mapping. Let us explain briefly and informally what is
the superposition principle. A selection of F is a mapping (t, x) 7→ f (t, x) ∈ F(t, x). Associated
with a selection is an absolutely continuous solution γ ∈ AC([0, T];Rn) with γ(0) = x(0) such
that γ̇(t) = f (t,γ(t)) for Lebesgue a.e. t ∈ R≥0. Let us consider the set of all admissible curves

ΓT := {γ ∈ AC([0, T];Rn) : γ̇= f (t,γ), f a selection of F}.
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The evaluation map is defined as a Borel measurable map et : Rn × ΓT → Rn such that

et(x ,γ) := γ(t) ∀t ∈ [0, T] and γ(0) = x ,γ ∈ ΓT . (6)

Let η be a probability measure such that η ∈ P (Rn × ΓT ). Under some mild integrability
condition [6, Theorem 8.2.1], the measure solutions µt to a continuity equation associated
with (5) (under some selection of vector field from F(t, x)) can be represented as

µt = et #η (7)

which for any continuous functionφ : Rn→ R satisfies
∫

φ(x)dµt(x) =
∫

φ(et(x ,γ))dη(x ,γ).
The solutions µt can be understood as a superposition over solution trajectories γ ∈ ΓT , where
the superposition is captured by the measure η. The solutions to differential inclusion (5)
are possibly nonunique and hence µt in (7) is also not necessarily unique for a given initial
measure.

In this work, we are interested in using the superposition principle for deriving a continuity
equation associated with (4). For differential inclusions, such problems have been studied in
[7], but in comparison, we consider a specific class of non-compact time varying differential
inclusions, and we derive a different form of continuity equation which is more suitable for
numerical purposes discussed later in this paper.

2.3 Functional Regularization

The basic idea of the regularization is to consider a sequence of ODEs with a parameter λ:

ẋλ(t) = gλt (x(t))

so that the solutions xλ(t) approach the solution x(t) that solves (4), under the constraint
xλ(0) = x(0). Here, for each λ > 0 and for each t ∈ [0, T], gλt : Rn → Rn is a single-valued
Lipschitz continuous function, whose construction is provided in Section 4. One can derive
the classical continuity equation (3) to these ODEs and obtain a parameterized sequence of
measures µλt as follows:

∂tµ
λ
t +∇ · (g

λ
t (·)µt) = 0.

An obvious candidate for describing the measure solving (4) is to take the limit of {µλt } as
λ → 0. In Section 4, we study the limit of this sequence using the Wasserstein metric to
quantify the distance between µλt and the limiting measure.

To provide some background on this performance metric used to study convergence of mea-
sures, we recall that the Wasserstein metric, also called the Kantorovich-Rubenstein metric, is
frequently employed to measure the distance between two probability measures. The more
common choice, the 2-Wasserstein distance between two probability measures µ,ν ∈ P (Ω)
for some Ω ⊂ Rn, is defined as

W2(µ,ν) :=
1
2

min
θ∈Θ(µ,ν)

∫

Ω×Ω
|x − y|2dθ (x , y) (8)
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where Θ(µ,ν) is the set of joint probability measures on Ω×Ω with given marginals µ and ν,
i.e. such that θ ∈ Θ(µ,ν) satisfies

∫

A

∫

Ω
θ (x , y)dxdy = µ(A) and

∫

Ω

∫

A
θ (x , y)dxdy = ν(A),

for every measurable A⊂ Ω.

Similarly, 1-Wasserstein distance or W1(µ,ν) is defined as,

W1(µ,ν) =min
¦

∫

Ω×Ω
|x − y|dθ (x , y) : θ ∈ Θ(µ,ν)

©

. (9)

2.4 Time Discretisation and Optimal Transport

Time discretization based techniques are well known for constructing solutions to evolution
PDEs by using the gradient flow structure of the Wasserstein space. It is based on partitioning
a time interval into finitely many nodes (discrete times) and describing the measure at those
times as a function of the initial distribution through appropriate mappings using the system
data. The interpolation between the two measures (described at two consecutive times) is
based on the principles of optimal transport and provides an approximation to the measure
evolution problem for system (4).

To provide some background on these interpolation schemes, we recall that the original mass
transportation for measures was proposed in [26] as the problem of finding a transport map
G : Rn → Rn such that given two probability measures µ ∈ P (Rn) and ν ∈ P (Rn) and a cost
function c : Rn ×Rn→ [0,∞), it solves

inf
G

¦

∫

c(x , G(x))dµ(x) : G#µ= ν
©

. (10)

The problem is highly nonlinear with nonconvex constraints and the existence of a minimizer
is difficult to prove. The problem was later reformulated by Kantorovich [27] into a convex
program that corresponds to the computation of W2(µ,ν) by taking c(x , y) = 1

2 |x − y|2. In-
deed, W2(·, ·) provides a metric structure to the space of measures P (Rn) and the resulting
subspace ofP (Rn) is known as the Wasserstein spaceW2(Rn). One interesting property which
will be of interest is that any absolutely continuous curve in Wasserstein space W2 is a solu-
tion to a continuity equation [24]. In [28] the authors proved that if there exists a pair of
measures µ0,µ1 ∈ P (Rn) with µ0 absolutely continuous with respect to the Lebesgue mea-
sure, then there exists a constant speed geodesic between these measures and such constant
speed geodesics satisfy a continuity equation. It is possible to construct an approximation of
an absolutely continuous curve by defining measures at discrete time instants and using an in-
terpolation via constant speed geodesics between successive time instants. In [21], the authors
use time-discretization to approximate the measure solution of continuity equation associated
with (4) without the drift term f (·). The method is based on recursively defining measures
at different time instants using an optimal transport map which transports the measures from
one time instant to the next. Considering suitable interpolation schemes, one constructs the
trajectory and shows that it converges to the solution of the continuity equation. We will use a
time-stepping scheme for (4) to construct measures at different time instants starting from an
initial distribution. Using appropriate interpolation, we will prove that the interpolated curves
converge to the absolutely continuous curves which will be the measure valued solutions to
the continuity equation associated to (4).
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3 Superposition Principle

In this section, we consider a general system class described by a differential inclusion. Starting
from a vector field selection of this differential inclusion, we propose a continuity equation
driven by this selection and we characterize all possible solutions to this equation.

3.1 Differential Inclusion

Consider a dynamical system governed by the differential inclusion:

ẋ ∈ F(t, x) (11)

where F : [0, T] × Rn ⇒ Rn is a set-valued mapping. For an initial condition x0 ∈ Rn, we
denote the solution to (11) at time t ∈ [0, T] by X t(x0), where X t represents the flow map for
system (11). For solutions to be well-defined, F satisfies the following:

Assumption 3. The set F(t, x) is convex for every t ∈ [0, T] and every x ∈ Rn.

Assumption 4. If there exists a solution to (11) corresponding to a selection f of F, then it holds
that,

| f (t, x)| ≤ β(t)(1+ |x |) (12)

where, β(·) ∈ L 1([0, T];R+).

