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Abstract

Modern parallel architectures have heterogeneous processors and com-
plex memory hierarchies, offering up to billion-way parallelism at multi-
ple hierarchical levels. Their exploitation of HPC applications greatly
boosts scientific discoveries and advances, but it is still hard to utilize
them maximally, engendering pro rata high energy consumption. The
task-based programming model has demonstrated promising potential in
developing scientific applications on modern high-performance platforms.
In this work, a new framework for managing the concurrent execution of
task-based applications, RSCHED, is introduced. RSCHED aims at min-
imizing the overall makespan while executing a set of applications, and
maximizing resource utilization. We implemented our proposal on StarPU
and evaluated it on real applications. RSCHED demonstrated the poten-
tial to speed up the overall makespan of ran applications compared to
consecutive execution with an average factor of 10x and the potential to
increase resource utilization.

Keywords: Heterogeneous resource management, Scheduling, Task-based ap-
plications, Gradient descent, StarPU.

Introduction

High-performance computing (HPC) is crucial to making discoveries and ad-
vances in several scientific domains (astrophysics, climatology, epidemiology,
biology, geology, etc.). HPC offers the ability to perform complex calculations
and massive data processing at very high speed by aggregating the power of sev-
eral thousand processing units, called supercomputers. Supercomputers rely on
a complex, heterogeneous, and hierarchical hardware organization. The largest
supercomputers are mostly composed of central processing units (CPUs) and
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graphical processing units (GPUs) 1, or even Field Programmable Gate Arrays
(FPGAs). As parallel systems, they can process several jobs at the same time
by scheduling their execution on the available resources.

In the current HPC paradigm, there are schedulers at multiple levels, which
all have the same aim: distributing the workload over hardware resources. At
the higher level, the batch-scheduler, like Slurm 2, manages the hardware re-
sources of an entire supercomputer by deciding the order of execution of the
jobs submitted by the users. Submitted jobs are treated by the batch scheduler
as black boxes. This is advantageous because the batch scheduler can run appli-
cations implemented with any technology, giving freedom to the programmers.
However, this approach might lead to resource wastage and increasing energy
consumption. Such a situation can happen when an application suboptimally
uses the allocated resources, when an adjustment of resources is required during
different phases of execution, or when the resource manager cannot adapt the
resources to the workload of newly submitted jobs. Moreover, executing one
job after the other is most likely counterproductive, since HPC applications are
often composed of interdependent executing kernels, and therefore cannot fully
use resources due to their precedence constraints. In the current study, we aim
to improve the batch scheduler by using a dynamic resource allocation strategy.
Our objective is to improve the executions at the scale of the supercomputer,
i.e., to reduce the overall makespan of an application set, and not to focus on a
single application only. In addition, our work is tied to the task-based method,
as we consider that each application is composed of tasks and that some of them
can be executed on CPU, GPU or both.

In this paper, we present a resource manager for heterogeneous environments
considering task-based model applications called RSCHED, aiming at optimiz-
ing their usage. In RSCHED, we propose strategies for resource distribution
between concurrent task-based applications while orchestrating their execution.
We have implemented our proposal within the StarPU [1] and analyzed the
performance of our proposal via diverse experiments. Our contributions can be
summarized as follows:

• We propose a framework for managing the execution of concurrent task-
based applications

• We propose strategies for dynamically distributing resources between con-
current task-based applications

• We propose a new model of Gradient Descent in a (three-dimensional)
discrete space

• We propose a strategy to automatically create and configure a scheduling
context for a given task-based application

• We present performance analysis and results showing the effectiveness of
our proposals

1https://www.top500.org/
2https://www.schedmd.com/
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The remaining sections of the paper are organized as follows. In Section 1,
we introduce the notion of task-based application and present the state-of-the-
art concerning the scheduling of task-based application under StarPU. Then,
in Section 2, we present our proposed resource management for simultaneous
execution of task-based applications. Finally in Section 3, we evaluate the per-
formance of our proposals.

1 Background

1.1 Task-based application

Several strategies to parallelize applications on heterogeneous computing nodes
aim at maximizing resource usage. The task-based model has demonstrated
high potential in various fields [2, 3, 4]. This method allows obtaining hardware-
independent algorithm descriptions while developing efficient HPC applications.
The level of abstraction and encapsulation relieves the users by shifting the
complexity to the runtime systems, where researchers can invest the effort to
create generic and efficient optimization solutions. The HPC community has at
its disposal highly documented and maintained runtime systems supporting the
task-based model, such as Parsec [5], and StarPU [1] a runtime system library
developed at Inria Bordeaux.

Among other runtime systems supporting the task-based model, StarPU has
a plus in that it has a component – hypervisor – allowing concurrent execution
of task-based applications with minimal interference [6]. StarPU hypervisor
provides confined execution environments – scheduling contexts – which can be
used to partition computing resources. StarPU scheduling contexts can be dy-
namically resized and linked to a well-designed scheduler to optimize the alloca-
tion of computing resources among concurrent task-based applications/libraries.
A scheduler can chosen for each application via its linked scheduling context.
Since task-based applications have varied types and structures, a scheduler can
be effective only for some applications, or a specific type of machine architec-
ture [7, 8, 9, 10, 11]. StarPU also proposes basic strategies for resizing schedul-
ing contexts and a platform for implementing additional custom ones. However,
there is no means to launch several applications or dynamically distribute the
workers among them.

