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A DYNAMICAL VIEW OF TIJDEMAN’S SOLUTION OF THE
CHAIRMAN ASSIGNMENT PROBLEM

VALÉRIE BERTHÉ, OLIVIER CARTON, NICOLAS CHEVALLIER, WOLFGANG STEINER,
AND REEM YASSAWI

Abstract. In 1980, R. Tijdeman provided an on-line algorithm that generates sequences
over a finite alphabet with minimal discrepancy, that is, such that the occurrence of each
letter optimally tracks its frequency. In this article, we define discrete dynamical systems
generating these sequences. The dynamical systems are defined as exchanges of polytopal
pieces, yielding cut and project schemes, and they code tilings of the line whose sets of
vertices form model sets. We prove that these sequences of low discrepancy are natural
codings of toral translations with respect to polytopal atoms, and that they generate a
minimal and uniquely ergodic subshift with purely discrete spectrum. Finally, we show
that the factor complexity of these sequences is of polynomial growth order nd−1, where
d is the cardinality of the alphabet.

1. Introduction

Quoting Tijdeman in [Tij80], the chairman assignment problem is stated as follows:
“Suppose k states form a union and every year a union chairman has to be selected in
such a way that at any time the accumulated number of chairmen from each state is
proportional to its weight.” The question is then to give a simple algorithm for a chairman
assignment which guarantees a small discrepancy. The richness of this problem is that it
can be reformulated in several ways, as a sequencing problem in operations research for
optimal routing and scheduling, in terms of word combinatorics, symbolic dynamics and
aperiodic order, and also as a discrepancy problem.

In this latter setting, the problem asks for the existence of very well distributed sequences
such as introduced by Niederreiter in [Nie72b]. Given a finite alphabet A of cardinality d
and a vector α of frequencies for the letters of A, the aim is to construct a sequence over A
in which each letter occurs with its prescribed frequency as evenly as possible, i.e., where
the occurrence of each letter optimally tracks its frequency; see Section 2 for the definition
of frequency. More precisely, given a sequence u = (uk)k∈N ∈ AN, the (letter) discrepancy
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of u with respect to α is defined as

∆α(u) = max
i∈A

sup
n∈N

∣∣Card{0 ≤ k < n : uk = i} − nαi

∣∣,
for a given vector α = (α1, . . . , αd) ∈ (0, 1)d with

∑d
i=1 αi = 1. It is then natural to

consider, for d ≥ 2, the quantity

Dd = sup
α

inf
u
∆α(u),

where the supremum is taken over the set of frequency vectors α in the d-simplex, and the
infimum is taken over the set of sequences u with values in an alphabet of cardinality d.
The question of finding sequences with minimal discrepancy was raised in [Nie72a,

Nie72b]. Niederreiter proved in [Nie72b, Lemma 1] the existence of a sequence with
∆α(u) ≤ d−1; see also [MN72] for refinements. He also conjectured that Dd ≤ 1. Ti-
jdeman answered this conjecture positively in a nonconstructive fashion in [Tij73] with a
proof based on Hall’s marriage theorem, and he also showed that Dd ≥ 1− 1

2d−2
. Refining

Tijdeman’s proof, Meijer proved in [Mei73] that

Dd = 1− 1
2d−2

,

but the proof of this result was also nonconstructive. Lastly, Tijdeman provided in [Tij80]
a linear time on-line algorithm to determine, for each d-dimensional vector α, a sequence u
over a finite alphabet of cardinality d for which ∆α(u) ≤ 1− 1

2d−2
. We describe Tijdeman’s

construction in Section 3.3.
These sequences are the object of the present paper. We call a sequence constructed

by Tijdeman’s algorithm a Tijdeman sequence with frequency α, and we call sequences
satisfying ∆α(u) ≤ 1− 1

2d−2
fairly distributed. The full definition of Tijdeman sequences (see

Definition 3.7) depends on the frequency α and on three other parameters: two constants
C and C ′ and a starting point x0. These three parameters can be used to optimize the
discrepancy.

As recalled in [Tij82], the algorithm proposed by Tijdeman in [Tij80] for the chair-
man assignment problem is closely related to the quota-method of Balinski and Young
[BY75, BY77, BY85] for the (discrete) apportionment problem; see [CCV22] for more
references on the subject. This problem, which has its origins in the problem of seat as-
signments to the house of representatives in the United States, consists in allocating seats
in a proportional way. See also [Li22] for the connection with apportionment problems
and Just-In-Time sequencing problems (with maximal deviation JIT scheduling), such as
considered in [AGH00, BC04, BJ08], and see the survey [Vui03] for more references. See in
addition [CNP+11], where it is proved that the greedy algorithm is optimal among online
algorithms for the chairman assignment problem.

As mentioned above, the richness of this problem is that it goes well beyond the schedul-
ing framework: indeed, it can be reformulated combinatorially in terms of balance in word
combinatorics, dynamically in terms of symbolic codings of toral translations, arithmeti-
cally in terms of bounded remained sets or else in terms of cut and project schemes, within
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the setting of aperiodic order; the latter corresponds to the mathematical formalization of
quasicrystals. Let us discuss now these complementary and intricately connected notions.

In combinatorial terms, discrepancy is closely related to the notion of balance. Given a
finite alphabet A, a sequence u ∈ AN is said to be B-balanced if there exists a constant B
such that for every letter i ∈ A and for every pair (w,w′) of factors of u of the same length,
the difference between the number of occurrences of i in w and w′ differs by at most B.
Balance was first studied in the form of 1-balance for binary sequences by Morse and
Hedlund in the seminal papers [MH38, MH40], in which they laid the basis for symbolic
dynamics (see Section 2.1): the binary 1-balanced aperiodic sequences are exactly the
Sturmian sequences. The notion of balance was then considered for larger alphabets, for
B-balance, with B > 1, and for factors instead of letters. For more on the subject, see the
survey [Vui03]. Words over a larger alphabet that are 1-balanced have been characterized
in [Hub00] (see also [Gra73]) and shown to be closely related to Sturmian words. Let
us observe that their letter frequencies are rationally dependent: there exists γ such that
αi ∈ Z + γZ, for 1 ≤ i ≤ d, by [Hub00, Lemma 4.1]. Note that, in ergodic terms,
balance can be interpreted as an optimal speed of convergence of Birkhoff sums toward
frequencies of words. A sequence is B-balanced if and only if it has has finite discrepancy
(see [Ada03, Ada04]), and a fairly distributed sequence over two letters must be 1-balanced;
see Proposition 2.1.

There is a classical way of constructing balanced sequences, and in particular Sturmian
sequences, in terms of cutting sequences. Specifically, Sturmian sequences, which are de-
fined on binary alphabets, are codings of trajectories of billiards on a square table with
an irrational direction and, by unfolding trajectories, they code whether a horizontal or a
vertical side of a lattice square is hit. They have been generalized to larger alphabets as
hypercubic billiard sequences, as presented in [AMST94a, AMST94b]; see also Section 3.2.
An equivalent description is in terms of natural codings of toral translations; see Defini-
tion 2.2. Indeed, Sturmian sequences are known to be symbolic codings of a special kind,
namely a Sturmian sequence codes an exchange of two intervals, which happens to be a
translation of the one-dimensional torus R/Z.

We focus here on the case where the vector of frequencies α has linearly independent
entries over the rationals. Under this hypothesis, a lower bound for the discrepancy is
given in [Sch96]: one has ∆α(u) ≥ 1−1

d
for all sequences u [Sch96, Theorem 2]. Thus,

when d = 2 (D2 =
1
2
), this gives ∆α(u) ≥ 1

2
. This bound is achieved by sequences defined

in terms either of Beatty sequences, or, in some equivalent way, of Sturmian sequences
(see in particular Remark 3.4 below): for α = (α, 1−α), the sequence (uk)k∈N, defined
by uk = 1 if and only if k = ⌈(n−1

2
)/α⌉ for some nonnegative n, satisfies ∆α(u) = 1/2,

with the sequence (⌈(n−1
2
)/α⌉)n being known as a Beatty sequence. We recall that the

first difference sequence of a Beatty sequence is a Sturmian sequence; and that Sturmian
sequences are 1-balanced, as discussed above.

The aim of this paper is to provide a similar dynamical description for Tidjeman se-
quences, which, as mentioned above, are among the sequences having the lowest letter
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discrepancy ∆α(u) with ∆α(u) ≤ Dd = 1− 1
2d−2

, for vectors of frequencies α with ratio-
nally independent coordinates. We present them as natural codings of a dynamical system
defined as a higher dimensional domain exchange with polytopal pieces, which turns out
to be a translation of the torus; see Definition 2.2.

Let α be a frequency vector, i.e., a vector in (0, 1)d with
∑d

i=1 αi = 1. We say that
α is totally irrational if it has rationally independent coordinates. This is equivalent
to demanding that the coordinates of (α1, . . . , αd−1, 1) are rationally independent. We
consider the (minimal1) toral translation by (α1, . . . , αd−1), denoted as Tα, defined on
Td−1 = Rd−1/Zd−1 by2

Tα : Td−1 → Td−1, x 7→ x+ (α1, . . . , αd−1) (mod Zd−1).

The codings we consider are called natural, by which we mean that these sequences code
translations Tα of the torus with respect to (polytopal) partitions of Td−1 that come from
domain exchanges in Rd−1 with translation vectors equal to (α1, . . . , αd−1) mod Zd−1; see
Figure 1 and also Definition 2.2. These codings are even bounded natural codings, in the
sense that the pieces are bounded as subsets of Rd−1. This dynamical description allows us
to deduce estimates on the factor complexity of Tijdeman sequences, in particular proving
that the factor complexity is of order nd−1, when defined over an alphabet of cardinality d.
Our main result is

Theorem 1.1. Let α = (α1, . . . , αd) be a totally irrational frequency vector. Then there
exist Tijdeman parameters generating a sequence u with ∆α(u) ≤ 1− 1

2d−2
, and such that u

is the bounded natural coding of Tα, via a partition of a fundamental domain of Rd−1/Zd−1

into d finite unions of convex polytopes.3 Furthermore, the shift defined by u is minimal,
uniquely ergodic, has purely discrete spectrum and factor complexity of order nd−1.

Theorem 1.1 induces the existence of a “good” symbolic coding for any minimal toral
translation Tα such that the d−1 first coordinates of α are in the polyhedron T =
{(α1, . . . , αd−1) : αi ≥ 0 and

∑d−1
i=1 αi ≤ 1}. By changing the signs of the coordinates

of (α1, . . . , αd−1), we also obtain good codings for all α with
∑d−1

i=1 |αi| ≤ 1. Hence, when
d−1 = 2, we obtain a good coding for any minimal toral translation. However, when d > 3,
we do not obtain all the toral translations. Neverthless, thanks to the following standard
argument (see for example [BST23, Remark 3.4] or [FN20, Section 10.2]), it is possible to
find a good coding for every minimal translation even if d > 3. Indeed, the cube [0, 1]d−1

is a union of (d−1)! images of the polyhedron T by some transformations in GLd−1(Z),
so that any translation Tβ : Td → Td can be written as Tβ = gTαg

−1 for some α ∈ T
and g ∈ GLd−1(Z). This implies that the codings associated with Tα with respect to some

1See Section 2.1 for the definition of minimality.
2Observe that the translation Tα is defined on Td−1, and not on Td; this is due to the fact that α being

assumed to be a frequency vector,
∑d

i=1 αi = 1.
3We follow the usual convention that a convex polytope is the convex hull of a finite number of points.

Hence here the fundamental domains under consideration are bounded.
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partition of the torus share the same properties as the codings associated with Tβ and the
image by g of this partition.

P1

P2

P3

−3/4 3/4

−3/4

3/4

Figure 1. A fundamental domain of R2/Z2 and its partition by finite unions
of polygons such that the natural codings of the action of Tα are Tijdeman
sequences with α ≈ (0.5, 0.45, 0.05), C = C ′ = D3 = 3/4.

The fact that the factor complexity is bounded below by Cnd−1 implies that a Tijdeman
sequence cannot generate a primitive substitution shift for d ≥ 3, since points in primitive
substitution shifts have linear factor complexity; see e.g. [Que10]. Note also that similar
results have been stated in terms of estimation of balance in order to get sequences having
low balance. See for example [DMP23] for a construction of 2-balanced sequences over a
three-letter and a four-letter alphabet based on Sturmian sequences; see also [BCS13].

Let us explain why the toral translation Tα intervenes naturally in the present setting.
In order to produce a sequence u with a small discrepancy, one constructs, step-by-step, a
half broken line Lu (a half discrete line) whose vertices belong to Nd and that “optimally”
approximates (in a sense to be defined) the half line R+α. Given a d-letter alphabet A, we
associate with each distinct letter of A a vector of the canonical basis for Rd. Using this
association, each sequence u ∈ AN defines a half broken line Lu that lives in Nd; see Figure 2
for an illustration. To define a sequence that does not stray from R+α, we must establish a
strategy that allows us to optimally choose the value of un when u0 · · ·un−1 are determined.
Geometrically, the discrepancy ∆α(u) measures how far the vertices of the broken line are
from the half line R+α. Consider indeed the projection along the direction R+α onto
some given transverse hyperplane that does not contain α. The discrepancy is calculated
by measuring the distance between the projection of the set of vertices of the broken line
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and the origin. For suitable choices of sequences u, the closure of the projection of the set
of vertices of the broken line form (after some natural change of variables) a fundamental
domain for the action of the lattice Zd−1 on Rd−1. Moreover, moving on the broken line
by one step, i.e., by some canonical vector, consists in moving in the fundamental domain
by Tα. Thus the sequence u codes the action of Tα with respect to a finite partition. The
atom Pa of the partition of the fundamental domain is obtained by taking the closure of
the projection of the vertices of the broken line when the last letter equals a; see Figure 1
as an illustration of the atoms of the partition. Our approach has to be compared to the
one developed in [Che09] which holds in dimension d = 3 and where the choice of the
vertices of the broken line is done with respect to the Euclidean norm (whereas here we
rely on the supremum norm).

