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PROPAGATION OF MOMENTS AND REGULARITY
FOR THE VLASOV-MAXWELL-BOPP-PODOLSKY MODEL

BY C. CHEVERRY AND BY S. IBRAHIM

Abstract. We consider a class of hyperbolic systems which can be interpreted as approximations of the
relativistic Vlasov-Maxwell system. These equations are derived by taking into account radiation-reaction
effects occurring at a microscopic level. They involve a small length ` ∈ R∗

+, called the Bopp-Podolsky
parameter. In this context, we address common issues in kinetic equations such as the propagation of
moments, regularity properties and well-posedness. We also investigate semiclassical limits appearing
when ` goes to zero.

Keywords. Hyperbolic systems of conservation laws ; Relativistic Vlasov-Maxwell system ; Bopp-Podolsky
electrodynamics ; Well-posedness of Cauchy problems ; Propagation of moments ; Asymptotic analysis.
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1. Introduction

Subsection 1.1 introduces the model ; Subsection 1.2 presents our main results.

1.1. The Vlasov-Maxwell-Bopp-Podolsky model. In the next Paragraph 1.1.1, we explain
the physics underlying our study. In Paragraph 1.1.2, we set up a Cauchy problem. Then, in
Paragraph 1.1.3, we present our motivations.

1.1.1. Physical background. The plasmas contain charged particles generating an electric field
E, a magnetic field B, a displacement D and a magnetic intensity H. The pairs of vector fields
(E,B)(t, x) ∈ R3 × R3 and (D,H)(t, x) ∈ R3 × R3 depend on the time t ∈ R and the spatial
position x ∈ R3. They must satisfy the following (premetric) Maxwell field equations

(1.1)
{
∂tB + c ∇x × E = 0 , ∇x · B = 0 ,
∂tD− c ∇x ×H = − , ∇x ·D = ρ ,

where c ' 3× 108ms−1 is the speed of light, ρ(t, x) ∈ R is a charge density and (t, x) ∈ R3 is
a current vector-density.
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The equations (1.1) are familiar from theories in material media. They can be considered at all
scales, including short distances. In particular, they can be studied for |x| . ` where ` ∈ R∗+
is the Bopp-Podolsky parameter [12, 20], which in practice [3, 17] is a length in the order of
` ≤ 10−15m, and which can be interpreted as a cut-off distance or as an effective radius for the
electron [14]. At such microscopic scales, the electron is viewed as a dressed particle. It is the
source of an electromagnetic field which it creates and with which it interacts. A way to describe
this interconnection is to keep the notion of point particle, and to impose constitutive relations
between B, E, D and H, called electromagnetic vacuum laws [15]. Given an integer n ∈ N+ and
a nonnegative number β ∈ R+, we consider that

(1.2) D = (1 + `2�)n (1− `2 ∆)β/2 E , H = (1 + `2�)n (1− `2 ∆)β/2 B ,

where ∆ and� are respectively the Laplacian and the d’Alembertian (� := c−2 ∂2
tt−∆). Following

are a few historical and general comments concerning the choice of n and β.
The law of electromagnetic vacuum (called also « law of the pure ether »), which was originally
introduced by Maxwell, corresponds to the case of (n, β) = (0, 0), that is (D,H) = (E,B).
It raises a well-known radiation-reaction problem [3, 15], originated in the preliminary works
of Lorentz, Abraham, Dirac, ... However, nowadays there is a renewed interest to solve this
difficulty in the context of generalized continuum theories [13, 20] involving situations where
n ∈ N∗. The case n = 1 was first suggested by Bopp ([1]-1940), just after studied by Landé
and Thomas ([18, 19]-1941), and taken up again by Podolsky ([24]-1942). The system (1.1)-(1.2)
with n = 1 (and β = 0) is the cornerstone of Bopp-Podolsky electrodynamics which has many
interesting features : It provides a smoothing of underlying singularities [26], and it solves the
infinite self-energy difficulty [15] ; It is issued from a Lorentz and gauge invariant Lagrangian
[7, 13] (containing higher order derivatives), and it is a continuation of gradient theories [20] ; It
is amenable to quantization, and it is a natural way of providing the Pauli-Villars procedure in
quantum electrodynamics [14]. For n ∈ N, we can introduce

G0 := −(1− `2 ∆)−β/2  and Gj := (1 + `2�)n−j (∂tE− c ∇x × B) , j ∈ {1, · · · , n} .

We can reformulate (1.1)-(1.2) according to

(1.3)



(1 + `2�)G1 = G0 = −(1− `2 ∆)−β/2  ,
· · · · · · · · · · · ·

(1 + `2�)Gj = Gj−1 ,
· · · · · · · · · · · ·

(1 + `2�)Gn = Gn−1 ,
∂tE− c ∇x × B = Gn ,
∂tB + c ∇x × E = 0 .

In a quantized interpretation, this means that the n first equations describe hypothetical massive
photons, whereas the last two are for the usual (massless) photons. The n vector fields Gj ,
with Gj(t, x) ∈ R3 and j ∈ {1, · · · , n} may be grouped together to form G := (G1, · · · ,Gn).
The system (1.3) appears clearly as an extension of Maxwell’s equations. As will be seen, the
introduction of the n supplementary equations has smoothing properties, which are all the more
pronounced when n is large. The same applies to β. The limit case β = 0 is perhaps more relevant
from a physical standpoint. Now, the transition to β > 0 is mathematically interesting since it
serves to bring some additional (fractional) regularizing effects.

1.1.2. The Cauchy problem. There is another important consequence of the above microscopic
considerations, which is related to the kinetic description of plasmas at large scales. By looking at
a system of N charged point particles interacting through (1.2) with n = 1, Y. Elskens and M.K-
H. Kiessling [9] have recently laid down (in a scaling limit N → +∞) a microscopic foundation
of the Vlasov-Maxwell-Bopp-Podolsky (VMBP) model (called in [9] the Vlasov-Maxwell-BLTP
model with LT in memory of Landé and Thomas).
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In this description of the interactions of radiation with matter, they keep (1.3) with n = 1 and
they add a coupling with a continuum density (of charged particles) denoted by f(t, x, ξ), defined
on the phase space R× R3 × R3. Let e be the electron charge and m be the electron mass. The
function f is positive, and it must satisfy the transport equation

(1.4) ∂tf + c ν(ξ) · ∇xf + (e/m c) F(t, x, ξ) · ∇(ξ/m c)f = 0 ,

where we have introduced the relativistic speed ν(ξ) of momentum ξ and the Lorentz force F
which are given by

(1.5) ν(ξ) :=
ξ/m c√

1 + |ξ|2/m2 c2
, F(t, x, ξ) := E(t, x) + ν(ξ)× B(t, x) .

Retain that the sup norm of f remains unchanged

(1.6) ‖ f(t, ·) ‖L∞(R3×R3)= ‖ f0 ‖L∞(R3×R3) , ∀ t ∈ R+ .

Given p ∈ R with 1 ≤ p < +∞, the same holds true for all Lp-norms

(1.7) ‖ f(t, ·) ‖Lp(R3×R3)= ‖ f0 ‖Lp(R3×R3) , ∀ t ∈ R+ .

Starting from (1.4), we can check that the charge density ρ and the current vector-density 
which are defined by

(1.8) ρ(t, x) := − e
∫
R3

f(t, x, ξ) dξ , (t, x) := − e
∫
R3

ν(ξ) f(t, x, ξ) dξ ,

must satisfy the continuity equation

(1.9) ∂tρ+ c ∇x ·  = 0 .

The VMBP model (of length `, order n and index β) is denoted by BPnβ,`. It is built with
(1.3)-(1.4) together with (1.8). The unknown is therefore

(1.10) U(t, x, ξ) :=
(
G1(t, x), · · · ,Gn(t, x),E(t, x),B(t, x), f(t, x, ξ)

)
.

Inside (1.3), each Klein-Gordon equation can be written as a hyperbolic system involving Gj ,
∂tGj and ∇xGj . Thus, we can alternatively consider that the unknown is

(1.11) Ũ := (G1, ∂tG1,∇xG1, · · · ,Gn, ∂tGn,∇xGn,E,B, f) .

With this in mind, the initial data should be given by Ũ|t=0 = Ũ0. But ∇xGj |t=0 can be deduced
from Gj |t=0. Thus, it suffices to start with

(1.12)
{

U|t=0 ≡ U0 = (G0,E0,B0, f0) , G0 = (G0
1, · · · ,G0

n) ,
∂tG|t=0 = H0 , H0 = (H0

1, · · · ,H0
n) .

The system BPnβ,` must be supplemented with the compatibility conditions inherited from (1.1),
which read

Cnβ,` ∇x · B = 0 , (1 + `2�)n (1− `2 ∆)β/2∇x · E = ρ .