Different task-based frameworks have been used to develop efficient HPC
applications, such as the Lattice-Boltzmann method [12, 13], the fast-multipole
method (FMM) [2, 3, 14], N-body simulations [15], linear algebra solvers [16,
17, 18], H-matrix solvers [19], the particle-in-cell method [20], the polar de-
composition method [21], seismic imaging [22, 23, 24], Galerkin solver [25], to
mention a few. This demonstrates that at least at a moderate scale and when
used by experts, the existing task-based runtime systems can be efficient for
various classes of algorithms.
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1.1.1 Task-based parallelization

The task-based method divides an application into interdependent sections,
called tasks. The dependencies between the tasks ensure valid parallel exe-
cutions and task execution orders without race conditions. This can be likened
to a graph, where the nodes represent the tasks and the edges represent the de-
pendencies. We consider a task-based application as a Directed Acyclic Graph
(DAG) G(V,E) where V = {t1, t2, ..., tn} is the set of nodes and E = {ei,j =
(ti, tj)|1 ≤ i, j ≤ n, i ̸= j} the set of edges representing the existing data depen-
dencies between tasks. An edge (ti, tj) ∈ E if there is a precedence constraint
between ti and tj ∈ V , such that tj can be executed only after the task ti is
over, and the data made available.

A task ti is a computational element executable on one or (potentially) sev-
eral types of hardware and incorporates different interchangeable kernels, each
targeting a specific architecture. For instance, a matrix-matrix multiplication
task in linear algebra could be either a call to cuBLAS and executed on a GPU,
or a call to Intel MKL and executed on a CPU, but both kernels return equiv-
alent results.

1.2 Task scheduling and related work

The scheduling problem on heterogeneous computing systems has been proven
NP-complete [26], whether in static or dynamic situations. Dealing with the
first situation requires prediction models which are not always accurate, and a
knowledge of the complete view of the task graph [27], which need expensive
analysis mechanisms and incur significant overhead. The latter one is the most
used [28, 29, 30, 24, 31, 21, 3] and has demonstrated its ability to deliver high
performance with reduced overhead.

The two main steps of a scheduler are task selection or prioritization, and re-
source selection. This action can be static or dynamic according to the schedul-
ing situation.

Due to the evolution of computing architectures, task scheduling in hetero-
geneous computing is an aged but hot topic. Various strategies to schedule tasks
have been proposed, and the most famous and widely reused scheduler is Het-
erogeneous Earliest Finish Time (HEFT) [32]. In HEFT, tasks are prioritized
using a heuristic based on a prediction of the processing length of the tasks and
the data transfer time between them. Whereas, resource selection is based on
a heuristic that determines the resource providing the best finish time for the
tasks according to the scheduling decision of previous tasks. Several variances of
this approach with more advanced ranking and resource selection models have
been proposed [33, 34, 35, 36]. These schedulers have in common the limitations
of static schedulers previously argued, and therefore rely on greedy algorithms.
In a changing environment, re-prioritizing the tasks could be necessary, which
can add more overhead. A larger spectrum of task schedulers can be found in
the literature [37, 38].
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1.2.1 Task Scheduling in StarPU

Our scheduling process follows the terminology of StarPU. In StarPU, the user
first splits the problem into smaller computational tasks. Afterwards, the tasks
are implemented into codelets, which are simple C functions. One task can be
implemented differently into several codelets according to the targeted hard-
ware, allowing the user to harness special accelerators, such as vectorial CPU
cores or OpenCL devices. In StarPU terminology, these devices are called work-
ers. For each task, the user also has to describe precisely the input data, in read
mode, and the output data, in write or read/write mode. StarPU considers
that a scheduler has an entry point where the ready tasks are pushed, and it
provides a request method where workers pop the tasks to execute, as depicted
in Figure 2.

Figure 1: Schematic view of task-based runtime system organization.
A program can be described using the sequential task flow (STF) model and
converted into tasks/dependencies by the RS. When dependencies are released,
the newly ready tasks are pushed into the scheduler. When a worker is idle, it
calls the pop function of the scheduler to request a task to execute.

In StarPU, both pop/push methods are directly called by the workers that
either release the dependencies or ask for a task. Consequently, assigning a
task to a given worker means returning this task when the worker calls the pop
method. During the execution of a StarPU program, it is possible to choose
among several schedulers. The DMDA (deque model data-aware) scheduler is
one of the most famous and sophisticated. It uses a HEFT-like strategy and
tries to minimize the makespan by using a look-ahead strategy and data transfer
costs. Another effective StarPU scheduler is Heteroprio [39, 3], a semi-automatic
scheduler designed for heterogeneous machines where users must provide task
priorities. A fully automatic version of the Heteroprio scheduler that computes
efficient priorities is proposed [7]. Another extension of Heteroprio is the Mul-
TreePrio [8] scheduler based on a set of balanced trees data structure, in which
assignment of tasks to available resources is done according to priority scores per
task for each type of processing unit. MulTreePrio makes overall good schedul-
ing results thanks to its fast and efficient heuristics, despite the considerable
variety of DAG structures from one application to another.
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In all of the above, one task-based application is considered for execu-
tion/scheduling.

1.2.2 Scheduling concurrent Task-based applications

In general, there is contention for the usage of resources in an HPC environment.
Each user’s application requests a number of processing resources (CPU/GPU
for instance), an entire node or part of it. However, in both cases, it is up to
the user to determine the number and type of resources, therefore this might
lead in most cases to resource wastage.

The problem presented here has a completely distinct parallelization and re-
sources management approaches in cloud computing and Big-data frameworks,
such as Spark3 or Apache Hadoop4. In cloud computing, the scheduler orches-
trates different executions from different types of applications, such as Big data
programs, over given hardware resources. It has a view on the different oper-
ations that compose the executions, hence it can schedule and interleave them
finely. However, there is a gap between the programming model and resource
management.

In the context of HPC, there is not yet a dynamic solution for concurrent job
execution on the same resource as it is done in a cloud environment. In Slurm
for instance, there is the notion of Job Array which consists of submitting and
managing collections of similar jobs such that they may run in parallel with
different input parameters or data on a node. However, it is the responsibility
of the programmer to orchestrate the execution of the tasks over the resources.
The same problem is encountered when several jobs are submitted separately,
but now at the level of the scheduler.