Bounded remainder sets also play a central role here. A bounded remainder set for the
translation Tα acting on the (d−1)-dimensional torus Td−1 is a measurable subset A of Td−1

for which there exists C > 0 such that, for any point x ∈ Td−1 and any n ∈ N,

|Card{0 ≤ k < n : T k
α(x) ∈ A} − nµ(A)| ≤ C.

These are sets having bounded local discrepancy, i.e., the difference between the number of
visits to this particular set and its expected value is bounded. Their study started with the
work of Schmidt in his series of papers on irregularities of distributions initiated in [Sch68].
Grepstad and Lev have given in [GL15] a particularly nice family of bounded remainder sets
for the minimal translation Tα as the parallelotopes in Rd−1 spanned by vectors belonging
to Z(α1, · · · , αd−1)+Zd−1. This family generalizes Kesten’s characterization of the intervals
that are bounded remainder sets of the unit circle for an irrational translation by α as the
intervals of length in αZ + Z. The atoms of the partition from Theorem 1.1 are bounded
remainder sets.

Lastly, let us briefly reinterpret the previous notions in terms of cut and project schemes
and model sets. Model sets play a prominent role as mathematical models for quasicrys-
tals. They have been introduced by Meyer in [Mey72]. For more details, see for instance
[KW21] and the references therein. We recall here the corresponding definition in the
simple Euclidean setting of the present paper.

We start by defining a cut and project scheme. We consider the full rank lattice Zd

in Rd, together with the decomposition of Rd as the direct sum of two subspaces, namely the
hyperplane 1⊥ made of vectors whose sum of coordinates equals 0 (called the internal space)
and a line L directed by α (called the physical space). The lattice Zd will be projected
onto the line L, and the inner space 1⊥ determines the direction of the projection map.
Let π̃α denote the corresponding projection. We also consider the projection πα onto 1⊥

along L. We further assume that the restriction of π̃α to Zd is injective and that π̃α(Zd)
is dense in 1⊥. This holds true if α is a totally irrational frequency vector, by Kronecker’s
theorem. Model sets are then formed by projections together with a way of selecting points
(the cutting part), and this selection is done thanks to an acceptance window W that lives
in the internal space 1⊥. Then, a subset Λ of Rd is a model set (associated with the cut
and project scheme developed above) if there exists a precompact set W of the internal
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Figure 2. A piece of a broken line associated with the sequence 1211212 · · · .

space 1⊥ with nonempty interior such that

Λ = {π̃α(x) : x ∈ Zd, πα(x) ∈ W}.
We choose here suitable acceptance windows (as finite unions of convex polytopes) such

that the set of points {x : x ∈ Nd, πα(x) ∈ W} forms a half broken line Lu associated with
some sequence u, with also the sequence u having a small discrepancy. The half broken
line Lu discussed above is the set of points x in Zd such that πα(x) ∈ W . The subset Λ
will then be the projection by π̃α of the set of vertices of the broken line.

We now sketch the contents of this paper. In Section 2, we recall basic definitions, in
particular basics from symbolic dynamics, and the notions of exchange of domains and that
of a natural coding. In Section 3, we recall and compare two constructions of sequences
with small discrepancy, hypercubic billiard sequences in Section 3.2, and then Tijdeman’s
construction from [Tij80] in Section 3.3. We prove that both constructions are obtained
by coding the same toral translation Tα with respect to partitions by finite unions of
convex polytopes. The proof of Theorem 1.1 is given in Section 4. We end this paper with
questions in Section 5.

Acknowledgements. The authors thank J. Abou Samra for his careful reading and
J. Walton for his insight on factor complexity for cut and project sets.

2. Notation and basic definitions

2.1. Word combinatorics and symbolic dynamics. Let A = {1, 2, . . . , d} be a finite
alphabet. We denote by ε the empty word of the free monoid A∗, and by AN the set of
sequences over A. For i ∈ A and for w ∈ A∗, let |w|i denote the number of occurrences
of the letter i in the word w, and let |w| denote the length of w. The k-th letter of w is
denoted as wk, where we always label indices starting at 0, i.e., w = w0w1 · · ·w|w|−1. If
w is a word or a sequence, and j ≤ k are nonnegative integers, let w[j,k) := wj · · ·wk−1
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(where w[k,k) is the empty word). In a finite word or sequence u, any word of the form
u[j,k) is called a factor. The set of factors L(u) of a sequence u is called its language. The
factor complexity of the sequence u is the function which, given n ∈ N, counts the number
of factors of u of length n. Given a word w and a letter i, let |w|i denote the number of
occurrences of i in w, and for w ∈ A∗, let

p(w) = (|w|i)i∈A
denote its Parikh vector.

Shifts. Let S denote the shift map acting on AN, i.e., S((un)n∈N) = (un+1)n∈N. A shift
is a pair (X,S) where X is a closed shift-invariant subset of some AN; X is called a
shift space. Here, A is equipped with the discrete topology, and AN is equipped with the
product topology. One associates with any sequence u ∈ AN the symbolic dynamical system
(Xu, S), where the shift spaceXu ⊂ AN is defined asXu = {v ∈ AN : L(v) ⊂ L(u)}. A shift
(X,S) is said to be minimal if X admits no nontrivial closed and shift-invariant subset. If
X is a shift space, then its language L(X) is defined as the set of factors of elements of X.
For any n ≥ 1, we let Ln(X) denote the set of factors of length n of elements in X. The
factor complexity pX(n) of a minimal shift (X,S) is defined as pX(n) = CardLn(X).

Frequencies and invariant measures. Let u be a sequence in AN and let v ∈ A∗. If the
limit limn→+∞

(
|u[0,n)|v

)
/n exists, then we call it the frequency of v in u, and denote it

by αv (suppressing the dependence on u). Assume that u is such that the frequencies of
the factors of u all exist. Then u is said to have uniform frequencies if, for every word v,
the convergence |u[k,n)|v/(n−k) → αv is uniform in k.

Let (X,S) be a shift with X ⊂ AN. A probability measure µ on X is said to be S-
invariant if µ(S−1B) = µ(B) for every Borel set B ⊂ X. The shift (X,S) is uniquely
ergodic if there exists a unique shift-invariant probability measure on X; this is the case if
and only if every word u ∈ X has uniform factor frequencies [BR10, Proposition 7.2.10].
In that case, one recovers the frequency αv of a factor v = v0 · · · vn−1 as αv = µ([v]), with
the cylinder [v] := {u ∈ X : u[0,n) = v}. For more on invariant measures and ergodicity,
we refer to [Que10] and [BR10, Chap. 7].

Balance and discrepancy. Let u ∈ AN. A sequence u is said to be B-balanced if there exists
a constant B such that, for every letter i ∈ A and for every pair (w,w′) of words in L(u)
with |w| = |w′|, we have |w|i − |w′|i ≤ B. We then define

Bu = max
i∈A

sup
w,w′∈L(u) : |w|=|w′|

(
|w|i − |w′|i

)
.

Note that the first papers devoted to balance were concerned with 1-balance for letters;
see e.g. [Lot02].

Let u ∈ AN and assume that letters i admit frequencies αi in u. The (letter) discrepancy
of u is defined as the (possibly infinite) quantity

∆α(u) = sup
n∈N

∥p(u[0,n))− nα∥∞,

with the frequency vector α = (αi)i∈A, and nα−p(u[0,n)) is called a discrepancy vector.
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These definitions extend to any minimal shift (X,S) in a straightforward way.
Let u be a sequence for which the letter frequencies exist. It has bounded letter balance

if and only if the discrepancy is finite; see [Ada03, Ada04]. Moreover, one has

∆α(u) ≤ Bu ≤ 4∆α(u)

by the triangle inequality; see [Ada03, Proposition 7 and Remark 8]. One advantage of the
notion of balance is that one does not need to know in advance the frequency vector α.
Balance is also equivalently formulated as having bounded abelian complexity, where the
abelian complexity counts the number of distinct Parikh vectors of factors of a given length;
see e.g. [RSZ11]. For related results on the abelian complexity, see [DMP23].

The following holds for fairly distributed sequences over small alphabets for rationally
independent coordinates. By Remark 3.4, not all Sturmian sequences are fairly distributed.

Proposition 2.1. Let α be a totally irrational frequency vector, and let u be a fairly
distributed sequence with letter frequency α, i.e., ∆α(u) ≤ 1− 1

2d−2
. If d = 2, then u is

Sturmian and its balance Bu equals 1. If d = 3, then Bu ≤ 2.

Proof. Consider two factors w and w′ of u of the same length and a letter a in the alphabetA
on which u is defined. Let n be such that both factors w and w′ occur in u at indices smaller
than n. Since α is irrational, one has, for 0 ≤ k ≤ n, |u0 · · ·uk−1|a−kαa irrational, hence the
value 1− 1

2d−2
is not attained and |u0 · · ·un−1|a−nαa < 1− 1

2d−2
. By the triangle inequality,∣∣|w|a − |w′|a

∣∣ ≤ 4 max
0≤k≤n

∣∣|u0 · · ·uk−1|a − kαa

∣∣ < 4
(
1− 1

2d−2

)
.

Assume d = 2. Since |w|a−|w′|a takes integer values, |w|a−|w′|a ≤ 1, and so its balance Bu

satisfies Bu ≤ 1. Since u is one-sided and α is totally irrational, then Bu = 1 and u is a
Sturmian sequence. If d = 3, we similarly get that Bu ≤ 2. □

Discrete spectrum. Recall that two measure preserving systems (X,S, µ) and (Y, T, ν) are
measurably conjugate if there are measurable sets X0 ⊂ X and Y0 ⊂ Y , each of measure 1,
and a measurable bijection Φ : X0 → Y0 which intertwines the action, T ◦ Φ = Φ ◦ S. A
shift (X,S, µ) has purely discrete spectrum if the measurable eigenfunctions of the Koopman
operator US : L2(X,S, µ) → L2(X,S, µ), f 7→ f ◦ S, span L2(X,S, µ). This is equivalent
to the shift being measurably conjugate to a translation on a compact abelian group. If
the system (X,S) is uniquely ergodic, then we write (X,S) instead of (X,S, µ). Here, the
shifts under consideration will be conjugate to (Td−1, Tα).

2.2. Exchange of pieces, toral translations and natural codings. Let α be a fre-
quency vector, i.e., a vector in (0, 1)d with

∑d
i=1 αi = 1. We recall that α is said to be

totally irrational if it has rationally independent coordinates. We consider a frequency
vector α = (α1, . . . , αd) ∈ (0, 1)d and the toral translation by α, denoted as Tα, defined
on Td−1 = Rd−1/Zd−1 by

(2.1) Tα : Td−1 → Td−1, x 7→ x+ (α1, . . . , αd−1) (mod Zd−1).

A topological dynamical system, i.e., a pair (X,T ) where X is a compact metric space and
T : X → X is a homeomorphism, is minimal when it does not contain any non-empty
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proper closed T -invariant subset. In other words, minimality for (Td−1, Tα) means that the
orbit of any point is dense in Td−1; it is equivalent to the fact that α is totally irrational
(i.e., the coordinates of (α1, . . . , αd−1, 1) are rationally independent). We recall that a
minimal translation is also uniquely ergodic; see e.g. [Wal82].

We want to provide symbolic codings of the translation Tα with respect to finite par-
titions (by polytopes) of fundamental domains of Rd−1/Zd−1. We consider in particular
partitions of fundamental domains of Td−1 that are well adapted to the action of Tα, in the
sense that on each atom the map Tα is a translation by a vector. They are called natural
partitions. Let us state a few definitions in order to make this notion more precise. For the
next definition, we follow [BST23, Section 2.4], originally stated in the case that V = Rd−1

and Λ = Zd−1. We let denote by LebV , or Leb when there is no ambiguity, the Lebesgue
measure on a finite dimensional real vector space V . The interior of a set P is denoted
as P̊ , its closure as P , and its boundary as ∂P .

Definition 2.2 (Fundamental domains and natural partitions). Let V be a finite dimensional
real vector space, Λ a full rank lattice in V , and α ∈ V . A measurable fundamental domain
of the torus V/Λ is a measurable set P ⊂ V that satisfies

P + Λ = V and LebV (P ∩ (P + n)) = 0 for all n ∈ Λ \ {0}.
Let P be a measurable fundamental domain of the torus V/Λ, We consider the translation

Tα : V/Λ → V/Λ, x 7→ x+α mod Λ,

which we assume to be minimal. A collection {P1, . . . , Ph} is said to be a natural partition
(it is a partition up to zero measure sets) of P with respect to Tα if

(1)
⋃h

i=1 Pi = P ;

(2) LebV (Pi ∩ Pj) = 0 for all i ̸= j, 1 ≤ i, j ≤ h;

(3) each Pi, 1 ≤ i ≤ h, is the closure of its interior and LebV (∂Pi) = 0;

(4) there exist t1, . . . , th ∈ V with ti ≡ α mod Λ such that ti + Pi ⊂ P , 1 ≤ i ≤ h.

