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Animal collective behavior is often modeled with self-propelled particles, assuming each individual
has “omniscient” knowledge of its neighbors. Yet, neighbors may be hidden from view and we do
not know the effect of this information loss. To address this question, we propose a visual model of
collective behavior where each particle moves according to bio-plausible visual cues, in particular the
optic flow. This visual model successfully reproduces three classical collective behaviors: swarming,
schooling, and milling. This model offers a potential solution for controlling artificial swarms visually.

I. INTRODUCTION

Collective animal behavior is a widespread phe-
nomenon in nature, ranging from the mesmerizing move-
ments of starling murmurations to the coordinated mo-
tion of cattle herds [1–4]. These collective behaviors are
commonly modeled with self-propelled particles: individ-
uals with an intrinsic speed orient themselves based on
a set of rules, alignment, attraction, and avoidance [5–
8]. These “3A” rules have been successful in reproducing
different collective behaviors, such as swarming (no orien-
tational order), schooling (high orientational order), and
milling (the group coordinately swirls in a circular pat-
tern) [9–12]. Furthermore, numerous studies used these
rules to replicate some of these phases on artificial robotic
swarms [13–15].

In self-propelled particle (SPP) models , the rules of
attraction, alignment, and avoidance are typically ap-
plied with the simplifying assumption that each individ-
ual possess idealized senses, is ”omniscient” and gauges
perfectly the position, distance, orientation, and velocity
of its neighbors [16, 17]. However, this assumption may
not hold in practice, especially when some neighboring
individuals are hidden from view [18–22].

The causal link between visual cues and collective be-
havior has been shown through several vision-based bi-
ological models [23–26]. As a result, different ways of
incorporating vision in SPP models have been suggested.
The most widespread approach consists of using vision
to filter information [27, 28]. One of these models sug-
gested that flocks of starlings adjust their density to reach
a state of “marginal opacity” [29]. However, this density
adjustment does not seem to be widespread, as certain
animals such as fish can form opaque schools [7, 30].

In a recent study, Bastien and Romanczuk proposed a
model of collective behavior based purely on vision capa-
ble of reproducing most of the collective behaviors [31].
Their model simulates each individual’s response to a
projection of the visual field, rather than relying on omni-
scient information. However, the portrayed milling phase
is uncoordinated, meaning that the particles turn in both
directions in the same swirl. And, while they claim to use
the simplest possible equations of movement that satisfy

fundamental symmetries, their model involves six param-
eters that are hard to relate to the classical 3A rules. In
addition, four terms of their model involve spatial and
temporal derivatives that would use important comput-
ing resources. Instead, we propose to use bio-plausible
visual cues that can be measured directly by a visual
sensor, i.e. the optic flow and the retinal position.

Optic flow refers to the apparent angular velocity of ob-
jects in the visual field due to the relative motion between
the observer and its surroundings. Numerous animal
species perceive and use optic flow for a variety of tasks.
Insects use it to navigate in crowded settings [32], evade
ground obstacles, and control their landing [33]. Fish use
it for navigation [34], and birds use it during takeoff [35].
Optic flow is ubiquitous in nature. It involves special-
ized neurons, well-identified in invertebrates, which have
inspired bio-inspired sensors dedicated to optic flow [36–
39]. These visual sensors can provide panoramic optic
flow sensing [37, 38] and allows for direct measurement
and on-board panoramic use of this visual cue [40, 41].

In this article, we propose a non-stereoscopic vision-
based model of collective behavior, inspired by animal
vision. This model is intended to be implementable on
autonomous robots equipped with visual sensors, i.e. the
robots do not need to communicate with a central com-
mand or/and to know their neighbors’ relative coordi-
nates, their relative positions between each other or to
be georeferenced. Our model aims at bridging the gap
between traditional SPP models that rely on omniscient
information and biomimetic visual approaches.

II. MODEL

We consider a system of N self-propelled particles in
two dimensions. Each particle is a circular object with
radius a, moving with a constant speed U . The po-
sition of the ith particle is noted xi and its direction
ei = [cos θi, sin θi], with θi its heading [Fig. 1(a)].