The RECIPE project [40, 41] attempts to control more efficiently the re-
sources without bridging the gap with the applications, which will end as being
oriented to cloud computing instead of HPC.

2 Presentation of RSCHED

In this section, we present our concurrent execution approach, named RSCHED.
Let us consider that we have n concurrent users’ applications requesting re-
sources for execution in a node with p workers (nb cpus the number of CPUS
and nb gpus the number of GPUS). The main objective of RSCHED is to min-
imize the overall makespan for all the n applications. A secondary objective
of RSCHED is maximizing resource utilization, which is a well-known energy
consumption reduction approach.

In this work, we consider that all the n applications have been submitted
before the distribution. Before the execution of an application, a task scheduler
is associated with a separate context linked with it. The required resource
distribution can be done before any task is pushed, or after all tasks have been

3https://spark.apache.org/
4https://hadoop.apache.org/
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Figure 2: Schematic view runtime system organization with n concur-
rent task-based applications and p workers.

pushed and no task executed. In the beginning, the lack of information on the
applications makes it difficult to process an advanced distribution strategy. That
is why in the first case, a naive strategy can be used to distribute the workers
between the contexts, and afterward a more advanced distribution strategy. In
the second case, we can have sufficient information on the applications to process
an advanced distribution strategy before no task is executed.

A compromise between having all information before starting and starting
sooner is to process an advanced distribution at an arbitrary time after the
tasks have started to be pushed and executed. That time could be for instance
when any first application completes its execution, or after all tasks have been
pushed. The execution of tasks starts as soon as possible, and afterward, we
re-distribute workers to the rest of the applications to balance the load and
therefore minimize the overall makespan. When distributing the resource, it
is possible that two contexts share a worker, but not without a performance
penalty, due to context switches.

2.1 RSCHED API

To use the API of RSCHED for resource distribution among some task-based
applications, there is information to provide, that are to their performances
on the targeted hardware. We assume in this work that we have two types of
workers, CPUs and GPUs. For each application, the required information is the
following.

• CPUW : total (sequential) CPU workload of the graph on the targeted
CPU.
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• GPUW : total (sequential) GPU workload of the graph on the targeted
GPU.

• CPUPW : total (sequential) pure CPU workload of the graph on the tar-
geted CPU.

• GPUPW : total (sequential) pure GPU workload of the graph on the tar-
geted GPU.

By pure CPU (resp. GPU) workload, we mean the workload of tasks that can
only be executed by a CPU (resp. GPU). Providing those pieces of information
implies knowing (an approximation of) the processing time of each task in the
application per type of worker. There are several means of obtaining such
information, like Machine Learning, or history-based performance models as it
exists in StarPU.

The constraints over this information are given by the Rule 1.

Rule 1 Given the required information as defined above, either the total work-
load is equal to the pure one for all the types of workers, or strictly greater than
the pure one for all (see the systems 1 and 2).

CPUW ≥ CPUPW ANDANDAND GPUW ≥ GPUPW (1)

(CPUW = CPUPW ANDANDAND GPUW = GPUPW ) OROROR
(CPUW > CPUPW ANDANDAND GPUW > GPUPW )

(2)

The proof of system 1 is obvious. For system 2, there are two cases to have
equality: all the tasks are either pure CPU or pure GPU. In both cases, the
other type of worker will have zero workload.

2.1.1 RSCHED resource distribution

Given the n applications with the required information described in the last
section, a distribution strategy should produce the following information for
each graph.

• LCPUS : list of CPUs assigned.

• LGPUS : list of GPUs assigned.

• #CPUS: number of distinct CPUs assigned (#CPUS = |LCPUS |).

• #GPUS: number of distinct GPUs assigned (#GPUS = |LGPUS |).

• CPUSPR: The power rate of the assigned CPUs (0 ≤ CPUSPR ≤
#CPUS).

• GPUSPR: The power rate of the assigned GPUs (0 ≤ GPUSPR ≤
#GPUS).
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Rule 2 Each application must receive at least one worker, and applications can
share all the workers.

(#CPUS +#GPUS > 0.0) ANDANDAND
(0.0 ≤

∑
0≤r≤n #CPUSr ≤ n× nb cpus) ANDANDAND

(0.0 ≤
∑

0≤r≤n #GPUSr ≤ n× nb gpus)
(3)

Rule 3 Each application must receive at least one worker per type of pure work-
load.

(CPUPW = 0.0 OROROR (CPUPW ̸= 0.0 ANDANDAND #CPUS > 0.0)) ANDANDAND
(GPUPW = 0.0 OROROR (GPUPW ̸= 0.0 ANDANDAND #GPUS > 0.0))

(4)

An estimation of the makespan of each application is used as a building
block of our strategies, given a set of workers (CPUs/GPUs) assigned to the
applications. We proposed an estimation called ”Ideal Makespan”, and more
details are given in Appendix (see Algorithm 1). The following metrics are used
in the evaluation of our ”Ideal Makespan”.

When an application has a pure workload for a given type of worker, there
is a minimum length constraint over its makespan. We define it as equations 5
and 6.

tgpuminM =
GPUPW × coef par eff#GPUS+#CPUS−1

#GPUS
(5)

tcpuminM =
CPUPW × coef par eff#GPUS+#CPUS−1

#CPUS
(6)

In the case no CPUs (resp. GPUs) are assigned unto the application,
tcpuminM (resp. tgpuminM ) is equal to zero.