We can exploit the evolution equations to express (∂2
tt)
j ∇x · E with j ≤ n in terms of spatial

derivatives of U and ∂tG. At time t = 0, this furnishes a constraint on U0 and H0. In what
follows, we assume that it is satisfied. Then, due to (1.9), it is propagated. This is why, it can
be forgotten. From now on, the focus is on the Cauchy problem built with the multidimensional
(one order) hyperbolic system of conservation laws (inherited from) BPnβ,` associated with the
initial data (1.12). To our knowledge, the mathematical study of BPnβ,`, even when (β, n) = (0, 1),
has not yet been investigated. Observe that the changes

(1.13) t→ t̃ :=
c t

`
, x→ x̃ :=

x

`
, ξ → ξ̃ :=

ξ

m c
,
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together with

(1.14) Gj → G̃j :=
`2 e

m c3
Gj , (E,B)→ (Ẽ, B̃) :=

` e

m c2
(E,B) , f → f̃ := `2 e2m2 f

provide with a dimensionless version of BPnβ,`, which is denoted by BPnβ . In other words, the
system BPnβ is the same as BPnβ,1 with all coefficients c, e and m normalized to 1. For simplicity,
we can drop the tilde ·̃ everywhere when formulating BPnβ . There remains

BPnβ



(1 +�)G1 = −(1−∆)−β/2  , ∆ :=
∑
∂2
xi ,

· · · · · · · · · · · · � := 1 + ∂2
tt −∆ ,

(1 +�)Gn = Gn−1 ,

∂tE−∇x × B = Gn , (1 +�)n (1−∆)β/2∇x · E = ρ ,

∂tB +∇x × E = 0 , ∇x · B = 0 ,

∂tf + ν(ξ) · ∇xf + F · ∇ξf = 0 .

By construction, with 〈ξ〉 := (1 + |ξ|2)1/2, we deal here with

(1.15) ν(ξ) :=
ξ

〈ξ〉
< 1 , F(t, x, ξ) := E(t, x) + ν(ξ)× B(t, x) ,

and the coupling is now achieved through

(1.16) ρ(t, x) := −
∫
R3

f(t, x, ξ) dξ , (t, x) := −
∫
R3

ν(ξ) f(t, x, ξ) dξ .

In other words, the family of systems BPnβ,` with ` ∈ R∗+ admits the rescaled version BPnβ . When
discussing about global (strong or weak) well-posedness associated with any (small or large)
data, it makes no sense to differentiate between BPnβ,` and BP

n
β because we can pass from one

system to the other. For this reason, our related results will be expressed only in terms of BPnβ .
By contrast, when dealing with local existence or with the limit `→ 0+ (for fixed scales or data),
it is crucial to think in terms of BPnβ,`. This allows to keep track of the lifespan or to study the
asymptotic behavior of the solutions (when `→ 0+).
For ` = 0, we find that Gj = − for all j, and we recover the Relativistic Vlasov-Maxwell (RVM)
system. As well, for n = 0 and β = 0, the system BP 0

0,` coincides with RVM. Clearly, there are
links to explore between BPnβ,` and RVM. It turns out that VMBP (with 0 < ` � 1) and RVM
are (almost) identical in terms of (relatively) large wavelengths (Subsection 4.2). But they can
strongly differ out of such regimes, where VMBP (especially for n = 1 and β = 0) is built on
stronger theoretical foundations. The VMBP system can be viewed as a kind of large frequency
hyperbolic deformation of RVM, operating as some hyperbolic regularization of RVM, which is
clearly driven by physics.

1.1.3. Motivations. Our aim is to explore the consequences of the modification of (1.2) from
` = 0 to ` > 0, β = 0 to β > 0 and from n = 0 to n ≥ 1. Three topics are particularly relevant :

(1) The first is about the propagation of moments

(1.17) Ma(t) :=

∫
R3

∫
R3

〈ξ〉a f(t, x, ξ) dx dξ , a ∈ R+ .

(a) For Vlasov-Poisson, this question has received much attention. Historically, progress
has been made step by step : starting from [21], by going through [4, 10] up to more
recent refinements [23].

(b) For RVM, we have the conservation of mass (that is ofM0)

(1.18) M0(t) =M0(0) = ‖ f0 ‖L1(R3×R3)=

∫
R3

ρ(0, x) dx , ∀ t ∈ R+ .
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Moreover, we have f ≥ 0 and the conservation of the total energy

(1.19) E(t) :=

∫
R3

∫
R3

〈ξ〉 f(t, x, ξ) dx dξ +
1

2

∫
R3

(|E|2 + |B|2)(t, x) dx = E(0) .

This ensures that M1(t) remains bounded if E(0) < +∞. And therefore the same
applies to all expressionsMa(t) as soon as a ≤ 1. However, this issue remains still
completely open for a > 1. Recall that controls onMa (for a > 1 sufficiently large)
are crucial for a number of purposes. For instance, they can furnish continuation
criteria for RVM, see for instance [16, 22].

(c) For BPnβ,`, one of the challenges is precisely to gain bounds onMa, with a > 1. Note
that both (1.6) and (1.18) are still verified. By contrast, the expression (1.19) is
no more a conserved (or decreasing) quantity. This is due to microscopic exchanges
of energy between the fields Gj and the electromagnetic field (E,B). On the one
hand, the regularization provides advantages. On the other hand, the loss of (1.19),
without a substitute to controlM1(t), leads to new difficulties.

(2) The second theme is concerned with the local (or global) and strong (or weak) existence of
solutions. This includes the problem of global existence of smooth solutions (propagation
of the regularity) as outlined below.
(a) For Vlasov-Poisson, it is a well known fact. For example, we refer the reader to [21].
(b) For RVM, this is a longstanding open problem [22] going back to [11].
(c) For BPnβ,`, we will complete this program when n ≥ 2 (Theorem 2) or when n = 1

and β > 1 (Theorem 3), but only partially in other situations. In particular, when
n = 1, β = 0 and a = 1, due to the absence of (1.19), even local weak solutions may
be difficult to access.

(3) The third direction of research relates to the passage to the limit ` → 0+. Connections
between BPnβ,` and RVM are established in Section 4. Incidentally, the passage through
BPnβ,` furnishes a new way to construct global weak solutions to the RVM system.

1.2. Main results. As explained before, the VMBP model is physically relevant. It looks like the
RVM system when dealing with long wavelength regimes, while including microscopic radiation
corrections (which could be essential to get accurate dissipation effects). The aim here is to
deliver outcomes concerning VMBP related to the three preceding key aspects (1), (2) and (3).
In our presentation, a distinction is drawn between the two situations n ≥ 2 (Theorem 2) and
n = 1 (Theorem 3). In each case, the questions (1) and (2) are addressed simultaneously. The
third issue (3) is discussed separately in Theorem 4.
Let Hs

` with s ∈ R be the weighted Sobolev space based on L2 and ` ∂x derivatives, that is

Hs
` ≡ Hs

` (R3) :=
{

G ∈ D′(R3) ; (1 + `2 |ξ|2)s/2 Ĝ(ξ) ∈ L2(R3)
}
.

As usual, we simply denote by Hs the space Hs
1 , and we say that G ∈ Hs−

` when G ∈ Hs−δ
` for

all δ > 0. The field system (1.3) can be endowed with the following energy

(1.20) En` (t) :=
n∑
j=1

(
‖Gj(t, ·)‖2Hj

`

+ ‖∂tGj(t, ·)‖2Hj−1
`

)
+ ‖E(t, ·)‖2Hn

`
+ ‖B(t, ·)‖2Hn

`
.

For n = 0, we just recover the L2-energy of Maxwell’s equations. For n = 1, we find the sum
of the energy associated with the Klein-Gordon equation (imposed on G1) plus the L2-energies
corresponding to Maxwell’s equations on E, B, ∂xiE and ∂xiB with i ∈ {1, 2, 3}. For n > 1, the
definition follows the same logic, which means implicitly that the equations on Gj are (spatially)
derived j − 1 times, while Maxwell’s equations are derived n times. We simply write En when
dealing with En1 .
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Definition 1 (Strong solution). Fix n ∈ N∗ and select T ∈ R∗+. We say that U ∈ L∞([0, T ];L2)
is a strong solution to BPnβ on [0, T ] if it satisfies BPnβ in a weak sense, and if moreover

(1.21) (E,B) ∈ L∞
(
[0, T ], H1(R3;R3)

)2
.

From [6], we know that (1.21) appears as a minimal condition to ensure the existence of a
Lagrangian flow with corresponding stability properties. It is a guarantee of uniqueness, and
that is why it is selected. Retain that we do not impose that f(t, ·) is in Hs for some s > 0 but
only for s = 0. Thus, care must be taken with the above notion of strong solution. The adjective
strong does not mean that the whole solution U is « smooth » (but only, up to some extent, its
components E and B). It is rather to emphasize a class of solutions for which the uniqueness
becomes available.

