
HAL Id: hal-04570089
https://hal.science/hal-04570089

Submitted on 6 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Latent Diffusion Model
Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer,

Olivier Teytaud

To cite this version:
Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer, Olivier Teytaud. Interactive
Latent Diffusion Model. GECCO 2023 - Genetic and Evolutionary Computation Conference, ACM
SIGEVO, Jul 2023, Lisbon, Portugal. pp.586-596, �10.1145/3583131.3590471�. �hal-04570089�

https://hal.science/hal-04570089
https://hal.archives-ouvertes.fr

Interactive Latent Diffusion Model
Mathurin Videau

Meta & Inria
Paris, France

Nickolai Knizev
Meta

London, UK

Alessandro Leite
TAU, Inria Saclay
Orsay, France

Marc Schoenauer
TAU, Inria Saclay
Orsay, France

Olivier Teytaud
Meta & Inria
Paris, France

ABSTRACT
This paper introduces Interactive Latent Diffusion Model (IELDM),
an encapsulation of a popular text-to-image diffusion model into
an Evolutionary framework, allowing the users to steer the design
of images toward their goals, alleviating the tedious trial-and-error
process that such tools frequently require. The users can not only
designate their favourite images, allowing the system to build a sur-
rogate model based on their goals and move in the same directions,
but also click on some specific parts of the images to either locally
refine the image through dedicated mutation, or recombine images
by choosing on each one some regions they like. Experiments vali-
date the benefits of IELDM, especially in a situation where Latent
Diffusion Model is challenged by complex input prompts.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Classifica-
tion and regression trees; Learning latent representations.

ACM Reference Format:
Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer,
and Olivier Teytaud. 2023. Interactive Latent Diffusion Model. In Proceedings
of The Genetic and Evolutionary Computation Conference 2023 (GECCO’23).
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3583131.3590471

1 INTRODUCTION
Latent Diffusion Models (LDMs) become very popular. LDMs have
allowed a real popularization of the synthesis of high-resolution
images, compared to previous approaches that required orders of
magnitude more compute time and energy to train a model, and
even to use an already trained one. Although several applications
can be developed using LDMs, like inpainting, colourization, stroke-
based synthesis etc., this work focuses on image synthesis from
text, a field that has gained a high momentum in the recent months,
at the point that an open platform exists, and that allows users to
generate images from free text within a few minutes.

However, though much more stable than Generative Adversarial
Networks (GAN), and much more tractable than bare Diffusion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590471

Models, LDM still exhibits some limitations, that are reflected in
the repeated posts on open discussion groups such as:

(1) Issue 1: missing features in complicated compositions (e.g.,
character X on the left, using tool Y, with character Z on the
right staring at X), especially if these features never appeared
in the same image in the training set. Partial solutions have
been proposed, like using an image to condition the new
image generation. However, LDM cannot easily “understand”
an image enough to use it as a starting point. For example,
some users mention “I’ve noticed with portraits that a lot
of times people show up that don’t look anything like the
picture”.

(2) Issue 2: biases due to unusual statistics in the training set:
when a person is known publicly only from images in front
of an audience (e.g., people who are, in the training dataset,
frequently interviewed by journalists), it is difficult to obtain
an image in which they do something else . Or, for a famous
singer frequently depicted next to biblical creatures, a user
reported obtaining a mix between a cow and a devil. Other
users also report failing to reproduce some memes like “why
can’t I hold all these lemons”. But the most famous example
of such biases concerns requests of salmons swimming in
the river that, because of too many images of salmon food
in the training set, led to salmon fillets “swimming” in the
river, including a geyser as if they were whales, or a bear
trying to catch them.

(3) Issue 3: need for many re-runs, either because of local is-
sues (e.g., four-armed people, three-eyed persons, or people
with too many fingers) or because of large-scale errors (e.g.,
bad positioning of different characters).

These unrealistic results are routinely tackled by running multiple
times similar requests, until the output fits the users’ initial idea.
Hundreds of rolls are usual for people working professionally with
LDM: such trial-and-error practice can be viewed as a random
search in the space of images. In this context, the main goal of the
present work is to add to LDM the possibility to perform more efficient
search, allowing the user to steer the search, hence getting better results
more quickly.

Several components are needed to this aim: a search space, an ob-
jective function defined on this search space, and a search procedure
to tackle this objective function by efficiently sampling the search
space. Searching the space of (possibly high resolution) images is
almost out-of-reach due to the curse of dimensionality. However,
one of LDM features is to learn a latent space, that reflects the per-
ceptual properties of the images, and is of much lower dimension
than the space of pixels, while retaining the useful information for

586

https://orcid.org/0009-0002-3672-808X
https://orcid.org/0009-0000-4150-0085
https://orcid.org/0000-0002-3071-8019
https://orcid.org/0000-0003-1450-6830
https://orcid.org/0000-0001-5570-5209
https://doi.org/10.1145/3583131.3590471
https://doi.org/10.1145/3583131.3590471
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590471&domain=pdf&date_stamp=2023-07-12

GECCO’23, July 15–19, 2023, Lisbon, Portugal Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer, and Olivier Teytaud

the task at hand. Furthermore, LDM uses a latent representation
that has the same spatial structure as that of the images, making it
easy to move between both representations. From an evolutionary
computation perspective, this latent space can be seen as a geno-
type, and the genotype is reconstructed by the decoder part of LDM.
It seems hence possible to search the latent space at a tractable cost.
It is even possible to allow the users to act on the image, porting
their actions to the latent space where the search takes place, an
original function that is not possible in PicBreeder or ArtiE-Fract,
for instance, (to be discussed next).

Indeed, in general, even users are unable to define their goals in
analytical terms, as they are summarized in a simple sentence, that
cannot capture all the details of user’s idea. The definition of objec-
tive function is a clear case for Interactive Evolution, a process in
which the user repeatedly rates the images that are proposed by the
system, driving indirectly the search. However, to avoid the biases
due to the user’s fatigue [20], one can build a surrogate model of
the user’s ratings, gradually learning to quantify the user’s hidden
goal, thus decreasing the number of interactions before a satisfac-
tory result is obtained. Interactive Evolutionary Computation (IEC)
has been around since the early ages of Evolutionary Computa-
tion, when Richard Dawkins evolved his insect-like animals [2].
Excellent surveys of the field of IEC have been written by Hiroyuki
Takagi [9, 17, 18], that showed how the field has been constantly
active, and was applied in many domains, quite often to explore
design spaces of engineering applications [16, 20]. When it comes
to evolving images, for instance, EIC has been applied to evolve
GP functions that define a fractal image [6], where, interestingly,
saved populations of past evolutions were used by the artist like
a paint palette: the only way to guide the design process was to
choose carefully the initial population from past results. . . and hope
for the best. A similar experience was demonstrated by PicBreeder,
Ken Stanley’s collaborative platform where users could choose pic-
tures evolved through applications of CPPN [13]. However, in those
examples, the users can only interact with the genotype (if knowl-
edgeable enough, as this is not available in the proposed public
interfaces), and hope that the resulting phenotype (the plain image)
approaches their goals.

This paper introduces Interactive Latent DiffusionModel (IELDM),
an interactive evolutionary system encapsulating LDM. At each
generation, LDM produces _ images, and the user can choose to
rate them, and to interact with none, one, or several of them. In
particular, it comprises an interface allowing users to (a) indicate
their preferences, and these preferences will be used to build a sur-
rogate model of their goals; (b) select different images for crossover
or mutations, possibly even selecting several regions of the images
where they would like the variation operators to operate. Of course,
the result of these operators is still stochastic, but the guidance of
the user is much more directed than in all previous works discussed
above.

The paper is organized as follows. Section 2 describes the ex-
isting basic bricks used by IELDM. Section 3 details the different
components of the evolution involving interactions with the user.
Finally, Section 4 presents the experimental results that validate the
proposed approach, detailing in particular how to increase certain
characteristics of an image, how to handle out of statistics prompt,
and how to make local editions.