The general formulation of our makespan estimation is given by equation 7.

ideal makespan = MAX(tcpuminM , tgpuminM )+
cpu rem wl

#CPUS +#GPUS × cpu rem wl

gpu rem wl
(7)

Where cpu rem wl (resp. gpu rem wl) is the exceeding CPU (resp. GPU)
workload compared to the gap between tgpuminM and tgpuminM , and the
CPU/GPU (resp. GPU/CPU) speedup.

In this work, we present four distribution strategies: LpSolve, MinMaxWL
(Min-Max Workload balancing), DSR-CLUS (Dedicated plus Shared Resource
with Clustering) and DSR-GD (Dedicated plus Shared Resource with Gradient
Descent).

LpSolve In this strategy, we rely on the linear programming model presented
in a previous study [3]. Originally, this model was employed to compute an
ideal makespan (a theoretical lower bound) for tasks executed on heterogeneous
architectures. The model is given by:

9





Objective function : min(T )∑
ω inΩ

αω
1 tω1 = t1 ≤ T∑

ω inΩ

αω
2 tω2 = t2 ≤ T

...∑
ω inΩ

αω
P tωP = tP ≤ T

(8)



P∑
p=1

α1
p = 1

P∑
p=1

α2
p = 1

...
P∑

p=1
α
|Ω|
p = 1

(9)

Here, P denotes the number of processing units and |Ω| is the total number
of tasks. The coefficient αω

p indicates the proportion of task ω processed by unit
p, and tωp represents the time taken to complete task ω on unit p, given that
this duration varies based on the type of the processing unit. Accordingly, the
first system determines the computation duration for each unit, with T being
the longest duration. The second part ensures that each task is computed at
100%.

While this model provides an upper bound for ideal performance, it doesn’t
account for the dependencies between the task order and consider that tasks
can be divided among various processing units.

In our adaptation, we assume that a single application consists of three
tasks: one for exclusive CPU work, another for exclusive GPU work, and the
last one for work that can be executed on either CPU or GPU. Given this
characterization, the aforementioned LP model remains applicable.

However, our focus isn’t on the ideal makespan T , but on the α coefficients as
we aim to find the most efficient way to allocate the application across processing
units. Although the LP provides an optimal distribution for an ideal system,
it also guides us on the proportion of each application that should be allotted
to each processing unit type. However, this distribution might be inefficient
in real-world scenarios, leading to a task being fragmented across all units or
a skewed allocation, like 99% on one unit and 1% on another, which may not
always be practical. Consequently, it’s essential to transform these coefficients
into practical distribution values to derive a feasible scheduling strategy.

To achieve this, we use a two-step method. First, we sum the distribution
coefficients per unit type to determine the fraction of each application desig-
nated for every processing unit type. For instance, if the LP solution suggests
distributing an application as 0.1 and 0.4 across two CPUs, and 0.2, 0.2, and
0.1 across three GPUs, we infer it should be equally split (0.5 for CPU and
0.5 for GPU). Subsequently, we decide on the application distribution based on
these values. In the next step, we compute the processing time for each unit
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type by multiplying the number of a given unit type with T . For instance, with
two CPUs and a makespan of 10s, we have 20s of total CPU time to distribute.
Each application is then assumed to use a fraction of this time proportional
to its distribution coefficient. Our greedy algorithm identifies the application
with the highest use proportion and allocates it to the processing unit with the
least utilization, continuing until every application has been entirely mapped to
processing units.

DSR (Dedicated plus Shared Resource) strategies For illustrations, let
us consider for instance that we have 3 applications, 4 CPUs, and 2 GPUs.
The DSR strategies proceed in two steps to distribute the workers among the
applications:

The first step consists in assigning dedicated (unshared) workers (GPUs or
CPUs) to each application, proportionally to their GPU/CPU workload com-
pared to the sum of all the applications’ workloads. Supposed the proportions
of CPU workloads (cpu pwl) are 0.31, 0.56, and 0.13, the numbers of dedicated
CPUs (given by ⌊nb cpus× cpu pwl⌋) will be respectively ⌊4× 0.31⌋ = ⌊1.24⌋ =
1, ⌊4× 0.56⌋ = ⌊2.24⌋ = 2, and ⌊4× 0.13⌋ = ⌊0.52⌋ = 0. In that case, the num-
ber of remaining CPUs is 1. The same is similarly done for GPUs. In the
case of hybrid workloads, and if the standard deviation between the GPU/CPU
speedups is above a certain threshold, we proceed to the barter which consists
of exchanging GPU against CPUs to accelerate the most GPU-optimized appli-
cations.

The second step involves sharing the remaining workers to the applications,
using a given technique. Here proposed two DSR strategies, based on two
different techniques for workers sharing, the gradient descent and the clustering:
DRS-CLUS (Dedicated plus Shared Resource with Clustering) and DSR-GD
(Dedicated plus Shared Resource with Gradient Descent). The sharing process
is done based on the remaining cpu pwl (here in the case of CPUs, we have:
0.24, 0.24, and 0.52).

As for the DRS-CLUS strategy, resource sharing is done as follows. The
number of clusters is equal to the number of remaining workers. The work-
ers/applications mapping is done to balance the load over the workers as much
as possible.

In the DSR-GD strategy, the second step is done as follows (see Algorithm
2 in Appendix, from lines 18 to 24). The remaining workers are shared with the
applications using the gradient descent (GD). Our GD strategy is modelled as
follows.

Given the CPUs and GPUs ids, {0,1,2,3} and {0,1} respectively, our research
space is modelled as a three-dimensional discrete space (X, Y, Z):

• X: the numbers of assigned CPUs (#CPUS) per graph. Each application
can have from zero to the number of CPUs (Ex. {1,2,1}, the first app has
1 CPU, the second one 2 CPUs, and the third one has 1 CPU)
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Figure 3: Determination of possible mappings with 3 applications, 4 CPUs, and
2 GPUs, and given that X={1,2,1} and Y={1,1,1}. We have Z = (app1i ×
app2i × app3i) × (app1j × app2j × app3j). While the naive version leads to
((4× 6× 4)× (2× 2× 2) = 96× 8 =) 768 possible mappings, the improved one
gives ((1× 2× 3)× (1× 2× 2) = 6× 4 =) 24 possible mappings. The improved
version has fewer duplicates in terms of obtained makespan.