In what follows, we consider a selection f ω(t, x) of F(t, x) defined using a probability measure
ω(·|t, x) ∈ P (F(t, x)) as follows:1

f ω(t, x) :=

∫

F(t,x)

vdω(v|t, x), ω(·|t, x) ∈ P (F(t, x)). (13)

Due to the convexity of F(t, x), it follows that f ω(t, x) ∈ F(t, x). We do not make any further
assumptions on the regularity of f ω(t, x) and thus an ODE system ẋ = f ω(t, x) may admit
multiple solution trajectories from a given initial condition. We also let ΓωT denote the set of
trajectories associated with the selection f ω, that is,

ΓωT := {γ ∈ AC([0, T];Rn) : γ̇= f ω(t,γ)}. (14)

Remark 1. In the case where the set F(t, x) is finitely generated (that is, for each (t, x), it is
represented by a linear combination of finitely many vector fields fi(x) for i ∈ {1, ..., n}), the vector
field (13) reduces to a Fillipov differential inclusion. For example, given a piecewise smooth system
ẋ(t) = fi(x(t)) for x ∈ Ri, where Ri are disjoint regions covering Rn, the Fillipov differential
inclusion for such system would result in ẋ(t) = conv( fi(x)), where conv denotes the convex

1If Assumptions 3 and 4 hold, there exists a measurable selection f ω(t, x) ∈ F(t, x) ∀(t, x) [29]. Measurability
of the proposed vector field can be checked by first replacing the integrand with the indicator function IS , then
f ω(t, x) = ω(S|t, x) which is a measurable function for every fixed S ⊂ F(t, x). One can use standard measure
theoretic arguments to approximate the integral using simple functions.
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combination of the vector fields. Any absolutely continuous solution x(t) would satisfy ẋ(t) =
∑

i∈I wi(x(t)) fi(x(t)) where I(x) denotes the active set at x ∈ Rn, and the weights are such that
∑

wi = 1 and wi ≥ 0. In [30], the authors propose a linear program to compute the weights and
thus solve the differential equation using an active-set method. In this case of piecewise smooth
vector fields, the measure ω will be discretely supported on the set { fi(t, x)}i∈I(x), and the vector
field in (13) yields

f ω(x) =
∑

v∈{ fi(x)},i∈I(x)

vwi(x) =
∑

i∈I(x)

fi(x)wi(x).

Thus, w= (w1, . . . , wm) with
∑

i wi = 1 can be seen as the discrete version of the measure ω.

3.2 Vector Field Selection

The vector field selection in (13) is used to define the continuity equation for the measure
evolution problem. Before doing so, we make some connections with related literature to
provide an interpretation of f ω(t, x) as the weighted average of the vector fields associated
with solution trajectories of (11). In [7], the authors show that the image measure µt obtained
by applying the evaluation map to η ∈ P (Rn × ΓT ), as described in (7), are solutions to a
continuity equation driven by a mean-vector field. By definition of evaluation operator (6), we
define the set e−1

t (x) of trajectories passing through x at time t, i.e.,

e−1
t (x) := {(y,γ) s.t. γ ∈ ΓT ,γ(0) = y,γ(t) = x}. (15)

A disintegration ηt,x(y,γ) of η(y,γ) w.r.t. et is such that, for ψ ∈ C (Rn × ΓT ;R):
∫

Rn×ΓT

ψ(y,γ)dη(y,γ) =

∫

Rn

∫

e−1
t (x)

ψ(y,γ)dηt,x(y,γ)dµt(x). (16)

Then a mean-vector field is introduced as follows:

ef (t, x) :=

∫

e−1
t (x)

γ̇(t)dηt,x(y,γ). (17)

The velocity vector (17) can be understood as a weighted mean of all the velocity vectors γ̇(t)
over the curves γ passing through point x at time t. Note that the convexity of F(t, x) ensures
that the mean-velocity (17) belongs to the set F(t, x). We show that the vector field defined in
(17) is equivalent to the vector field defined in (13) for some appropriate choice ofω ∈ P (Rn).
To establish this, we introduce a velocity evaluation operator dt : Rn × ΓT → Rn, which is a
Borel measurable map defined by

dt(y,γ) := γ̇(t) with γ(0) = y. (18)

Using this mapping, we define:

ω(·|t, x) := dt #ηt,x(·). (19)

Proposition 1. Let dt be the velocity evaluation operator in (18). Then, tor each t ∈ [0, T] and
x ∈ Rn, it holds that d−1

t (F(t, x)) = e−1
t (x). Moreover, for the measures ω defined in (19), the

associated vector field in (13) is equal to (17).
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Proof. The proof of the first claim follows from the definition, i.e.,

d−1
t (F(t, x)) = {(γ(0),γ);γ(t) = x} (20)

e−1
t (x) = {(γ(0),γ);γ(t) = x}. (21)

So the two sets are the same. Next, we prove the equivalence of the two vector fields (17) and
(13). Using the definition of f ω in (13) and the equality in (19), we get

f ω(t, x) =

∫

F(t,x)

γ̇(t) d(dt #ηt,x)(y,γ).

Under the change of variables in the above equation,

f ω(t, x) =

∫

d−1
t (F(t,x))

γ̇(t) dηt,x(y,γ).

Now using d−1
t (F(t, x)) = e−1

t (x), we get

f ω(t, x) =

∫

e−1
t (x)

γ̇(t) dηt,x(y,γ) = f̃ (t, x)

for each t ∈ [0, T] and x ∈ Rn.

Thus, the set of trajectories ΓωT ⊂ ΓT for (13) and (17) are the same under the constraint
prescribed in (19).

3.3 Continuity Equation and its Measure Solution

We now state the main results of this section concerning the formulation of the continuity
equation. In Proposition 2, we show that, for every ω(·|t, x) ∈ P (F(t, x)) and every η con-
centrated on Rn× ΓωT , the image measure µt = et #η satisfies the continuity equation driven by
f ω(t, x) in (13). Starting from this equation, in Theorem 1 we discuss the converse statement
and characterize all the measure solutions to the derived continuity equation. This characteri-
zation of the solutions is especially important as later we propose a numerical method for the
simulation of measure evolution through nonsmooth dynamical systems as the solution of this
continuity equation.

Proposition 2. Consider system (11) under Assumption 3 and Assumption 4. For each t ∈ [0, T]
and x ∈ Rn, let ω(·|t, x) be a probability measure supported on F(t, x), and let f ω and ΓωT be
defined as in (13) and (14), respectively. Then, for every η ∈ P (Rn×ΓωT ), the measure µt := et #η

satisfies the following continuity equation driven by f ω(t, x), i.e.

∫

Rn

ϕ(T, x)dµT (x)−
∫

Rn

ϕ(0, x)dµ0(x) =

10



∫

[0,T]×Rn

�

∂tϕ(t, x) +∇xϕ(t, x) · f ω(t, x)
�

dµt(x)dt (22)

for every compactly supported ϕ ∈ C 1([0, T]×Rn;R).

Proof. To derive (22), we start by proving that the mapping t 7→
∫

φ(x)dµt(x) is absolutely
continuous,2 for compactly supported φ ∈ C 1(Rn;R). We then use the property of almost
everywhere differentiability of absolutely continuous functions to differentiate

∫

φ(x)dµt(x)
w.r.t. time.

Absolute continuity of
∫

φdµt : Consider the pairwise disjoint intervals (t i, t i) ⊂ [0, T], such
that

∑N
i=1(t i − t i)< δ, for a given δ > 0. Choose φ ∈ C 1(Rn;R), then for any γ ∈ ΓωT we have

N
∑

i=1

φ(γ(t i))−φ(γ(t i)) =
N
∑

i=1

∫

(t i ,t i)

�

∇xφ(γ(t))
�

· f ω(γ(t))dt. (23)

Integrating (23) with η ∈ P (R, ΓωT ) leads to

N
∑

i=1

∫

Rn×ΓωT

�

φ(γ(t i))−φ(γ(t i))
�

dη(x ,γ)

=
N
∑

i=1

∫

(t i ,t i)

∫

Rn×ΓωT

�

∇xφ(γ(t))
�

· f ω(γ(t))dη(x ,γ)dt. (24)

Now using µt = et #η on the left side of the above equation, taking the absolute values on both
sides and then using Hölder’s inequality we get

N
∑

i=1

�

�

�

∫

Rn

φ(x)dµt i
(x)−

∫

Rn

φ(x)dµt i
(x)
�

�

�

≤ ||∇xφ||∞
N
∑

i=1

∫

(t i ,t i)

∫

Rn×ΓωT

| f ω(γ(t))|dη(x ,γ)dt. (25)

Using the growth bounds on the vector field (Assumption 4), we can derive the estimate
∫

Rn×ΓωT
| f ω(γ(t))|dη(x ,γ) ≤ Kβ(t) for some K > 0; refer to Appendix A for details. Substi-

tuting this inequality in (25), we get

N
∑

i=1

�

�

�

∫

φ(x)dµt i
(x)−

∫

φ(x)dµt i
(x)
�

�

�≤ K‖∇xφ‖∞
N
∑

i=1

∫

(t i ,t i)

β(t)dt.