Theorem 2 (Global strong well-posedness of BPnβ when n ≥ 2). Select any (a, β) ∈ R+ × R+.
Assume that the initial condition (U0,H0) with U0 = (E0,B0, f0) is adjusted in such a way that

(1.22) f0 ∈ (L∞ ∩ L1)(R3 × R3;R+) , Ma(0) < +∞ , En(0) <∞ .

As soon as (n, a, β) 6= (2, 0, 0), there exists a unique global strong solution to BPnβ satisfying

(1.23)

 Gj ∈ L∞(R+, H
j−1) , ∀ j ∈ {1, · · · , n} ,

(E,B) ∈ L∞(R+, H
n−1)2 ,

f ∈ L∞
(
R+, (L

∞ ∩ L1)(R3 × R3;R+)
)
.

In addition, this solution enjoys the propagation of its moment, meaning that

(1.24) Ma(t) <∞, ∀ t ∈ R+ .

When (n, a, β) = (2, 0, 0), there is a global weak solution to BPnβ satisfying (E,B) ∈ C(R+, H
1−)2.

Thus, for n ≥ 2, resorting to BPnβ in place of RVM implies a gain of moments : we can reach any
value of a ∈ R+. Recall that the same type of result does apply for BPnβ,` for all ` ∈ R∗+, just by
a change of scaling. Observe also that, at the level of (1.23) with n = 2 and β = 0, we recover a
functional configuration which is very similar to [5], with E(t, ·) and B(t, ·) in H1. But there are
significant improvements. First, we can get rid of the compactness condition on the support of
f(t, x, ·). Secondly, the « strong » solutions exist for all times.
Now, for n = 1, the situation seems to be less favorable. Define

(1.25) a(β) :=
9− 6β

3 + 2β
≤ 3 , ã(β) :=

9− 6β

2β − 1
.

Theorem 3 (Local vs. global or strong vs. weak well-posedness of BP 1
β ). Assume that the initial

data U0 := (E0,B0, f0) is chosen in such a way that

(1.26) f0 ∈ (L∞ ∩ L1)(R3 × R3) , Ma(0) < +∞ , E1(0) <∞ .

As soon as β > 0, there exists a global weak solution to BP 1
β satisfying

(1.27)

 G1 ∈ L∞(R+, H
β−) ,

(E,B) ∈ L∞(R+, H
β−)2

f ∈ L∞
(
R+, (L

∞ ∩ L1)(R3 × R3)
)
.

This weak solution is strong on R+ as soon as 1 < β. When 0 ≤ β ≤ 1, it remains locally strong
on [0, T ] for some T > 0 as long as a ≥ 3. For all β ∈ [0, 3/2[ and a with 0 < a(β) ≤ a ≤ 3, we
can find some T > 0 (which is the same as above) such that

(1.28) Ma(t) <∞, ∀ t ∈ [0, T ] .

For 3/2 ≤ β and 0 ≤ a ≤ 3 or for 1 ≤ β < 3/2 and ã(β) ≤ a ≤ 3, we have (1.28) with T = +∞.
6



In particular, for β = 0 and a = 3, this furnishes the local strong well-posedness, while global
weak well-posedness is not covered. On the contrary, for β = 0 and a < 3, local strong solutions
in the sense of Definition 1 may not exist at all. There are still many interesting questions to
solve concerning BP 1

β , for completion of the missing information. One of the difficulties is that f0

is assumed to be just bounded and integrable. Of course, for more regular initial data (say Cs or
Hs with s sufficiently large), such information is achievable as a consequence of general results
related to nonlinear hyperbolic systems.
We conclude this introduction by giving some informal result (called a Fact) about the third axis
(3). More precise statements (see especially Proposition 12) will be made explicit in Section 4.

Fact 4 (Semiclassical limit). Given a ∈ R+, consider a family {U0
`}` of initial data satisfying

(1.22) for all ` ∈ R∗+. We work either in a weak-field regime or below semiclassical frequencies, in
contexts that are specified respectively in Subsections 4.1 and 4.2. Then, for all ` ∈ R∗+, under the
assumptions of Theorems 2 or 3, the Cauchy problem built with BPnβ,` and U0

` has a global weak
solution U`. Moreover, when ` → 0+, we can extract a subsequence converging to a global weak
solution to the Vlasov equation (in the first case) and to the relativistic Vlasov-Maxwell system
(in the second case).

The plan of our text is as follows. In Section 2, we start with a list of a priori estimates. The
proofs of Theorems 2 and 3 are achieved in Section 3 : In Subsection 3.1, assuming that smooth
solutions exist, we concentrate on (1.24) and (1.28) ; In Subsection 3.2, we solve the Cauchy
problem in the framework of (1.23) or (1.27). Section 4 is aimed at clarifying passages to the
limit l→ 0+ as outlined in Fact 4 : In Subsection 4.1, we consider a small amplitude framework ;
In Subsection 4.2, we work in the broader context U0

` = O(1), but the analysis is limited to what
happens below semiclassical frequencies.

2. Preliminary work

The goal of this section is to derive several preliminary inequalities which will be used later. In
Subsection 2.1, the emphasis is on f. In Subsection 2.2, the focus is on the remaining components
Gj , E and B.

2.1. Computations involving the density. Here, we seek to estimate quantities related to f.
To this end, we adapt techniques that can be found in [2, 4, 10, 21]. We start by exploiting the
Vlasov equation in order to study the time evolution ofMa.

Lemma 5 (Control ofMa through E). For all a ≥ 0, we have

(2.1) ∂tMa(t) . ‖E(t, ·)‖La+3 Ma(t)
a+2
a+3 .

Proof. From the rescaled version of (1.4), namely BPnβ , we get

∂tMa(t) = −
∫
R3

∫
R3

〈ξ〉a ∇x,ξ ·
(
fν(ξ), f F

)
dxdξ =

∫
R3

∫
R3

∇ξ〈ξ〉a · (f F) dxdξ(2.2)

= a

∫
R3

∫
R3

〈ξ〉a−2 f ξ · F dxdξ = a

∫
R3

∫
R3

〈ξ〉a−2 f ξ · E dxdξ

≤ a

∫
R3

|E(t, x)|
(∫

R3

〈ξ〉a−1 f dξ
)
dx .

On the other hand, for any R > 0, we have∫
R3

〈ξ〉a−1 f dξ ≤
∫
|ξ|≤R

〈ξ〉a−1 f dξ +

∫
|ξ|≥R

〈ξ〉a−1 f dξ(2.3)

. Ra+2 ‖f(t, ·, ·)‖L∞(R3×R3) +
1

R

∫
|ξ|≥R

〈ξ〉a f dξ .
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Optimizing in R by choosing Ra+3 =
∫
|ξ|≥R〈ξ〉

af dξ/‖f0‖L∞(R3×R3) gives∫
R3

〈ξ〉a−1 f dξ ≤ ‖f0‖
1
a+3

L∞(R3×R3)

(∫
R3

〈ξ〉a f dξ

)a+2
a+3

.

Plugg this into (2.2), and use Hölder’s inequality to obtain (2.1).
�

It is clear thatMb(t) ≤Mc(t) when b ≤ c. But, we can do better.

Lemma 6 (Comparison of moments). Let (b, c) ∈ R2
+ with b ≤ c. Knowing (1.18), we find that

(2.4) Mb(t) .Mc(t)
b
c .

Proof. Observe that

Mb(t) ≤
∫
R3

∫
|ξ|≤R

〈ξ〉b f(t, x, ξ) dξ +
1

Rc−b

∫
R3

∫
|ξ|≥R

〈ξ〉c f(t, x, ξ) dξ

. Rb ‖f0‖L1(R3×R3) +Rb−c Mc(t) .

It suffices to optimize the choice of R through Rc =Mc(t)/‖f0‖L1(R3×R3).
�

From (1.18), we can easily deduce that

(2.5) ‖(t, ·)‖L1(R3) ≤ ‖f(t, ·)‖L1(R3×R3) = ‖f0‖L1(R3×R3) .

But Lp-norms of  with p > 1 are more problematic to estimate. Unlike (2.5), we do not have
bounds that depend only on f0.

Lemma 7 (Control of the electric current by moments). For any a ≥ 0, we have

(2.6) ‖(t, ·)‖
L

3+a
3 (R3)

.Ma(t)
3
a+3 .

Moreover, for any a ≥ 3, knowing (2.5), we can assert that

‖(t, ·)‖L2(R3) .Ma(t)
3
2a .(2.7)

Proof. The proof is organized along the same lines as in Lemma 5. For any R > 0,

(2.8)
|(t, x)| ≤

∫
|ξ|≤R

f(t, x, ξ) dξ +

∫
|ξ|≥R

f(t, x, ξ) dξ

≤ R3 ‖f(t, ·, ·)‖L∞(R3×R3) +
1

Ra

∫
|ξ|≥R

〈ξ〉a f(t, x, ξ) dξ.