• Y: the numbers of assigned GPUs (#GPUS) per graph. Each application
can have from zero to the number of GPUs (Ex. {1,1,1}, the first app has
1 GPU, the second one 1 GPU, and the third one has 1 GPU)

• Z: the possible (graph-to-gpu/cpu) mappings given X and Y. An example
of mapping related to the Y and Y ones above is {{0}, {0}}, {{1, 2}, {0}},
{{3}, {1}}. In this example, the first app has the CPU id=0 and the GPU
id=0, app 2 has the CPU ids=1,2 and the GPU id=0 and app 3 has the
CPU id=3 and the GPU id=1. We can see that app 1 and app 2 share
one GPU together.

Iteration in the axis is done as follows:

• the index in X and Y can be seen as permutations with repetition of a
possible number of assigned workers in nb graphs positions:

– Xi ∈ {{0,0,0}, {0,0,1},..., {0,0,4}, {0,1,0},...,{4,4,4}}. By looking
carefully, we can realize that eachXi is likened to ”i” in base (nb cpus+
1)

– Yj ∈ {{0,0,0}, {0,0,1}, {0,0,2}, {0,1,0},...,{2,2,2}}. In like manner,
Yi is likened to ”j” in base (nb gpus+ 1)

• Zk (or Zijk): the k-th possible mapping, given Xi and Yj . One naive
way to get the Zk’s values is to generate the different 2-uplets, of the
possible CPUs assignment given Xi and the possible GPUs assignment
given Yj . For our example, Figure 3(b) illustrates the determination of
possible mappings and how to find the Zk.

This model presents the whole research space. However, during our research
process, the search space is circumscribed by setting for each application the

12



minimum number of workers (CPUs and GPUs) obtained in step one, and the
maximum by adding the number of workers not yet assigned. Thus, we reduce
the search space and speed up the search.

Our gradient function is evaluated as a symmetric linear interpolation [42].
Our search process follows the pattern direction [43], first, we search towards
the X direction, then the Y direction, and finally the Z direction. To ensure
process time scaling, the learning rates for the different axes are taux = 0.001×
(
⌊
nb graphs/

√
nb cpus

⌋
+ 1), tauy = 0.001× (

⌊
nb graphs/

√
nb gpus

⌋
+ 1) and

tauz = 0.0005× (
⌊
nb graphs/

√
nb cpus+ nb gpus

⌋
+ 1).

MinMaxWL (Min-Max Workload balancing) The MinMaxWL algo-
rithm is a load-balancing strategy that distributes the workers to the appli-
cations by minimizing the maximum ideal makespan. The strategy is depicted
in Algorithm 3 (in Appendix), and has four main steps.

First of all, it assigns one worker to each application having a pure workload
according to the type of worker (from lines 3 to 13). While trying to assign
a worker to the current application, if there are no remaining workers of the
type, the application shares one with the under-loaded application related to
that type. A backpropagation is employed in the case of sharing to ensure load-
balancing when less-loaded applications are treated after more-loaded ones.

The second step is to ensure all the applications have at least one worker,
by assigning a worker to applications without a pure workload (from lines 15
to 28). Since those applications are hybrid, the type of worker to assign is the
fastest on the application. A similar sharing process is also employed, but this
time the sharing is made on the worker, leading to the smallest makespan at
the point.

Finally, while there are remaining workers (per type of worker), it assigns
a worker to the application that will minimize the maximum ideal makespan
among all the applications.

2.1.2 Distribution options

If the distribution of resources to the applications is accurate, the applications
will end almost at the same time, and so will the workers. Otherwise, some
resources could be idle for a long, while remaining applications may need them.
To deal with that situation, a redistribution of the resources might be necessary.
One crucial aspect to consider for it is the condition of resizing, the when.

The condition of resizing we employed is the following:

• An application just ended, and there remain applications to run.

• There is a significant standard deviation between the advancement rate of
the applications.

The estimation process time (workload) for a CPU or GPU may differ from
the effective processing time during the execution. For instance, let us suppose
an application with a CPU workload of 100s, and that has been assigned 10 CPU
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workers. Suppose 5s after executions start, there is a need for redistribution,
and it remains at an overall 20s processing time for the workload. We would
have expected having executed 5 × 10 = 50s for the application, whereas we
have 100 − 20 = 80s. The advancement rate in this case is therefore equal to
80/50 = 1.6; which means the application is running faster than expected. Now
we know that possibly the application may end in (20/1.6)/10 = 1.2s instead of
20/10 = 2s.

Before the redistribution, we adjust the workload of each application ac-
cording to its advancement rate. We have proposed two resource redistribution
options.

One Distribution: This is the default behavior, where the distribution is
done once and for all.

Multiple Distributions: Here we do the distribution as initially, but con-
sidering the adjusted workloads of the remaining applications.

Inherit released workers: Here we distribute the released workers (by the
just-ended application) to the remaining ones, with high privilege to those that
were delaying.

2.2 RSCHED Implementation in StarPU

StarPU offers a platform to dynamically construct, delete, and modify Schedul-
ing Contexts, which are used to execute several parallel kernels in an isolated
way and without interference. This allows the users to assign workers to the
contexts, at their creation time, or resize them during program execution. How-
ever, this is subject to the knowledge of the number of workers needed for each
scheduling context. StarPU proposes online performance tools to monitor the
execution of tasks, to make execution time estimations.