2We consider test functionsϕ(t, x) = ρ(t)φ(x)which are dense inC 1(R×Rn;R), and then the differentiability
of
∫

ϕ(t, x)dµt(x) depends on the absolute continuity of
∫

φ(x)dµt(x) since

d
dt

∫

Rn

ρ(t)φ(x)dµt(x) =

∫

Rn

∂t(ρ(t))φ(x)dµt(x) +

∫

Rn

ρ(t)
d
dt
φ(x)dµt(x).

So we need to prove that t 7→
∫

φ(x)dµt(x) is absolutely continuous.

11



Since β is integrable and
∑N

i=1(t i − t i) < δ for an arbitrary δ > 0, the right-hand side can be
made arbitrarily small. This proves the absolute continuity of t 7→

∫

φ(x)dµt(x).

Next, we differentiate
∫

ϕ(t, x)dµt(x) for any ϕ(t, x) ∈ C 1
c ([0, T] × Rm) and we obtain the

following (refer to Appendix B for details),

∫

Rn

ϕ(T, x)dµT (x)−
∫

Rn

ϕ(0, x)dµ0(x)

=

∫

[0,T]×Rn

�

∂tϕ(t, x) +∇xϕ(t, x) · f ω(t, x)
�

dµt(x)dt

which shows the desired relation.

We now rewrite equation (22) in a form which we will use in the optimization formulation
proposed later in Section 6. Substituting the expression for f ω(t, x) from (13) in (22), we get

∫

Rn

ϕ(T, x)dµT (x)−
∫

Rn

ϕ(0, x)dµ0(x) =
∫

[0,T]×Rn

�

∂tϕ(t, x) +∇xϕ(t, x) ·
∫

F(t,x)

v dω(v|t, x)
�

dµt(x)dt. (26)

Rearranging the terms in the above equations and defining dµ̂(t, x , v) = dω(v|t, x)dµt(x)d t,
we get
∫

Rn

ϕ(T, x)dµT −
∫

Rn

ϕ(0, x)dµ0 =

∫

[0,T]×Rn

∫

F(t,x)

�

∂tϕ(t, x) +∇xϕ(t, x) · v
�

dµ̂(t, x , v). (27)

Equation (27) will be the starting point for the next result as we will characterize all possi-
ble solutions µ̂ to it. The solutions µ̂ will determine the vector field (13) (by defining ω)
and the solutions to the continuity equation driven by this vector field will lead to a measure
concentrated on the trajectories of the derived vector field.

Theorem 1. Consider system (11) under Assumption 3 and Assumption 4. Any measure µ̂ that
solves the continuity equation (27) is of the form

dµ̂(t, x , v) = dω(v|t, x)dµt(x)dt (28)

where ω(·|t, x) ∈ P (F(t, x)) and µt solves (22).

Proof. In Euclidean space Rn, we can use the disintegration theorem [31, Corollary 10.4.13] to
write dµ̂(t, x , v) = dω(v|t, x)dµ(t, x) whereω(·|t, x) ∈ P (F(t, x)). Using this we can rewrite

∫

Rn

ϕ(T, x)dµT −
∫

Rn

ϕ(0, x)dµ0 =
∫

[0,T]×Rn

∫

F(t,x)

�

∂tϕ(t, x) +∇xϕ(t, x) · ζ
�

dω(ζ|t, x)dµ(t, x). (29)

12



Rearranging the terms results in

∫

Rn

ϕ(T, x)dµT (x)−
∫

Rn

ϕ(0, x)dµ0(x) =
∫

[0,T]×Rn

�

∂tϕ(t, x) +∇xϕ(t, x) · f ω(t, x)
�

dµ(t, x) (30)

where f ω is defined as

f ω(t, x) =

∫

F(t,x)

ζdω(ζ|t, x) for ω(·|t, x) ∈ P (F(t, x)) (31)

and spans the set F(t, x) as we have assumed F(t, x) to be convex for every t ∈ [0, T].

Decomposition of µ: Next we show that the marginal of µ(t, x) w.r.t. time is a Lebesgue mea-
sure. This can be shown by taking ϕ(t, x) = tk for some k ≥ 0 in (30), then we get

µT (Rn)T k −
∫

Rn

tkdµ0 =

∫

[0,T]×Rn

ktk−1dµ(t, x) (32)

where taking k = 0 givesµT (Rn) = µ0(Rn) and for k ≥ 1 results in µT (Rn)T k

k =
∫

[0,T]×Rn tk−1dµ(t, x).
So, up to scaling we can write µ(dt, dx) = µt(dx)dt. Substituting this we arrive at the follow-
ing continuity equation
∫

Rn

φ(T, x)dµT −
∫

Rn

φ(0, x)dµ0 =

∫

[0,T]×Rn

�

∂tφ(t, x) +∇xφ(t, x) · f ω(t, x)
�

dµt(x)dt. (33)

Now using the results in [5], the only solutions to the continuity equation have a representation
in terms of measure η ∈ P (Rn × Γ ) (as defined in Section 2.2) as µt = et #η where η are
concentrated on the solution trajectories to system ẋ(t) = f ω(t, x(t)).

3.4 Measure Evolution for Constrained Systems

Using the equations defined in (27), we arrive at the continuity equation for the system defined
in (4), i.e., the equation

∫

S(T )

φ(T, x)dµT (x)−
∫

S(0)

φ(0, x)dµ0(x)

=

∫

[0,T]×S(t)

∫

f (t,x)−NS(t)(x)

�

∂tφ(t, x) +∇xφ(t, x) · ζ
�

dµ̂(t, x ,ζ) (34)

holds for every compactly supported φ ∈ C 1([0, T]×Rn;R). Using Theorem 1, it follows that
the measure solutions to the continuity equation have a representation (28). In this decom-
position, ω(·|t, x) represents the selection from the set f (t, x)−NS(t)(x) so that the resulting

13



trajectories evolve within the set S(t). Corresponding to such selections, the solutions to ODE
(4) are unique with x(0) ∈ S(0), see for example [8, Section 5]. Consequently, we have that
η= δX t (x0) and due to Proposition 2, the measure µt = et #η corresponds to

µt := X t #µ0 (35)

where X t denotes the flow map associated with system (4).

4 Functional Regularization

As noted earlier, the right-hand side of system (4) is possibly discontinuous, and this intro-
duces complexity in writing the transport equation for measures. The second approach that
we propose relies on working with Lipschitz continuous approximations of the right-hand side
of (4) to generate a sequence of approximate solutions {xλ}λ>0 parameterized by λ > 0. In
particular, we work with the so-called Moreau-Yosida regularization, which for system (4) takes
the following form:

ẋλ(t) = gλt (x
λ(t)) := f (t, xλ(t))−

1
λ
(xλ(t)− proj(xλ(t), S(t))) (36)

where we take xλ(0) ∈ S(0), and proj(xλ(t), S(t)) refers to the projection of the vector xλ(t)
onto the set S(t) with respect to the Euclidean distance. It is well known that the solution
curve µλt of the continuity equation with the Lipschitz regular vector field (36) satisfies the
following pushforward relationship

µλt = X λt #µ0 (37)

where X λt (x0) := xλ(t, x0) is the flow map associated with (36). In [23], the authors show that
the solution xλ(t) solving (36) converges uniformly to the solution x(t) of (4) when xλ(0) =
x(0) ∈ S(0), and that the measures µλt converge in weak star topology to the measure solutions
µt = X t #µ0, with X t being the flow map of (4). In this section, we provide quantitative bounds
on the Wasserstein distance between measures µt and µλt .