We model the interactions between particles using
changes in their angular velocity associated with attrac-
tion, alignment, and noise. Specifically, the equations of
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FIG. 1. Notations used and principle of the visual cues.
(a) The particle i is located in xi and θi is its heading. θij
is the retinal position of particle j for the i-th particle. (b)
The angle ϕ is the line of sight with respect to the particle’s
heading. The vector Vij = U(ej − ei) is the relative velocity
of particle j perceived by i. It can be decomposed into radial
and azimuthal components, Vir and Viϕ. (c) Point of view of
the particle i, the arrows represent the optic flow generated by
the relative angular velocity of each particle. (d) The visual
field Vi(φ) is a binary representation of (c). It is formed
of a set of “shades”. (e) The function Ri(ϕ) represents the
estimated distance associated to shades, assuming they are
associated with a single individual of radius a. (f) Optic flow
Oi(ϕ) associated with the apparent angular velocity of the
shade edges. (g) Optic flow divergence Di(ϕ).

motion can be written as follows

ẋi = Uei, (1a)

θ̇i = k⊙ ω⊙ + k∥ ω∥ + kη η, (1b)

where dots denote temporal derivatives and η(t) is a stan-
dard Wiener process representing rotational noise. The
functions ω⊙ and ω∥ are O(1) functions representing at-
traction and alignment. The parameters k⊙, k∥, kη con-
trol the strength of attraction, alignment, and noise. For
simplicity, we did not include an avoidance rule, as it
is not a required rule to reproduce collective behaviors
[2, 12, 42].

We begin by introducing an omniscient model that will
serve as a reference. This model is inspired by a data-

driven fish model [43, 44], with the difference that each
particle interacts with all the others. The attraction and
alignment terms are given by

ωomni.
⊙ =

〈
N∑
j=1

∥xj − xi∥ sin (θij)bϵ(θij)

〉
, (2a)

ωomni.
∥ =

〈
N∑
j=1

ei × ej
∥xj − xi∥2

bϵ(θij) .

〉
, (2b)

where bϵ(ϕ) = 1+ϵ cosϕ models the blind angle (See Also
Fig. S1, [45]). When ϵ = 0, bϵ is isotropic; when ϵ = 1,
the particle cannot see behind itself [45]. The brackets
denote a normalization defined as〈∑

j

f(j) sin θj

〉
=
∑
j

f(j) sin θj

/∑
j

|f(j)|. (3)

To model visual perception, we assume that each par-
ticle senses a visual field Vi(ϕ), where ϕ represents the
angle between the particle’s heading and the line of sight
[Fig. 1(c)]. The function output is binary, indicating
the presence or absence of a shade in the visual field
[Fig. 1(b)-(d)].
Using the information from the visual field Vi(ϕ), we

can derive the function Ri(ϕ) = a/ sin(∆ϕ/2), where ∆ϕ
represents the angle of view angle of shades [Fig. 1(e)].
With this definition, when a shade is associated with
a single particle, Ri(ϕ) represents its distance from the
viewer.
Temporal changes in the features of the visual field can

be used to calculate the optic flow Oi(ϕ). A simplified
optic flow is estimated by assuming that each shade has
a pattern that moves and deforms with it. It results that
Oi(ϕ) is a linearly interpolated function of the angular
velocity between two features of the shade, its rising and
falling edges [Fig. 1(f)]. This method to compute the
optic flow computation corresponds to a cross-correlation
of visual field features [46], which are known to occur in
animal eyes [47, 48]. Similarly, we can compute the optic
flow divergence Di(ϕ) by derivating the optic flow Oi(ϕ)
[Fig. 1(f)]. Due to the piece-wise linear nature of Oi(ϕ),
Di(ϕ) is a piece-wise constant function.
The optic functions V, R, O, and D are inspired by an-

imal vision. These functions can easily be computed by
a man-made vision system. We will now use these func-
tions to the attraction and alignment terms of a vision
model.
In this visual model, the attraction and alignment

terms are given by

ωvisu.
⊙ =

〈∫ π

−π

R2
i (ϕ)bϵ(ϕ) sinϕdϕ

〉
, (4a)

ωvisu.
∥ =

〈∫ π

−π

ei × Vij

URi(ϕ)
bϵ(ϕ) dϕ.

〉
, (4b)
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where the brackets denote the normalization given by
Eq. (3) with the sum replaced by the integral. The at-
traction and alignment terms of the visual model are con-
structed to be similar to those of the omniscient model
given in Eqs. (2a)-(2b). The difference in the exponent
of R comes from the additional ∆ϕ ∼ 1/R arising from
the integration.