2.2.1 Multiple task-based applications

There are several applications implemented in StarPU. However, there is no
mechanism to launch or orchestrate the execution of concurrent applications.
For the sake of simplicity, instead of using several different applications, we
have exploited the implementation of Cholesky factorization to have several
independent applications. The Cholesky application in StarPU is implemented
with a performance model for each codelet. We have added a parameter to
specify the number of applications to create, and for each application, we gave
the possibility to specify the size and the number of blocks via environment
variables.
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2.2.2 Context creation and Workload determination

For each application, a separate context is created and a task scheduler is asso-
ciated with it. In this work, we have chosen to use DMDA as a scheduler for all
the applications. DMDA relies on a historical performance model to be able to
estimate in advance the duration of a codelet on each kind of processing unit.
Using the StarPU historical performance model, we have been able to compute
the different workloads of the concurrent applications.

3 Performance Study

3.1 Experiments setup

3.1.1 Hardware

We have carried out our experiments on five configurations with different GPU
models described as follows.

• A100: composed of two 32-core AMD Zen3 EPYC 7513 @ 2.60 GHz, and
2 NVIDIA A100 (40GB). We use 30 CPU cores and 16 CUDA streams
per GPU;

• Quadro: composed of 2 Icosa-core Cascade Lake Intel Xeon Gold 5218R
CPU @ 2.10 GHz, and 2 NVIDIA Quadro RTX8000 (48GB). We use 30
CPU cores and 16 CUDA streams per GPU;

• K40M: composed of 2 Dodeca-cores Haswell Intel Xeon E5-2680 v3 2.5
GHz, and 4 K40m GPUs (12GB). We use 20 CPU cores and 8 CUDA
streams per GPU;

We have configured StarPU as follows. For each configuration, we set the en-
vironment variables STARPU NCPU to the number of CPU cores, STARPU NCUDA
to the number of GPU, and STARPU NWORKER PER CUDA to the number
of CUDA streams. Therefore, for all the configurations, we have more GPU
workers than CPU ones.

3.1.2 Task-based applications

We have used the implementation of Cholesky factorization in StarPU and de-
clined into twelve different configurations as follows.
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app0: Matrix of size 3.200 and 5 blocks app6: Matrix of size 19.200 and 20
blocks

app1: Matrix of size 3.200 and 10 blocks app7: Matrix of size 19.200 and 30
blocks

app2: Matrix of size 6.400 and 10 blocks app8: Matrix of size 25.600 and 40
blocks

app3: Matrix of size 6.400 and 20 blocks app9: Matrix of size 25.600 and 80
blocks

app4: Matrix of size 9.600 and 10 blocks app10: Matrix of size 76.800 and 80
blocks

app5: Matrix of size 9.600 and 30 blocks app11: Matrix of size 76.800 and 120
blocks

3.1.3 Software configuration

For each application, we have made different affinities related to the types of
compute units (CPU or GPU). By default, all the tasks of the Cholesky appli-
cation have two codelets, one for CPU and one for GPU. Overall, we have used
the five following affinities:

• Default (affinity0 ): each task has one CPU codelet and GPU codelet,

• Only CPU (affinity1 ): all the tasks have only a CPU codelet,

• Only GPU (affinity2 ): all the tasks have only a GPU codelet,

To analyze the influence of the number of concurrent applications, and of the
workload, we have made experiments with 3, 6, and 12 concurrent applications.
To be in accord with a realistic scenario, we have made a shuffle of the list
of applications in each experiment. Then we took consecutive applications to
form the groups. For instance, in the case of 3 applications, we have executed
concurrently the applications at the first, second third positions, then the fourth,
fifth, and sixth positions, and so on.

3.2 Metrics

In our experiments, we have compared our four distribution strategies against
the concurrent execution using a unique context with all the workers (DMDA CONC),
and against sequential execution (ie. one application after the another) using a
unique context with all the workers (DMDA SEQ).

As metrics, we have considered the speedup, the data transfer, and the re-
source utilization efficiency (RUE). We also compare the distribution processing
time of our strategies.

Definition 1 We define the RUE as the ability to maximize the utilization of
the resource, that is, using the adequate number and types of resources for the
execution of each application. The RUE is given by Equation 10, which is the
product of the resource utilization and the efficiency [44].
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RUE =

∑
p∈USED WK{processing time of worker p}∑
p∈USED WK{total active time of worker p}

× speedup

|USED WK|
(10)

USED WK is the list of distinct workers (CPU or GPU) used for the
execution of the applications, whether concurrently or sequentially (ie. in
DMDA SEQ). We normalized the RUE such that the values lie between 0 and
1.

3.3 Experiments results and analysis

3.3.1 Default experiments

We first present the performance of our strategies (LpSolve, MinMaxWL, DSR-
GD, and DSR-CLUS), and of DMDA CONC, against DMDA SEQ, in terms of
Speedup, then in terms of data transfer, and finally in terms of RUE.

Speedup: The big picture of the speedup realized by the different strategies
compared to DMDA SEQ is presented in Figure 4. For all the configurations and
affinities, the LpSolve, MinMaxWL, DSR-GD, DSR-CLUS, and DMDA CONC
can significantly accelerate the execution DMDA SEQ (Figure 4b). Moreover,
our strategies (except MinMaxWL) perform better even than DMDA CONC
with the increase in the number of applications. We observe in this study an
outperformance over DMDA CONC in more than 50% of cases for LpSolve, and
more than 75% of cases for DSR-GD and DSR-CLUS (Figure 4b).