Remark 4.1. As a parallel to the regularization technique presented, we find an approach based
on mollification in [5] to study the evolution of measures for nonsmooth dynamical systems.
Such mollification is carried out by using a convolution kernel ψ : Rn → [0,∞) with the
properties that ψ(x) is bounded, measurable with ψ(x) = ψ(−x),

∫

ψ(x)d x = 1. Let ψε :=
1
εnψ( x

ε ), and the corresponding convolution with a measure µ as (ψε ∗ µ)(x) :=
∫

ψε(x −
y)dµ(y). For µε := µ ∗ψε, it can be shown that W2(µε,µ) ≤ ε

∫

|ψ(x)|2dx . In [5], a similar
mollification technique was used and the narrow convergence3 of the measures was proven by
working with a smooth vector field gε := (gµ)∗ψε

µε with the corresponding continuity equation
∂tµ

ε
t +∇ · (g

ε
tµ
ε
t ) = 0.

3Note: Family of measures µn converges narrowly to measure µ if limn→∞ |
∫

f dµn−
∫

f dµ| → 0 for a bounded
f ∈ C (Ω;R), where Ω is any Polish space. Note that the definition is different from weak* convergence where
the convergence is defined w.r.t. compactly supported continuous functions [6]. When the underlying space Ω is
compact both the notions of convergence coincide.
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Theorem 2. Let µλt ∈ P (R
n) be defined as in (37), and let µt = X t #µ0, with µ0 ∈ P (S(0)) and

X t being the flow map of (4). Then, the W1 distance between µt and µλt satisfies the following
bound:

W1(µt ,µ
λ
t )≤ C1

√

√ L f λ(eL f t − 1)

2

∫

S(0)

|x0|dµ0(x0) (38)

where C1 = L f (1+κ) + LS and κ := (e2L f T − 1)
2L f +Ls

2L f
.

Remark 4.2. Under the assumption that supp(µ0) is compact, supp(µt) and supp(µλt ) will be
compact as these are the push-forwards of Lipschitz continuous operators. This results in
W2(µλt ,µt) ≤ C2W1(µλt ,µt) for some C2 > 0 and hence a qualitatively similar bound holds for
W2 metric as the one indicated in (38).

We will use the following lemma in the proof of Theorem 2.

Lemma 1. Let xλ(t) be the solution to (36) and x(t) be the solution to (4) with xλ(0) = x(0) ∈
S(0). Then, for each t ∈ [0, T], it holds that

|xλ(t)− x(t)| ≤ (L f (1+ κ+ |x0|) + Ls)

√

√

√λ(e2L f t − 1)
2L f

where κ= (e2L f T − 1)
2L f +Ls

2L f
.

Proof. Let xλ(·) and xν(·) be solutions to (36) corresponding to λ and ν as regularization
parameters. Then

1
2

d
dt
(|xλ(t)− xν(t)|2) = 〈xλ(t)− xν(t), ẋλ(t)− ẋν(t)〉

= 〈xλ(t)−xν(t), f (t, xλ(t))−
1
λ
(xλ(t)−proj(xλ(t), S))− f (t, xν(t))−

1
ν
(xν(t)−proj(xν(t), S))〉.

Using the Lipschitz property of f (t, x) and the Cauchy-Schwarz inequality for the terms in-
volving 〈xλ(t)− xν(t), f (t, xλ(t))− f (t, xν(t))〉, we obtain

1
2

d
dt
(|xλ(t)− xν(t)|2)≤ L f |xλ(t)− xν(t)|2 −

¬

xλ(t)− xν(t),

−
1
λ
(xλ(t)− proj(xλ(t), S)) +

1
ν
(xν(t)− proj(xν(t), S))

¶

. (39)

We rewrite xλ(t)− xν(t) = xλ(t)−proj(xλ(t), S)+ (proj(xλ(t), S)−proj(xν(t), S))− (xν(t)−
proj(xν(t), S)) and substitute it in (39) to obtain

1
2

d
dt
(|xλ(t)− xν(t)|2)≤ L f |xλ(t)− xν(t)|2+

¬

xλ(t)±proj(xλ(t), S)− xν(t)±proj(xν(t), S),

−
1
λ
(xλ(t)− proj(xλ(t), S)) +

1
ν
(xν(t)− proj(xν(t), S)))

¶

. (40)
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For notational convenience, we denote Yλ(xλ(t)) =
1
λ(x

λ(t) − proj(xλ(t), S)), Yν(xν(t)) =
1
ν(x

ν(t)− proj(xν(t), S)) and substitute these in (40) to obtain

1
2

d
dt
(|xλ(t)− xν(t)|2)≤ L f |xλ(t)− xν(t)|2+

¬

λYλ(x
λ(t)) + (proj(xλ(t), S)− proj(xν(t), S))− νYν(x

ν(t)),−Yλ(x
λ(t)) + Yν(x

ν(t))
¶

. (41)

It is known that Yλ(xλ(t)) and Yν(xν(t)) satisfy the monotonicity property, i.e.

〈−Yλ(x
λ(t)) + Yν(x

ν(t)), (proj(xλ(t), S)− proj(xν(t), S))〉 ≤ 0 (42)

since Yλ(xλ(t)) and Yν(xν(t)) are Moreau-Yosida regularizations of the NS(x) operator. We
substitute (42) in (41) and get

1
2

d
dt
(|xλ(t)− xν(t)|2)≤ L f |xλ(t)− xν(t)|2

+ 〈λYλ(x
λ(t))− νYν(x

ν(t)),−Yλ(x
λ(t)) + Yν(x

ν(t))〉. (43)

Using the Cauchy-Schwartz inequality for the second term on the right-hand side of (43), we
get

1
2

d
dt
(|xλ(t)− xν(t)|2)≤ L f |xλ(t)− xν(t)|2 −λ|Yλ(xλ(t))|2−

ν|Yν(xν(t))|2 + (λ+ ν)|Yλ(xλ(t))| · |Yν(xν(t))|. (44)

Next we use Young’s inequality for the term |Yλ(xλ(t))| · |Yν(xν(t))| to obtain

1
2

d
dt
(|xλ(t)− xν(t)|2)≤ L f |xλ(t)− xν(t)|2 −λ|Yλ(xλ(t))|2 − ν|Yν(xν(t))|2

+
(λ+ ν)

2
(|Yλ(xλ(t))|2 + |Yν(xν(t))|2)

≤ L f |xλ − xν(t)|2 +
ν

2
|Yλ(xλ(t))|2 +

λ

2
|Yν(xν(t))|2. (45)

In [23], uniform bounds on |xλ(t)| were obtained, which leads to |Yλ(xλ(t))| ≤ L f (1 + κ +
e2L f T |xλ(0)|) + Ls, where κ = (e2L f T − 1)

2L f +Ls

2L f
and a similar bound on Yν(xν(t)) (see Ap-

pendix C). We use this bound in (45) and obtain

1
2

d
dt
(|xλ(t)− xν(t)|2)≤ L f |xλ(t)− xν(t)|2 +

(ν+λ)
2
|L f (1+ κ+ e2L f T |xλ(0)|) + Ls|2 (46)

where we have used the fact that xλ(0) = xν(0) = x(0). Now applying Gronwall’s lemma we
get

|xλ(t)− xν(t)|2 ≤ |L f (1+κ+ e2L f T |xλ(0)|) + Ls|2(ν+λ)
e2L f t − 1

2L f

where the term involving |xλ(0)−xν(0)| in the right-hand side is zero. Next we use the fact that
lim
ν→0

xν(t) = x(t) [23] holds pointwise and xν(0) = x(0) = x0 to obtain the desired bound.
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Proof of Theorem 2. To get a bound on the distance between µt and µλt , we use the dual char-
acterization of the W1 distance [24]:

W1(µ
λ
t ,µt) = sup

φ∈C (Ω;R),
||φ||Lip≤1

∫

φd(µλt −µt) (47)

where ‖φ‖Lip denotes the Lipschitz modulus of φ and Ω is a measurable set containing all S(t)
for t ∈ [0, T]. We use the representation formula for µλt and µt to obtain,

sup
φ∈C(Ω;R)
||φ||Lip≤1

∫

φ d(µλt −µt) = sup
φ∈C(Ω;R)
||φ||Lip≤1

∫

φ(xλ(t, x0))dµ0(x0)−
∫

φ(xλ(t, x0)|λ=0)dµ0(x0)

where xλ(t, x0)|λ=0 := limλ→0 xλ(t, x0). Using the first order Taylor expansion of φ(xλ(t, x0))
w.r.t. λ, for each φ ∈ C (Ω;R) s.t. ||φ||Lip ≤ 1 , we get,

∫

φ(xλ(t, x0))dµ0 −
∫

φ(xλ(t, x0)|λ=0)dµ0

≤
∫

�

φ(xλ(t, x0)|λ=0) +∇xφ(x
λ(t, x0))|λ=0 · (xλ(t, x0)−

x(t, x0))
�

dµ0 −
∫

φ(x(t, x0))dµ0

=

∫

∇xφ(x
λ(t, x0))|λ=0(x

λ(t, x0)− x(t, x0))dµ0

≤
∫

|∇xφ(x
λ(t, x0))|λ=0| |(xλ(t, x0)− x(t, x0))|dµ0. (48)

Using the fact that φ is of Lipschitz constant 1, the above equation reduces to

W1(µ
λ
t ,µt)≤

∫

S(0)

|(xλ(t, x0)− x(t, x0))|dµ0(x0). (49)

Using Lemma 1 in (49), we get the inequality in (38).

5 Time Discretization and Optimal Transport

In this section, we provide a construction of solutions to the continuity equation for (4) using
a time discretization scheme.

5.1 Absolutely Continuous Curves of Measures

In what follows, we consider the space of probability measures, with bounded second moment
and equipped with the W2 metric, which is denoted by (P2(Rn), W2), see [6] for details. This
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metric space is called the Wasserstein space and it will be denoted as W2(Rn). We say that a
curve [0, T] 3 t 7→ µt ∈ (P2(Rn), W2) is absolutely continuous if there exists m(t) ∈ L2([0, T])
such that

lim
h→0

W2(µt ,µt+h)
h

≤ |m|(t) (50)

holds for almost every t ∈ [0, T]. From [6, Theorem 1.1.2], the metric derivative µ′(t) is
defined such that |µ′|(t)≤ |m|(t) holds for all functions m ∈ L2([0, T]) satisfying (50).

Another important characterization of absolutely continuous curves in the W2 space is as fol-
lows. A curve µt : [0, T]→W2(Rn) is absolutely continuous if and only if there exists a vector
field vt with ||vt ||L2(µt ) = |µ

′|(t) and µ satisfies the continuity equation driven by the drift term
vt .

5.2 Construction of Curves in Wasserstein Space

Next we propose a construction of curves in W2(Rn) through an interpolation between mea-
sures defined at discrete time instants using a discretization of the nonsmooth dynamical sys-
tem (4). Consider a partition {0 = t0, t1, ...t i, ...tN = T} of time interval [0, T] such that
tk+1 − tk = τ. For a fixed value of τ, we now define the measures {µτk}k∈N at time instants tk

in a recursive manner. To do so, let Sk := S(kτ) which is a closed convex set under Assump-
tion 2. We denote by PSk

the projection mapping onto the set Sk, and we consider the mapping
Gk : Rn→ Rn, defined as

x 7→ Gk(x) := PSk+1
◦ (τ fk(x) + x)

with fk(x) := f (tk, x). The successor of µτk is now defined as its push-forward under the
mapping Gk as follows:

µτk+1 := Gk
#µ

τ
k =

�

PSk+1
◦ (τ fk(·) + id)

�

#
µτk . (51)

Similarly, for each x ∈ S(kτ), the velocity vector at time (k+ 1)τ is defined as

vτk+1(x) :=
Gk(x)− x

τ
=

PC ◦ (τ fk(·) + id)(x)− x
τ

.

Next we consider the following two different interpolation curves which will serve different
purposes:

(1) Geodesic interpolation between µτk and µτk+1 over the interval (tk, tk+1] by defining the
transport maps

Gt :=
� t − kτ
τ

G∗ +
(k+ 1)τ− t

τ
id
�

for each t ∈ (kτ, (k+1)τ], for some optimal transport map G∗ between µτk and µτk+1 and letting

µτt = Gt #µ
τ
k =

�kτ− t
τ

G∗ +
(k+ 1)τ− t

τ
id
�

#
µτk . (52)

18



The map Gt is injective and the proof is based on the c-cyclical monotonicity property of optimal
transport maps [24]. The interpolation of velocity vector is defined as

vτt (x) := vτk+1 ◦ (Gt)
−1(x) for t ∈ (kτ, (k+ 1)τ]. (53)

The L2 norm of velocity vτt satisfies the following relation

||vτt ||L2(µτt ) =
W2(µτk ,µτk+1)

τ
= |(µτ)′|(t)for all t ∈ (kτ, (k+ 1)τ]. (54)

We further define the momentum vector as

Eτt := vτt µ
τ
t (55)

and it satisfies ∂tµ
τ
t +∇ · (E

τ
t ) = 0.

(2) Piecewise constant interpolation curve such that

µ̂τt = µ
τ
k+1, (56)

v̂τt = vτk+1 for t ∈ (kτ, (k+ 1)τ] (57)

We also define the corresponding momentum vector as

Êτt := v̂τt µ̂
τ
t . (58)

We will use piecewise constant interpolation to show that the limit velocity belongs to (4).

5.3 Convergence Result

Next we illustrate the convergence of the constructed curves µτt , µ̂τt to µt which is solution to
the continuity equation associated with (4).

Theorem 3. Consider system (4) under Assumption 1 and Assumption 2, with µ0 ∈ P (S(0)).
For τ > 0, and t ∈ [0, T], let µτt and vτt be defined as in (52) and (53), respectively. Then, as
τ→ 0, we get the following two convergence results:

• The measures µτt in (52) and µ̂τt in (56) converge uniformly in the W2 metric to µt = X t #µ0,
where X t is the flow map associated with (4);

• Momentum vectors Eτt = vτt µ
τ
t (defined in (55)) and Êτt = v̂τt µ̂

τ
t (defined in (58)) converge

to Et := vtµt in the weak star sense. Moreover, the velocity vt is such that vt ∈ f (t, x)−
NS(t)(x).

Proof. We split the proof into four parts: (1) Proof of convergence of µτt to µt and µ̂τt → µt; (2)
Proof of convergence of Eτt and Êτt to Et; (3) Absolute continuity of Et with respect to µt such
that Et = vtµt; and (4) Convergence of vτt to vt with the property that vt ∈ f (t, x)−NS(t)(x).
The first of these four items follows from the following result:
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Lemma 2. Let µτk and µτk+1 be defined as in (51) and (52). Then, it holds that

W2(µ
τ
k+1,µτk)≤ τ(L f Cmax + Ls) (59)

where the constants L f , Ls are defined in Assumption 1 and Cmax is a constant that captures the
uniform bound on |xk| at time instant tk, independently of k ∈ N.