Figure 1: Left: Schematic view of LDM (see Section 2.1) with
𝐾 = 50. Right: Bird’s eye view of IELDM (see Section 3) with
_ = 15: the Latent Diffusion Modelblock is the block on the
left.

2 TOOLS
This section describes the basic existing bricks that have been used
to design IELDM: the Latent Diffusion Model algorithm that is
encapsulated inside IELDM, and the different components that are
used to build the offspring images from the selected ones.

2.1 Latent Diffusion Model
The text-to-image model we are using is a Latent Diffusion Model.
It is used here as an image synthesizer from a text description. For
lack of space, and also because LDM is used as a black box here, we
will not detail here the complete architecture of LDM, that involves
several components like denoising variational auto-encoders and at-
tention mechanisms. Figure 1-Left displays a schematic view of the
generation process of LDM (i.e., after training): an initial random 𝑧

in the latent space undergoes 𝐾 iterations of a trained U-Net, con-
ditioned by the description text, encoded with a trained embedding.
The iterated 𝑧 slowly moves closer and closer to the description
embedding. The resulting point in the latent space is then decoded
into an image𝐺 (𝑧), or, more precisely,𝐺 (𝑧, 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑡𝑒𝑥𝑡)), as
it strongly depends on the description text T.

We use a latent diffusion model, so that 𝑧 is a normal distribu-
tion, with shape 4 × 64 × 64 and variance one in each coordinate.
Furthermore, 𝐺 is deterministic, which allows us to define specific
crossover and mutation operators.

Latent Diffusion Model is at the heart of IELDM, and its latent
space is the search space of the whole algorithm. Note however
that the only requirement needed to search a latent space is a de-
coder that transforms points of the latent space into images: in
evolutionary terms, the latent space can be viewed as the genotypic
space, the image space as the phenotypic space, and the decoding
function 𝐺 is similar to the morphogenesis. Hence, from an evolu-
tionary perspective, searching such a latent space “only” requires
the definition of variation operators (i.e., crossover and mutation)
on the latent space. From the perspective of image synthesis, any
generative method for images that defines a latent space with a
generative model 𝐺 could have been used, like GANs [1, 4, 5, 7].
However, beside their lack of robustness (like e.g., mode collapse),
one of the ambitions here is to be able to define operators that use
information from the image space, as entered by the user: the latent
space 𝑧 needs to be spatially distributed, which is the case for LDM,
but not for GANs.

587

Interactive Latent Diffusion Model GECCO’23, July 15–19, 2023, Lisbon, Portugal

Figure 2: Prompt: Three cute monsters walking in the grass.
Illustration of the Voronoi crossover for combining the left
part of an image and the right part of another: we combine
the left monster of the first image of the top row (violet) and
the rightmonster (half visible) of the first image of the second
row (orange). We get the _ = 13 other images: the first new
image (bottom left) is by construction (see the contraction
factor in Section 3.3) the one with the lowest diversity: it
matches exactly the requirement of the left violet monster
and the orange halfmonster on the right. Other imagesmatch
more loosely.

2.2 Fitness function
The fitness function is defined from users’ inputs regarding some
high-level features that meet their goal, taste, or expectation. From
thereon, a surrogate model is built on the fly (after every user input),
and is here possibly used, depending on the user, until the next
iteration. We will describe in turn the user inputs, the learning
tools that are used to build the surrogate fitness, and the black-box
optimizer used to maximize this proxy-fitness.

2.2.1 ImageQuality. To train the surrogate model, we keep each
generated image along with their 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 in an archive. In this
archive, each image is labelled either 𝐺𝑜𝑜𝑑 or 𝐵𝑎𝑑 by using users’
clicks. Therefore, we consider an image as𝐺𝑜𝑜𝑑 when the user has
clicked on it and 𝐵𝑎𝑑 in the opposite case. When the amount of
data is sufficient (at least ten 𝐵𝑎𝑑 images and one 𝐺𝑜𝑜𝑑 one), this
small dataset is then used to train the surrogate model all along the
evolutionary process.

2.2.2 Learning Toolbox. In the context of IELDM, the idea is to
build a surrogate model of the user preferences in the latent space,
from past pairs (𝑧, 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝑧)). However, only a rather limited
number of examples is available. Hence, we preferred to focus on
Logistic Regression and a small Multi-layer Perceptron.

The Scikit-learn library is used in all experiments with default
configurations, except for theMLP forwhichwe used (solver=’lbfgs’,
alpha=1e-5, hidden-layer-sizes=(5, 2), random-state=1).

To make optimization easier, the latent space undergoes a simple
dimension reduction via a down-sampling mechanism: the latent
space is of the form (1, 4, 64, 64), and is down sampled to (1, 4, 8, 8)
by summing over groups of 8 × 8 pixels. The surrogate model is

Figure 3: A giant cyberpunk spider attacks a building. Illus-
tration of a local modification. Left: we do not like the leg
of this spider at location 18 (the red square), so we request a
modification at 18. Right: we get 6 new variants, including
one without that (badly positioned) leg (underlined in red).
Consistently with the specification (radius in Section 3.1),
the first images are closer to the original and the last ones
are more different.

learned in this lower-dimensional space, without degrading the
results. We discard the cases with zero 𝐺𝑜𝑜𝑑 or 𝐵𝑎𝑑 samples

2.2.3 Black-box Optimization. Searching for 𝑧 maximizing some
function directly involving the LDM generative model𝐺 is difficult:
𝐺 involves a loop, which will make the gradient computation quite
expensive. On the other hand, IELDM is based on human feedback
(see Figure 1, right), and even when replaced by a surrogate model
learned on the fly, it might require some black-box optimization
for an efficient exploitation during the search (see Algorithm 1). In
the experiments of Section 4, the powerful and versatile Nevergrad
toolbox [11] has been used whenever possible (see Section 4.1).

3 INTERACTIVE LATENT DIFFUSION MODEL
A bird’s-eye view of the IELDM algorithm is depicted on Fig. 1-
Right, while Algorithm 1 details it more formally.

A population of size _ (15 in Fig. 1) evolved in the latent space
(the genotypic space), is transformed by LDM into images (the
phenotypes). The user interacts with those _ images by selecting
` ∈ [0, _] of them and eventually then clicking more precisely on
specific regions on the selected images. Depending on ` and the
possible location clicks, the algorithm applies crossover, mutations,
and/or uses a surrogate model (learnt on the fly) of the qualities of
the most recent images to generate new images around the clicked
ones (details in Algorithm 1). In all cases, _ new images are created
from the interaction with the user. The rest of this section describes
the different components of the algorithm.

3.1 Local mutations
Given a chosen image in an offspring, the user can choose to gener-
ate multiple variations of it by specifying points to be modified in
the image (Line 9 of Algorithm 1). This will create _ images from
the original one, following Algorithm 2: all “pixels” in the latent
space that are sufficiently close from one of the user’s click are re-
placed by a random value. Following the same normalized Gaussian
distribution as all “pixels” of the latent “image” (Section 2.1). The _
images differ by the radius of the ball in which the perturbations

588

GECCO’23, July 15–19, 2023, Lisbon, Portugal Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer, and Olivier Teytaud

Algorithm 1 IELDM algorithm

Require: A Latent Diffusion Model𝐺 : 𝑧 ↦→ 𝐺 (𝑧, 𝑝), a text prompt
𝑝 , a population size _ (15 by default)

1: Initialize 𝜎 ← 1, 𝜖 ← 0.01, 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 ← []
2: Generate _ images by entering random Gaussian priors in LDM
3: while The user is not satisfied do
4: User clicks on ` images ⊲ ` = user’s choice
5: Update archive according to ` (clicked vs not clicked)
6: if ` = 0 then
7: Randomly re-initialize the population
8: else if ` = 1 and user clicks on several locations then ⊲

Local mutation
9: Apply local mutations and get _ new images (Sec-

tion 3.1)
10: else if ` = 1 then ⊲ Random mutation
11: Generate _ new latent values 𝑧1, . . . , 𝑧_ , with noise (𝑖_ ×

𝜎)1≤𝑖≤_ (Section 3.2)
12: if 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 of at least 10 rejected and 1 clicked images

then
13: Learn a surrogate model 𝑠 of 𝑧 ↦→ 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 (𝐺 (𝑧)),

using all non-clicked images and only the most recently clicked
one.