In the alignment term, ωvisu.
∥ , the cross-product ei×ej

is evaluated from the visual information. This is done
by using the optic flow Oi(ϕ) and its divergence Di(ϕ),
which are related to the velocity of particle j with respect
to particle i [Fig. 1(b)]. Specifically, the radial compo-
nent is given by Vir = −Ri(ϕ) Di(ϕ), and the azimuthal
component by Viϕ = Ri(ϕ)Oi(ϕ). We can use these com-
ponents to calculate the vector Vij in polar coordinates
(r, ϕ) as Vij = (−Di,Oi)Ri/U , while ei can be expressed
as (cosϕ,− sinϕ). It results that

ei × Vij

URi(ϕ)
=

−Di(ϕ) sinϕ+Oi(ϕ) cosϕ

U
. (5)

The alignment term is thus the sum of two terms: one
proportional to the derotated optic flow O and sensitive
to the azimuthal velocity of neighbors, and one propor-
tional to the optic flow divergence D and sensitive to the
radial velocity. When computing ei × Vij with Eq. (5),

we remove the particle rotation with angular velocity θ̇i
from the optic flow Oi(ϕ).
The equations of motion presented in Eq. (1), along

with the attraction and alignment terms derived in
Eqs. (4a) and (4b), provide a model of collective behav-
ior based on realistic visual cues. To make the prob-
lem dimensionless, we chose a = 1 and U = 1. With
this approach, four dimensionless parameters remain, the
strengths of noise attraction and alignment, kη, k⊙, k∥,
and the blind angle parameter ϵ.

III. NUMERICAL SIMULATIONS

To explore the effect of these parameters on collec-
tive behaviors, we performed numerical simulations with
N = 50 particles. Initially, the particles are randomly
placed in a square of side aN with random headings
[45][49]. The dynamical system described by Eqs. (1a)
and (1b) is solved numerically using a discrete implemen-
tation of Eqs. (4a) and (4a) (See also Figs. S2-S3, [45]).
We examined the effect of the time step δt by conducting
simulations with δt = 0.001, 0.01, and 0.1 (Figs. S17–
S22 and Video S1-S6, [45]). However, no significant dif-
ferences were observed on the collective behavior, and
a time step of δt = 0.1 was selected for the remaining
simulations to ensure computational efficiency.

We first set kη = 0.01 and ϵ = 1 (maximum blind
angle) and explore the effects of the two remaining pa-
rameters k⊙ and k∥ in the visual model. Our simula-
tions show three distinct dynamical phases (Fig. 6 for
the visual model, Fig. S10 for the omniscient model and

10a

FIG. 2. Illustration of the phases observed for N = 50 in-
dividuals. The scale bar measures 30a in total (10a for each
section). The parameters ϵ = 1 and kη = 0.01 are fixed. We
observe three phases when varying the other two parameters:
(a) swarming (k⊙ = 0.1, k∥ = 0); (b) schooling (k⊙ = 0.06,
k∥ = 0.2); and (c) milling (k⊙ = 0.1, k∥ = 0.04).

Figs. S23–S28 snapshots for the evolution of the stable
phases seen on Videos S7-S9 and S10-S12, [45]). If the
alignment is zero, a disordered swarming phase is ob-
served, where individuals form a group without a pre-
ferred direction [Fig. 6(a)]. When the alignment strength
increases, particles begin to align in the same direction,
resulting in the schooling phase [Fig. 6(b)]. If the ra-
tio between the alignment and the attraction strengths is
around 0.4, the group exhibits a milling phase [Fig. 6(c)],
creating a vortex. These three phases (swarming, school-
ing, and milling) have regularly been observed in (omni-
scient) self-propelled-particle models [43, 44, 50–52]
To quantitatively distinguish between the different dy-

namical phases, we introduce three global order metrics:
polarization P , milling M , and opacity O [43, 44]. These
metrics are defined as follows,

P = ∥ei∥, (6a)

M = ∥yi × ei∥, (6b)

O =
1

2π

∫ π

−π

Vi(ϕ)dϕ, (6c)

where the overbar represents an average over all indi-
viduals and the unit vector yi = (xi − xi)/∥xi − xi∥
points towards particle i from the center of mass. All
three metrics range in the interval [0, 1]. The polariza-
tion P measures the alignment: P = 0 corresponds to
particles pointing in all directions, P = 1 corresponds
to a perfectly aligned school. The milling M represents
the normalized angular momentum: straight-line forma-
tion gives M = 0 and perfect milling gives M = 1. The
opacity O measures the “occupancy” of the visual fields:
O = 0 when there is no object in the visual field, and
O = 1 when the entire visual field is obscured.
We now compare the visual and omniscient models by

setting the value of the noise to kη = 0.01 and exploring
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FIG. 3. Phase diagrams for N = 50 individuals and noise strength kη = 0.01. These phase diagrams compare the visual model
(a), (b) and the omniscient model (c), (d) for ϵ = 0 (a), (c) and ϵ = 1 (b), (d). The colors represent different values of P and
M as shown in (e). The contours show the values of opacity O (white solid), the line M = 0.5 (white dotted), and P = 0.5
(white dashed).