A natural partition is called bounded if the set P is bounded.

In the following, we shall consider fundamental domains and natural partitions in the
vector space V = {(x1, . . . , xd) ∈ Rd :

∑d
i=1 xi = 0}, with Λ = V ∩ Zd, V/Λ being

isomorphic to Td−1, and we shall also project these fundamental domains and natural
partitions onto Rd−1. Note that we keep the same notation as before for Tα in order to
simplify the notation. Note also that we focus here on partitions by finite unions of convex
polytopes (e.g. as in Figure 1), hence Condition (3) is satisfied.

Such a natural partition {P1, . . . , Ph} allows us to define a.e. on P a map τt : P → P as
an exchange of domains (which depends on the partition) by

(2.2) τt(x) = x+ ti whenever x ∈ P̊i.

The map τt is defined on P \
⋃h

i=1 ∂Pi, hence, it is defined almost everywhere. The
dynamical system (P, τt,Leb |P ) is measurably conjugate to (V/Λ, Tα) (endowed with
the Haar measure). One has for a.e. x ∈ P , τt(x) ≡ Tα(x) mod Λ. The collection
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{P1+t1, . . . , Ph+th} also forms a measurable natural partition of P , hence the terminology
exchange of domains.

Now that we have seen how exchanges of pieces act as toral translations, we discuss their
symbolic codings. We continue with the notation of Definition 2.2.

Definition 2.3 (Natural coding). A sequence (un)n∈N ∈ {1, . . . , h}N is said to be a natural
coding of the minimal toral translation (V/Λ, Tα) w.r.t. the natural partition {P1, . . . , Ph}
if there exists x ∈ P such that (un)n∈N codes the orbit of x under the action of τt, i.e.,

τnt (x) = x+
n−1∑
k=0

tuk
∈ P̊in

for all n ∈ N; note that T n
α(x) ≡ τnt (x) mod Λ. If u is a natural coding of (V/Λ, Tα) w.r.t. a

natural partition {P1, . . . , Ph} whose elements P1, . . . , Ph are bounded, we call u a bounded
natural coding.

Remark 2.4. Bédaride and Bertazzon [BB13] have shown that a natural partition associated
with a minimal translation Tα of Td−1 has at least d pieces, hence the alphabet of a natural
coding has at least d letters.

Remark 2.5. When P is bounded, the natural codings of two different points x,y ∈ P can-
not be equal. Indeed, if they were equal, we would have by definition τnt (y) = τnt (x)+y−x
for all n ∈ N, but using the minimality of the toral translation Tα, we can see that, for any
u ̸= 0, there exists some n ∈ N such that τnt (x)+u /∈ P , so that τnt (y) = τnt (x)+y−x /∈ P
for some n, a contradiction.

The shift (Xu, S) generated by a natural coding u of the minimal translation (V/Λ, Tα)
is minimal, uniquely ergodic, and has purely discrete spectrum according to [BST23,
Lemma 5.12] or [Che09, Theorems A and B]. Hence the two main steps in the proof of
Theorem 1.1 are, firstly, to exhibit the partition providing a natural coding (see Section 3)
and, secondly, to estimate the factor complexity (see Sections 4.1 to 4.4).

2.3. Hypercubic fundamental domains. We now illustrate the formalism developed in
the previous section with a very simple choice of a fundamental domain for Td−1, following
e.g. [AMST94a]. This will provide a simple geometric model for Tα defined in (2.1) as an
exchange of pieces, that will play a crucial role in Section 3.

Define

(2.3) Fi = {(x1, . . . , xd) ∈ [0, 1]d : xi = 1} (1 ≤ i ≤ d)

to be an upper face of the d-dimensional unit cube, and similarly

F̃i = {(x1, . . . , xd) ∈ [0, 1]d : xi = 0}

as a lower face. As an illustration, the union of the three lower faces when d = 3 is depicted

as , see also Figure 4, and Figure 3 for d = 2. Let 1 be the vector all of whose entries
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equal one and define its orthogonal complement

1⊥ :=
{
(x1, . . . , xd) ∈ Rd :

d∑
i=1

xi = 0
}
.

Denote by
πα : Rd → 1⊥ the projection along Rα onto 1⊥,

i.e., for 1 ≤ i ≤ d,

(2.4) πα(ei) = ei −α.

Let

(2.5) Eα =
d⋃

i=1

Eα,i with Eα,i = πα(Fi).

First observe that
Eα = πα([0, 1]

d).

Indeed, we have Eα ⊆ πα([0, 1]
d), and for x =

∑d
i=1 xiπα(ei), xi ∈ [0, 1], we use that

d∑
i=1

αiπα(ei) =
d∑

i=1

αi (ei−α) = α−α = 0

to obtain that, for j satisfying
1−xj

αj
= min{1−xi

αi
: 1 ≤ i ≤ d},

x =
d∑

i=1

xiπα(ei) +
1− xj

αj

d∑
i=1

αiπα(ei) =
d∑

i=1

(
xi +

1− xj

αj

αi

)
πα(ei) ∈ πα(Fj) ⊂ Eα.

We also obtain that

Eα,j ∩ Eα,k =

{ d∑
i=1

xi πα(ei) : xj = xk = 1, xi ∈ [0, 1] for i /∈ {j, k}
}

is a (d−2)-dimensional subset of 1⊥, hence
⋃d

i=1Eα,i forms a topological partition of Eα,
i.e., the atoms Eα,i have disjoint interiors.

We then consider the polyhedral exchange map

(2.6) T̃α : Eα → Eα, x 7→ x+α− ei if x ∈ Eα,i.

Here and in the following, we neglect the intersections Eα,i ∩ Eα,j, i ̸= j. Then we have

T̃α(Eα,i) = Eα,i − πα(ei) = πα(F̃i).

Since the F̃i’s are lower faces of [0, 1]d, we have Eα =
⋃d

i=1 T̃α(Eα,i), hence the map T̃α is
an exchange of pieces (in 1⊥); see Figure 3 for d = 2 as an illustration.

Since {x+πα([0, 1]
d) : x ∈ Zd ∩ 1⊥} forms a tiling of 1⊥, the set Eα is a measurable

fundamental domain of 1⊥/(Zd ∩ 1⊥). Indeed, let us first show that the translates of Eα

cover 1⊥. Let Q+ be the union of all the unit hypercubes in the lattice that are included
in the closed half space H+ = {x ∈ Rd : l(x) = x1+ · · ·+xd ≥ 0}. Since πα(∂Q+) = 1⊥,
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F1

F2

F̃1

F̃2

α

Eα,1 := πα(F1)

Eα,2 := πα(F2)

πα(F̃1) = T̃α(Eα,1)

πα(F̃2) = T̃α(Eα,2)

Figure 3. Exchange of pieces, d = 2.

it is enough to show that the boundary ∂Q+ is included in the union of all the lower
faces of the lattice unit hypercubes contained in H+ with one vertex in 1⊥. On the one
hand, ∂Q+ is contained in H+ and is a union of (d−1)-dimensional faces of unit lattice
hypercubes. On the other hand, ∂Q+ = ∂Q− where ∂Q− is the union of all the lattice
unit hypercubes not included in H+, and therefore ∂Q+ is a union of faces of lattice unit
hypercubes with at least one vertex in {x ∈ Rd : l(x) ≤ −1}, which in turn implies that
∂Q+ ⊂ {x ∈ Rd : l(x) ≤ d−1}. It follows that each face of ∂Q+ has a vertex in 1⊥. This
shows that the translates of Eα cover 1⊥. Lastly, by inspection of neighbouring tiles, one
checks that they intersect on a set of measure zero.

To obtain the toral translation Tα (see (2.1)) from T̃α (defined in (2.6)), we now omit
the last coordinate, i.e., we consider the conjugation by

ι : 1⊥ → Rd−1, (x1, . . . , xd) 7→ (x1, . . . , xd−1).

Then ι(Eα) is a measurable fundamental domain of Rd−1/Zd−1, and ι ◦ T̃α = Tα ◦ ι.
Moreover, the collection {ι(Eα,1), . . . , ι(Eα,d)} is a bounded natural partition with respect

to Tα, according to Definition 2.2. Indeed, the map ι ◦ T̃α coincides with the map τt
from (2.2) with vectors t1 = (α1−1, α2, . . . , αd−1), . . . , td−1 = (α1, . . . , αd−2, αd−1−1), and
td = (α1, α2, . . . , αd−1). They all satisfy ti ≡ (α1, . . . , αd−1) mod Zd−1.
In fact, we have shown the following proposition.

Proposition 2.6. Let α = (α1, . . . , αd) ∈ (0, 1)d be a totally irrational frequency vector.
Then ι(Eα) is a measurable fundamental domain of Td−1 admitting the bounded natural

partition ι(Eα) =
⋃d

i=1 ι(Eα,i). Moreover, the map T̃α : Eα → Eα is conjugate to the
minimal translation Tα on Td−1.
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The above proof shows that ι(Eα) is a measurable fundamental domain even if α1, . . . , αd

are dependent over Q. See Figure 4 for an illustration of ι(Eα) and the image by T̃α for
d = 3.

ι(Eα,1)

ι(Eα,1+α−e1)

ι(Eα,2)

ι(Eα,2+α−e2)

ι(E3)

ι(E3+α−e3)

1

1

1

1

Figure 4. The (ι-representation of the) parallelepipeds Eα,i and their T̃α-
images for d = 3, α = (0.48, 0.32, 0.2).

2.4. Construction of natural partitions. We have considered in the previous section
a very simple choice of a fundamental domain. In the present section, we consider a more
general situation, and we prove two technical propositions that allow the construction of a
measurable fundamental domain (Proposition 2.8), and of a natural partition with respect
to a toral translation (Proposition 2.9). This rather general construction will be used with
Tijdeman sequences (see Section 3.3). Among others, a technical aspect comes from the
fact that we are handling maps that are not continuous, but only piecewise continuous; see
Remark 2.7 below.

Similarly to Definition 2.2, we consider a finite dimensional real vector space V , a full
rank lattice Λ in V and α ∈ V . Let R be a nonempty subset of V with a finite partition
R = R1 ∪R2 ∪ · · · ∪Rh. For each i ∈ {1, . . . , h}, fix some ni ∈ Λ. Consider the maps

Ti : V → V, x 7→ x+α+ ni and T̂ : R → V, x 7→ Ti(x) when x ∈ Ri.

Finally, let x0 ∈ R. We make the following assumptions.

(1) The translation Tα : V/Λ → V/Λ, x 7→ x+α mod Λ is minimal;

(2) the set R is closed and Ti(Ri) ⊂ R for all i ∈ {1, . . . , h};
(3) LebV (Ri ∩Rj) = 0 for all i ̸= j ∈ {1, . . . , h};
(4) there exist a compact set K ⊂ R and a nonempty open set U ⊂ K such that K

contains the orbit {T̂ n(x0) : n ∈ N}, and moreover any point x ∈ U has only one
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representative mod Λ in K, i.e.,

x+ n /∈ K for all n ∈ Λ \ {0};
(5) for all i ∈ {1, . . . , h}, Ri is a finite union of nearly convex sets, with nonempty

interiors, that are finite intersections of open half spaces. (Recall that A ⊂ V is
nearly convex if there exists a convex set B ⊂ V such that B ⊂ A ⊂ B.)

The following proposition allows us to cope with the fact that T̂ is only piecewise con-
tinuous. A crucial argument in the proof is that, thanks to Assumptions (1) and (4), any

T̂ -backward orbit that lies in K must enter the open set U .

Remark 2.7. If (X,T ) is a compact continuous dynamical system and if x ∈ X, then any

point y ∈ {T n(x) : n ∈ N} \ {x} is the image by T of some element in {T n(x) : n ∈ N};
in other words, the image by T of the closure of the orbit of x contains the closure of the
orbit except perhaps x. This property no longer holds in the following case with T not
being continuous. Let T : [0, 1] → [0, 1] be defined by T (x) = x+α for x ∈ [0, 1−α] and
T (x) = x+α−1 for x ∈ (1−α, 1], where α ∈ [0, 1] \ Q. One has 0 /∈ T (X), whereas the
orbit closure of any point is X. However, the following proof shows that we can overcome
this up to a negligible set.

Proposition 2.8. If Assumptions (1)–(4) hold, then D = {T̂ n(x0) : n ∈ N} is a measur-
able fundamental domain of the torus V/Λ.

Proof. The projection of D onto the torus V/Λ is a compact set that contains the sequence

of projections of the points T̂ n(x0), n ∈ N, hence the projection of D is the whole torus by
the minimality assumption from (1). It follows that

⋃
n∈Λ(D+n) = V .