14: For each 𝑖 , use a black box algorithm to optimize
𝑥 ↦→ 𝑠 (𝑧𝑖 + 𝜖𝑥)

15: with budget 30 iterations: best found 𝑥𝑖 is the
recommended perturbation:

16: 𝑧𝑖 ← 𝑧𝑖 + 𝜖𝑥𝑖
17: 𝜎 ← 0.7 × 𝜎 (Section 3.2)
18: Generate the _ images 𝐺 (𝑧1), . . . ,𝐺 (𝑧_).
19: else
20: Combine the ` selected images using the Voronoi oper-

ator (Section 3.3).
21: Post-treatment (Section 3.4)

will be made, that varies from 𝑟
20_ to 𝑟

20 (𝑟 is the total width of
the latent “image”, and factor 20 has been empirically chosen after
some trial-and-error tests.

3.2 Random mutations
When the user selects one and only one image in the current off-
spring, we can not apply the Voronoi crossover. Similarly, if the
user selects multiple images, but without specifying some parts, we
can not apply the Voronoi crossover: we might prefer to mutate
an average of the selected latent variables. Therefore, we generate
new elements, using an increasing level of noise. The user selects
an image with latent variable 𝑧0. We propose (𝑧𝑖)1≤𝑖≤15 created as
follows. We add a random noise proportional to 𝑖−1

_
, with a factor

𝜎 . For adapting the step-size across iterations, 𝜎 is decreased when
the user selects a single image (Line 17 of Algorithm 1). We re-
normalize generated images to a norm

√
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =

√
4 × 64 × 64

for matching the original prior of our baseline LDM code (normal
with variance 1 per coordinate). The random mutations are not
applied when we have multiple images selected by the user: then
the Voronoi mutation ensures enough diversity (Section 3.3). We

Algorithm 2 Local mutations
Require: A number _ of children to generate
Require: A Latent Diffusion Model pipeline 𝐺
Require: An input image 𝐼 = 𝐺 (𝑧) and its latent counterpart 𝑧 of

width 𝑟
Require: Coordinates 𝑥1, . . . , 𝑥𝑘 in the image. This is user’s clicks

where perturbations are asked.
1: Convert 𝑥1, . . . , 𝑥𝑘 to coordinates 𝑥 ′1, . . . , 𝑥 ′𝑘 in the latent space.

⊲ Simple linear down-sampling here
2: for 𝑖 ∈ {1, . . . , _} do
3: Define 𝑟𝑎𝑑𝑖𝑢𝑠 := (𝑖/_) × 𝑟/20 ⊲ the first images are closer

to 𝐼 = 𝐺 (𝑧)
4: Create 𝑧′ a copy of 𝑧 ⊲ (to be modified below)
5: for 𝑗 ∈ {1, . . . , 𝑘} do ⊲ Let us perturb 𝑧′ around location
𝑥 ′ 𝑗

6: for each location 𝑝 in the 𝐿∞ ball of radius 𝑟𝑎𝑑𝑖𝑢𝑠 cen-
tered on 𝑥 ′ 𝑗 do

7: 𝑧′𝑝 ← N4 (0, 1) (4-dimensional Gaussian) ⊲ In the
neighborhood of 𝑥 ′ 𝑗 , the 4 channels are randomly drawn

8: yield 𝐺 (𝑧′) ⊲ _ images generated

also ignore this random mutation mechanism when the user has
specified local areas to be mutated (Section 3.1).

3.3 Voronoi crossover operator
When the users find interesting features that are present in different
images, they have the possibility to click on several points, say
of coordinates 𝑝1, . . . , 𝑝𝑘 , in the different images 𝐼1, . . . , 𝐼𝑛 , with
𝐼 𝑗 = 𝐺 (𝑧 𝑗) for some latent tensors 𝑧1, . . . , 𝑧𝑘 . This will trigger
(Line 20 of Algorithm 1) the application of a recombination of those
images that preserve the areas around the clicked locations, using
a crossover operator based on Voronoi diagrams, inspired from
[14, 15]. An offspring image 𝐼𝑉𝑜𝑟𝑜𝑛𝑜𝑖 = 𝐺 (𝑧𝑉𝑜𝑟𝑜𝑛𝑜𝑖) is built as
follows, for a given contraction factor 𝑟 :

𝑧𝑉𝑜𝑟𝑜𝑛𝑜𝑖 (𝑥) = 𝑧 𝑗 (𝑥) if ∀𝑢 ≠ 𝑗, | |𝑥 − 𝑝 𝑗 | | <
1
𝑟
| |𝑥 − 𝑝𝑢 | | (1)

𝑧𝑉𝑜𝑟𝑜𝑛𝑜𝑖 (𝑥) ∼ N (0, 1)for each channel otherwise (2)

where, 𝑧 (𝑥) denotes the vector of channels for 𝑧 at coordinates
x. Note that in latent diffusion models, there is a straightforward
linear correspondence between the coordinates in the latent space
and those in the image (𝐼 = 𝐺 (𝑧) has shape (3, 512, 512) and 𝑧
has shape (4, 64, 64)), so that any 𝑥 ∈ [0, 1] × [0, 1] has a natural
counterpart both in 𝐼 𝑗 (on which the user is clicking) and in 𝑧 𝑗 (the
latent space).
_ images are generated for different values of the contraction

factor 𝑟 , evenly distributed in (1, 2), and proposed to the user at the
next iteration.

3.4 Post-treatments
Optionally, after the search has completed (Line 21 of Algorithm 1),
the user can choose to apply a morphing with a second text prompt
(Section 3.4.1) and/or a translation of the image with a chosen
offset (Section 3.4.2).

589

Interactive Latent Diffusion Model GECCO’23, July 15–19, 2023, Lisbon, Portugal

Figure 4: Translation in the latent space: translating 𝑧 in the
latent space moves the subject in image 𝐺 (𝑧) accordingly.
Moving the tree from right to left.

Figure 5: For each image, the same latent variable z is used
with a different prompt. All subjects are misplaced on the
right of the image .

Figure 6: Image generated using linearly interpolated points
between two prompts in the text embedding space. Top: A
peaceful forest to A forest burned to the ashes. Bottom: Paris
at sunrise to Paris at sunset.

3.4.1 Translating the latent space. It is a known effect that LDM
sometimes poorly crops images. We observe that translating 𝑧 is
a simple solution (Figure 4). During translation, points translated
outside the latent space come back from the other side (e.g., points
exiting the right side comeback on the left side and vice-versa).
This seems intuitive because the model relies on CNNs, which
are equivariant. However, moving the latent space too much, typi-
cally putting the subject outside of the image, can produce drastic
changes.

Also, less intuitively, a latent variable 𝑧 that produces a poorly
cropped image for a given prompt tends to produce a not well cen-
tred image for multiple other prompts, even if the prompt mentions
a location on the image (Fig. 5). Translation is optionally performed
at the end when the loop is over.