the parameter space (k⊙, k∥) ∈ [0, 0.2] × [0, 0.2] for two
values of the blind angle parameter (ϵ = 0 or 1). For each
parameter set, we ran 10 simulations over long durations
(∆t = 5000). The mean values of P , M , and O were
determined by averaging over the last 1000 time units to
ensure that the transient has no influence. The outcomes
of these simulations are synthesized in phase diagrams
[Fig. 3, and expanded on each metric independently on
Figs. S4, S6–S9, S11, S13-S16. [45]].

Somewhat arbitrarily, we chose to identify the collec-
tive phases from the values of the polarization P and
the milling M parameters: schooling when P > 0.5 and
M < 0.5; milling when P < 0.5 and M > 0.5; swarming
when P < 0.5 and M < 0.5; and bistable when P > 0.5
and M > 0.5 (we will come back to this particular phase
below).

IV. DISCUSSION

Our vision model qualitatively reproduces the phases
observed in the omniscient model [Fig. 3]. Specifically,
we observe the three phases in the vision model: school-
ing when k⊙ ≲ 0.5k∥; swarming when k∥ ≲ 0.3k⊙; and
milling or bistability otherwise. When the blind angle pa-
rameter increases, it tends to stabilize the milling phase
both in the visual model and the omniscient model, as
observed in the literature [43].

The difference between the two models increases at
high values of the alignment and attraction strengths
when the opacity O is maximum. In the visual model, the
opacity does not exceed 0.7, regardless of the values of ϵ
and kη. In the omniscient model, however, the opacity
exceeds 0.8 and even reaches one [Fig. 3(c) and (d)]. This
is because the radius a does not play any role in the om-
niscient model and the characteristic length is set by k2η.
In both models, as expected, larger noise strength causes
a decrease in average opacity (Figs. S4 and S11)[45].

Now, let us examine the bistable phase. Figures 4
and S29 show this phase in the visual model for ϵ = 1,
k⊙ = 0.1, k∥ = 0.2, and kη = 0.01. After a tran-
sient, the group forms a milling phase until t ≈ 6000,

1

0

FIG. 4. Example of the bistability observed in the visual
model (parameter values: ϵ = 1, k⊙ = 0.1, k∥ = 0.2, and
kη = 0.01). (a) Time series of the three metrics P , M , and O.
(b) Trajectories of the collective behavior in the (M,P )-plane.
Illustration of the phases: (c) schooling-milling transition; (d)
milling; (e) milling-schooling transition; and (f) schooling.

but eventually it transitions to a schooling phase for
6000 ≲ t ≲ 7500 before returning to a schooling phase
again, and so on. These transitions show that the system
exhibits a noise-induced intermittency between two sta-
ble states: milling and schooling. The schooling phase far
from the transition resembles a front of parallel individu-
als [Fig. 4(f)]. Just before the transition to milling, some
individuals move ahead, [Fig. 4(c)]. Reciprocally, the
milling phase just before the transition to schooling opens
up, generating a C shape [Fig. 4(e)]. These transitions
are fairly stereotyped as they tend to follow the same
path in the (M,P ) plane [Fig. 4(b)]. The existence of
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these intermittent transitions mediated by noise is likely
due to a second-order transition between the milling and
schooling phases as seen on the metric distribution along
the boundaries of both phases [Figs. S6-S9 and S13-S16].
This multi-stability has been present on similar 3A mod-
els [43].

We changed the group size from N = 5 to 300 (Figs. S5
and S12, [45]). Although the group size does not seem
to impact qualitatively the phase diagram, small groups
tend to favor schooling, whereas large groups tend to
favor swarming.

V. CONCLUSION

In conclusion, we proposed a model based on biolog-
ically plausible visual cues. This model successfully re-
produces the three classical phases of animal collective
behavior: swarming, schooling, and milling. These find-
ings show that visual cues provide enough information to
enable collective behavior.