We now want to prove that y−y′ ∈ Λ implies y = y′ for all y,y′ ∈ D \ N , where N is
Lebesgue-null. If we can find a Lebesgue-null set N such that for all y ∈ D \ N and all

n ∈ N, there exists x ∈ D such that T̂ n(x) = y, we are done. Indeed, let y,y′ ∈ D \ N
be such that y−y′ ∈ Λ. Since the translation Tα is minimal and since U is a nonempty
open set, there exists m ∈ N such that y−mα ∈ U+Λ. By our assumption on N , there

exist z, z′ ∈ D such that T̂m(z) = y and T̂m(z′) = y′. By definition of T̂ , we have
z = y−mα mod Λ and z′ = y′−mα mod Λ, so that z−z′ ∈ Λ. Now z ∈ U mod Λ and
z, z′ ∈ D ⊂ K, hence by Assumption (4), z = z′ which in turn implies y = y′.
It remains to define N . Let

N =
⋃
k≥0

T̂ kN0, with N0 =
{
T̂ n(x0) : n ∈ N

}
∪

⋃
i,j∈{1,...,h}, i ̸=j

Ti

(
Ri ∩Rj

)
.

Thanks to Assumption (3), N is a null set. Let us show first that, if y ∈ D \ N0, then

T̂ (x) = y for some x ∈ D. Since y /∈
⋃

i ̸=j Ti(Ri ∩ Rj), ε = d(y,
⋃

i ̸=j Ti(Ri ∩ Rj)) > 0.

Since y ̸= T̂ n(x0) for all n ∈ N, there exists an increasing sequence of integers (nk)k
such that y = limk→∞ T̂ nk(x0) and T̂ nk(x0) ∈ B(y, ε/2) for all integers k. By passing to

a subsequence, we can suppose that T̂ nk(x0) = Ti0(T̂
nk−1(x0)) for all k and some fixed

i0 ∈ {1, . . . , h}. For all k ∈ N and all j ∈ {1, . . . , h} with j ̸= i0, since T̂
nk(x0) ∈ B(y, ε/2)
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and d(y,
⋃

i ̸=j Ti(Ri ∩ Rj)) = ε, we have d(Ti0(T̂
nk−1(x0)), Ti0(Ri0 ∩ Rj)) ≥ ε/2, hence

d(T̂ nk−1(x0), Ri0 ∩ Rj) ≥ ε/2. Again by passing to a subsequence, we can suppose that

limk→∞ T̂ nk−1(x0) = x ∈ Ri0 ∩ R. Since d(x, Ri0 ∩ Rj) ≥ ε/2 for all j ̸= i0, it follows that

x ∈ Ri0 . Therefore, T̂ (x) = Ti0(limk→∞ T̂ nk−1(x0)) = limk→∞ Ti0(T̂
nk−1(x0)) = y.

By induction, we see that for all k ∈ N and all y ∈ D \
⋃k

i=0 T̂
iN0, there exists x ∈ D

such that T̂ k+1(x) = y. Therefore, for all y ∈ D \ N , a backward T̂ -orbit of y is in D. □

Proposition 2.9. Suppose that Assumptions (1)–(5) hold. Let

P = D̊ and Pi = P̊ ∩ R̊i, i ∈ {1, . . . , h}.
Then

(a) P is a measurable fundamental domain of the torus V/Λ;

(b) P =
⋃

i∈{1,...,h} Pi.

Moreover, for each i ∈ {1, . . . , h} such that Pi ̸= ∅, one has

(c) Pi ⊂ Ri and Ti(Pi) ⊂ P ;
(d) Pi is a finite union of convex polytopes with nonempty interiors;
(e) Pi is the closure of its interior, Leb(∂Pi) = 0 and Leb(Pi ∩ Pj) = 0 for all j ̸= i.

Thus, P = {P1, . . . , Ph} is a natural partition with respect to Tα.

Remark 2.10. We will use the following observations several times: If Q is a nearly convex

set with nonempty interior then Q ⊂ Q̊ and Leb(∂Q) = 0, and if Q′ is another nearly

convex set with nonempty interior, then Q̊ ∩ Q′ ̸= ∅ implies Q̊ ∩ Q̊′ ̸= ∅, which in turn
implies Q ∩Q′ = Q ∩Q′.

Proof. Preliminaries.
By Assumption (5), for all i ∈ {1, . . . , h}, Ri =

⋃
j∈Ji Rij is a finite union of nearly

convex sets, with nonempty interiors, that are finite intersections of open half spaces. Let
K = {Rij : i ∈ {1, . . . , h}, j ∈ Ji}. For each K ∈ K, let i(K) denote the unique integer in
{1, . . . , h} such that K ⊂ Ri(K). For a nearly convex set Q with nonempty interior, let

K(Q) = {K ∈ K : Q̊ ∩ K̊ ̸= ∅}.
By the above remark, for any nearly convex set Q ⊂ R with nonempty interior,

Q̊ =
⋃

K∈K(Q)

Q̊ ∩K and Q =
⋃

K∈K(Q)

Q ∩K.

Observe that Leb(Ti(K)(D∩K)\D) = 0 for eachK ∈ K. Indeed, if Leb(Ti(K)(D∩K)\D) >

0, then Leb(Ti(K)(D ∩ K̊) \D) > 0 and, since K̊ ∩ T−1
i(K)(V \D) is open, there would be n

such that x = T̂ n(x0) ∈ D ∩ K̊ ∩ T−1
i(K)(V \D) and thus T̂ n+1(x0) = T̂ (x) = Ti(K)(x) /∈ D,

a contradiction.

Let Q0 ⊂ U , with U as in Assumption (4), be a closed hypercube with nonempty interior.

By minimality, there exists N ∈ N such that
⋃N

n=0 T̂
n(Q̊0) + Λ = V .
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We define by induction a sequence (Rn)n of sets. Let R0 = {Q0}. Suppose Rn is defined
and let

Rn+1 =
⋃

Q∈Rn

{
Ti(K)(Q̊ ∩ K̊) : K ∈ K(Q)

}
.

By induction, we see that each Q ∈ Rn is a convex polytope with nonempty interior. Let

R =
N⋃
i=0

Rn and P ′ =
⋃
Q∈R

Q.

We show by induction that, for all Q ∈ Rn, we have Q ⊂ D. Let Q ∈ Rn, K ∈ K(Q) and

Q′ = Ti(K)(Q̊ ∩ K̊). If Q′ were not included in D, we would have Leb(Ti(K)(Q∩K)\D) > 0
because D is closed, but by the induction hypothesis Q ⊂ D, thus Leb(Ti(K)(Q∩K)\D) ≤
Leb(Ti(K)(D ∩K) \D), contradicting Leb(Ti(K)(D ∩K) \D) = 0. It follows that P ′ ⊂ D.

• To see (a), let us show by induction that T̂ n(Q̊0) ⊂ ∪Q∈RnQ+Λ. Let x ∈ T̂ n(Q̊0) and
let x′ ∈ Q, Q ∈ Rn be such that x′−x ∈ Λ. Since Q =

⋃
K∈K(Q) Q∩K, we have x′ ∈ Q∩K

for some K ∈ K(Q). It follows that

Ti(K)(x
′) ∈ Ti(K)(Q ∩K) ∈ Rn+1,

which in turn implies T̂ (x) ∈ Ti(K)(Q ∩K) + Λ ⊂
⋃

Q∈Rn+1
Q+ Λ.

It follows that P ′ + Λ = V . Furthermore, for all n ≤ N and Q ∈ Rn, we have Q ⊂ D

and Q̊ = Q, therefore P ′ ⊂ D̊ = P . On the other hand, if D̊ \ P ′ ̸= ∅, then it has nonzero
Lebesgue measure, which is not possible for Leb(P ′) ≥ 1 and Leb(D) = 1. It follows that

P ′ = D̊ = P . Furthermore, by the previous proposition, since P ⊂ D, Leb(P ∩(P+n)) = 0
for all n ∈ Λ \ {0}.
• To see (b), let us show that P =

⋃
i∈{1,...,h} Pi. Let Q ∈ Rn for some n ≤ N . We have

Q ∩K ⊂ Q̊ ∩ K̊ ⊂ P̊ ∩ R̊i(K) = Pi(K) for each K ∈ K(Q), therefore Q ⊂ ∪i∈IPi.

• We verify (c). Clearly Pi ⊂ P ∩ Ri. Next, to show that Ti(Pi) ⊂ P , it is enough

to prove that Ti(P̊ ∩ R̊i) ⊂ P . Now for all K ∈ K, Leb(Ti(K)(D ∩ K) \ D) = 0 and

Ri =
⋃

K∈K:i(K)=iK, therefore Leb(Ti(D ∩ Ri) \D) = 0. Since Leb(D \ P ) = 0, it follows

that Leb(Ti(P ∩Ri) \ P ) = 0, which implies that Ti(P̊ ∩ R̊i) ⊂ P .

• To see (d) and (e), we have to show that each Pi is a finite union of convex polytopes
with non empty interiors, for, this implies that Pi is the closure of its interior and that
Leb(∂Pi) = 0. It is enough to show that

P̊ ∩ R̊i ⊂
⋃

(K,Q)∈K×R: i(K)=i,K∈K(Q)

Q̊ ∩ K̊.

Let x ∈ P̊ ∩ R̊i and let Q ∈ R containing x. Consider the set Kx of K ∈ K such that

x ∈ K. There is an open ball B(x, r) with r > 0 such that B(x, r) ⊂ P̊ ∩ R̊i and such that
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B(x, r) ∩K = ∅ for all K ∈ K \ Kx. The ball B(x, r) is included in the union of the K,

K ∈ Kx, therefore there exists K ∈ Kx such that Q̊ ∩ K̊ ̸= ∅. Since Q̊ ∩ K̊ ̸= ∅, we have

Q̊ ∩ K̊ = Q̊ ∩ K̊ = Q ∩K and hence x ∈ Q̊ ∩ K̊.
Finally, Leb(Pi ∩ Pj) = 0 for all j ̸= i follows from Assumption (3) and Pi ⊂ Ri. □

3. Two constructions of sequences with small discrepancy

3.1. Strategy. We now have gathered all that is needed in terms of notation and concepts
for describing in detail the strategy for the constructions of sequences developed in the
present section.

We represent an infinite word u as the set {p(u[0,n)) : n ∈ N} of vertices of a broken
line Lu; see Figure 2. The discrepancy ∆α(u) can be seen as a measure of the distance
(with respect to the supremum norm) of the vertices of this broken (half) line to the (half)
line R+α. Our aim is thus to control the supremum of the discrepancy vectors

nα− p(u[0,n)), n ∈ N.

One notices that nα−p(u[0,n)) = −πα(p(u[0,n)) and thus ∆α(u) = supn ∥πα(p(u[0,n))∥.
Hence projecting along Rα onto a transverse hyperplane such as the hyperplane 1⊥ allows
one to understand how far the vertices of the broken line are from the line R+α. The
strength of Tijdeman’s construction relies on the fact that the set {−πα(p(u[0,n)) : n ∈ N}
forms a fundamental domain of 1⊥/(Zd ∩ 1⊥), and that we can partition this fundamental

domain into atoms {−πα(p(u[0,n)

)
: un = i, n ∈ N}, for each letter i. This then allows us

to relate the dynamics of the shift with the dynamics of Tα. The sequence u is then a
bounded natural coding according to Definition 2.3 (whose associated natural partition is
obtained by application of the map ι).
Let α = (α1, . . . , αd) ∈ (0, 1)d be a totally irrational frequency vector. The first con-

struction in Section 3.2 produces classical hypercubic billiard sequences as presented in
[AMST94a]. The second one, given in Section 3.3, corresponds to Tijdeman’s construction
in [Tij80] and is obtained by introducing more specification stated in terms of lower and
upper bounds for the supremum norm of the discrepancy vectors. Both constructions are
obtained by coding the same toral translation Tα with respect to finite partitions by poly-
topes. In particular, Section 3.2, which is devoted to hypercubic billiard sequences, aims at
explaining that they do not have the lowest possible discrepancy (see Proposition 3.2) and
to prepare the main construction from Section 3.3, which can be seen as an improvement
of the hypercubic billiard codings.

3.2. Hypercubic billiard sequences. In this section, we consider cutting words associ-
ated with the hypercubic billiard. In Proposition 3.2, we recall that their discrepancy is
generally not minimal for d > 2; see also [AV22]. The description of these cutting words
will help with the understanding of Section 3.3, where we recall Tijdeman’s construction.
Tijdeman’s construction can be seen as an improvement of the present construction for
hypercubic billiard sequences.
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L=x+R+α

1⊥

0

x

x0

p(u[0,1))+x1

x1

p(u[0,2))+x2

x2

p(u[0,3))+x3

x3

p(u[0,1))

p(u[0,2))

p(u[0,3)) p(u[0,4))

p(u[0,1))+1⊥

p(u[0,2))+1⊥ p(u[0,3))+1⊥

F1

p(u[0,1))+F2

p(u[0,2))+F1 p(u[0,3))+F1

Figure 5. Notation for hypercubic billiard sequences. Here, α ≈
(0.75, 0.25), x ≈ (0.2, 0.6), thus x0 ≈ (−0.4, 0.4). If xn ∈ {(−a, a) : −α1 <
a < 1 − 2α1}, then un = 2, and if xn ∈ {(−a, a) : 1 − 2α1 < a < 1 − α1},
then un = 1. Here u0u1 · · · = 1211 . . . .