3.4.2 Interpolation in the text embedding space. Manipulating the
latent space of the diffusion can be tedious. A small perturbation in
this latent space can lead to big changes in the final image. This is
why we try to manipulate the text embedding space to get smoother
variations. By switching to this latent space, we lose the spatial
information but gain in semantic abstraction and smoothness. Fig-
ure 6 shows this gain clearly by interpolating between two prompts:

creating a path from 𝐺 (𝑧, text1) to 𝐺 (𝑧, text2) by considering the
𝐺 (𝑧, 𝛼𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(text1) + (1 − 𝛼)𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(text2)) for 𝛼 ∈ [0, 1]
produces smoother animations than a path from 𝐺 (𝑧1, text1) to
𝐺 (𝑧2, text2) with 𝑧1 ≠ 𝑧2: the dependency in 𝑧 is too abrupt so that
it is better to keep the same 𝑧 and interpolate on the text side only.
An example is presented in Fig. 6.

4 EXPERIMENTAL RESULTS
This section presents experimental results obtained with IELDM.
We are aware of other interactive systems using diffusion like Mid-
journey (midjourney.com) or DALL-E [10] but none of them are
open sourced nor provide any details of how they operate inter-
nally. Moreover, they both use their own proprietary generative
model different from the one we are using, making the comparison
even more complicated. Searching the latent space of generative
models is not new, but [8] or [12, 19] use this for completely differ-
ent tasks. Therefore, we try to show the benefits of our approach
against Latent Diffusion Model alone. In Section 4.1, we validate the
surrogate model. In Sections 4.2 to 4.4, we illustrate and validate the
global mutation and its noise adaptation mechanism, the Voronoi
crossover, and the local mutations; and lastly in Section 4.5, the
overall tool.

4.1 Validate the surrogate approach: Simulated
interactive experiments

Two different approaches are proposed to simulate interaction with-
out any human being.

The first series of experiments relies on some random search
using a fully hand-labelled dataset (Section 4.1.1): the algorithm
uses these labels for generating new images, which are then labelled
by humans for the sake of evaluation.

The second one (Section 4.1.2) is based on a measurable “user’s
goals” that can be easily computed from any image: these are artifi-
cial users goals, such as the dominant colour in the image: they can
be computed automatically. So, we can entirely replace the human
by the labelling and validate the global approach.

In both cases, the surrogate model is built using the Scikit-learn
models 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and𝑀𝐿𝑃𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟1.

4.1.1 Surrogate model and random search in an apriori labelled
dataset. This experiment assumes that the initial image dataset is
fully labelled. Images are labelled 𝐺𝑜𝑜𝑑 or 𝐵𝑎𝑑 . The corresponding
points in latent space are labelled accordingly. These labels encode
users’ preferences in different use cases. The search then proceeds
as follows:

• Split the labelled dataset in latent space in two parts: training
and test.
• Learn the surrogate model on the training set.
• Randomly draw 𝑛 images in the test set (we use different
values of 𝑛, see results below), and retain the one with maxi-
mum probability of being Good according to the surrogate
model.

1default arguments for 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and 𝑀𝐿𝑃𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 with argu-
ments 𝑠𝑜𝑙𝑣𝑒𝑟 =′ 𝑙𝑏 𝑓 𝑔𝑠′ , 𝑎𝑙𝑝ℎ𝑎 = 1𝑒 − 5, ℎ𝑖𝑑𝑑𝑒𝑛_𝑙𝑎𝑦𝑒𝑟_𝑠𝑖𝑧𝑒𝑠 = (5, 2) ,
𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 1

590

http://midjourney.com

GECCO’23, July 15–19, 2023, Lisbon, Portugal Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer, and Olivier Teytaud

• Compare the surrogate model frequency of success (finding
an image labelled as Good in the test set) against random
selection in test set 𝑛.

Datasets include: whether the crop is good or bad, whether there is
nature in the background, the colour of hair. This pseudo random
search is the only way to proceed here because the interaction is
predefined within a fixed dataset. If a real optimization algorithm
was being used, it would, for sure, suggest points outside the fixed
labelled dataset, that would be impossible to qualify. This procedure,
even if brutal, nevertheless gives some indication of the goodness
of the selected images (a different protocol is provided in the next
section).

Supp. Tab. 3 and 4 present frequencies of satisfactory genera-
tions with moderate budgets, showing that some methods work
even in the case of both a small sample for learning the surrogate
model, and a random search. But these results only concern easy
cases, when the proportion of success is away from zero. The main
advantage of IELDM, however, is when successes are very rare, as
this is when users have to make hundreds of trials with bare LDM
before obtaining something acceptable. And this is where using
feedback can really help to speed up such tedious trial-and-error
naive approach.

4.1.2 Surrogate model and evolution with a computable interaction.
This experiment aims at validating the surrogate approach using a
real optimization procedure, in cases where the success with the
bare LDM method is sparse and difficult to obtain. The interaction
is simulated as follows:
• The label represents “𝑟 > 𝑚𝑎𝑥 (𝑐 ×𝑔, 𝑐 ×𝑏)”. 𝑟 , 𝑔 and 𝑏 repre-
sent the average red, green and blue channels. Additionally,
some noise is added to these labels: 𝑔 or 𝑏 are used instead of
𝑟 (all equally likely). We randomly draw the constant 𝑐 > 1
so that we have different contexts of rarity: 𝑐 greater means
a rarer success.
• The prompt is randomly drawn in “Cyberpunk man”, “Cy-
berpunk woman”, “Giant spider and a building”, “Cleopatra
and a cucumber”.
• At each iteration,
– we build _ = 15 images (randomly for the first iteration,
using random search on the surrogate model afterwards).

– Positive images are detected.
– All images are used for retraining the model.

Furthermore, there is no initialization of the optimization by
crossover or selection, so that only the surrogate model is at work
here because the goal here is to validate the surrogate model itself,
not the crossover or mutation operators.

The optimization algorithm used here is Lengler as implemented
in Nevergrad [3], with a budget of 30.

This experiment corresponds to Algorithm 1 in which everything
else except the surrogate model has been disabled, which means
that at each iteration:
• _ = 15 images are generated (randomly for the first iteration,
Nevergrad using the surrogate model afterwards).
• The user clicks on image(s) (s)he likes (no click on locations
inside the images is possible)
• The model is retrained from all images.

Figure 7: A kitten with a medieval weapon. Illustration of
the mutation strength adaptation as in Section 4.2 for global
mutations: effect of the 0.7 parameter in Algorithm 1. Each
batch is a row of _ = 3 images. In the first batch (i.e.,first row),
we click on the top right image, which is then the left one
for batches (rows) 2, 3 and 4 because we always click on that
same image. We observe as expected that (i) the first image of
each batch is the selected one (ii) the rightmost image is more
mutated than the middle one (iii) as we always click on the
same single image, the mutation strength visibly decreases
from a row to the next (multiplication of 𝜎 by 0.7): the first
row has a lot of diversity whereas differences are more subtle
in the last row. This is by design (see Algorithm 1): when
the user accepts only one image, we want new images to be
closer to that only selected image.

We then compare the frequency of Good images during the first
iteration and after some given number of iterations. Results are
presented in Supp. Tab. 2: when success is rare (low success rate
at iteration 0), it increases a lot for later iterations after using the
surrogate model, demonstrating its usefulness.

4.2 Decreasing mutation strength: fine-tune a
good-enough image by small global
mutations

When a single image is selected by the user, the mutation strength
is decreased by an empirical factor (0.7, see Line 17 in Algorithm 1).
Figure 7 shows the advantage of this strategy to fine-tune an image.