Proof of Lemma 2. The mapping Gk(x) defines a feasible transport map between µτk and µτk+1.
As the Wasserstein distance is defined to be the infimum over all feasible transport maps, we
have

W 2
2 (µ

τ
k+1,µτk)≤

∫

Sk

|PSk+1
◦ (τ fk(·) + id)(x)− x |2dµτk(x). (60)

Next we use the triangle inequality to obtain

W 2
2 (µ

τ
k+1,µτk) ≤

∫

Sk

|PSk+1
(τ fk(x) + x) − PSk+1

(x)|2dµτk(x) + |PSk+1
(x) − x |2dµτk(x). (61)

Projection operators on convex sets satisfy the nonexpansive property and we use this fact for
the first term. For the second term, we use the definition of the Hausdorff distance to obtain

W2(µ
τ
k+1,µτk)≤

�

∫

Sk

|τ fk(x)|2dµτk(x)
�1/2
+τdH(Sk, Sk+1). (62)

Using Assumption 1 for the drift term fk(x), it holds

W2(µ
τ
k+1,µτk)≤

�

∫

Sk

τ2|(L f (1+ |x |))2|dµτk(x)
�1/2
+τdH(Sk, Sk+1). (63)

Next, we establish a bound on the first term on the right-hand side of (63). We know that
µτk = Gk

# ◦ Gk−1
# ◦ · · · ◦ G1

#µ0 = (G1 ◦ G2 ◦ · · · ◦ Gk)#µ0. Let Gk...1 := Gk ◦ Gk−1 ◦ · · · ◦ G1, then it
follows that

∫

Sk

(1+ |x |)2dµτk(x) =

∫

S0

(1+ |Gk...1(x0)|)2dµτ0(x0). (64)

Letting xk := Gk...1 x0, it has been shown in [8, Section 5] that

|xk| ≤ eC1|x0|+ eC2 (65)

for some constants eC1, eC2 > 0 depending on the system data. Now using this uniform bound
on |xk| in the first term on the right-hand side of (63), we get

�

∫

Sk

τ2 L2
f (1+ |x |)

2dµτk(x)
�1/2
= τL f

�

∫

S0

(1+ |xk|)2dµτ0(x0)
�1/2

≤ τL f

�

∫

S0

(1+ eC1|x0|+ eC2)
2dµτ0(x0)

�1/2
(66)
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=: τL f Cmax (67)

where the equality between (66) and (67) holds because µτ0 ∈ P (S0). Thus

W2(µ
τ
k+1,µτk)≤ τL f Cmax +τdH(Sk, Sk+1) = τ(L f Cmax + Ls)

where we used Assumption 2 in the last equality.

(1) Proof of convergence of µτt to µt: The convergence is based on computing the bounds on
W2(µτt ,µτs ) for s, t ∈ [0, T], where we recall that µτt are the interpolated measures. This is done
by using the characterization of absolutely continuous curves (50), i.e.

W2(µ
τ
t ,µτs )≤

∫ t

s

|(µτ)′(r)|dr (68)

and using Hölder’s inequality leads to
∫ t

s

|(µτ)′|(r)dr ≤ (t − s)1/2
�

∫ t

s

|(µτ)′(r)|2dr
�1/2
≤ (t − s)1/2

�∑

k

τ
�W2(µτk+1,µτk)

τ

�2� 1
2
. (69)

Using the bounds on W2(µτk+1,µτk) from (59), we get

∑

k

τ
�W2(µτk+1,µτk)

τ

�2
≤
∑

k

(Ls + L f Cmax)
2τ= (Ls + L f Cmax)

2T.

Substituting (5.3) in (69) we obtain

W2(µ
τ
t ,µτs )≤ (t − s)1/2(Ls + L f Cmax)T

1/2. (70)

Thus the curves are uniformly 1
2Hölder continuous. Moreover, the curves µτt lie in the W2 space

for each t ∈ [0, T] which is compact. Thus, we can apply the Ascoli-Arzelà theorem (for the
Hölder continuous functions) i.e., there exists a subsequence τ j for which µ

τ j
t → µt uniformly

in W2 space and the limit curve µt is absolutely continuous.

Similar to (70) one can derive bounds for µ̂τt and conclude that µ̂
τ j
t → µ̂t . Moreover the limit

curves are the same as
W2(µ̂

τ
t ,µτt )≤ (τ)

1/2(L f Cmax + Ls)T
1/2.

This holds because the curves µ̂τt coincide with µτt at kτ and they are constant on the interval
(kτ, (k+ 1)τ]. Thus both curves converge to the same limit curve µt .

(2) Proof of convergence of Eτt : In order to study the convergence properties of the velocity
vector, we need to investigate the convergence properties of a family of momentum vectors
Eτt = vτt µ

τ
t which is a vector measure4 Eτt ∈ M

n(Ω), where Ω is a measurable set which
contains all S(t), for all t ∈ [0, T]. We define mτ ∈M n([0, T]×Ω) as mτ := vτt µ

τ
t dt.

Lemma 3. The norm of mτ satisfies the following bound:

|mτ|([0, T]×Ω)≤ T
3
2 (L f Cmax + Ls). (71)

4The space of vector measuresM n(Ω) is a normed space dual to C (Ω;Rn). Under this duality the notion of
weak star convergence is defined which further implies that bounded sets inM n(Ω) are weak star compact.

21



Proof. By definition

|mτ|([0, T]×Ω) =
∫

[0,T]

dt

∫

Ω

|vτt |dµ
τ
t .

Using the Cauchy-Schwarz inequality and then (54) we get

|mτ|([0, T]×Ω)≤ T 1/2

∫

[0,T]

||vτt ||L2(µτt )d t ≤ T 1/2
∑

k

W2(µτk+1,µτk)

τ
.

Using Lemma 2, we further obtain

|mτ|([0, T]×Ω)≤ T 1/2
∑

k

(L f Cmax + Ls) = T
3
2 (L f Cmax + Ls)

which is the desired bound.

So, mτ is uniformly bounded and thus compact under weak convergence in the space of vector
valued measures on [0, T] × Ω. We conclude that up to a subsequence mτ * m and thus
Eτt * Et . For m̂τ := v̂τt µ̂

τ
t , a similar bound holds, i.e. |m̂τ| ≤ T

3
2 (L f Cmax + Ls). Using the same

arguments one concludes m̂τ * m̂ and thus Êτt * Êt . Moreover, using [24, Lemma 8.9] we
conclude that Êt = Et .

Next we discuss about the properties of the limit object Et and show that Et is absolutely
continuous with respect to µt , such that Et = vtµt , for each t ∈ [0, T].

(3) Absolute continuity of Et: At this point, we recall the properties of then Benamou-Brenier
functionalB(µ, E) defined as follows. For µ ∈ P (Rn) and E ∈M n(Rn), let

B(µ, E) := sup
a∈C (R;R),b∈C (Rn;Rn)

a,b are bounded
a+ 1

2 |b|
2≥0 pointwise

∫

Rn

a(x)dµ(x) +

∫

Rn

b(x)dE(x)

which has the following properties:

• B(·, ·) is convex, lower semicontinuous, and non-negative;

• B(µ, E) = 1
2

∫

|v|2dµ only if E = vµ is absolutely continuous with respect to µ and
B(µ, E) is∞ otherwise.