Choosing Ra+3 =
∫
|ξ|≥R〈ξ〉

af dξ/‖f0‖L∞(R3×R3) gives

|(t, x)| ≤ ‖f0‖
a
a+3

L∞(R3×R3)

(∫
R3

〈ξ〉a f(t, x, ξ) dξ

) 3
a+3

.

After integration with respect to x, this pointwise estimate on  raised to the power (a + 3)/3
furnishes (2.6). In particular, for a = 3, this yields

‖(t, ·)‖L2(R3) .M3(t)
1
2 .

For a ≥ 3, applying Lemma 6 with (b, c) = (3, a), we recover (2.7) as desired.
�
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2.2. Computations involving the fields. We refer to works of Brenner, Ginibre, Velo, Keel
and Tao for Lemma 8 below, which is directly extracted from [27].

Lemma 8 (Strichartz estimates for Klein-Gordon’s equation). Suppose that the function G1(t, x)
solves (1 +�)G1 =  on [0, T ] for a given source term  and with smooth initial data. Then, the
solution G1 must satisfy the following space time integrability properties (modulo constants that
do not depend on the time T )

(2.9)
‖G1(t, x)‖Lqt ([0,T ],Lrx(R3)) + ‖G1(t, x)‖C([0,T ];Hs(R3))

. ‖G1(0, ·)‖Hs(R3) + ‖∂tG1(0, ·)‖Hs−1(R3) + ‖‖
Lq̃
′
t ([0,T ],Lr̃′x (R3))

,

where for some s ≥ 0 and parameter θ with 0 ≤ θ ≤ 1, the two pairs (q, r) and (q̃, r̃) in [2,∞[2

must be admissible

(2.10)
2

q
+

2 + θ

r
≤ 2 + θ

2
,

(
q, r,

2 + θ

2

)
6= (2,∞, 1)

and must satisfy the gap condition

(2.11)
1

q
+

3 + θ

r
=

3 + θ

2
− s =

1

q̃′
+

3 + θ

r̃′
− 2 .

The control (2.5) on  indicates that the choice r̃′ = 1 would be the most convenient. But this
cannot be done. As a matter of fact, the right part of (2.11) together with the preliminary
restriction q̃′ ≤ 2 would imply (s, θ, q̃′) = (0, 0, 2) giving rise to

(
q̃, r̃, (θ + 2)/2

)
= (2,∞, 1).

The last condition inside (2.10) would not be satisfied. Now, the limiting Strichartz estimate
for (q̃, r̃, θ) = (2,∞, 0) is known to be false. This particularity plays an important role in what
follows. It induces some technicalities (in order to circumvent this difficulty) which strongly
motivate the introduction of the parameter β > 0 and the passage below through negative
Sobolev estimates.

Lemma 9 (Negative Sobolev estimates on G1). Select any T ∈ R+ and any β ∈ R+. Given a
source term  satisfying (2.5), the solution G1 to

(2.12) (1 +�)G1 = −(1−∆)−β/2 , G1(0, ·) ∈ Hβ− , ∂tG1(0, ·) ∈ H−1+β− ,

is subject to G1 ∈ L∞([0, T ], Hβ−). More precisely, for any δ with 0 < δ ≤ 1/2, we have

(2.13) ‖G1‖L∞([0,T ],Hβ−δ) . ‖G1(0, ·)‖Hβ−δ + ‖∂tG1(0, ·)‖H−1+β−δ + ‖‖
Lq̃
′
t ([0,T ],L1

x(R3))
.

Proof. Fix δ as indicated. Using Adam’s definition of the Sobolev space as well as the Sobolev
embedding, we find that

(2.14) (1−∆)−δ/2 : L1(R3) ↪→W δ,1 ↪→ Lr̃
′
(R3) , r̃′ :=

3

3− δ
∈]1, 6/5] .

In other words, for any t ∈ [0, T ]

∃C1(δ) ∈ R+ ; ‖ (1−∆)−δ/2(t, ·) ‖Lr̃′≤ C1(δ) ‖ (t, ·) ‖L1 .

We consider (2.10) and (2.11) with (q, r) = (∞, 2) and (s, θ) = (0, 0). The left part of (2.11) is
satisfied ; the right part of (2.11) furnishes q̃′ = 2 r̃′/(7 r̃′−6) ∈ [1, 2]. It follows that the conjugate
indices q̃ and r̃ of q̃′ and r̃′ are defined according to

q̃ :=
2

1− 2δ
∈ [2,+∞[ , r̃ :=

3

δ
∈ [2,+∞[ .

As required in (2.10), we have
2

q
+

2

r
= 1 ≤ 1 ,

2

q̃
+

2

r̃
= 1− 4 δ

3
≤ 1 .

We apply the Fourier multiplier 〈D〉(β−δ)/2 to both sides of (2.12) to obtain that

(1 +�)G̃1 = −(1−∆)−δ/2 , G̃1 := (1−∆)(β−δ)/2 G1 .
9



From Lemma 8, we can assert that there exists a constant C2 such that

‖G̃1‖L∞([0,T ];L2) ≤ C2(δ)
(
‖G̃1(0, ·)‖L2 + ‖∂tG̃1(0, ·)‖H−1 + ‖(1−∆)−δ/2‖Lq̃′ ([0,T ],Lr̃′ (R3))

)
≤ C2(δ)

(
‖G̃1(0, ·)‖L2 + ‖∂tG̃1(0, ·)‖H−1 + T 1/q̃′ C1(δ) ‖f0‖L1(R3)

)
.

Exploiting (2.5) and coming back to G1, we easily recover (2.13). It should also be noted that,
even if G1(0, ·) ∈ Hβ and ∂tG1(0, ·) ∈ H−1−β , the bound (2.13) is not uniform with respect to
δ ∈]0, 1]. Indeed, as a consequence of the decay of (q̃, r̃) towards the forbidden couple (2,∞), the
constant C2(δ) should tend to +∞ when δ goes to 0+.

�

The fields G, E and B are depending on  through (1.3). As is well known, linear hyperbolic
systems such as (1.3) are amenable to L2-estimates. Two strategies are possible to take advantage
of such L2-information :
S1: Knowing directly that (1 − `2∆)−β/2 ∈ L2, for instance through a control on Ma, we

can take derivatives of (1.3), and then perform L2-energy estimates giving access to the
expression Enβ,` which has been introduced at the level of (1.20) ;

S2: Knowing only that  ∈ L1, as a corollary of Lemma 9, we can assert that the solution
G1 to the first equation of (1.3) falls in Hβ−. Then, by successive energy estimates on
the Klein-Gordon equations, we get that Gj ∈ Hj−1+β− (this is the regularizing effect),
which implies in particular that Gj ∈ L2 for all j such that j > 1− β. When β = 0, we
do not have G1 ∈ L2, and this component must be excluded. Thus, given m ∈ N with
m < n, we can select the m+ 2 last equations of (1.3). This furnishes a truncated system
on Gn−m+1, · · · , Gn, E and B with all source terms in L2, and thereby some L2-energy
estimates become available. With this in mind, we introduce the auxiliary energy

Em(t) :=

n∑
j=n−m+1

∑
|γ|≤j−n+m−1

(
‖∂γxGj(t, ·)‖2L2 + ‖∇x∂γxGj(t, ·)‖2L2 + ‖∂t∂γxGj(t, ·)‖2L2

)
+ ‖E(t, ·)‖2Hm + ‖B(t, ·)‖2Hm .

Observe that Em(t) provides a control on Gj in Hj−n+m and on ∂tGj in Hj−n+m−1.
Recall also that we can pass from ` > 0 to ` = 1 through (1.13), and therefore it suffices
to investigate the case ` = 1.

Lemma 10 (Energy estimate on the fields). From (1.3) with ` = 1, we can deduce that for all
m ∈ N with m ≤ n, we have

Em(t) ≤ et
[
Em(0) + sup

{
‖Gn−m(s, ·)‖2L2 ; s ∈ [0, t]

}]
.(2.15)

Proof. Given a multi-index γ = (γ1, γ2, γ3) ∈ N3, we differentiate the component Gj with respect
to ∂γx with |γ| ≤ j − n+m− 1. This furnishes

(2.16)



(1 +�)Gn−m+1 = Gn−m ,
· · · · · · · · · · · ·

(1 +�)∂γxGj = ∂γxGj−1 , |γ| ≤ j − n+m− 1 ,
· · · · · · · · · · · ·

(1 +�)∂γxGn = ∂γxGn−1 , |γ| ≤ m− 1 ,
∂t(∂

γ
xE)−∇x × ∂γxB = ∂γxGn , |γ| ≤ m,

∂t(∂
γ
xB) +∇x × ∂γxE = 0 , |γ| ≤ m.