We follow the approach of [AMST94a] adapted to the present context. Travelling along
a half line L = x+R+α, x ∈ [0, 1)d, one meets the faces of the unit hypercubes that are
located at the grid defined by the set Zd of integer points. The cutting word u = u0u1 · · · ∈
{1, . . . , d}N codes the sequence of upper faces (of unit hypercubes) that are met by L,
where if the line hits a face parallel to e⊥j , we code this intersection with the letter j; see
Figure 5 for an illustration. More precisely, starting at x and given u0 · · ·un−1, the letter un

is the coding of the upper face of p(u[0,n))+[0, 1]d (as defined in (2.3)) that is intersected
by x+Rα. In the latter description, we can replace x by any point on x+Rα, in particular
by x0 = πα(x) ∈ Eα. We call such a coding sequence a hypercubic billiard sequence with
frequency α and initial condition x (or x0).

Note that the half line intersects the lattice Zd at most once since α is totally irrational;
we neglect the starting points x for which L \ {x} may intersect the lattice Zd. We denote
by Bα the set of hypercubic billiard sequences with frequency α and initial condition x
such that L \ {x} does not intersect the lattice Zd.

For x0 ∈ Eα, we have u0 = i if (x0+R+α) ∩ Fi ̸= ∅, i.e., if x0 ∈ Eα,i. For n ≥ 1, set

un = i if (x0+R+α) ∩ (p(u[0,n))+Fi) ̸= ∅,

i.e., un = i if x0 − πα(p(u[0,n))) ∈ Eα,i. By (2.4), we have

xn := x0 − πα(p(u[0,n))) = x0 + nα− p(u[0,n)).
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Since un = i if xn ∈ Eα,i, we have by (2.6) that xn+1 = T̃α(xn) for all n ∈ N. Thus u is the

coding of x0 w.r.t. T̃α, which is the exchange of pieces w.r.t. the partition {Eα,i : 1 ≤ i ≤ d}:
one has un = i if and only if T̃ n

α(x0) ∈ Eα,i. Since ι is bijective, u is also the bounded
natural coding of ι(x0) w.r.t. the toral translation Tα and the partition {ι(Eα,i) : 1 ≤ i ≤ d}
(in the sense of Definition 2.3).

Note that xn−x0 = nα−p(u[0,n)) is a discrepancy vector of u, thus the discrepancy is

∆α(u) = supn ∥xn−x0∥∞. Writing xn = (xn,1, . . . , xn,d), and letting tn,i =
1−xn,i

αi
, we have

x0 + (n+tn,i)α ∈ p(u[0,n)) + ei + e⊥i .

In other words, tn,i is the time needed on the line x0+Rα to go from x0+nα to the
hyperplane p(u[0,n))+ei+e⊥i . We have un = i if we hit p(u[0,n))+Fi, which is equivalent to
tn,i = min{tn,j : 1 ≤ j ≤ d}. This is to be compared to (3.2) below, where the hyperplane
to be hit will be of the form p(u[0,n))+Cej+e⊥j . To construct Tijdeman sequences in
Section 3.3, we will optimize the choice of un with respect to two criteria expressed in
terms of the values taken by the tn,i’s.

Remark 3.1. This construction can be interpreted in terms of model sets with the accep-
tance window being given by Eα; one has

−x0 + {x ∈ Zd : πα(x) ∈ Eα, ⟨x,1⊥⟩ ≥ 0} = {−p(u[0,n)), n ∈ N}.
Indeed, we have proved the inclusion {−p(u[0,n)), n ∈ N} ⊂ −x0 + {x ∈ Zd : πα(x) ∈
Eα, ⟨x,1⟩ ≥ 0} above. The reverse inclusion comes from the denseness of the set of points
πα(x), x ∈ Nd, together with the fact that there is only one point with integer coordinates
on each half line p(u[0,n))+Rα. The (half) broken line Lu associated with u is thus exactly
the set of points x ∈ Nd such that πα(x) ∈ Eα.

The next proposition provides estimates on the discrepancy of hypercubic billiard se-
quences; see also [Vui03] expressed in terms of balance and [AV22] for the case of partic-
ular α, where it is proved that for d ≥ 5 and for every k ∈ {3, . . . , d−1}, there exists a
hypercubic k-balanced billiard word (with α a totally irrational frequency vector).

We recall that Bα stands for the set of hypercubic billiard sequences with frequency α
and initial condition x0 ∈ Eα such that L \ {x0} does not intersect the lattice Zd.

Proposition 3.2. Let α = (α1, . . . , αd) ∈ (0, 1)d be a totally irrational frequency vector.
Then

{∆α(u) : u ∈ Bα} =
[
1
2
(1 + (d−2)∥α∥∞), 1 + (d−2)∥α∥∞

]
.

Moreover,

inf
α

inf
u∈Bα

∆α(u) = 1− 1

d
.

where the supremum is taken over totally irrational frequency vectors α ∈ (0, 1)d.

Remark 3.3. We remark that, when d ≥ 3, there exist hypercubic billiard sequences u
in Bα that are fairly distributed, i.e., ∆α(u) ≤ Dd = 1− 1

2d−2
. Indeed, it suffices to take α

such that ∥α∥∞ is close to 1
d
and x0 such that ∆α(u) is close to 1

2
(1 + (d−2)∥α∥∞).
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Remark 3.4. When d = 2, a fairly distributed sequence with totally irrational frequency α
is Sturmian; see Proposition 2.1. Moreover, Proposition 3.2 indicates that not all Sturmian
sequences have the same discrepancy, although they are all 1-balanced. Indeed, when d = 2,
Proposition 3.2 gives that the range of values taken by ∆α(u) is the whole segment [1/2, 1].

Proof of Proposition 3.2. Let u ∈ Bα be a hypercubic billiard sequence with a totally
irrational frequency vector α and initial condition x0 ∈ Eα. Since T̃α is minimal, the
sequence (T̃ n

α(x0))n is dense in Eα and
(3.1)
∆α(u) = sup

n∈N
∥nα−p(u[0,n))∥∞ = sup

n∈N
∥xn−x0∥∞ = sup

n∈N
∥T̃ n

α(x0)−x0∥ = sup
y∈Eα

∥y−x0∥∞.

Then elements of Eα = πα([0, 1]
d) are of the form

∑d
i=1 yi(ei−α), yi ∈ [0, 1]. Therefore,

the i-th coordinate is in [−(d−1)αi, 1−αi], where the endpoints of the interval are attained
by

∑
j ̸=i πα(ej) and πα(ei) respectively. Therefore, the diameter of Eα is 1+(d−2)∥α∥∞.

This implies that
∆α(u) ≤ 1 + (d−2)∥α∥∞ ≤ d− 1

and, by the triangle inequality,

∆α(u) ≥
1 + (d−2)∥α∥∞

2
≥ d− 1

d
.

For x0 = πα(ei) such that αi = ∥α∥∞, we have ∆α(u) = 1+(d−2)∥α∥∞. For x0 =
1
2
πα(1) =

1
2
(1−dα) and 1 ≤ i ≤ d, the i-th coordinates of πα(ei)−x0 and of x0−

∑
j ̸=i πα(ej)

are 1
2
(1+(d−2)αi). Moreover, the absolute value of the i-th coordinate of x0 −

∑
j∈I ej,

for ∅ ≠ I ⊂ {1, . . . , d}, is smaller than or equal to 1
2
(1 + (d − 2)αi). Thus ∆α(u) =

1
2
(1+(d−2)∥α∥∞). Now taking convex combinations of πα(ei) and

1
2
πα(1) as initial condi-

tion x0, the discrepancy takes all values in the interval
[
1
2
(1+(d−2)∥α∥∞), 1+(d−2)∥α∥∞

]
.

The smallest value in this interval is obtained by α ≈ (1
d
, . . . , 1

d
), so that ∆α(u) ≥ d−1

d
. □

3.3. Tijdeman’s construction. Our aim now is to produce sequences u on a d-letter
alphabet such that x0−πα(p(u[0,n))) ∈ [−C ′, C]d for all n, for given constants C,C ′. In
the previous section (with C = 1, C ′ ≥ (d−1)∥α∥∞, see Remark 3.6 below), the word u
was defined by the sequence of faces met by a half line L, which gave us the fundamental
domain of Figure 4. In order to reduce the discrepancy, we work with different fundamental
domains; see Figure 6 for an illustration. More precisely, we modify the construction in
order to obtain a fundamental domain in [−C ′, C]d for arbitrary C,C ′ with

C,C ′ ≥ 1− 1

d
, C ≤ 1, and C + C ′ ≥ 2− 1 + mini αi

d− 1
,

and we call these sequences Tidjeman sequences; see Definition 3.7 and Proposition 3.8.
In particular, the choice C = C ′ = 1−1+mini αi

2d−2
minimizes max(C,C ′) under the con-

straint C+C ′ ≥ 2−1+minαi

d−1
, given that the other constraints hold when d ≥ 3 because

1−1+mini αi

2d−2
≥ 1−1+1/d

2d−2
≥ 1−1

d
. We will show that these sequences have discrepancy at

most C+C ′; see Proposition 3.10.
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Similarly to hypercubic billiard sequences, we consider the first time that x0+R+α hits
a hyperplane with the given properties, for x0 ∈ 1⊥ in a certain neighbourhood of 0 that
we specify later. We define the word u = (un)n ∈ {1, . . . , d}N as follows. Given u[0,n),
n ≥ 0, we first consider tn,i ∈ R, 1 ≤ i ≤ d, such that

(3.2) x0 + (n+tn,i)α ∈ p(u[0,n)) + Cei + e⊥i .

With xn := x0+nα−p(u[0,n)) ∈ 1⊥, we have

xn + tn,iα ∈ Cei + e⊥i .

Writing xn = (xn,1, . . . , xn,d), we obtain that

(3.3) tn,i =
C − xn,i

αi

(1 ≤ j ≤ d).

We now have to choose the index i that will be the value of un. We do this according to
two criteria.

We first want that

xn+1 = xn +α− eun ∈ [−C ′,∞)d.

The i-th coordinate of xn+1 is xn,i+αi−1 if un = i. Thus we consider only indices i such
that

(3.4) xn,i + αi − 1 ≥ −C ′, i.e., tn,i ≤ 1 +
C + C ′ − 1

αi

.

Remark 3.5. If C ′ ≥ 1− 1
d
, then some i satisfying (3.4) always exists because xn,i+αj−1 <

−C ′ for all i would imply that
∑d

i=1 xn,i < d (1−C ′)− 1 < 0 by the assumption C ′ ≥ 1−1
d
,

contradicting that xn ∈ 1⊥.

The second condition will be to take the index i providing the smallest value of tn,i
fulfilling (3.4). We thus set

(3.5) un = i if tn,i = min{tn,j : 1 ≤ j ≤ d, xn,i + αi − 1 ≥ −C ′}.
When the minimum is attained for several i, we choose e.g. the smallest i. We will see in
Proposition 3.8 that this yields a sequence satisfying xn ∈ [−C ′, C]d for all n.

Remark 3.6. Note that for C = 1, C ′ ≥ (d−1)∥α∥∞, and thus C ′ ≥ 1−1
d
, we obtain the

billiard sequence u (with x0 = 0), by Remark 3.5, together with the fact that we took
tn,i = min{tn,j : 1 ≤ j ≤ d} for the classical billiards. For general C ≥ 0, C ′ ≥ 1−1

d
, the

construction ensures that xn ∈ [−C ′,∞)d for all n ∈ N. Indeed, we have xn+1,un ≥ −C ′

and xn+1,j = xn,j+αj ≥ xn,j for j ̸= un.

Before showing that xn ∈ [−C ′, C]d for all n (see Proposition 3.8), we define Tijdeman’s
sequences in terms of dynamical systems that generate them. For C ≥ 0, C ′ ≥ 1−1

d
, let

Sα,C,C′,i = {(x1, . . . , xd) ∈ 1⊥ ∩ [−C ′,∞)d : xi + αi − 1 ≥ −C ′ and

C−xi

αi
≤ C−xj

αj
for all 1 ≤ j ≤ d such that xj + αj − 1 ≥ −C ′}
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and set

T̂α,C,C′ : 1⊥ ∩ [−C ′,∞)d → 1⊥ ∩ [−C ′,∞)d, x 7→ x+α− ei if x ∈ Sα,C,C′,i,

where we choose the smallest such i in case that x ∈ Sα,C,C′,i ∩ Sα,C,C′,j for some i ̸= j.

Definition 3.7 (Tijdeman parameters and sequences). Let α = (α1, . . . , αd) ∈ (0, 1)d be

a totally irrational frequency vector. Let C ≥ 0, C ′ ≥ 1−1
d
, x0 ∈ 1⊥. If T̂ n

α,C,C′(x0) ∈
[−C ′, C]d for all n ≥ 0, then we call (α, C, C ′,x0) Tijdeman parameters and the sequence

u0u1 · · · such that T̂ n+1
α,C,C′(x0)−T̂ n

α,C,C′(x0) = α−eun a Tijdeman sequence.