Note thatB(µτt dt, Eτt dt) =
∫

[0,T]

∫

Ω
|vτt |

2dµτt dt. Now using the uniform bound on |mτ| ( thus

on
∫

[0,T]

∫

Ω
|vτt |

2dµτt dt) in (71) and the lower semi-continuity ofB(·, ·), we get

B(µtdt, dm)≤ lim inf
τ→0

B(µτt dt, dmτ)<∞

where dm represents the limit of dmτ, as τ → 0. We can now invoke the second property
mentioned above which implies that dm is absolutely continuous with respect to dµtdt. Thus,
there exists vt such that dm= vtµtdt. Similarly, Et is absolutely continuous with respect to µt

and Et = vtµt .
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(4) Proof that vt(x) ∈ f (t, x) − NS(t)(x): Next we show that the velocity vt belongs to the
admissible set of velocities. By construction of the velocities vτk+1, for every x ∈ Sk, and every
y ∈ Sk+1, we have




y − PSk+1
◦ (τ fk(·) + id)(x)),

(PSk+1
◦ (τ fk(·) + id)(x)− x)

τ

�

≥ 0

which results in
〈y − PSk+1

◦ (τ fk(·) + id)(x)), vτk+1(x)− fk(x)〉 ≥ 0,

i.e., vτk+1(x)− fk(x) is in the normal cone to set Sk+1. The above condition should hold in the
integral form for any smooth positive function h(t, x) i.e.

∫

[0,T]

∫

Ω

¬

h(tk, x)(y − PSk+1
◦ (τ fk(·) + id)x),

(vτk+1(x)− fk(x))dµ
τ
k(x)

¶

≥ 0, ∀y ∈ Sk+1. (72)

Next we can extend (72) to piecewise constant interpolated curves (56) and corresponding
velocities (57). We make a passage from discrete time kτ to t ∈ (kτ, (k + 1)τ] by identifying
vτk+1dµτk = v̂τt dµ̂τt = dÊτt and similarly, dµτk = dµ̂τt . Next, we use the convergence results
established in the first two steps of the proof, so that, in the limit as τ→ 0, we obtain

∫

[0,T]

∫

Ω

¬

h(t, x)
�

y − x
�

, dEt(x)
¶

−
∫

[0,T]

∫

Ω

¬

h(t, x)
�

y − x
�

, f (t, x)dµt(x)
¶

≥ 0, ∀y ∈ S(t).

As we have already established that Et = vtµt and since h(t, x) is an arbitrary positive function,
we get




y − x , v(t, x)− f (t, x)
�

≥ 0, ∀ y ∈ S(t).

Thus, v(t, x)− f (t, x) ∈ −NS(t)(x).

Uniqueness of solutions: The uniqueness of solutions follows from the same argument as pre-
sented in Section 3.4 based on the superposition principle. Furthermore, it also states that the
solution has a representation formula as µt = X t #µ0.

6 Numerical Results

6.1 Moment-SOS hierarchy

In Section 3, we derived the continuity equation (27) associated with dynamical system (4) us-
ing the superposition principle. The problem of computing the evolution of a probability mea-
sure through a dynamical system can be interpreted as a feasibility problem where the feasible
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set is an affine section (modeled by the continuity equation) of the cone of non-negative mea-
sures (supported on the trajectories). For notational convenience, we rewrite the continuity
equation in (27) as

∂tµ+∇ · ( f ωµ) +δT ⊗µT = δ0 ⊗µ0 (73)

where f ω is defined in (13) and the equation should be understood in the weak sense, i.e. when
integrated against sufficiently smooth test functions as in (34). Given an initial distribution µ0

with supp(µ0) ⊂ X , we formulate the problem of evolution of measures in (4) as the following
infinite dimensional optimization problem:

Find µ,µT such that

∂tµ+∇ · ( f ωµ) +δT ⊗µT = δ0 ⊗µ0

µ≥ 0,µ0 ≥ 0,µT ≥ 0

supp(µ) ⊂ [0, T]× B, supp(µT ) ⊂ XT , (74)

where B = {(x , v)|x ∈ Ω ⊂ Rn, v ∈ F(x)}. This is an infinite dimensional linear program. In
this section, we present numerical results obtained using the moment-SOS hierarchy to solve
this linear program in terms of approximate moments of measures µ and µT . The moments
are generated by integration on a dense set of functions φ in C 1([0, T],Rn) as in (27). For
notational convenience we use the monomial basis.

Numerical Example: Consider the nonsmooth system

ẋ(t) ∈ (1, 0)−NS(x(t)) (75)

where S = {x = (x1, x2) ∈ R2 : x2
1 + x2

2 ≤ 1}. For this problem, we decompose the measure
solution µ of (34) into two measures: µS supported in the disc and µ∂ S supported on the
boundary of the disc. In particular, we let XS := supp(µS) = {0 ≤ t ≤ 1} × {(x,v) : x2

1 + x2
2 ≤

1, v1 = 1, v2 = 0}, and X∂ S := supp(µ∂ S) = {0 ≤ t ≤ 1} × {(x,v) : x2
1 + x2

2 = 1, x1v2 = x2v1}.
The continuity equation (34) can be expressed as

∫

XT

φ(T,x)dµT (x)−
∫

X0

φ(0,x)dµ0(x)

=

∫

XS

�

∂tφ(t,x) +∇xφ(t,x) · v
�

dµS(t,x,v) +

∫

X∂ S

�

∂tφ(t,x) +∇xφ(t,x) · v
�

dµ∂ S(t,x,v).

(76)

To approximate the moments of the measures satisfying the above equation we use the mono-
mial basis. Let R[x] be the ring of multivariate polynomials and Rk[x] ⊂ R[x] be the vector
space of polynomials of degree not exceeding k. Then the monomial basis of Rk[x] can be
expressed as φ(t,x) := taxb := ta x b1

1 x b2
2 ..x bn

n where a+ b1 + b2 + ..+ bn ≤ k.

Proposition 6.1. Let m0
a,b :=

∫ T

0

∫

Rn taxbdµ0(t,x) be the moments of µ0. Then using the mono-
mial basis in (76) we get
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mT
a,b −m0

a,b = amS
a−1,b + am∂ S

a−1,b +
n
∑

i=1

∫

X∂ S

bi t
axb−ei vidµ∂ S(t,x,v)

+
n
∑

i=1

∫

XS

bi t
axb−ei vidµS(t,x,v) (77)

where mS
a,b :=

∫

XS
taxbdµ(t,x), m∂ S

a,b :=
∫

X∂ S
taxbdµ(t,x), mT

a,b := T a
∫

XT
xbdµT (x) and ei =

(0, .., 1, .., 0) is the vector with one at the ith entry.

Proof. The proof is a straightforward extension of [23, Proposition 4.3]

The moment-SOS hierarchy allows us to evaluate approximate moments ma,b := mS
a,b +m∂ S

a,b

and mT
a,b related to occupation measures µ and µT . For details about the moment-SOS hierar-

chy we refer the readers to [23, Section 4.3] or [22]. The initial distribution is µ0 = δ(0,0.5),
i.e. the Dirac measure at coordinates (0, 0.5) whose moments m0

a,b are readily available. The
simulation results are displayed in Figure 1, where we plot the first order moments of terminal
measures µT , for different terminal times T and computed for a given relaxation order using
GloptiPoly and SeDuMi. We can observe the effect of the boundary on the measure even
before it hits the boundary. We attribute this effect to the numerical inaccuracy due to finite or-
der truncation. The approximate moments obtained, sometimes called pseudo-moments, may
not represent the true moments but the accuracy increases as the relaxation order increases.

Figure 1: Moment-SOS hierarchy approximations of the first degree moments of the terminal
measure µT solving the continuity equation (73) for the nonsmooth system (75), with different
terminal times ranging from T = 0 (Dirac mass at (0,0.5)) to T = 3 (Dirac mass approximately
at (1,0)).