591

Interactive Latent Diffusion Model GECCO’23, July 15–19, 2023, Lisbon, Portugal

Problem Tool Success rate Success rate Figure
before user feedback after user feedback or table

Fighting a dinosaur with cucumbers Voronoi crossover 3/15 (2nd batch) 10/13 -
Character eating ice cream + candy Voronoi crossover 0/15 (2nd batch) 7/13 -

Specified Dominant color Surrogate model, 2nd batch, log. reg. v v-33% to v+199% (median: +44%)
(Green or red or blue) 3rd batch, log. reg. v v -13% to v+179% (median: +20%) Supp. Tab. 2

4th batch, log. reg. v v -6% to v+259% (median: +36%)
5th batch, log. reg. v v +3% to v+212% (median: +80%)

Specified Dominant color Surrogate model, 2nd batch, MLP v v -60% to v + 180% (median +13%)
(Green or red or blue) 3rd batch, MLP v v-70% to v+170% (median +25%) Supp. Tab. 2

4th batch, MLP v v-67% to v+167% (median +15%)
5th batch, MLP v v+5% to v+170% (median +22%)

Medusa Global 1/14 6/14 for 2nd batch, -
mutation 10/14 for 3rd batch

Table 1: Numerical validation of our methods. Results in Supp. Tab. 2 are based on simple criteria (dominant color) so that we
managed to automatize the evaluation, others are based on humans clicks for building the set and on human evaluation for
validating the results. These human evaluations can be checked by the reader in corresponding figures. Local mutations are not
discussed here: the reader is referred to Fig. 3. In the case of a specified dominant color, the success rate 𝑣 is variable by design
(see Section 4.1.2 for the specifications and Supp. Tab. 2 for detailed results) and we present the improvement in the success rate.

The impact of the decrease in the mutation strength is clearly visible
on the successive output images, that are less and less changed. The
rationale behind this strategy (and the empirical choice of factor
0.7) is that when the user starts to like an image, the strength of
the mutations should decrease fast enough to allow fine-tuning of
that image, but not too fast, to avoid premature convergence.

4.3 Voronoi crossover: take the best of several
images

Generating a ninja fighting a dinosaur with a cucumber is far from
being easy with standard LDM. Typically, the dinosaurian nature of
the dinosaur will override the ninja and make it a dinosaur, or the
dinosaur will be a ninja, or the cucumber will be a dinosaur: Both
are green, which adds to the confusion: the reader is encouraged to
experiment “a panda behind a cow” with a bare LDM image gener-
ation to see how the mixing of the colours of the two animals can
mess up the result. Figure 2 present other examples of application
of the Voronoi crossover, by clicking on 5 points on a monster in
one image and on 5 points on another monster in another image.

4.4 Local mutations: choose where to make
changes

Results demonstrating the usefulness of local mutations (Section 3.1)
are presented in Fig. 3. These results are slightly unstable: some-
times modifying a small part of the latent variable can lead to a
larger than expected change in the output images. However, be-
cause of the variable noise used for the different offspring (see 𝑖/_
in Algorithm 2), at least a few mutations give satisfactory results.

4.5 Evolutionary Latent Diffusion Model in
practice

We noted empirically that the crossover is mainly effective a bit
close to the optimum, not during the few first iterations. Clicking
on only one image (or even zero, leading to a restart from the

latest clicked image, in some hard cases) is frequently a good idea
during the first iterations. We also observed that it works well
with as many chosen images as we want: the operator scales the
randomness effectively with 𝑟 ∈ (1, 2) as in Section 3.3, so that we
get diversity, no matter howmany images we have.We can compare
initial batch against last batch and count how many images fit the
user goals (Table 1).

5 CONCLUSION
LDM is based on a loop (Figure 1). Evolutionary LDM adds one
more loop, with the user providing feedback by clicking. Many
image generation codes contain a multiple re-rolls mechanism. This
basically means applying random search: we replace the randomly
generated 𝑧 by 𝑧 iteratively improved by human clicks. We note that
a choice of 𝑧 by human selection exists in MidJourney and DALL-E
(not open-sourced): to the best of our knowledge, our code is the
only open-sourced one providing the possibility of local mutations
and cross-overs and surrogate model. Thanks to these tools, IELDM
is convenient for exploiting a partial success or for combining
several partial successes: this reduces the need for hundreds of
re-rolls for satisfying expectations. We improve LDM by various
tools from evolutionary computation:
• Machine learning in the latent space: we applied machine
learning regression, on the fly during the user session. Typically,
illustrators use dozens or hundreds of generations before being
satisfied: this means dozens or hundreds of examples, specific
to the current use case. Sufficiently many models work in spite
of that moderate number of examples (in our experiments, 15
examples at the first iteration for creating the second popula-
tion, 30 examples for creating the third population, etc) and a
rather large dimension (4×64×64). Regarding LDM difficulties,
as discussed in the introduction, this reduces the need for many
reruns (issue 3), as shown by results in Supp. Tab. 2.
• Voronoi for spatially combining user decisions. A newly
proposed Voronoi crossover operator is applied at the user

592

GECCO’23, July 15–19, 2023, Lisbon, Portugal Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer, and Olivier Teytaud

request (when she specifies several images with possibly several
locations on these images). Combining variables in the latent
space works and leads to results as in Fig. 2. This mitigates the
problem mentioned in the introduction as issue 1.
• Generating global mutations of a given image.We used an
adaptive mutation rate, for reducing the mutation rate when the
user wants to fine-tune a single image (see Fig. 7). Furthermore,
our method generates several images with different mutation
strengths, as it is difficult for the users to specify their expec-
tations in terms of noise level. We include an option for doing
global mutation of the average between several chosen images.
• Local selection of mutations. Users can specify where they
wants the image to be modified (Figure 3). This mitigates the
problem mentioned in the introduction as issue 2: we got com-
positions which are difficult to get by classical LDM.

Exploiting the locality of the latent variable 𝑧 (changes in 𝑧 impact
the corresponding part of the image 𝐺 (𝑧)), we also proposed that
the user uses the translation (Figure 4) or exports an animation (Fig-
ure 6).

All our variation operators (crossovers and mutations) generate
several outputs, with a varying mutation rates: we typically display,
first, images close to the user selection, and then images farther,
until we reach the offspring population size of _. Our results are
validated as in Table 1.

Due to length constraints, some figures were moved to the sup-
plementary material.

REFERENCES
[1] Martín Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Genera-

tive Adversarial Networks. In ICML. 214–223.
[2] Richard Dawkins. 1986. The blind watchmaker: Why the evidence of evolution

reveals a universe without design. W.W. Norton and Company.
[3] Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2019. Self-Adjusting Muta-

tion Rates with Provably Optimal Success Rules.
[4] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin, and

Aaron C. Courville. 2017. Improved Training of Wasserstein GANs. CoRR
abs/1704.00028 (2017).

[5] Naveen Kodali, Jacob D. Abernethy, James Hays, and Zsolt Kira. 2017. How to
Train Your DRAGAN. CoRR abs/1705.07215 (2017).

[6] Evelyne Lutton, Emmanuel Cayla, and Jonathan Chapuis. 2003. ArtiE-Fract: The
Artist’s Viewpoint. In EvoApps. Springer-Verlag, 510–521.

[7] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, Zhen Wang, and
Stephen Paul Smolley. 2017. Least Squares Generative Adversarial Networks.
2017 IEEE International Conference on Computer Vision (ICCV) (2017), 2813–2821.

[8] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin.
2020. PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models. arXiv:2003.03808 [cs.CV]

[9] Yan Pei and Hideyuki Takagi. 2018. Research progress survey on interactive evolu-
tionary computation. Journal of Ambient Intelligence and Humanized Computing
(2018), 1–14.

[10] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
2022. Hierarchical text-conditional image generation with CLIP latents.
arXiv:2204.06125 (2022).

[11] Jeremy Rapin and Olivier Teytaud. 2018. Nevergrad - A gradient-free optimization
platform. github.com/FacebookResearch/Nevergrad.

[12] Jacob Schrum, Jake Gutierrez, Vanessa Volz, Jialin Liu, Simon Lucas, and Sebas-
tian Risi. 2020. Interactive evolution and exploration within latent level-design
space of generative adversarial networks. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference. 148–156.

[13] Jimmy Secretan, Nicholas Beato, David B. D’Ambrosio, Adelein Rodriguez, Adam
Campbell, Jeremiah T. Folsom-Kovarik, and Kenneth O. Stanley. 2011. Picbreeder:
A Case Study in Collaborative Evolutionary Exploration of Design Space. Evol.
Comput. 19, 3 (2011), 373–403.