We proceed by standard energy estimates which means to multiply the equations on ∂γxGj , ∂
γ
xE

and ∂γxB respectively by ∂t(∂
γ
xGj), ∂

γ
xE and ∂γxB. Then, we integrate with respect to x ∈ R3 and

we perform integration by parts.
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This yields

1

2

d

dt
Em(t) ≤

n∑
j=n−m+1

∑
|γ|≤j−n+m−1

‖∂γxGj−1(t, ·)‖L2 ‖∂t(∂γxGj)(t, ·)‖L2

+
∑
|γ|≤m

‖∂γxGn(t, ·)‖L2 ‖∂γxE(t, ·)‖L2

≤ 1

2
‖Gn−m(t, ·)‖2L2 +

1

2
‖∂tGn−m+1(t, ·)‖2L2

+
1

2

n∑
j=n−m+2

∑
|γ|≤j−n+m−1

(
‖∂γxGj−1(t, ·)‖2L2 + ‖∂t(∂γxGj)(t, ·)‖2L2

)
+

1

2

∑
|γ|≤m

(
‖∂γxGn(t, ·)‖2L2 + ‖∂γxE(t, ·)‖2L2

)
≤ 1

2
‖Gn−m(t, ·)‖2L2 +

1

2
Em(t) .

This implies after integration

Em(t) ≤ et Em(0) +

∫ t

0
et−s ‖Gn−m(s, ·)‖2L2 ds .

From there, it is easy to derive (2.15).
�

For β = 0, by convention, we have G0 = −. Recall that En ≡ En1 has been defined in (1.20).
In comparison with En, some derivatives may be counted twice inside E n. But E n and En are
equivalent, with En ≤ E n ≤ 2 En. Applying (2.15) with m = n, we find in particular that

En(t) . et
[
En(0) + sup

{
‖(1−∆)−β/2(s, ·)‖2L2 ; s ∈ [0, t]

}]
.(2.17)

As explained in [15], the Bopp-Podolsky system BP 1
0 does inherit some field energy density,

but this is without evident sign conditions, see more precisely [15]-(47), which seems to make
it useless. On the other hand, keeping in mind that we cannot exploit (1.19) when dealing with
BPnβ , we must stick to (2.15).

3. Proof of Theorems

3.1. Propagation of moments. In this section, we work with a smooth solution U of BPnβ
defined on [0, T ] for some T ∈ R∗+. We assume (1.22) with n = 2 and (1.26) when n = 1. The
functionMa(·) may not be increasing on [0, T ]. For this reason, we sometimes replace it by

SMa(t) := sup
{
Ma(s) ; s ∈ [0, t]

}
, t ∈ [0, T ] .

In Paragraphs 3.1.1 and 3.1.2, we present two different methods which are based respectively on
the strategies S1 and S2.

3.1.1. Sobolev estimates on the fields through a control on the moments. The idea here is to
exploit (2.6) in the context of (2.17). From (2.6), we get that (1 − ∆)−β/2 is in W β,(3+a)/3.
Then, by Sobolev embedding theorem, we can assert that a ≥ a(β) with a(β) as in (1.25) implies
that (1−∆)−β/2 ∈ L2. Define ǎ(β) := max

(
a(β); 0

)
. We first apply (2.6) with a = ǎ(β). Then,

we follow S1, and we use (2.17) to get

‖ E(t, ·) ‖Hn. et/2
[
En(0)1/2 + sup

{
Mǎ(β)(s)

3
ǎ(β)+3 ; s ∈ [0, t]

}]
.

The next step is to catch the La+3-norm of E in order to implement (2.1).
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By Sobolev embedding theorem again, we have Hn ⊂ La+3 as soon as n ≥ 3 (a + 1)/2 (a + 3).
This is always the case if n ≥ 2. However, when n = 1, we have to work with ǎ(β) ≤ a ≤ 3.
Then, from Lemma 6 applied with b = ǎ(β) and c = a ≥ ǎ(β), we get

(3.1) ‖ E(t, ·) ‖La+3. et/2
[
En(0)1/2 + sup

{
Ma(s)

3
ǎ(β)+3

ǎ(β)
a ; s ∈ [0, t]

}]
.

We can plug this inside (2.1) and integrate in time to get

SMa(t) ≤Ma(0) +

∫ t

0
es/2

[
En(0)1/2 + SMa(s)

3
ǎ(β)+3

ǎ(β)
a
]
SMa(s)

a+2
a+3 ds .

From there, Bihari-Lasalle inequality furnishes already a local (in time) control on SMa (and
thereby on Ma) for all a ≥ 0 if n ≥ 2, and for ǎ(β) ≤ a ≤ 3 if n = 1. Moreover, this control
becomes global if the exponent is less than 1, that is

(3.2)
3

ǎ(β) + 3

ǎ(β)

a
+
a+ 2

a+ 3
≤ 1 ⇐⇒ 3 ǎ(β)

ǎ(β) + 3
≤ a

a+ 3
.

If β ≥ 3/2, we find ǎ(β) = 0, and (3.2) is verified. There remains 0 ≤ a ≤ 3.
Otherwise, when 0 ≤ β < 3/2, we have 0 < ǎ(β) = a(β), and (3.2) is achievable only on condition
that 3 a(β)/

(
ǎ(β)+3

)
< 1, which implies that 1/2 < β. Then, (3.2) is the same as ã(β) ≤ a with

ã(β) as in (1.25). Combined with the preceding constraint a ≤ 3, this yields in fact ã(β) ≤ 3 or
equivalently β ≥ 1 together with ã(β) ≤ a ≤ 3. When n = 1, we recover the conditions which
are listed in Theorem 3.
For n ≥ 2, this argumentation is not optimal. This is because the condition E ∈ Hn may
not be indispensable. Instead, in line with S2, we can try to estimate E just in H1. In the next
paragraph, we seek for such less demanding estimate. When doing this, the challenge is to exploit
the regularizing properties of Klein-Gordon equations to convert the a priori L1- bound on  into
Hs-estimates on E.

3.1.2. Sobolev estimates on the fields through a control on the electric current. Throughout this
paragraph, we assume that n ≥ 2. From the system BPnβ , we can extract (2.12). The context
is as in Lemma 9. But from (1.22), we only know that G0

1 ∈ H1 and H0
1 ∈ L2. Thus, with

β̃ := min (β; 1) ∈ R+, we have to work with

(1 +�)G1 = −(1−∆)−β̃/2 ̃ , ̃ := (1−∆)−(β−β̃)/2  , ‖̃(t, ·)‖L1(R3) ≤ ‖f0‖L1(R3×R3) ,

together with G0
1 ∈ H β̃ and H0

1 ∈ H−1+β̃ . From Lemma 9 applied with β̃, we can infer that G1

is in L∞
(
[0, T ];H β̃−(R3)

)
. More precisely, from (2.13), for all δ > 0, we have

(3.3) ‖G1‖L∞([0,T ],Hβ̃−δ)
. ‖G0

1‖H1 + ‖H0
1‖L2 + ‖f0‖L1(R3) . 1 .

From Lemma 10 with m = n− 1, we can deduce that (the same holds for B)

(3.4) ‖E(t, ·)‖
Hn−1+β̃−δ(R3)

. k(t) := et/2
(
E n−1(0) + 1

)1/2
.

Thus, resorting to BP ln is a way of performing a sort of (hyperbolic) regularization procedure on
the electromagnetic field. The increase of n from 1 to 2 (and more generally from n to n+ 1) is
associated with a gain of one degree of regularity on (E,B).
For a ∈ [0, 3[, we can select δ (small enough) so that a+ 3 = 6/(1 + 2 δ). Then, by the Sobolev
embedding theorem, we find that

(3.5) ‖E(t, ·)‖La+3(R3) ≤ k(t) , ∀t ∈ [0, T ] .

Coming back to (2.1), this implies that

Ma(t) ≤
(
Ma(0)

1
a+3 +

1

a+ 3

∫ t

0
k(s) ds

)a+3
, ∀t ∈ [0, T ] .

which is sufficient to prevent the explosion ofMa. We have (1.24).
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For a ≥ 3 and Ma bounded, as already seen, Lemma 7 guarantees that  ∈ L2. Thus, we can
directly apply Lemma 10 (with m = n) to deduce with (2.7) that

‖E(t, ·)‖H2 ≤ ‖E(t, ·)‖Hn . 1 +Ma(t)
3

2 a , ∀ t ∈ [0, T ] .

On the other hand, we still have (3.4). Now, the idea is to combine Sobolev embedding theorem

‖E(t, ·)‖La+3(R3) ≤ ‖E(t, ·)‖Hs(a)(R3) , s(a) :=
3

2

a+ 1

a+ 3
,

with the interpolation inequality

‖E(t, ·)‖Hs(a)(R3) ≤ ‖E(t, ·)‖1−σ
H1−δ ‖E(t, ·)‖σH2 , s(a) = (1− σ) (1− δ) + 2σ ,

in order to reduce the exponent ofMa according to

‖E(t, ·)‖La+3(R3) ≤ k(t)1−σ (1 +Ma(t)
3

2 a
)σ(a,δ)

, σ(a, δ) :=
1

1 + δ

( a− 3

2 (a+ 3)
+ δ
)
.