6.2 Bound on Wasserstein Distance

In Section 4, we used the Moreau-Yosida regularization to approximate the solution (µt)t≥0 ∈
P (Rn) of the continuity equation associated with the nonsmooth dynamical system (4) with
measures (µλt )t≥0 ∈ P (Rn) which are solutions to the continuity equation with regularized
vector field (36). We showed that the measures µt ,µ

λ
t , which have representations of the
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form (35) and (37) respectively, satisfy a bound on their Wasserstein distance of the form
W1(µλt ,µt) < CW

p
λ for each time t ∈ [0, T] (the explicit expression of the constant CW is in

(38)). Now let us validate this bound for the following example:

ẋ(t) ∈ −1−NR+(x(t)). (78)

Its Moreau-Yosida regularization is:

ẋλ(t) = −1−
1
λ
(x(t)−max(x(t), 0)). (79)

We consider an initial value problem for (78) and (79) with x(0) = 0.5. The solution to the
initial value problem for (78) is

x(t) =

¨

0.5− t for 0< t < 1
2

0 for t ≥ 1
2

(80)

and the solution for (79) is

xλ(t) =

¨

0.5− t for 0< t < 1
2

λ(exp(−(t − 0.5)/λ)− 1) for t ≥ 1
2 .

(81)

Proposition 3. Given µλt ,µt ∈ P (R) and µ0 = µλ0 = δx=a for some a > 0, then

W1(µ
λ
t ,µt) = |xλ(t)− x(t)|. (82)

Proof. It is known that in one dimension W1(µ,ν) =
∫

R |Fµ(s)− Fν(s)|ds [24] where Fµ(·) and
Fν(·) are the cumulative distribution functions of measures µ and ν respectively. Using this
formula, we get

W1(µ
λ
t ,µt) =

∫

R
|Fµλt (s)− Fµt

(s)|ds. (83)

Given µ0 = µλ0 = δx=a, the measures µλt and µt can be computed as µλt = δxλ(t) and µt = δx(t)
and thus Fµλt (s) = Θxλ(t)(s) and Fµt

(s) = Θx(t)(s). Here, Θ : R → R is such that Θx(t)(s) =
1 for x(t)≤ s and Θx(t)(s) = 0 for x(t)≥ s. Substituting Fµλt and Fµt

in (83), we get

W1(µ
λ
t ,µt) =

∫

R
|Θxλ(t)(s)−Θx(t)(s)|ds. (84)

This quantity can be seen as the area under |Θxλ(t)(s)−Θx(t)(s)| at time t and performing the
integration (84) we get the desired result.

Given (80), (81) and using Proposition 3 we obtain for a = 0.5:

W1(µ
λ
t ,µt) =

¨

0 for 0< t < 1
2

|λ(e−(t−0.5)/λ − 1)| for t ≥ 1
2 .

(85)

Next we obtain the bound in (38) for system (78) with L f = 1, Ls = 0 and µ0 = δx=0.5.
Substituting these values we get

W1(µ
λ
t ,µt)≤

3
2

e2

√

√λ

2
(et − 1). (86)

In Figure 2, we show the plots of the analytical distance (85) and its upper bound (86) for
different values of λ at four different time instants.
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Figure 2: W1 distance (85) (in black) and its upper bound (86) (in gray) between the image
measures µt resp. µλt through the flow (35) resp. the regularized flow (37), at various time
instants.

6.3 Time Discretized Measure Evolution

In Section 5, we used geodesic interpolation and piecewise constant interpolation for the time
discretized curves and showed convergence to the solution to the continuity equation (27). Let
us apply the time-stepping algorithm to implement a time discretized evolution of the measure
solutions to the continuity equation associated with the nonsmooth dynamical system (4).

Let τ be the time step between two discretized measures and let µτk be the measure at time k.
Then from Section 5:

µτ0 = µ0; µτk+1 = PSk+1 #
(τ fk(·) + id)#µk. (87)

We model the measure as mass distributed on a space discretized grid. Then the time-stepping
scheme consists of the following two steps:

• Step 1: compute the pushforward measure

µ̃k := (τ fk(·) + id)#µk; (88)

• Step 2: project each cell lying outside Sk+1 back onto Sk+1. This operation can be formu-
lated as

µk+1 = PSk+1 #
µ̃k (89)

and it can be understood as a projection of measures on the set of measures with support
Sk+1.

In Figure 3 we illustrate the scheme for the following example

ẋ(t) ∈ −NS(t)(x(t))

where S(t) is a 4× 4 grid square, with each cell assigned with mass of 1/16 at time t = 0.
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Figure 3: Snapshots of time evolution of a uniform probability distribution on the moving
square. The mass is initially distributed on a 4×4 square grid with 1/16 mass on each cell. For
the first 7 time steps the square moves downward and the mass can be seen to concentrate on
the top edge of the square. Afterwards the square moves diagonally and the mass concentrates
on the left edge until it completely concentrates at the bottom left corner at time step 12.

7 Conclusion

We addressed the problem of evolution of measures in a nonsmooth dynamical system mod-
eled by evolution variation inequalities using three different formalisms. In future work, we
aim to study the optimal control problem for the considered system class using measure re-
laxation. Based on our preliminary investigation, the results of this article allow us to address
the propagation of measures in the presence of control inputs. In particular, it opens up the
possibility to study the convergence of discrete time optimal control problem to the continuous
time optimal control problem in the space of measures.

A Bounds used in proof of Proposition 2

In this appendix, we provide estimates for the bounds
∫

|γ̇(t)|dη(x ,γ). To do so, we first get
bounds on |γ(t)| using the linear growth in Assumption 4,

|γ(t)− γ(0)| ≤
∫

|γ̇(s)|ds ≤
∫

β(s)(1+ |γ(s)|)ds

≤
∫ t

0

β(s)(1+ |γ(0)|)ds+

∫ t

0

β(s)(|γ(s)− γ(0)|)ds.

Applying Gronwall inequality by assuming first term is non-decreasing,

|γ(t)− γ(0)| ≤
�

∫ t

0

β(s)(1+ |γ(0)|)ds
�

e

�

∫ t
0 β(σ)dσ

�

. (90)
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Let β t :=
∫ t

0
β(σ)dσ, then

|γ(t)− γ(0)| ≤ β t exp(β t)(1+ |γ(0)|)≤ β T exp(β T )(1+ |γ(0)|).

We use this last inequality to get the desired bound as follows:
∫

Rn×ΓωT

|γ̇(t)|dη(x ,γ)≤
∫

Rn×ΓωT

β(t)(1+ |γ(t)|)dη(x ,γ)

≤
∫

Rn×ΓωT

β(t)(1+ |γ(0)|)(β T exp(β T ) + 1)dη(x ,γ)≤ Kβ(t),

where K :=
∫

Rn×ΓωT
(1+ |γ(0)|)(β T exp(β T ) + 1)dη(x ,γ).

B Differentiating first moment with time dependence

In this appendix, we derive the Liouville equation (22). For anyϕ ∈ C 1(R,Rn)we differentiate
∫

ϕ(t, x)dµt(x) and get,

d
dt

∫

Rn

ϕ(t, x)dµt(x) =
d
dt

∫

Rn

ϕ(t, x)det #η(x ,γ)

=
d
dt

∫

Rn×ΓωT

ϕ(t,γ(t))dη(x ,γ)

=

∫

Rn×ΓωT

�

∂tϕ(t,γ(t)) +∇xϕ(t, x)γ̇(t)
�

dη(x ,γ)

=

∫

Rn

�

∂tϕ(t, x) +∇xϕ(t, x) · f (t, x)
�

dµt(x).

Integrating w.r.t. t on both sides gives the desired result.

C A property for Moreau-Yosida regularization for the map-
ping induced by normal cone

In [23], the bound on |Yλ| was established as follows,

|Yλ(xλ(t))| ≤
1
λ

∫ t

0

e−(t−s)/λ(L f + L f (|xλ(t)|) + Ls)ds. (91)

It was demonstrated that xλ satisfy uniform bound |xλ(t)| ≤ e2L f T |xλ(0)| + κ where, κ =
(e2L f T − 1)

2L f +Ls

2L f
and T is the time interval for the existence of trajectory. Upon substituting

this uniform bound on |xλ| in (91) we get,

|Yλ(xλ(t))| ≤ L f (1+κ+ e2L f T |xλ(0)|) + Ls. (92)
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