[14] Dong-il Seo and Byung Ro Moon. 2002. Voronoi Quantizied Crossover For
Traveling Salesman Problem. In GECCO, William B. Langdon et al. (Ed.). Morgan
Kaufmann, 544–552.

[15] Jeong-Yeon Seo, Sang-Min Park, Seoung Soo Lee, and Deok-Soo Kim. 2005. Re-
grouping Service Sites: A Genetic Approach Using a Voronoi Diagram. In ICCSA,
Gervasi, Osvaldo et al. (Ed.). 652–661.

[16] Christopher L. Simons, Ian C. Parmee, and Rhys Gwynllyw. 2010. Interactive,
Evolutionary Search in Upstream Object-Oriented Class Design. IEEE Trans.
Software Eng. 36, 6 (2010), 798–816.

[17] Hideyuki Takagi. 2001. Interactive evolutionary computation: fusion of the
capabilities of EC optimization and human evaluation. Proc. IEEE 89, 9 (2001),
1275–1296.

[18] Hideyuki Takagi. 2015. Interactive Evolutionary Computation for Analyzing
Human Characteristics. In Emergent Trends in Robotics and Intelligent Systems,
P. Sinčák, P. Hartono, M. Virčíková, J. Vaščák, and R. Jakša (Eds.). Springer,
189–195.

[19] Vanessa Volz, Jacob Schrum, Jialin Liu, Simon M. Lucas, Adam Smith, and Sebas-
tian Risi. 2018. EvolvingMario Levels in the Latent Space of a Deep Convolutional
Generative Adversarial Network. In Proceedings of the Genetic and Evolutionary
Computation Conference (Kyoto, Japan) (GECCO ’18). Association for Comput-
ing Machinery, New York, NY, USA, 221–228. https://doi.org/10.1145/3205455.
3205517

[20] Jun Rong Yan and Yong Min. 2011. User Fatigue in Interactive Evolutionary
Computation. In Measuring Technology and Mechatronics Automation, Vol. 48.
1333–1336.

593

https://arxiv.org/abs/2003.03808
github.com/FacebookResearch/Nevergrad
https://doi.org/10.1145/3205455.3205517
https://doi.org/10.1145/3205455.3205517

Interactive Latent Diffusion Model GECCO’23, July 15–19, 2023, Lisbon, Portugal

6 SUPPLEMENTARY MATERIAL
6.1 Surrogate model validation tables

Batch 1 vs batch 2, MLP
Batch 1 Batch 2
6.66 9.33 +40.00%
6.66 2.66 −59.98%
6.66 13.33 +99.99%
6.66 7.99 +20.00%
6.66 18.66 +179.98%
6.66 6.66 +0.00%
6.66 11.99 +79.99%
13.33 11.99 −9.99%
19.99 14.66 −26.66%
19.99 18.66 −6.66%
19.99 18.66 −6.66%
19.99 27.99 +40.00%
19.99 31.99 +60.00%
26.66 21.33 −19.99%
26.66 18.66 −29.99%
26.66 31.99 +20.00%
46.66 58.66 +25.72%
53.32 61.33 +15.00%
59.99 46.66 −22.21%
59.99 62.66 +4.44%
59.99 67.99 +13.33%
66.66 79.99 +20.00%
73.32 71.99 −1.81%
Batch 1 vs batch 3, MLP

Batch 1 Batch 3
6.66 17.99 +169.99%
6.66 7.99 +20.00%
6.66 17.33 +159.99%
6.66 8.66 +30.00%
6.66 13.99 +109.99%
6.66 1.99 −69.98%
13.33 13.99 +5.00%
19.99 27.99 +40.00%
19.99 20.66 +3.33%
19.99 15.99 −19.99%
19.99 28.66 +43.33%
19.99 36.66 +83.33%
26.66 28.66 +7.50%
26.66 18.66 −29.99%
26.66 18.66 −29.99%
46.66 61.99 +32.86%
59.99 47.99 −19.99%
59.99 66.66 +11.11%
66.66 77.99 +17.00%
73.32 69.99 −4.53%

Batch 1 vs batch 4, MLP
Batch 1 Batch 4
6.66 2.22 −66.65%
6.66 6.22 −6.65%
6.66 17.77 +166.65%
6.66 10.22 +53.33%
19.99 31.55 +57.78%
19.99 23.99 +20.00%
19.99 30.66 +53.33%
19.99 37.33 +86.67%
19.99 15.55 −22.21%
26.66 29.33 +10.00%
26.66 21.77 −18.32%
46.66 67.99 +45.72%
59.99 68.44 +14.08%
59.99 50.22 −16.29%
66.66 76.44 +14.67%
Batch 1 vs batch 5, MLP

Batch 1 Batch 5
6.66 6.99 +5.00%
6.66 17.99 +169.99%
6.66 12.33 +84.99%
19.99 24.33 +21.67%
19.99 32.33 +61.67%
26.66 31.66 +18.75%
59.99 71.33 +18.89%

Batch 1 vs batch 2, Log Reg
Batch 1 Batch 2
6.66 11.99 +79.99%
6.66 14.66 +119.99%
6.66 5.33 −19.99%
13.33 31.99 +140.00%
19.99 13.33 −33.32%
19.99 41.33 +106.67%
19.99 29.33 +46.67%
26.66 37.33 +40.00%
33.33 54.66 +64.00%
73.32 87.99 +20.00%
73.32 69.33 −5.44%
79.99 82.66 +3.33%
Batch 1 vs batch 3, Log Reg
Batch 1 Batch 3
6.66 7.33 +10.00%
6.66 18.66 +179.98%
13.33 39.33 +195.00%
19.99 17.33 −13.32%
19.99 42.66 +113.34%
19.99 27.99 +40.00%
26.66 37.33 +40.00%
33.33 60.66 +82.00%
73.32 87.99 +20.00%
73.32 71.99 −1.81%
79.99 82.66 +3.33%
Batch 1 vs batch 4, Log Reg
Batch 1 Batch 4
6.66 23.99 +259.98%
6.66 7.11 +6.67%
13.33 40.44 +203.33%
19.99 18.66 −6.66%
19.99 42.22 +111.11%
19.99 27.11 +35.56%
26.66 38.22 +43.34%
33.33 61.33 +84.00%
73.32 88.44 +20.61%
73.32 74.66 +1.82%
79.99 81.33 +1.67%
Batch 1 vs batch 5, Log Reg
Batch 1 Batch 5
13.33 41.66 +212.50%
19.99 20.33 +1.67%
19.99 43.33 +116.67%
33.33 59.99 +80.00%
79.99 82.66 +3.33%

Table 2: Using theMLP as a surrogatemodel (2 left tables), and
Logistic Regression (right table), and evolution for increasing
the frequency of correct generations as explained in Sec. 4.1.1.
Experiments built as explained in Section 4.1. We consider
various numbers of batches. Col. 1 (resp. col 2) in each table
refer to frequencies ×100 at iteration 0 (resp. over all other
iterations up to the considered number of iterations). The
third column shows how much the success rate increases
between iteration 0 (vanilla LDM) and other iterations (due
to the influence of the surrogate model): if col. 3 is positive,
then we do better than vanilla LDM. Most of the time, col. 3
is > 0, validating the method. For example, the last sub-table,
first row, indicates a run with Logistic Regression: we do 20
iterations, iterations 1 to 19 have on average +80% more good
examples than iteration 0. Red: cases in which the approach
was detrimental.We note that results are more impressive
when success is rare in the original data (i.e. the third col is
greater when the first col is lower).