Contrary to (3.5), this bound implies a loss of a positive power of Ma(t). But, if we plug this
control inside (2.1), we find

∂tMa(t) . 1 +Ma(t)
3σ(a,δ)

2 a
+a+2
a+3 ,

while

lim
δ→0+

3σ(a, δ)

2 a
+
a+ 2

a+ 3
=

3

4 a

a− 3

a+ 3
+
a+ 2

a+ 3
≤ 1− 1

4

1

a+ 3
< 1 .

Thus, for δ small enough, we recover a sublinear growth which leads to (1.24).

3.2. Well-posedness properties. In this section, we investigate the construction of solutions.
System BPnβ,` is nonlinear due to the presence of quadratic terms in the Vlasov part. As usual
in such nonlinear situation, an iterative scheme is needed. Given ε ∈ R∗+, in Paragraph 3.2.1, we
seek approximate solutions Uε. Then, in Paragraph 3.2.2, we pass to the limit (ε→ 0+).

3.2.1. A regularization procedure. Given smooth initial conditions, the standard hyperbolic theo-
ries furnish local smooth solutions (say Hs with s large enough). The discussion becomes more
problematic when dealing in the mild context of (1.22) or concerning the issue of global existence.
Then, a preliminary stage is to construct approximate solutions by regularizing the data (initial
conditions and source term). Without loss of generality, we can work with ` = 1.
Let ϕ ∈ C∞c (R3;R) be a (spatial) cut-off function : it is such that ϕ ≡ 1 on B(0, 1] ⊂ R3 and
ϕ ≡ 0 on B(0, 2]c. Let ψ ∈ C∞c (R;R) be a (time) cut-off function : it is such that ψ ≡ 1 on the
interval [−1, 1] and ψ ≡ 0 on [−2, 2]c. Given ε ∈ R∗+ and α ∈ R+, define

(3.6)
ϕαε (η) := ϕ(εα η) , ϕ̌αε (x) := F−1

η (ϕαε )(x) = ε−3α (F−1
η ϕ)(ε−α x) ,

ψαε (τ) := ψ(εα τ) , ψ̌αε (t) := F−1
τ (ψαε )(t) = ε−α (F−1

η ψ)(ε−α t) .

From now on, we denote by F ≡ Fτ,η the Fourier transform with respect to both variables t and
x. We look at ϕ and ψ as Fourier multipliers. With this in mind, we replace BPnβ ≡ BPnβ,1 by

BPn,αβ,ε



(1 +�)G1 = −̃ ∗x ϕ̌αε ∗t ψ̌αε , ̃ := (1−∆)−β/2 
· · · · · · · · · · · ·

(1 +�)Gn = Gn−1 ,
∂tE−∇x × B = Gn ,
∂tB +∇x × E = 0 ,
∂tf + ν(ξ) · ∇xf +

(
E(t, x) + ν(ξ)× B(t, x)

)
· ∇ξf = 0 ,

and we substitute Cnβ ≡ Cnβ,1 for

Cn,αβ,ε div B = 0 , (1 +�)n (1−∆)β/2 div E = ρ ∗x ϕ̌αε ∗t ψ̌αε .
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We complete BPn,αβ,ε with regularized versions of Ũ(0, ·), say built with

H0
jε := H0

j ∗x ϕ̌αε , G0
jε := G0

j ∗x ϕ̌αε , E0
ε := E0 ∗x ϕ̌αε , B0

ε := B0 ∗x ϕ̌αε .

as well as f0
ε := f0 ∗x,ξ

(
ϕ̌αε (x)⊗ ϕ̌αε (ξ)

)
. Again, the conditions inside Cn,αβ,ε are propagated in time,

and therefore they can be forgotten.
Given ̃ issued from the Vlasov part, the solution to the field equations is (by superposition
principle) the sum of the solution generated by the initial data (which is global and smooth) plus
the solution with zero initial data and nonzero source term (which we study now).
Denote by N the 3D-Green function associated with the Klein-Gordon equation, given for ins-
tance in (31)-Lazar. At any time t, the expression N (t, ·) is a compactly supported (with support
in the ball of radius |t|) measure on R3 of finite total mass. By construction, we have

(3.7) Gj = −N ∗j ∗t,x ̃ ∗x ϕ̌αε ∗t ψ̌αε , N ∗j = N ∗ · · · ∗ N︸ ︷︷ ︸
j times

.

Let m ∈ N. By Young’s convolution inequality, we have

‖ N ∗j ∗t,x ̃ ∗x ϕ̌αε ∗t ψ̌αε (t, ·) ‖Hm≤‖ ϕ̌αε ‖Hm ‖ ψ̌αε ‖L1 ‖ ̃ ‖L∞t (L1
x)

∫ t

0
‖ N (s, ·) ‖jM ds .

The right hand side depends on t ∈ R+ (just as on ε and α). But, as a consequence of (2.5), it
is locally bounded on R+. Through energy estimates, we get

‖ ∂kt Gj(s) ‖Hm−k.t 1 , ‖ ∂kt (E,B)(s) ‖Hm−k.t 1 , k = 0, 1 · ·n , ∀ s ∈ [0, t] ,

and thereby, for m large enough, we can assert that

‖ Gj ‖C1([0,t]×R3).t 1 , ‖ (E,B) ‖C1([0,t]×R3).t 1 , ∀ t ∈ R∗+ .

Let (X,Ξ) be the Vlasov flow. Remark also that

‖ Ξ(t) ‖≤‖ Ξ(0) ‖ +

∫ t

0
‖ E(s, ·) ‖L∞ ds .

Thus, all the characteristics (which are unique due to the regularity) remain locally (in time)
bounded. No explosion can occur, and the criterion for a finite time blow up is not satisfied.
Thus, the classical solutions obtained by standard arguments can be extended for all times. This
implies that the system BPn,αβ,ε has global smooth solutions Uε ∈ C1(R+ × R3 × R3). Note that
the arguments of Section 2 are unaffected by the regularization procedure. We can exploit the
preceding estimates onMa when dealing with Uε = (fε,Gε,Eε,Bε).

3.2.2. Passage to the limit (ε → 0+). We fix α ∈ R∗+, and we would like to pass to the weak
limit ε→ 0+. Since the family {ε}ε is bounded in L∞t (L1

x), it is therefore bounded in the space
L∞t (Hs

x) for some negative s < 0 small enough. By energy estimates, it follows that {G1ε}ε
is bounded in L∞loc(H

s
x). The same applies to {Gjε}ε for all 1 ≤ j ≤ n, and consequently to

{(Eε,Bε)}ε. Thus, we can extract from {Uε}ε a subsequence converging weakly in L∞loc(H
s
x) to

some Ū . Since the field equations are linear, and because {ϕαε }ε and {ψαε }ε are mollifiers, the
limit Ū is a solution to the Maxwell’s part of BPnβ . In fact, the difficulty is to pass to the limit
in the quadratic terms of the Vlasov equation. To this end, we need a uniform L∞t (Hs

x)-bound
on {(Eε,Bε)}ε, this time with s ≥ 0.

i) Case n ≥ 2. We can rely on (3.4) with n − 1 ≥ 1. For β > 0, we find that β̃/2 > 0. So
we can take δ = β̃/2 because this is positive as required. For n > 2, just select δ = 1/2
so that n− 1− δ > 1. In these situations, observe that

(3.8) ‖Eε(t, ·)‖H1(R3) . 1 , ‖Bε(t, ·)‖H1(R3) . 1 , ∀ (ε, t) ∈]0, 1]× R+ .
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For (β, n) = (0, 2) and a > 0, we can exploit (1.24) to ensure with (2.6) and Lemma 8
(with r̃′ > 1) that G1ε(t, ·) is bounded in L2, and therefore we still have (3.8). Now, in
the limiting case (a, β, n) = (0, 0, 2), given any δ > 0, we have to be satisfied with

(3.9) ‖Eε(t, ·)‖H1−δ(R3) . 1 , ‖Bε(t, ·)‖H1−δ(R3) . 1 , ∀ (ε, t) ∈]0, 1]× R+ .

ii) Case n = 1. For β > 0, we can exploit (2.13). As soon as 0 < β̆ ≤ β, this yields

(3.10) ‖Eε(t, ·)‖Hβ̆(R3)
. 1 , ‖Bε(t, ·)‖Hβ̆(R3)

. 1 , ∀ (ε, t) ∈]0, 1]× R+ .