DSR-GD and DSR-CLUS reach an acceleration of 40× compared to DMDA SEQ.
However, DSR-GD outperforms DSR-CLUS in more than 50% of situations,
with an increase of applications. This means that conceptually, the Gradient
Descent performs better than the clustering since the two strategies have the
same building block. We observe that the speedup of the strategies increases
with the number of concurrent applications (Figure 4a). The study of the varia-
tion of the speedup according to the workload and of the GPU/CPU acceleration
(see Figure 5 and Figure 6) reveals that DSR-GD and DSR-CLUS perform bet-
ter when the percentage of the standard deviation of GPU/CPU acceleration
among the application increases. This is explained by the employed barter-
ing technique that gives GPU in preference to more accelerated applications in
exchange for CPU to others.

The study of the variation of the speedup according to the number of ap-
plications over the different hardware configurations (Figure 7) reveals that the
strategies perform better on recent architectures (Quadro and A100) which have
more accelerated GPU than on older ones (K40M). More specifically, DSR-GD
and DSR-CLUS perform better than the other strategies, due to the same rea-
sons as previously.

Globally, the DSR-GD realizes better speedup and in more of the situations
than the others, then DSR-CLUS followed by LpSolve.
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Figure 4: Speedup of LpSolve, MinMaxWL, DSR-GD, DSR-CLUS,
DMDA CONC against DMDA SEQ for all the affinities (affinity0,
affinity1, affinity2) and all the hardware configurations (K40M,
Quadro, and A100). (a) for the 3, 6, and 12 concurrent applications, (b)
summary of all the experiments.
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Figure 5: Speedup of LpSolve, MinMaxWL, DSR-GD, DSR-CLUS,
DMDA CONC against DMDA SEQ according to the average work-
load in minute (organized in three ranges), on K40M, Quadro or A100
configurations.

Data transfer: The total amount of memory transfer obtained with the dif-
ferent strategies are provided in Figure 9. All the strategies for concurrent
execution used in this study (LpSolve, MinMaxWL, DSR-GD, DSR-CLUS, and
DMDA CONC) significantly reduce the total memory transfer compared to the
sequential execution (Figure 9b), DSR-CLUS been the best one.

Resource utilization efficiency: The Normalized RUE obtained with the
different strategies are provided in Figure 10. We observe in this study that the
concurrent execution of applications leads a more effective resource usage than
the sequential one. The DSR-GD and DSR-CLUS strategies are more efficient
in terms of resource utilization than the other (Figure 10b), DSR-GD been the
best one as the number of applications increases. Executing the applications
sequentially one after the other leads to more resource wastage, which is known
as a major cause of energy consumption in data centers [9, 10]. Moreover,
we observe that the improvement of our strategies (DSR-GD, DSR-CLUS, and
LpSolve) in terms of RUE correspond with the situations in which they are
speeding up compared to the sequential execution (Figure 10a ≡ Figure 4a).
Therefore, succeeding in speeding up the sequential execution of tasks-based
applications using our strategies might also help to reduce energy consumption,
thanks to the effectiveness of the scheduler used.
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viation percentage of GPU/CPU speedup between the applications
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Figure 7: Speedup of LpSolve, MinMaxWL, DSR-GD, DSR-CLUS,
DMDA CONC against DMDA SEQ for the 3, 6, and 12 concur-
rent applications and including all the three architecture affinities,
on K40M, Quadro or A100 configurations.

3.3.2 Distribution processing time and options

Distribution processing time: In a dynamic situation where applications
arrive continuously (as we will study in the future), the decision processing has
to be fast. Figure 11 presents the evolution of processing time for each of our
proposed strategies according to the acceleration of GPU compared to the CPU,
and the number of executed applications.

The MinMaxWL and DSR-CLUS strategies are faster than LpSolve and
DSR-GD which are meta-heuristics. However, the processing times of all the
strategies are relatively small to expect good behavior even in a dynamic envi-
ronment. Moreover, even though we add the decision process time to the overall
makespan, we will still have almost the same results as presented above.

Furthermore, we realize that DSR-GD scale better than LpSolve given their
processing time (Figure 11) and speedup compared to DMDA SEQ (Figures 4,
5, 6, 7, 8). This performance of DSR-GD is due in part to the choice of learning
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(a) Memory transfer obtained for the 3, 6, and 12 concurrent
applications.
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Figure 9: Memory transfer of LpSolve, MinMaxWL, DSR-GD, DSR-
CLUS, DMDA CONC against DMDA SEQ for all the affinities (affin-
ity0, affinity1, affinity2) and all the hardware configurations (K40M,
Quadro, and A100). (a) for the 3, 6, and 12 concurrent applications, (b)
summary of all the experiments.

rate that helped speedily converge towards the optimal solution no matter the
number of applications and resources, and also due to the bartering technique
employed (see Section 2.1.1).

Distribution options: We carried out a study on the effectiveness of the re-
distribution options (”Multiple Distributions”, and ”Inherit released workers”)
presented in Section 2.1.2 comparatively to the default one (”One Distribu-
tion”) when combined with each of our four strategies (LpSolve, MinMaxWL,
DSR-GD, DSR-CLUS). Figure 12 presents the makespan obtained in each case,
which reveals that the effectiveness of the re-distribution options (”Multiple
Distributions”, and ”Inherit released workers”) depends on the strategies and
the configuration.

The combination DSR-GD/”Inherit released workers” always produces a
gain for all the configurations. For the other cases, the combination strat-
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Figure 10: Average RUE of LpSolve, MinMaxWL, DSR-GD, DSR-
CLUS, DMDA CONC against DMDA SEQ for all the affinities (affin-
ity0, affinity1, affinity2) and all the arch configurations (K40M,
Quadro, and A100). (a) for the 3, 6, and 12 concurrent applications, (b)
summary of all the experiments.
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Figure 11: Distribution processing time of LpSolve, MinMaxWL,
DSR-GD, and DSR-CLUS according to the standard deviation per-
centage of GPU/CPU speedup between the applications (organized
in groups), and the number of concurrent applications, on K40M,
Quadro or A100 configurations.

egy/option leads to a gain only for some configurations. We notify significant
improvement in some cases, proving that there is hope for improving the results
obtained above by using resource redistribution. However, it is imperative to
do more investigations on configuration and strategy sensitivity to achieve this.