594

GECCO’23, July 15–19, 2023, Lisbon, Portugal Mathurin Videau, Nickolai Knizev, Alessandro Leite, Marc Schoenauer, and Olivier Teytaud

Problem Train set Tool Perf
b25885619 150 LogisticRe-2 0.63
b25885619 150 LogisticRe-3 0.57
b25885619 150 MLPClassif-2 0.46
b25885619 150 MLPClassif-3 0.51
b25885619 1 Vanilla LDM 0.41
b25885619 20 LogisticRe-2 0.44
b25885619 20 LogisticRe-3 0.50
b25885619 20 MLPClassif-2 0.47
b25885619 20 MLPClassif-3 0.42
b25885619 Vanilla LDM 0.41
b25885619 30 LogisticRe-2 0.48
b25885619 30 LogisticRe-3 0.47
b25885619 30 MLPClassif-2 0.46
b25885619 30 MLPClassif-3 0.48
b25885619 Vanilla LDM 0.41
b25885619 40 LogisticRe-2 0.59
b25885619 40 LogisticRe-3 0.48
b25885619 40 MLPClassif-2 0.46
b25885619 40 MLPClassif-3 0.40
b25885619 Vanilla LDM 0.41

b620683104 150 LogisticRe-2 0.53
b620683104 150 LogisticRe-3 0.53
b620683104 150 MLPClassif-2 0.47
b620683104 150 MLPClassif-3 0.55
b620683104 1 Vanilla LDM 0.36
b620683104 20 LogisticRe-2 0.56
b620683104 20 LogisticRe-3 0.47
b620683104 20 MLPClassif-2 0.43
b620683104 20 MLPClassif-3 0.39
b620683104 Vanilla LDM 0.36
b620683104 30 LogisticRe-2 0.46
b620683104 30 LogisticRe-3 0.38
b620683104 30 MLPClassif-2 0.53
b620683104 30 MLPClassif-3 0.43
b620683104 Vanilla LDM 0.36
b620683104 40 LogisticRe-2 0.55
b620683104 40 LogisticRe-3 0.41
b620683104 40 MLPClassif-2 0.52
b620683104 40 MLPClassif-3 0.45
b620683104 Vanilla LDM 0.36

b65681463 150 LogisticRe-2 0.54
b65681463 150 LogisticRe-3 0.52
b65681463 150 MLPClassif-2 0.58
b65681463 150 MLPClassif-3 0.53
b65681463 1 Vanilla LDM 0.46
b65681463 20 LogisticRe-2 0.53
b65681463 20 LogisticRe-3 0.54
b65681463 20 MLPClassif-2 0.5
b65681463 20 MLPClassif-3 0.46
b65681463 Vanilla LDM 0.46
b65681463 30 LogisticRe-2 0.61
b65681463 30 LogisticRe-3 0.46
b65681463 30 MLPClassif-2 0.53
b65681463 30 MLPClassif-3 0.48
b65681463 Vanilla LDM 0.46
b65681463 40 LogisticRe-2 0.57
b65681463 40 LogisticRe-3 0.55
b65681463 40 MLPClassif-2 0.5
b65681463 40 MLPClassif-3 0.48
b65681463 Vanilla LDM 0.46

b86767819 20 LogisticRe-2 0.57
b86767819 20 LogisticRe-3 0.45
b86767819 20 MLPClassif-2 0.53
b86767819 20 MLPClassif-3 0.49
b86767819 Vanilla LDM 0.36
b86767819 30 LogisticRe-2 0.56
b86767819 30 LogisticRe-3 0.45
b86767819 30 MLPClassif-2 0.51
b86767819 30 MLPClassif-3 0.43
b86767819 Vanilla LDM 0.36
b86767819 40 LogisticRe-2 0.53
b86767819 40 LogisticRe-3 0.49
b86767819 40 MLPClassif-2 0.52
b86767819 40 MLPClassif-3 0.41
b86767819 Vanilla LDM 0.36

bluedyed2101 20 LogisticRe-2 0.59
bluedyed2101 20 LogisticRe-3 0.41
bluedyed2101 20 MLPClassif-2 0.39
bluedyed2101 20 MLPClassif-3 0.41
bluedyed2101 Vanilla LDM 0.28
bluedyed2101 30 LogisticRe-2 0.37
bluedyed2101 30 LogisticRe-3 0.39
bluedyed2101 30 MLPClassif-2 0.41
bluedyed2101 30 MLPClassif-3 0.27
bluedyed2101 Vanilla LDM 0.28
bluedyed2101 40 LogisticRe-2 0.50
bluedyed2101 40 LogisticRe-3 0.42
bluedyed2101 40 MLPClassif-2 0.36
bluedyed2101 40 MLPClassif-3 0.36
bluedyed2101 Vanilla LDM 0.28

cropcp2236 20 LogisticRe-2 0.62
cropcp2236 20 LogisticRe-3 0.71
cropcp2236 20 MLPClassif-2 0.6
cropcp2236 20 MLPClassif-3 0.59
cropcp2236 Vanilla LDM 0.64
cropcp2236 30 LogisticRe-2 0.53
cropcp2236 30 LogisticRe-3 0.57
cropcp2236 30 MLPClassif-2 0.56
cropcp2236 30 MLPClassif-3 0.51
cropcp2236 Vanilla LDM 0.64
cropcp2236 40 LogisticRe-2 0.65
cropcp2236 40 LogisticRe-3 0.67
cropcp2236 40 MLPClassif-2 0.54
cropcp2236 40 MLPClassif-3 0.62
cropcp2236 Vanilla LDM 0.64

dark2145 20 LogisticRe-2 0.50
dark2145 20 LogisticRe-3 0.53
dark2145 20 MLPClassif-2 0.54
dark2145 20 MLPClassif-3 0.56
dark2145 Vanilla LDM 0.52
dark2145 30 LogisticRe-2 0.38
dark2145 30 LogisticRe-3 0.50
dark2145 30 MLPClassif-2 0.44
dark2145 30 MLPClassif-3 0.53
dark2145 Vanilla LDM 0.52
dark2145 40 LogisticRe-2 0.46
dark2145 40 LogisticRe-3 0.51
dark2145 40 MLPClassif-2 0.51
dark2145 40 MLPClassif-3 0.56
dark2145 Vanilla LDM 0.52

dyed1596 20 LogisticRe-2 0.62
dyed1596 20 LogisticRe-3 0.65
dyed1596 20 MLPClassif-2 0.46
dyed1596 20 MLPClassif-3 0.62
dyed1596 Vanilla LDM 0.58
dyed1596 30 LogisticRe-2 0.60
dyed1596 30 LogisticRe-3 0.63
dyed1596 30 MLPClassif-2 0.50
dyed1596 30 MLPClassif-3 0.53
dyed1596 Vanilla LDM 0.58
dyed1596 40 LogisticRe-2 0.62
dyed1596 40 LogisticRe-3 0.65
dyed1596 40 MLPClassif-2 0.51
dyed1596 40 MLPClassif-3 0.56
dyed1596 Vanilla LDM 0.58

Table 3: Validation of the surrogate model as presented in Section 2.2. Validation is based on Section 4.1: given a train-set
extracted from a labelled dataset (Col. 1, label = dataset generator label + seed), of a given size (second col), we learn a model
(third col) with a given number of random searches (third col. suffix: 2 or 3) and get a frequency of good generations as in Col. 4.
Vanilla LDM is the baseline in which we just run the Vanilla LDM. Example: On the benchmark “dyed”, labelled by humans,
seed 1596, Vanilla LDM gets 58% of success rate whereas Applying LogisticRegression trained on 40 points for choosing among
two randomly drawn 𝑧 leads to 62%. In gray the worst result: frequently the Vanilla LDM baseline. Results are positive (i.e. most
results are bold, i.e. better than Vanilla LDM). Over both Supp. Tab. 3 and 4, the percentage of improved satisfactory generations
is: LogisticRe.2: 85%. LogisticRe.3: 81%. MLPClf.2: 78%. MLPClf.3: 61%. Compared to results in difficult contexts as in Table 2
(where +200% is common when Vanilla LDM is below 10%), the gap is however small: our method becomes more and more
useful as the context becomes harder.