The sets Sα,C,C′,i are infinite, and we are looking for bounded natural partitions as in
Definition 2.2, obtained by application of ι. For Tijdeman parameters (α, C, C ′,0), let

Dα,C,C′ = {T̂ n
α,C,C′(0) : n ≥ 0}, Pα,C,C′ = D̊α,C,C′ ,(3.6)

Pα,C,C′,i = P̊α,C,C′ ∩ S̊α,C,C′,i (1 ≤ i ≤ d).(3.7)

Using Proposition 2.9 and that {Sα,C,C′,i : 1 ≤ i ≤ d} forms a partition of 1⊥ ∩ [−C ′,∞)d

(up to the negligible intersections), we will see that {Pα,C,C′,i : 1 ≤ i ≤ d} forms a natural
partition of Pα,C,C′ .

Let us come back to the construction of the sequence u from (3.5). We have tn,i =
C−xn,i

αi

for all n ∈ N, 1 ≤ i ≤ d. Therefore, when xn ∈ Sα,C,C′,i we have un = i, i.e., xn ∈ Sα,C,C′,un ,

and T̂α,C,C′(xn) = xn+1, which implies that xn = T̂ n
α,C,C′(x0), n ∈ N, and u is the coding

of x0 w.r.t. the partition {Sα,C,C′,i : 1 ≤ i ≤ d}. Note that, for x0 = 0, Pα,C,C′,i is the
closure of the set of points nα−p(u[0,n)) with un = i.
We will see with Proposition 3.9 below that Pα,C,C′ is a measurable fundamental domain

of 1⊥/(Zd ∩ 1⊥) admitting the partition Pα,C,C′ =
⋃d

i=1 Pα,C,C′,i. But first let us state the
following key proposition, which provides Tijdeman parameters (see Definition 3.7) and is
inspired by [Tij80, Theorem 1].

Proposition 3.8. Let α = (α1, . . . , αd) ∈ (0, 1)d be a totally irrational frequency vec-

tor. Let C,C ′ ≥ 1−1
d
, C ≤ 1, and C+C ′ ≥ 2−1+mini αi

d−1
. Let T̂α,C,C′ be the map from

Definition 3.7 and x0 ∈ [C−1, C]d ∩ 1⊥. Then T̂ n
α,C,C′(x0) ∈ [−C ′, C]d for all n ∈ N.

Proof. Write T̂ n
α,C,C′(x0) = xn = (xn,1, . . . , xn,d) and let un be such that xn+1 = xn+α−eun .

Suppose that xn /∈ [−C ′, C]d for some n ≥ 1, and let n be minimal with this property.
We have seen above that C ′ ≥ 1−1

d
implies that xn ∈ [−C ′,∞)d, thus there exists i such

that xn,i > C. Then tn,i < 0 and xn,i+αi−1 > C−1 ≥ −C ′, hence also tn,un < 0, i.e.,

(3.8) xn,un > C.

Then the set

W =
{
i ∈ {1, . . . , d} : xn,i < C−1

}
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is not empty since otherwise we would have

d∑
i=1

xn,i > C + (d−1)(C−1) ≥ 0

(using that C ≥ 1−1
d
), contradicting that xn ∈ 1⊥.

Let m < n be maximal such that um ∈ W . Such an m ≥ 0 exists because otherwise we
have xn,i = x0,i + nαi for all i ∈ W , giving the contradiction C−1 ≤ x0,i < xn,i < C−1.
Let

V = {uk : m < k < n}.
Using xm + (n−m)α = xn + p(u[m,n)), we obtain that

xm,um + (n−m)αum = xn,um + 1 < C (since |u[m,n)|um = 1 and um ∈ W ),(3.9)

xm,un + (n−m)αun ≥ xn,un > C (since |u[m,n)|un ≥ 0 and (3.8) holds),(3.10)

xm,i + (n−m)αi ≥ xn,i + 1 ≥ C for all i ∈ V (since |u[m,n)|i ≥ 1 and i /∈ W ).(3.11)

For all i ∈ V ∪ {un}, we have tm,i ≤ n − m < tm,um by (3.9)–(3.11), thus the definition
of um implies that xm,i + αi − 1 < −C ′, hence xm+1,i < 1− C ′. We obtain

xn,un − xm+1,un > C + C ′ − 1, xn,i − xm+1,i > C + C ′ − 2 for all i ∈ V.

In particular, we have n ̸= m+ 1 since C + C ′ ≥ 1, thus

xn,i − xm+1,i = (n−m−1)αi ≥ αi for all i /∈ V.

Using that um /∈ V ∪ {un}, in particular that V \ {un} has at most d−2 elements, and
distinguishing between the cases C + C ′ ≥ 2 and C + C ′ < 2, we obtain that

0 =
d∑

i=1

xn,i −
d∑

i=1

xm+1,i ≥ xn,un − xm+1,un + xn,um − xm+1,um +
∑

i∈V \{un}

(xn,i − xm+1,i)

> C + C ′ − 1 + αum +min
{
0, (d−2)(C+C ′−2)

}
≥ min{C + C ′ − 1, (d−1)(C+C ′−2) + 1 + min

i
αi},

which contradicts the assumptions C+C ′ ≥ 2 (1−1
d
) ≥ 1 and C+C ′ ≥ 2−1+mini αi

d−1
. This

implies that xn ∈ [−C ′, C]d for all n ∈ N. □

We can now conclude with the following two propositions.

Proposition 3.9. Let (α, C, C ′,0) be Tijdeman parameters with C,C ′ ∈
[
1−1+minαi

2d−2
, 1
)
.

Let T̂α,C,C′ be the map from Definition 3.7 and let Pα,C,C′ be defined as in (3.6). Then
Pα,C,C′ is a measurable fundamental domain of 1⊥/(Zd∩1⊥) admitting the natural partition

Pα,C,C′ =
⋃d

i=1 Pα,C,C′,i. The restriction of T̂α,C,C′ to Pα,C,C′ is measurably conjugate to the
translation Tα on Td−1. Moreover, the Pα,C,C′,i are finite unions of convex polytopes with
nonempty interiors, and (α, C, C ′,x0) are Tijdeman parameters for almost all x0 ∈ Pα,C,C′.
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Proof. We use Propositions 2.8 and 2.9 with V = 1⊥, R = V ∩ [−C ′,∞)d, Ri = Si \
∪1≤j<iSj where Si = Sα,C,C′,i, i ∈ {1, . . . , d}, T̂ = T̂α,C,C′ , K = [−C ′, C]d ∩ V and U =
(C−1, 1−C ′)d ∩ V . It is clear that Assumptions (1)–(3) from Section 2.4 hold.
Let us prove that Assumption (4) holds. On the one hand, by Proposition 3.8, Dα,C,C′ ⊂

K when C,C ′ ≥ 1−1
d
, C ≤ 1, and C+C ′ ≥ 2−1+mini αi

d−1
. On the other hand, U ̸= ∅ when

C,C ′ < 1. Hence, Assumption (4) holds when C,C ′ ∈
[
1−1+minαi

2d−2
, 1
)
.

We now prove that Assumption (5) holds. We want to prove that each Ri is is a finite
union of nearly convex sets, with nonempty interiors that are finite intersections of open
half spaces. Consider the sets Qi ⊂ Si, i = 1, . . . , d, defined as

Qi = {(x1, . . . , xd) ∈ R : xi + αi − 1 ≥ −C ′,

C−xi

αi
<

C−xj

αj
for all 1 ≤ j < i such that xj + αj − 1 ≥ −C ′, and

C−xi

αi
≤ C−xj

αj
for all i < j ≤ d such that xj + αj − 1 ≥ −C ′}.

Clearly the sets Q1, . . . , Qd are disjoint. The sets Qi can be decomposed into convex
subsets:

Qi =
⋃

J⊂{1,...,d}, i∈J

Qi,J ,

where
Qi,J = {(x1, . . . , xd) ∈ R : xj + αj − 1 ≥ −C ′ iff j ∈ J,

C−xi

αi
<

C−xj

αj
for all 1 ≤ j < i with j ∈ J , and

C−xi

αi
≤ C−xj

αj
for all i < j ≤ d with j ∈ J }.

Clearly, each Qi,J is a finite intersection of half spaces, open or closed. Hence, each Q̊i,J is
a finite intersection of half open spaces. Thus the sets

Q′
i =

⋃
i∈J⊂{1,...,d}: Q̊i,J ̸=∅

Qi,J

are finite unions of convex polytopes with nonempty interiors that are finite intersections
of open half spaces. If we can show that, for each i, Si ⊂ Q′

i, we are done. Indeed, for each

pair (i, I) such that Q̊i,I ̸= ∅, and each pair (j, J) with j ̸= i and such that Q̊i,I ̸= ∅, the
set Qi,I \Qj,J is a nearly convex set with nonempty interior, because Q̊i,I ⊂ Qi, Q̊j,J ⊂ Qj

and Qi and Qj are disjoint. It follows that Qi,I \ ∪1≤j<iQ
′
i is nearly convex with interior

Q̊i,I , which in turn implies that Assumption (5) holds for Ri.

So it remains to show that Si ⊂ Q′
i. Let us show first that S̊i ⊂ Qi. By contradiction,

suppose there exists x ∈ S̊i \ Qi. By definition of Si and Qi, there exists j < i such that

xj + αj − 1 ≥ −C ′ and C−xi

αi
=

C−xj

αj
. Moreover, since x ∈ S̊i, for t > 0 small enough,

yt = x−tei+tej is in Si. But the coordinates yt,k of y satisfy yt,j+αj−1 ≥ xj+αj−1 ≥ −C ′

and
C−yt,i

αi
= C−xi+t

αi
>

C−xj−t

αj
=

C−yt,j
αi

a contradiction.
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Next, let us show that S̊i ⊂ Q′
i. Observe first, that if for some pair (i, J), Q̊i,J = ∅,

then Qi,J is contained in a hyperplane of V and therefore Q̊i,J = ∅. By contradiction,

suppose that there exists x ∈ S̊i \ Q′
i. Since Q′

i is closed, there exists r > 0 such that

B(x, r) ⊂ S̊i \Q′
i. Now S̊i ⊂ Qi, so that B(x, r) ⊂ Qi \Q′

i which is impossible for the Qi,J

that are missing in Q′
i have empty interiors.

Finally, let us show that Si ⊂ S̊i, which will finish the proof because it implies Si ⊂
Si = S̊i ⊂ Q′

i = Q′
i. We can supppose i = d. Let x ∈ Sd and let I(x) = {j < d :

xj + αj − 1 ≥ −C ′}. For all j ∈ I(x),
C−xj

αj
≥ C−

∑
i<d xi

αd
. Let yt = (yt,1, . . . , yt,d) =

x− t
∑

j∈I(x) ej + t card I(x)ed. For t > 0, I(yt) ⊂ I(x) and for all j ∈ I(x), one has

C − yt,j
αj

>
C − xj

αj

≥ C − xd

αd

>
C − xd − t card I(x)

αd

.

Therefore, for all t > 0 such that yt,j > −C ′ for all j ∈ I(x), the point yt is in Sd which

in turn implies that yt ∈ S̊d for all t > 0 small enough because all the inequalities are
strict. □

The following result on the discrepancy of Tijdeman sequences can be considered as a
counterpart of Proposition 3.2. It provides suitable parameters that yield fairly distributed
sequences.

Proposition 3.10. Let u be a Tijdeman sequence with parameters (α, C, C ′,x0), C,C
′ ∈[

1−1+minαi

2d−2
, 1
)
. Then the sequence u is eventually a natural coding of the dynamical system

(Pα,C,C′ , T̂α,C,C′). Moreover, for the dynamical system (Pα,C,C′ , T̂α,C,C′) and for any x0 ∈
Pα,C,C′, the discrepancy of the coding u of x0 satisfies

∆α(u) ≤ C + C ′,

and, for x0 = 0, the discrepancy satisfies

∆α(u) ≤ max{C,C ′}.
Hence, if C = C ′ = 1−1+mini αi

2d−2
and x0 = 0, then

∆α(u) ≤ 1− 1 + mini αi

2d− 2
< Dd.

Proof. If we start from some x0 /∈ Pα,C,C′ , then by minimality T̂ n
α,C,C′(x0) ∈ (C−1, 1−C ′)d∩

1⊥ ⊂ Pα,C,C′ for some n ≥ 1. Next, by Lemma 4.4, for all n large enough, T̂α,C,C′(x0) is
in none of the boundaries of the Pα,C,C′,i because these boundaries are included in a finite
union of subspaces of dimension d−2. Therefore, the sequence u is eventually a natural
coding of the dynamical system (Pα,C,C′ , T̂α,C,C′). We conclude about the discrepancy as
in (3.1) in the proof of Proposition 3.2. □

Figure 6 shows a case where the sets Pα,C,C′ are polygons that are more complicated
than the sets Eα,i (which correspond to the case of the hypercubic billiard sequences such
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as developed in Section 3.2). For large C ′, we would be in the (shifted) billiard case, with
Pα,C,C′ = Eα,i−(1−C)πα(1). However, for the parameters of Figure 6, we do not have
Eα−(1−C)πα(1) ⊂ [−C ′, C]d. Here, the leftmost part of Eα,1 − (1−C)πα(1) is not in
Sα,C,C′,1 but in Sα,C,C′,2 ∪ Sα,C,C′,3. (The figure depicts the ι-images of the sets.)