4 Conclusions

As computing resources are getting more complex and powerful, there is little
doubt that we need methods to reduce the waste from the users’ choices, bad
application optimization, or heterogeneous workloads during executions. This
is where the task-based model grants more opportunities by exposing a dynamic
degree of parallelism with execution environments able to use this information in
the most constructive and thus efficient way. To minimize the overall makespan
and maximize resource utilization, while executing several task-based applica-
tions, we introduce RSCHED, a two-level resources management framework that
allows (i) dynamic resource distribution for concurrent execution of task-based
applications, and (ii) dedicated task scheduling for each application. We pro-
posed strategies for resource distribution and implemented our proposal on the
StarPU runtime system, proposing schedulers on which we rely for the second
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level. We evaluated our proposal using real applications based on the StarPU
implementation of Cholesky factorization. RSCHED demonstrated the poten-
tial to speed up the overall makespan compared to consecutive execution with
an average factor of 10x, and a factor of 5x when compared against the con-
current execution without resource distribution using DMDA. RSCHED also
demonstrated the potential to increase the rate of resource utilization as the
number of applications increases.

In our future work, we would like to consider different applications (instead
of just Cholesky), exploit multiple nodes, and improve RSCHED decisions by
analysing the structures of task graphs.
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Appendix

Algorithm 1: Ideal makespan Algorithm

1 function ideal makespan(graph info G, double coef par eff)

2 nb workers = G.#GPUS + G.#CPUS;
3 if ( G.#GPUS == 0.0) ∥ ( G.#CPUS == 0.0) then
4 if ( G.CPUSPR == 0.0) then
5 m = G.GPUW / G.#GPUS;

6 if ( G.GPUSPR == 0.0) then
7 m = G.CPUW / G.#CPUS;

8 return m × coef par eff (nb workers−1);

9 Compute tgpuminM and tcpuminM using equations 5 and 6;
10 if ( G.GPUW == G.GPUPW ) ∥ ( G.CPUW ==G.CPUPW ) then
11 return MAX(tgpuminM, tcpuminM);

12 gpu rem wl = compute the remaining GPU workload;

13 cpu rem wl = compute the remaining CPU workload;

14 if ( gpu rem wl == 0.0) ∥ ( cpu rem wl == 0.0) then
15 return MAX(tgpuminM, tcpuminM) + gpu rem wl /

G.#GPUS + cpu rem wl / G.#CPUS;

16 Compute ideal makespan using equation 7;

17 return ideal makespan;

18
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Algorithm 2: DSR-GD (Dedicated plus Shared Resource with Gradi-
ent Descent)

1 //-->Dedicated workers per app;
2 rem gpus = nb gpus;
3 rem cpus = nb cpus;
4 foreach graph G in graphs do
5 gpus dedicated = floor(G.GPUW / SUM(GPUW )) × nb gpus;
6 cpus dedicated = floor(G.CPUW / SUM(CPUW )) × nb cpus;
7 while ( gpus dedicated) do
8 Assign the (rem gpus)−th GPU to graph G;
9 gpus dedicated−−;

10 rem gpus−−;

11 while ( cpus dedicated) do
12 Assign the (rem cpus)−th CPU to graph G;
13 cpus dedicated−−;
14 rem cpus−−;

15 if (Stdd speedup > SPEEDUP STDD LIMIT) ∥ Stdd idealm >
MAKESPAN STDD LIMIT)) then

16 bartering();

17 //-->Shared workers between apps Using Gradient Descent;
18 Configure GD axis (X, Y) using rem cpus and rem gpus;
19 foreach axis in X, Y, Z do
20 while ( No convergence) do
21 Use the best indexes from previous axes;
22 Fix the value of the following axis;
23 Search the best index in the axis using Gradient

Descent with Min-Max ideal makespan as objective

function;
24 keep track of the best solution;
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Algorithm 3: MinMaxWL (Min-Max Workload balancing)

1 //-->Ensure each graph has at least one worker;
2 //----->Graphs with pure workload;
3 foreach graph G in graphs do
4 if ( G.GPUPW ! = 0.0) then
5 if ( Remaining GPUs) then
6 Assign one GPU to G;

7 else
8 Share one GPU with the under-loaded pure gpu graph,

with backpropagation;

9 if ( G.CPUPW ! = 0.0) then
10 if ( Remaining CPUs) then
11 Assign one CPU to G;

12 else
13 Share one CPU with the under-loaded pure cpu graph,

with backpropagation;

14 //----->Graphs without pure workload;
15 foreach graph G in graphs do
16 if ( G.CPUPW == 0.0 && G.CPUPW == 0.0) then
17 if ( G.CPUW > G.GPUW ) then
18 // GPU is faster;
19 if ( Remaining GPUs) then
20 Assign one GPU to G;

21 else
22 Share one GPU with the under-loaded graph, with

backpropagation;

23 else
24 // CPU is faster;
25 if ( Remaining CPUs) then
26 Assign one CPU to G;

27 else
28 Share one CPU with the under-loaded graph, with

backpropagation;

29 //-->Dist. Remaining Workers: Load-balancing using

Min-Max;
30 while ( Remaining GPUs Workers) do
31 Assign one GPU to graph leading to Min-Max

ideal makespan;

32 while ( Remaining CPUs Workers) do
33 Assign one CPU to graph leading to Min-Max

ideal makespan;
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