For β > 1, we can even take β̆ = 1 to recover (3.8). For 0 ≤ β ≤ 1, assuming (1.26) with
a = 3, with T as in (1.28), from (1.28) together with (2.6) and (2.17), we can still obtain

(3.11) ‖Eε(t, ·)‖H1(R3) . 1 , ‖Bε(t, ·)‖H1(R3) . 1 , ∀ (ε, t) ∈]0, 1]× [0, T ] .

The common point of all the cases examined above is to furnish uniform Hs-estimates on (Eε,Bε)
for some s > 0. This is enough to guarantee the L2-compactness of subsequences extracted from
(Eε,Bε)ε, and then to pass to the limit in the quadratic terms. Note that the usual (more
elaborated) argument also prevails. Since uniform L2-estimates on (Eε,Bε) are available, we
have access to averaging lemmas. For all test function φ ∈ C∞c (R+ × R3;R), the family

ρεφ(t, x) :=

∫
R3

fε(t, x, ξ) φ(t, ξ) dξ , ε ∈]0, 1]

is bounded in H1/4(R× R3).
The notion of weak solutions requires to multiply the equations by test functions which are
compactly supported in both time, space and momentum. By Rellich-Kondrachov theorem, which
furnishes the compact embedding result H1/4(Ω) ↪→ L2(Ω) on bounded domains Ω, we can
extract from (ρεφ)ε a subsequence that converges (locally) strongly in L2. Then, following the main
lines of [8, 25], we can pass to the limit in the equations. In short, except when (β, n) = (0, 1),
there exists global weak solutions to BPnβ .

After passing to the limit, a uniform H1-estimate on (Eε,Bε) provides with (1.21) on the weak
limit (Ē, B̄). The corresponding weak solution Ū is therefore a strong solution in the sense of
Definition 1. In the analysis above of cases i) and ii), we can identify the situations allowing to
get such uniform H1-bound. In doing this, we recognize the criteria which in Theorems 2 and 3
guarantee the existence of strong solutions.

4. Semiclassical limits

The length ` is a small positive parameter controlling microscopic effects which, for phenomena
observed at a fixed scale, should become invisible when ` goes to 0 (hence the qualifying term
semiclassical). To keep track of the influence of `, we go through the following process :

- We work at the level of BPnβ,` with fixed values of c, e and m (say with c = e = m = 1).
- We select some initial condition U0

` which is subject to (1.22) for some a ∈ R+.
Throughout this section, we assume that n ≥ 2 or that n = 1 and β > 0. By applying (after
rescaling) Theorems 2 or 3, for all ` ∈ R∗+, we recover a global weak solution U` to BPnβ,`. The
question is about what happens when ` goes to 0. When doing this, a crucial role is played by
the structure (amplitude and oscillations) involved by the family {U0

`}`. Two regimes will be
investigated, from the easier (implying weak interactions) to the more complicated (involving
stronger interactions) :
WFP : Weak Field Phenomena. As the name suggests, this is when Ũ`(0, ·) = Ũ0

` with Ũ` as in
(1.11) is of small size o(1). This corresponds to a small amplitude context. In practice,
given some exponent γ > 0, this means that the family {`−γ Ũ0

`}` is bounded in some
adequate space. Consequently, we can seek the solution in the form `γ U`.
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LFR : Low Frequency Regime. This is when U0
` ≡ U0 is fixed. However, the parameter ` appears

in the formulation of BPnβ,`. Thus, the solution U` does depend on `, and it should
oscillate strongly with respect to `. To remedy this, we will have to perform a cutoff
below frequencies of size `−1.

The question is whether it is possible to extract from {U`}` a subsequence having a weak limit.
And, if any, it is to identify the equation satisfied by it. The WFP and LFR situations are studied
respectively in Subsections 4.1 and 4.2. We will limit ourselves here to preliminary results. Indeed,
strong nonlinear effects are avoided in Subsection 4.1 ; and the frequency cutoff is far below `−1

in Subsection 4.2.

4.1. Weak-field phenomena. Select some γ with γ > 2. Given an initial data satisfying

G0
j ∈ Hj , H0

j ∈ Hj−1 , (E0,B0) ∈ L2 , f0 ∈ L1 ∩ L∞ , ∀j ∈ {1, · · · , n} ,

we adjust Ũ0
` in such a way that

Ũ0
` = (`γ G0, `γ−1 H0, `γ ∇xG0, `γ E0, `γ B0, `γ f0) .

By this way, for all ` ∈ R∗+, we recover (1.22) with a = 0. We assume here that n ≥ 2 or that
n = 1 and β > 0. Then, by applying Theorem 2 or 3, we get a global strong solution to BPnβ,`.
We seek this solution in the form `γ U` with U` = (G`,E`,B`, f`). When there is no ambiguity,
we will omit the subscript ·`. After substitution of `γ U` inside the system BPnβ,`, we find that
the components of U` must satisfy

WFPnβ,`



(1 + `2�)G1 = −(1− `2 ∆)−β/2  , G1(0, ·) = G0
1 , ∂tG1(0, ·) = `−1 H0

1 ,
· · · · · · · · · · · ·

(1 + `2�)Gn = Gn−1 , Gn(0, ·) = G0
n , ∂tGn(0, ·) = `−1 H0

n ,
∂tE−∇x × B = Gn , E(0, ·) = E0 ,
∂tB +∇x × E = 0 , B(0, ·) = B0 ,
∂tf + ν(ξ) · ∇xf + `γ F · ∇ξf = 0 f(0, ·) = f0 ,

together with (1.16). We impose (1.22) on the above initial data made of (f0,G0, `−1 H0,E0,B0).
The main (important) point of difference with the system BPnβ,` is the small weight `γ which
is put in factor of the Lorentz force F, and which marks the presence of weak nonlinearities.
Introduce

Ǧ(τ, y) := G(` τ, ` y) , Ǧ0(y) := G0(` y) , Ȟ0(y) := H0(` y) , ̌(τ, y) := (` τ, ` y) .

Observe that Ǧ satisfies a system whose coefficients do not depend on `, namely (1 +�τ,y)Ǧ1 = −(1−∆y)
−β/2 ̌ , Ǧ1(0, ·) = Ǧ0

1 , ∂τ Ǧ1(0, ·) = Ȟ0
1 ,

· · · · · · · · · · · ·
(1 +�τ,y)Ǧn = Ǧn−1 , Ǧn(0, ·) = Ǧ0

n , ∂τ Ǧn(0, ·) = Ȟ0
n .

From the proof of Lemma 9, we already know that

(4.1) ‖ Ǧ1 ‖L∞([0,T ];Hβ−δ
y )
. ‖ Ǧ0

1 ‖L2
y(R3) + ‖ Ȟ0

1 ‖L2
y(R3) +‖(1−∆y)

−δ/2̌‖Lq̃′ ([0,T ],Lr̃′ (R3)) .

That is true for all δ with 0 < δ ≤ 1/2, for all T > 0, and for all r̃′ > 1 with q̃′ = 2 r̃′/(7 r̃′ − 6).
When n = 1 and β > 0, by choosing β = δ, we recover some L2-estimate on Ǧ1 which can be
converted in terms of G1 according to

‖ G1 ‖L∞([0,T ];L2
x) =‖ Ǧ1(·/`, ·/`) ‖L∞([0,T ];L2

x)= `3/2 ‖ Ǧ1 ‖L∞([0,T/`];L2
y)

. `3/2 ‖ Ǧ0
1(0, ·) ‖L2

y(R3) +`3/2 ‖ Ȟ0
1(0, ·) ‖L2

y(R3)

+ `3/2 ‖(1−∆y)
−δ/2̌‖Lq̃′ ([0,T/`],Lr̃′ (R3)) .

In view of (2.14), it follows that

‖ G1 ‖L∞([0,T ];L2
x).‖ G0

1 ‖L2
x(R3) + ‖ H0

1 ‖L2
x(R3) + `3/2 ‖̌‖Lq̃′ ([0,T/`],L1(R3)) .
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Compute

‖̌‖Lq̃′ ([0,T/`],L1(R3)) =

[∫ T/`

0

(∫
R3

|̌(τ, y)| `−3 d(`y)
)q̃′
`−1 d(`τ)

]1/q̃′

= `−3−1/q̃′
[∫ T

0

(∫
R3

|(t, x)| dx
)q̃′

dt

]1/q̃′

= `−3−1/q̃′ ‖‖Lq̃′ ([0,T ],L1(R3)).

We can adjust r̃′ ∈]1,+∞[ small enough to ensure that 2 < 3/2 + 1/q̃′ < γ. This implies that

‖ `γ G1(t, ·) ‖L∞([0,T ];L2
x). l

γ + lγ−3/2−1/q̃′ ‖‖Lq̃′ ([0,T ],L1(R3)) ≤ 1 + T 1/q̃′ ‖f0‖L1(R3) . 1 ,

with a bound on the right hand side which is uniform with respect to `.
When n ≥ 2, we start from (4.1) with β = 0 and δ = 1/2. Then, by energy estimates on the
Klein-Gordon equations, we deduce that

‖ Ǧn ‖L∞([0,T ];Hn−3/2). ‖ Ǧ0 ‖L2
y(R3) + ‖ Ȟ0 ‖L2

y(R3) +‖(1−∆)−δ/2̌‖Lq̃′ ([0,τ ],Lr̃′ (R3)) .