P1

P1+α−e1

P2

P2+α−e2

P3

P3+α−e3

−C ′ C

−C ′

C

−C ′ C

−C ′

C

Figure 6. The polygons Pi = Pα,C,C′,i for α ≈ (0.5, 0.3, 0.2), C = C ′ = 3/4.

P1

P1+α−e1
P2

P2+α−e2
P3

P3+α−e3

−C ′ C

−C ′

C

−C ′ C

−C ′

C

Figure 7. The parallelograms Pi = Pα,C,C′,i for d = 3, α ≈ (0.5, 0.45, 0.05),
C = 3/4, C ′ = 9/10.
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P1

P1+α−e1
P2

P2+α−e2P3

P3+α−e3

−C ′ C

−C ′

C

−C ′ C

−C ′

C

Figure 8. For d = 3, α ≈ (0.5, 0.45, 0.05), C = C ′ = 3/4, the Pi = Pα,C,C′,i

are unions of polygons.

4. Proof of Theorem 1.1

Let u be a generalized Tijdeman sequence with parameters (α, C, C ′,x0) where α =
(αi)1≤i≤d is a totally irrational frequency vector. Then u is eventually the bounded natural
coding of Tα via a partition of a measurable fundamental domain of Td−1 into d finite
unions of convex polytopes, according to Definition 2.3 and Propositions 3.9 and 3.10.
The fact that u is a bounded natural coding implies the dynamical properties stated in
Theorem 1.1. Indeed, the shift (X,S) is minimal, uniquely ergodic, and has purely discrete
spectrum according to [Che09, Theorems A and B] (for d = 3) and [BST23, Lemma 5.12]
for d > 3.

It remains to prove the statement on the factor complexity. The proof runs from Sec-
tion 4.1 to 4.4. The general strategy is described in Section 4.1. The upper bound is
provided in Section 4.2 (see Proposition 4.2), and the lower bound is based on Theo-
rem 4.3 (see Section 4.3). The proof of the lower bound lastly requires some assumption
stated in Theorem 4.3, which is handled in Section 4.4.

Note that the result on the factor complexity is classical in the setting of cut and project
schemes with a polytopal window; see e.g. [Che09, Jul10, KW21]. More precisely, convex
polytopal windows are considered in [KW21] and [KW22, Theorem 6.1]; see also [Wal24]
and the papers [Che09, Jul10] dealing with dimension d = 3. We provide here a proof that
works in any dimension d ≥ 2, and with finite unions of convex polytopes.

4.1. General strategy for estimating the factor complexity. In this and the two
subsequent sections, we work with maps acting on the d-dimensional torus for the sake of
simplicity in the notation, although we have considered so far the (d−1)-dimensional torus
when handling an alphabet of size d.
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Let Tα be the translation defined by Tα : x ∈ Td 7→ x+α ∈ Td assumed to be minimal,
i.e., the coordinates of (1,α) are rationally independent. Suppose that

Td = W1 ∪W2 ∪ · · · ∪Wk,

where the sets Wi, i = 1, . . . , k, are closed sets with disjoint interiors. We want to esti-
mate the complexity of the coding of a trajectory (T n

α(x))n with respect to the partition
{W1,W2, . . . ,Wk}.
Let F =

⋃k
i=1 ∂Wi denote the union of the boundaries of the Wi. For a positive integer n,

let Fn denote the set of connected components of Td \
⋃n

i=0 T
−i
α (F ).

The main observation is that if x and y are in the same connected component U ∈ Fn

then, for j = 1, . . . , n, the two points T j
α(x) and T j

α(y) are in the same Wi and even in
the interior of the same Wi. Indeed, let γ : [0, 1] → U be a continuous path going from x
to y. If for some j ∈ {0, . . . , n}, T j

α(x) ∈ Wi and T j
α(y) ̸∈ Wi, then the path T j

α ◦ γ would
have to intersect the boundary of Wi, but this impossible for, by definition of F , U does
not meet T−j

α (∂Wi).
It follows that if u = (un)n∈N is the coding sequence of a point x0 ∈ Td such that, for all

n ∈ N, T n(x0) ∈ W̊un , then the factor complexity of the sequence u = (un)n∈N satisfies

(4.1) pu(n+1) ≤ cardFn for all n ∈ N.

When the sets Wi are finite unions of convex polytopes, using translates of the hyperplanes
supporting the facets of the convex polytopes, it is easy to bound the above cardFn; this
is the object of Proposition 4.2 below.

4.2. Upper bound for the factor complexity. We will need the following lemma,
whose proof is a double induction on the dimension and n, along with a use of the formula(
n
p

)
+
(

n
p−1

)
=

(
n+1
p

)
.

Lemma 4.1. [BY98, Theorem 14.2.5] If H1, . . . , Hn are n affine hyperplanes in Rd, then
Rd \ (H1 ∪ · · · ∪ Hn) has at most

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
d

)
connected components. Hence the

number of connected components of the complement of the union of n hyperplanes in Rd

is O(nd).

Call πTd : Rd → Td the projection x ∈ Rd 7→ x+Zd ∈ Td. Fix a norm on Rd and denote
by B(x, r) the open ball of center x ∈ Rd and radius r associated with this norm.

Proposition 4.2. Let α ∈ Rd and let Tα : Td → Td be the translation defined by Tα(x) =
x+α ∈ Td. Suppose that

Td = W1 ∪W2 ∪ · · · ∪Wk,

where the sets Wi, i = 1, . . . , k have disjoint interiors and are the projections of finite
unions of (bounded) convex polytopes.

Then there exists a constant C > 0 such that, when u = (un)n∈N is the coding sequence of

a point x0 ∈ Td satisfying T n(x0) ∈ W̊un for all n ∈ N, the factor complexity of u satisfies

pu(n) ≤ Cnd for all n ∈ N.
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Proof. We follow the idea of the previous section by bounding above the number of con-
nected components of Td \

⋃n
j=0 T

−j
α (F ), where, as previously, F =

⋃k
i=1 ∂Wi. To achieve

this goal, we use a finite union of hyperplanes whose projection contains F . Indeed, by
assumption, for each i, Wi =

⋃
j∈Ji πTd(Ci,j), where Ji is a finite set and the Ci,j are convex

polytopes. Let D =
⋃k

i=1

⋃
j∈Ji Ci,j. Since ∂Wi ⊂

⋃
j∈Ji πTd(∂Ci,j) for each i, there exists

a finite set H of affine hyperplanes such that F =
⋃k

i=1 ∂Wi ⊂ πTd(
⋃

H∈H H ∩ D).
Let B(0, R) be a ball containing D; note that D is bounded as a finite union of convex

polytopes. There exists a constant N ∈ N, depending only on the radius R and on the
dimension d, such that, for all a ∈ Rd, there exist at most N vectors q ∈ Zd such that
(B(a, R)+q)∩ [0, 1]d ̸= ∅. It follows that, for any integer j and for any hyperplane H ∈ H,
the set EH,j of vectors q ∈ Zd such that (H ∩D − jα+ q) ∩ [0, 1]d ̸= ∅, has cardinality at
most N . By definition of the set EH,j, we have

T−j
α (πTd(H ∩ D)) = πTd

( ⋃
q∈EH,j

(H ∩ D − jα+ q) ∩ [0, 1]d
)
.

It follows that, for any positive integer n,
n⋃

j=0

T−j
α (F ) ⊂ πTd

( n⋃
j=0

⋃
H∈H

⋃
q∈EH,j

(H ∩ D − jα+ q) ∩ [0, 1]d
)

⊂ πTd

( n⋃
j=0

⋃
H∈H

⋃
q∈EH,j

(H − jα+ q) ∩ [0, 1]d
)
.

Let Cn be the set of connected components of

Ω = (0, 1)d \
n⋃

j=0

⋃
H∈H

⋃
q∈EH,j

(H − jα+ q).

We recall that Fn stands for the set of connected components of Td \
⋃n

j=0 T
−j
α (F ). On

the one hand, if V ∈ Cn, then πTd(V ) does not intersect
⋃n

j=0 T
−j
α (F ), hence πTd(V ) is

contained in some U ∈ Fn. On the other hand, since πTd(Ω) is dense in Td, each U ∈ Fn

intersects at least one πTd(V ), where V ∈ Cn. It follows that the map which associates
with each V ∈ Cn the unique U ∈ Fn containing πTd(V ) is surjective; hence

cardFn ≤ card Cn.
By (4.1), if card Cn ≤ Cnd for some constant C that does not depend on n, the proposition
holds. Now, the set Cn is included in the set of connected components of Rd minus the
union of the following sets of hyperplanes:

• H − jα+ q with H ∈ H, j ∈ {0, . . . , n}, q ∈ EH,j,

• {(x1, . . . , xd) ∈ Rd : xi = c}, i = 1, . . . , d, c = 0, 1.

The number of these hyperplanes is bounded above by

2d+ (n+1)N cardH ≤ C1n
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for some constant C1 that does not depend on n. The proposition is now a consequence of
Lemma 4.1. □

4.3. Lower bound for the factor complexity. In Section 4.2, we obtained the upper
bound pu(n) = O(nd). Obtaining a lower bound is more difficult. Roughly, the idea is to
find a subset Gn of Fn, the set of connected components of Td \

⋃n
i=0 T

−i
α (F ), such that, if

x and y are in two different elements of Gn, then there is at least one j ∈ {1, . . . , n} such
that T j

α(x) and T j
α(y) are not in the same Wi. Note that the existence statement for the

linear forms f1, . . . , fd below will be handled in Section 4.4.

Theorem 4.3. Let Tα be the translation Tα : x ∈ Td 7→ x+α ∈ Td assumed to be minimal.
Suppose that

Td = W1 ∪W2 ∪ · · · ∪Wk,

where the sets Wi, i = 1, . . . , k, are closed sets with disjoint interiors. Assume that there
are d independent linear forms f1, . . . , fd on Rd, d points a1, . . . , ad ∈ Rd and r > 0 such
that, for each i ∈ {1, . . . , d},

πTd(B(ai, r) ∩ {fi < fi(ai)}) ⊂ Wb(i) and πTd(B(ai, r) ∩ {fi > fi(ai)}) ⊂ Wc(i),

where b(i) ̸= c(i) are in {1, . . . , k}.
Then there exists c > 0 such that, if u = (un)n∈N is the coding sequence of a point x0 ∈ Td

with T n
α(x0) ∈ W̊un for all n ∈ N, the factor complexity of the sequence u = (un)n∈N satisfies

pu(n) ≥ cnd for all n ∈ N.

The proof of the above theorem uses the following lemma.

Lemma 4.4. Let α ∈ Rd with (1,α) having rationally independent coordinates. Let H ⊂
Rd be an affine hyperplane and let K ⊂ Rd be a bounded subset. Then there exists a positive
integer Q, depending only on K and the direction of H, such that, for all a ∈ Rd, there
are at most Q integers q such that a+qα ∈ K ∩H + Zd.

Proof. It is enough to prove that there exists a positive integer Q depending only on K
and the direction of H such that, for all a ∈ Rd and all m ∈ Z, there exists at most one
k ∈ Z satisfying a+(m+kQ)α ∈ K ∩H + Zd.
Suppose first that a = 0 and that H is a vector hyperplane, i.e., 0 ∈ H. Let HQ be the

vector space generated by H ∩ Qd and let f be a nonzero rational linear form such that
HQ ⊂ ker f . Since α is totally irrational, we have, for all k ∈ Z \ {0} and all q ∈ Zd,
f(kα+q) ̸= 0 and hence kα+q /∈ HQ. Furthermore, if kα+q ∈ H and if kα+q′ ∈ H for
some other point q′ ∈ Zd, then q−q′ ∈ H ∩Qd ⊂ HQ.

Let q0 be the smallest positive integer such that q0α ∈ H+Zd, if any. If there is no
such integer q0 > 0, then we are done because q = 0 will be the only integer such that
qα ∈ H+Zd. Let q0 be a point in Zd such that q0α+q0 ∈ H.

Let r > 0 be such that K ⊂ B(0, r). Set k0 = ⌈2r
r0
⌉+1, where r0 = d(q0α+q0, HQ) > 0.

Set Q = k0q0. We want to show that each class modulo Q contains at most one integer m
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such that mα ∈ B(0, r) ∩ H + Zd. Let m ∈ Z and qm ∈ Zd be such that mα+qm ∈
B(0, r) ∩H. If k ∈ Z \ {0} and q ∈ Zd are such that (m+kQ)α+q ∈ H, then

q− qm − kk0q0 = (m+kQ)α+ q− (mα+qm)− (kk0q0α+kk0q0) ∈ HQ.

Therefore, for any u ∈ HQ, we have

∥(m+kQ)α+ q− u∥ = ∥(kk0q0α+kk0q0+q−qm−kk0q0)− u+ (mα+qm)∥
≥ ∥kk0q0α+ kk0q0 + (q−qm−kk0q0)− u∥ − ∥mα+qm∥
≥ d(kk0q0α+kk0q0, HQ)− ∥mα+qm∥.

Notice that, for all t ∈ R and a ∈ Rd, d(ta, HQ) = |t| d(a, HQ). Therefore,

∥(m+kQ)α+ q− u∥ ≥ |kk0| d(q0α+q0, HQ)− ∥mα+qm∥
= |k|k0r0 − r ≥ |k|

(
2r
r0
+1

)
r0 − r > r.