595

Interactive Latent Diffusion Model GECCO’23, July 15–19, 2023, Lisbon, Portugal

dyedred2854 20 LogisticRe-2 0.51
dyedred2854 20 LogisticRe-3 0.48
dyedred2854 20 MLPClassif-2 0.51
dyedred2854 20 MLPClassif-3 0.52
dyedred2854 Vanilla LDM 0.56
dyedred2854 30 LogisticRe-2 0.53
dyedred2854 30 LogisticRe-3 0.54
dyedred2854 30 MLPClassif-2 0.44
dyedred2854 30 MLPClassif-3 0.44
dyedred2854 Vanilla LDM 0.56

g531921178 150 LogisticRe-2 0.55
g531921178 150 LogisticRe-3 0.46
g531921178 150 MLPClassif-2 0.49
g531921178 150 MLPClassif-3 0.32
g531921178 1 Vanilla LDM 0.33
g531921178 20 LogisticRe-2 0.53
g531921178 20 LogisticRe-3 0.40
g531921178 20 MLPClassif-2 0.49
g531921178 20 MLPClassif-3 0.46
g531921178 Vanilla LDM 0.33
g531921178 30 LogisticRe-2 0.58
g531921178 30 LogisticRe-3 0.38
g531921178 30 MLPClassif-2 0.51
g531921178 30 MLPClassif-3 0.38
g531921178 Vanilla LDM 0.33
g531921178 40 LogisticRe-2 0.52
g531921178 40 LogisticRe-3 0.33
g531921178 40 MLPClassif-2 0.44
g531921178 40 MLPClassif-3 0.40
g531921178 Vanilla LDM 0.33

goodcrop1899 20 LogisticRe-2 0.55
goodcrop1899 20 LogisticRe-3 0.52
goodcrop1899 20 MLPClassif-2 0.58
goodcrop1899 20 MLPClassif-3 0.54
goodcrop1899 Vanilla LDM 0.54
goodcrop1899 30 LogisticRe-2 0.58
goodcrop1899 30 LogisticRe-3 0.54
goodcrop1899 30 MLPClassif-2 0.39
goodcrop1899 30 MLPClassif-3 0.54
goodcrop1899 Vanilla LDM 0.54
goodcrop1899 40 LogisticRe-2 0.54
goodcrop1899 40 LogisticRe-3 0.50
goodcrop1899 40 MLPClassif-2 0.45
goodcrop1899 40 MLPClassif-3 0.53
goodcrop1899 Vanilla LDM 0.54

nature1906 20 LogisticRe-2 0.61
nature1906 20 LogisticRe-3 0.51
nature1906 20 MLPClassif-2 0.56
nature1906 20 MLPClassif-3 0.62
nature1906 Vanilla LDM 0.50
nature1906 30 LogisticRe-2 0.62
nature1906 30 LogisticRe-3 0.55
nature1906 30 MLPClassif-2 0.56
nature1906 30 MLPClassif-3 0.46
nature1906 Vanilla LDM 0.50
nature1906 40 LogisticRe-2 0.57
nature1906 40 LogisticRe-3 0.60
nature1906 40 MLPClassif-2 0.57
nature1906 40 MLPClassif-3 0.55
nature1906 Vanilla LDM 0.50

nature591 20 LogisticRe-2 0.51
nature591 20 LogisticRe-3 0.43
nature591 20 MLPClassif-2 0.40
nature591 20 MLPClassif-3 0.41
nature591 Vanilla LDM 0.44
nature591 30 LogisticRe-2 0.57
nature591 30 LogisticRe-3 0.46
nature591 30 MLPClassif-2 0.53
nature591 30 MLPClassif-3 0.44
nature591 Vanilla LDM 0.44
nature591 40 LogisticRe-2 0.47
nature591 40 LogisticRe-3 0.47
nature591 40 MLPClassif-2 0.51
nature591 40 MLPClassif-3 0.41
nature591 Vanilla LDM 0.44

r9320995 150 LogisticRe-2 0.64
r9320995 150 LogisticRe-3 0.64
r9320995 150 MLPClassif-2 0.55
r9320995 150 MLPClassif-3 0.48
r9320995 1 Vanilla LDM 0.48
r9320995 20 LogisticRe-2 0.49
r9320995 20 LogisticRe-3 0.54
r9320995 20 MLPClassif-2 0.51
r9320995 20 MLPClassif-3 0.53
r9320995 Vanilla LDM 0.48
r9320995 30 LogisticRe-2 0.57
r9320995 30 LogisticRe-3 0.58
r9320995 30 MLPClassif-2 0.59
r9320995 30 MLPClassif-3 0.53
r9320995 Vanilla LDM 0.48
r9320995 40 LogisticRe-2 0.53
r9320995 40 LogisticRe-3 0.60
r9320995 40 MLPClassif-2 0.62
r9320995 40 MLPClassif-3 0.46
r9320995 Vanilla LDM 0.48

reddyed2171 20 LogisticRe-2 0.53
reddyed2171 20 LogisticRe-3 0.64
reddyed2171 20 MLPClassif-2 0.49
reddyed2171 20 MLPClassif-3 0.50
reddyed2171 Vanilla LDM 0.52
reddyed2171 30 LogisticRe-2 0.62
reddyed2171 30 LogisticRe-3 0.62
reddyed2171 30 MLPClassif-2 0.60
reddyed2171 30 MLPClassif-3 0.60
reddyed2171 Vanilla LDM 0.52
reddyed2171 40 LogisticRe-2 0.72
reddyed2171 40 LogisticRe-3 0.69
reddyed2171 40 MLPClassif-2 0.61
reddyed2171 40 MLPClassif-3 0.59
reddyed2171 Vanilla LDM 0.52

red374 20 LogisticRe-2 0.45
red374 20 LogisticRe-3 0.43
red374 20 MLPClassif-2 0.56
red374 20 MLPClassif-3 0.37
red374 Vanilla LDM 0.29
red374 30 LogisticRe-2 0.4
red374 30 LogisticRe-3 0.41
red374 30 MLPClassif-2 0.47
red374 30 MLPClassif-3 0.38
red374 Vanilla LDM 0.29
red374 40 LogisticRe-2 0.6
red374 40 LogisticRe-3 0.35
red374 40 MLPClassif-2 0.45
red374 40 MLPClassif-3 0.29
red374 Vanilla LDM 0.29

white1194 20 LogisticRe-2 0.50
white1194 20 LogisticRe-3 0.28
white1194 20 MLPClassif-2 0.47
white1194 20 MLPClassif-3 0.43
white1194 Vanilla LDM 0.28
white1194 30 LogisticRe-2 0.27
white1194 30 LogisticRe-3 0.26
white1194 30 MLPClassif-2 0.55
white1194 30 MLPClassif-3 0.34
white1194 Vanilla LDM 0.28

Table 4: Additional tables, as in Supp. Tab. 3. As previously, the Vanilla LDM baseline is frequently the worst: this shows that
our method outperforms the vanilla LDM. See caption of Supp. Tab. 3 for statistical considerations.

596

	Abstract
	1 Introduction
	2 Tools
	2.1 Latent Diffusion Model
	2.2 Fitness function

	3 Interactive Latent Diffusion Model
	3.1 Local mutations
	3.2 Random mutations
	3.3 Voronoi crossover operator
	3.4 Post-treatments

	4 Experimental results
	4.1 Validate the surrogate approach: Simulated interactive experiments
	4.2 Decreasing mutation strength: fine-tune a good-enough image by small global mutations
	4.3 Voronoi crossover: take the best of several images
	4.4 Local mutations: choose where to make changes
	4.5 Evolutionary Latent Diffusion Model in practice

	5 Conclusion
	References
	6 Supplementary material
	6.1 Surrogate model validation tables