Following the same methods as above to come back to the initial variables, we find that

‖ `γ Gn(t, ·) ‖L∞([0,T ];L2)≤‖ `γ Gn(t, ·) ‖
L∞([0,T ];H

n−3/2
` )

. 1 .

By energy estimates on the Maxwell’s part, this gives rise to some L2-bound on {`γ F`}`. Thus,
we can extract a subsequence converging weakly in L2. Moreover, passing to the limit in the
n+ 2 first equations multiplied by `2, we find that the weak limit must be 0. In parallel, we can
apply averaging lemmas to pass to the limit (as in [8, 25]) in the Vlasov equation. Let f̄ be a
weak L2-limit of {f`}`. By this way, we just recover the transport equation

∂tf̄ + ν(ξ) · ∇xf̄ = 0 , f̄(0, ·) = f0 .

It is not expected that {G`}` has a weak limit. Presumably, the fiels G` is of amplitude `−1. An
additional loss of `−1 seems to be required above (due to scaling considerations) to pass from
the L1-control on  to some uniform L2-estimate on Gn. The question of whether there is still a
weak limit when γ ≤ 2, for instance when γ = 1 (or less), is open.

4.2. Low-frequency limit. The initial condition U0 is here O(1). To progress in this large
amplitude framework, we need to perform a cutoff of the system BPnβ,` below semi-classical
frequencies of size l−1. Without loss of generality (just to simplify the presentation), we can
work with n = 1 and β = 0. The purpose is thus to investigate the passage from BP 1

0,` to RVM
when ` goes to zero. Denoting simply G1 ≡ G, we deal with

BP 1
0,`


(1 + `2�)G = − ,
∂tE −∇x × B = G ,
∂tB +∇x × E = 0 ,
∂tf + ν(ξ) · ∇xf + F(t, x) · ∇ξf = 0 .

Remark 11 (Energy estimates for BP 1
0,` copied from RVM). The RVM system is endowed with

the conserved quantity E(t) which has been defined at the level of (1.19). To mimic what is done
on RVM, we can multiply the Mawell’s part of BP 1

0,` by 2 t(E,B) and the Vlasov equation by 2 〈ξ〉.
Then, we integrate with respect to (x, ξ) to obtain

∂tE(t) = 2

∫
R3

E(t, x) · (G + )(t, x) dx .

What makes the difference with RVM is that G +  = −`2�G 6≡ 0. And it is not clear if the right
hand side is bounded (or vanishing when `→ 0+).
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Still, we can try to compare G with −. With this in mind, we perform a Fourier transform (with
respect to t and x) in the first equation to see that

(4.2) (1− `2 τ2 + `2 |η|2)FG(τ, η) = −F(τ, η) , F ≡ Ft,x .

As long as |τ |+|η| = o(l−1), say |τ |+|η| ≤ l−α with α ∈ [0, 1[, we can assert that FG ∼ −F, and
therefore G ∼ −. Thus, it can be expected that a cutoff of BP 1

0,` below semi-classical frequencies
of size |τ | + |η| ∼ l−1 could allow to recover the RVM system. Our aim in this subsection is to
give concrete form to this idea.
To this end, we implement the mollifiers ϕα` and ψα` which have been introduced in (3.6). Let us
also introduce a function χ ∈ C∞c (R; [0, 1]) which is such that χ ≡ 1 on [0, T ] and χ ≡ 0 out of
the interval [−T, 2T ]. A way (among others) to perform such low-frequency cutoff is to look at
the solution U` = (G`,E`,B`, f`) to the system

BP 1,α
0,`


(1 + `2�)G = −χ(t)  ,
∂tE −∇x × B = G ∗t ψ̌α` ∗x ϕ̌α` ,
∂tB +∇x × E = 0
∂tf + ν(ξ) · ∇xf + χ(t) F ∗x ϕ̌α` · ∇ξ(f ∗t ψ̌α` ) = 0 .

As long as t ∈ [0, T ], the time cutoff of  through the multiplication by χ has no impact (because
the Klein-Gordon and Vlasov equations are hyperbolic evolution equations). On the other hand,
the convolution of G and F by ϕ̌α` removes the influence of large (above `−α) spatial frequencies.
The same applies (through the application of ψα` ) to time frequencies (with resulting nonlocal
time effects).

Proposition 12. For all parameter α ∈ [0, 4/9], the solutions to BP 1,α
0,` converge (modulo the

extraction of a subsequence) weakly (when the parameter l > 0 goes to 0) to a weak solution of
the RVM system.

Proof. Again, we multiply the Vlasov equation by 2 〈ξ〉 and the Mawell’s part by 2 t(E,B). After
integration with respect to (x, ξ), there remains

∂tE(t) = 2

∫
R3

E ∗x ϕ̌α` ·  ∗t ψ̌α` dx+ 2

∫
R3

G ∗t ψ̌α` ∗x ϕ̌α` · E dx .

By Plancherel theorem, denoting as before by Fη the Fourier transform with respect to x, this
is the same as

∂tE(t) = 2

∫
R3

FηE(t, η) ·
[
Fη(χ + G)(·, η) ∗t ψ̌α` (·)

]
(t, η) ϕα` (η) dη

= 2

∫
R3

∫
R
e−iτt FηE(t, η) · F(χ +G)(τ, η) ψα` (τ) ϕα` (η) dτ dη .

The advantage of working with χ  instead directly with  is to make possible a Fourier transform
with respect to t. We find that

F(χ +G)(τ, η) =
−`2 τ2 + `2 |η|2

1− `2 τ2 + `2 |η|2
F(χ )(τ, η) , F = Fτ,η .

After substitution, changing (τ, η) into (τ̃ , η̃) := (`ατ, `αη), this means that

∂tE(t) = 2

∫
R3

∫
R
e−i`

−ατ̃ t `2−6α (−τ̃2 + |η̃|2)

1 + `2−2α (−τ̃2 + |η̃|2)
FηE(t, `−αη̃)·F(χ )(`−ατ̃ , `−αη̃) ψ(τ̃) ϕ(η̃) dτ̃ dη̃ .

Observe that

|F(χ )(τ, η)| = |
∫
R
e−iτt χ(t)Fη(t, η) dt| ≤

∫ 2T

−T

∫
R3

∫
R3

f(t, x, ξ) dt dx dξ ≤ 3T ‖ f0 ‖L1 .
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For 0 < ` ≤ `0 with `0 small enough (say 4 `1−α0 ≤ 1), we have

|∂tE(t)| ≤ 48 `2−6α T ‖ f0 ‖L1 ‖ ψ ‖L1

∫
R3

FηE(t, `−αη̃)| ϕ(η̃) dη̃

. `2−3α

∫
R3

|FηE(t, η)| ϕ(`α η) dη

. `2−3α ‖ E(t, ·) ‖L2

(∫
R3

ϕ(`α η)2 dη
)1/2

. `2−(9α/2) ‖ E(t, ·) ‖L2 . 1 + E(t) .

It follows that

(4.3) E(t) . (1 + E0) et , ∀ t ∈ [0, T ] , E0 := E(0) .

As before, working in Hs with s < 0 small enough, it is easy to show that the family {U`}` has
a subsequence converging weakly to some Ū = (Ḡ, Ē, B̄, f̄), which must be such that ∂tĒ−∇x × B̄ = Ḡ = −̄ = −

∫
R3

f̄(t, x, ξ) dξ ,

∂tB̄ +∇x × Ē = 0 .

On the other hand, by following [8, 25], the uniform estimate on {(E`,B`, f`)}` deduced from (4.3)
is enough (by averaging lemma) to pass to the weak limit (when ` goes to zero) in the quadratic
terms of the Vlasov equation. Thus, at the limit, we do recover that Ū is a weak solution to the
RVM system.

�

A few remarks are in order.

Remark 13 (Other types of cutoffs). The main difficulties in the preceding proof come from the
zeros of the function (τ, η) → 1 − `2 τ2 + `2 |η|2. The choice of BP 1,α

0,` is only illustrative. It is
certainly not optimal. There are other ways to perform the cutoff. For instance, we could refine
the discussion by cutting in a neighborhood of the cone |τ | = |η| for |τ | ∼ |η| ∼ l−1.

Remark 14 (Large-frequency discrepancies). At microscopic scales, the Bopp-Podolsky model
takes over with a (presumably) more realistic description than RVM. Thus, it would be interesting
to compare the behaviors of the solutions to BP 1

0,` and RVM at frequencies of size `−1, knowing
that they could strongly differ.
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