It follows that d((m+kQ)α+q,0) ≥ d((m+kQ)α+q, HQ) > r, which in turn implies that
(m+kQ)α+q /∈ B(0, r).

Suppose now thatH is an affine hyperplane. Let a ∈ Rd. If there is no pair (q,q) ∈ Z×Zd

such that a+qα+q ∈ K ∩ H, then we are done. Otherwise fix such a pair (q1,q1). We
are going to use the first step with the bounded subset K ′ = K−K and the vector space−→
H = H−(a+q1α+q1), which is the direction of H. By the first step, there exists an
integer Q such that for any integer m′ there is at most one integer k such that (m′+kQ)α ∈
K ′ ∩

−→
H + Zd. Now, for any m and k, if a+(m+kQ)α ∈ K ∩H + Zd, then

(m−q1+kQ)α ∈ K ∩H − (a+q1α+q1) + q1 + Zd,

and, since K ∩H − (a+q1α+q1) ⊂ K ′ ∩
−→
H , we have

(m′+kQ)α ∈ K ′ ∩
−→
H + Zd,

with m′ = m−q1. Therefore, given m ∈ Z, there exists at most one integer k such that
a+(m+kQ)α ∈ K ∩H + Zd. □

Proof of Theorem 4.3. Let {e1, . . . , ed} ⊂ Rd be the dual basis of the basis {f1, . . . , fd} of
linear forms. Let ∥x∥ = maxi=1,...,d |fi(x)| denote the supremum norm associated with the
basis {e1, . . . , ed}. By reducing the positive real number r of the assumption on the Wi,
we can suppose that the balls B(·, ·) are associated with the supremum norm ∥ · ∥. For
i = 1, . . . , d, set

Ui = {y ∈ Rd : ∥y∥ < r
2
, fi(y) > 0}

and, for n ∈ N,
Ji,n =

{
p ∈ {0, . . . , n} : T−p

α (πTd(ai)) ∈ πTd(Ui)
}
.

Since the translation Tα is uniquely ergodic (by assumption on α), one has by ergodicity
limn→∞

1
n
card Ji,n = 2c1, where 2c1 is the Lebesgue measure of πTd(Ui). Thus there exists

n0 ∈ N such that, for all n ≥ n0 and all i ∈ {1, . . . , d},
card Ji,n ≥ c1n



A DYNAMICAL VIEW ON THE CHAIRMAN ASSIGNMENT PROBLEM 33

Fix now n ≥ n0. For each p ∈ Ji,n, let qi,p ∈ Zd be such that ai−pα+qi,p ∈ Ui. Making
use of Lemma 4.4 with the hyperplanes Hi,p = {x ∈ Rd : fi(x) = fi(ai−pα+qi,p)} and the
bounded sets Ki,p = Ui, we see that, for each i ∈ {1, . . . , d}, there exists Qi ∈ N such that,
for each p ∈ Ji,n, there are at most Qi integers q ∈ Ji,n with ai−qα ∈ Hi,p ∩ Ui + Zd. Set
Q = max{Q1, . . . , Qd}.
Observe that, if p, q ∈ Ji,n are such that fi(ai−pα+qi,p) = fi(ai−qα+qi,q), then

ai−qα+qi,q is both in Ui and Hi,p, hence ai−qα ∈ Hi,p ∩ Ui + Zd. Therefore, for each
i ∈ {1, . . . , d}, we can find a subset J ′

i,n ⊂ Ji,n, such that

• card J ′
i,n ≥ 1

Q
c1n = c2n,

• fi(ai−pα+qi,p) ̸= fi(ai−qα+qi,q) for all p, q ∈ J ′
i,n with p ̸= q.

Set
U+ = {y ∈ Rd : ∥y∥ < r

2
, fi(y) > 0, i = 1, . . . , d}

and, for i ∈ {1, . . . , d} and p ∈ J ′
i,n, set

R+
i,p = U+ ∩B(ai−pα+qi,p, r) ∩ {y : fi(y) > fi(ai−pα+qi,p)},

R−
i,p = U+ ∩B(ai−pα+qi,p, r) ∩ {y : fi(y) < fi(ai−pα+qi,p)}.

Let p ∈ J ′
i,n. Since ai−pα+qi,p ∈ Ui ⊂ B(0, 1

2
r), the set U+ is included in the ball

B(ai−pα+qi,p, r). Therefore,

R+
i,p = U+ ∩ {y : fi(y) > fi(ai−pα+qi,p)},

R−
i,p = U+ ∩ {y : fi(y) < fi(ai−pα+qi,p)}.

Furthermore, if y ∈ R+
i,p, then, by definition of R+

i,p, y = ai−pα+qi,p+x with x ∈ B(0, r
2
)

and fi(x) > 0, hence

y+pα−qi,p = ai+x ∈ ai +B(0, r
2
) ∩ {z : fi(z) > 0} = B(ai,

r
2
) ∩ {fi > f(ai)},

and, since by assumption πTd(B(ai,
r
2
) ∩ {f > f(ai)}) ⊂ Wc(i),

T p
α(πTd(y)) ∈ Wc(i).

In the same way, if y ∈ R−
i,p, then

T p
α(πTd(y)) ∈ Wb(i).

For each i ∈ {1, . . . , d}, the real numbers ki,p = fi(ai−pα+qi,p), p ∈ J ′
i,n, are pairwise

distinct and are in the interval (0, r
2
) by definition of J ′

i,n. It follows that the “coordinate”
hyperplanes

{y : fi(y) = ki,p} =

{ d∑
j=1

yiei ∈ Rd : yi = ki,p

}
,

for i ∈ {1, . . . , d} and p ∈ J ′
i,n, divide U+ into a set E of nonempty coordinate paral-

lelepipeds with cardinality
∏d

i=1(card J
′
i,n+1) ≥ (c2n)

d. Suppose that y and y′ are in two
such distinct coordinate parallelepipeds. This means that there exist i ∈ {1, . . . , d} and
p ∈ J ′

i,n such that fi(y) > ki,p > fi(y
′), which implies that y ∈ R+

i,p and y′ ∈ R−
i,p, therefore

T p
α(πTd(y)) ∈ Wc(i) and T p

α(πTd(y′) ∈ Wb(i). Since, for each parallelepiped P ∈ E, there
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exists a nonnegative integer mP such that TmP
α (x0) ∈ πTd(P), the factors umP · · ·umP+n,

P ∈ E, of the sequence u encoding x0 are pairwise distinct. This implies that

pu(n+1) ≥ (c2n)
d. □

4.4. End of the proof of Theorem 1.1. We now want to use Theorem 4.3 to bound
below the complexity. It remains to prove the existence statement for the linear forms
f1, · · · , fd from Theorem 4.3.

For each i ∈ {1, . . . , d}, call Wi = πTd−1(Pi) the projection of Pi in the torus. Given
i ∈ {1, . . . , d}, we now describe the boundary of Wi. Since each Pi is a finite union of
convex polytopes and since π−1

Td−1(Wi) =
⋃

x∈Zd−1(x+Pi), the set π−1
Td−1(Wi) is locally a

finite union of bounded convex polytopes. Given a nonzero linear form f on Rd−1 and a
real number c, denote

Hf,c = {q ∈ Rd−1 : f(q) = c}
the hyperplane defined by f and c. When it is nonempty, we call the relative interior of
(−1, 1)d−1 ∩ π−1

Td−1(∂Wi) ∩Hf,c a facet of Wi associated with f and c.

Consider the setW ∗ of nonzero linear forms f on Rd−1 such that there exist i ∈ {1, . . . , d}
and c ∈ R such that (−1, 1)d−1 ∩ π−1

Td−1(∂Wi)∩Hf,c has nonempty interior relatively to the
hyperplane Hf,c.

Thanks to the following lemma whose proof is given below, each ∂Wi is the union of the
projections of the closures of the facets of Wi. Observe that each Pi is a finite union of
convex polytopes with nonempty interiors because Pi is the closure of its interior.

Lemma 4.5. Let K ⊂ Rd−1 be a finite union of convex polytopes with nonempty interiors.
Then, for any x ∈ ∂K, there exist a linear form f and c ∈ R such that Hf,c ∩ ∂K has
nonempty interior relative to Hf,c and such that x is in the closure of this relative interior.

Moreover, there are only finitely many hyperplanes Hf,c such that the intersection
(−1, 1)d−1 ∩ π−1

Td−1(∂Wj) ∩Hf,c has nonempty interior.
Let U be a facet of some Wi. Since πTd−1(U) is included in the boundary of

⋃
j ̸=i Wj,

the closures of the facets of the Wj, j ̸= i, cover U , and, since there are only finitely many
such facets, there exist j ̸= i and a facet V of Wj such that V ∩ U ̸= ∅. Since Wi and Wj

have disjoint interiors, the facets U and V must be defined by the same hyperplane. It
follows that, for each f ∈ W ∗, there exist a ∈ Rd−1, i ̸= j in {1, . . . , d} and r > 0 such that

πTd−1(B(a, r) ∩ {f < f(a)}) ⊂ Wi and πTd−1(B(a, r) ∩ {f > f(a)}) ⊂ Wj.

Thus, to use Theorem 4.3, we only have to prove that the linear forms f in W ∗ generate
the vector space of all linear forms on Rd−1. Suppose on the contrary that W ∗ does
not generate the vector space of all linear forms. With this assumption, the intersection⋂

f∈W ∗ ker f contains a nonzero vector v. Consider the set H of all hyperplanes Hf,c

associated with a facet of one of the Wj, and let G =
⋃

H∈H H+Zd−1+Zα. Since G is
a countable union of hyperplanes, Rd−1 \ G is nonempty. Moreover by definition of G,
if a /∈ G, then (a+Rv) ∩ G = ∅, therefore πTd−1(a+Rv) does not meet πTd−1(G), which

in turn implies that πTd−1(a+Rv) does not meet
⋃

n∈Z T
n
α(
⋃d

j=1 ∂Wj). It follows that, if
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x ∈ Td−1 \ πTd−1(G), then all the points in x+Rv have the same coding sequence, which
contradicts Remark 2.5.

Proof of Lemma 4.5. LetK = K1∪· · ·∪Kn ⊂ Rd−1 be finite union of convex polytopes and
let x ∈ ∂K. Let F be the set of closures of the facets of the convex polytopes K1, . . . , Kn,
and let Fx be the set of F ∈ F that contains x. The facets in Fx are defined by finitely
many hyperplanes, H1, . . . , HN . Let r = 1

2
d(x,∪F ) where the union is over all the facets

F ∈ F \ Fx. The set

B(x, r) \ (H1 ∪ · · · ∪HN)

is finite union of open truncated polyhedral cones of apex x. Each of these cones is
contained either in Rd−1 \K or in K because these cones intersect none of the boundaries
of the Ki. It follows that one cone contained in K and one cone contained in K share a
common facet. This facet is contained in a facet of K and its closure contains x. □

5. Additional comments

By definition, Tijdeman sequences with parameters C = C ′ = 1− 1
2d−2

are fairly dis-

tributed, i.e., ∆α(u) ≤ 1− 1
2d−2

. In the case d = 2, fairly distributed sequences and Tijde-
man sequences coincide, and they are Sturmian sequences; see Remark 3.4. Moreover we
have seen in Remark 3.3 that some hypercubic billiard sequences are also fairly distributed
(and they are also Tijdeman sequences by Remark 3.6). However, we do not expect all
fairly distributed sequences to be Tijdeman sequences.

The present study raises the following natural questions.

• What happens when we consider not only a notion of discrepancy based on occur-
rences of letters but based on occurrences of factors?

• What happens when the frequency vector α has rationally dependent coordinates,
and even when all the entries of α are rational?

• Are there finite sequences with discrepancy smaller than or equal to 1− 1
2d−2

that
cannot be prolonged into a fairly distributed sequence?

We turn to questions related to the factor complexity function pu(n). If u is a sym-
bolic coding of a piecewise translation map associated with a minimal translation on the
torus Td−1, then it is shown in [BB13] that pu(n) ≥ (d−1)n+1 for each n. There exist
sequences u having a bounded discrepancy function ∆α(u) and having also a factor com-
plexity of smaller order than Tjideman sequences; they even have linear factor complexity
whereas Tijdeman sequences have factor complexity of order d−1. However, the price to
pay when reducing factor complexity seems to yield an increase of the discrepancy. More
precisely, a construction of sequences having both finite discrepancy and linear factor com-
plexity in dimension d = 3 for a.e. α is provided in [BST23] with constructions based
on the Cassaigne–Selmer multidimensional continued fraction algorithm. These symbolic
codings thus enjoy the striking properties of Sturmian sequences combining linear factor
complexity and good local discrepancy properties. But the corresponding fundamental
domains have fractal boundary. They are obtained as so-called Rauzy fractals which are



36 V. BERTHÉ, O. CARTON, N. CHEVALLIER, W. STEINER, AND R. YASSAWI

known to provide suitable and effective windows for cut and project schemes as well as
fundamental domains for toral translations. We end with the following questions.

• When d ≥ 3, what is the lowest bound for ∆α(u) when we restrict to sequences u
with linear factor complexity?

• Does the following hold for α a totally irrational frequency vector: If u is such that
∆α(u) ≤ Dd, then there exists Cu > 0 such that pu(n) ≥ Cun

d−1 for all n (where d
is the size of the alphabet).
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