Furthermore, our findings imply potential practical
uses for synchronizing groups of artificial drones, which
may be governed by analogous visual stimuli. In fu-
ture studies, we aim to investigate these opportunities
more thoroughly and enhance our model for a more ac-
curate depiction of animal collective behavior in a three-
dimensional space.
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S1 MATHEMATICAL DEVELOPMENT

S1.1 Visual and Omniscient attraction equivalence
proof

We defined the attraction rule for the omniscient and
visual models to be equivalent one to the other. But
changing the discrete sum of the omniscient model into
an integral needed for the visual model, requires to mul-
tiply the integrand by Ri(ϕ).

Here we present a step by step calculation of this inte-
gral to show the equivalence with the discrete sum. We

start by the integral of Eq. (4a),

ωvisu.
⊙ =

〈∫ π

−π

R2
i (ϕ)bϵ(ϕ) sinϕdϕ,

〉
(S1)

where bϵ(ϕ) = 1 + ϵ cosϕ.
Vi(ϕ) is a piece-wise constant function that can be ex-

pressed as a set unit boxcar functions (a shade). Each,
can be described as a rising φ⇑k and its corresponding
falling edge φ⇓k. Furthermore, from these edges, we can
compute the shade’s mid-point φk = (φ⇑k +φ⇓k)/2, and
the shade’s half-width ∆φk = (φ⇓k − φ⇑k)/2. Ri(ϕ) is
Vi(ϕ) weighted by a

sin∆φk
. This means that Ri(ϕ) for a

binary Vi(ϕ), is independent of ϕ and is only be depen-
dent on the k-shade’s half-width (Rk(∆φk)). The sub-
script changes from i to k, as i indicate is a value referred
to continuous information, k to discrete information of a
single shade. A shade k id different from an individual
j, as in a shade can be occlusion or aggregation of any
j-particles. Then, we can rewrite Eq. (S1) as:

ωvisu.
⊙ =

〈∑
k

R2
k(∆φk)

∫ φ⇓k

φ⇑k

bϵ(ϕ) sinϕdϕ.

〉
(S2)

ωvisu.
⊙ = ⟨

∑
k 2R2

k(∆φk) sin(∆φk) sin(φk)
(1 + ϵ cosφk cos∆φk)⟩

(S3)

And here Rk(∆φk) =
a

sin∆φk
, Resulting in:

ωvisu.
⊙ =

〈∑
k

2
a2 sin(∆φk)

sin2(∆φk)
sin(φk) (1 + ϵ cosφk cos∆φk)

〉
(S4)

ωvisu.
⊙ =

〈∑
k

2aRi(∆φk) sin(φk) (1 + ϵ cosφk cos∆φk)

〉
(S5)

For the case where there is no occlusion nor aggregation
k = j and taking into account the physical constrains of
the particles: cos∆φk ≈ 1, Ri(∆φk) = ||xj − xi|| and
φk = θij , then Eq. (S5) becomes

ωvisu.
⊙ ≈

〈
N∑
j ̸=i

2a||xj − xi|| sin(θij) (bϵ(θij))

〉
(S6)

Finally the 2a factor is nullified by the ⟨.⟩ normalization.
So it becomes identical to the attraction term in Eq. (2a),
proving the equivalence between the two models.

S1.2 Normalization for non-trigonometric equation

We presented a normalization to guarantee the O(1)
for all the terms of the models. Here we proof that the
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the non-trigonometric equation presented that are nor-
malized by this equation, does in fact maintains the same
form as shown on Eq. (3). We start by taking the align-
ment term of the omniscient model,

ωomni.
∥ =

〈
N∑
j ̸=i

ei × ej
∥xj − xi∥2

bϵ(θij) .

〉
, (S7)

this cross product can be expressed as:

ei × ej = U∥ei∥∥ej∥ sin(θi − θj) (S8)

Rewriting equation (2b) to better isolate the terms of
the normalization described on equation (3)

ωomni.
∥ =

〈
N∑
j=1

U∥ei∥∥ej∥
∥xj − xi∥2

bϵ(θij) sin(θi − θj),

〉
, (S9)

where, ei and ej are a unit vectors. Here sin(θj) =

sin(θi − θj)) and f(j) =
U∥ei∥∥ej∥
∥xj−xi∥2 bϵ(θij). Which main-

tains the form of the normalization presented on Eq. (3).

S1.3 Equivalence of the visual and omniscient model
for the alignment term

Here we show the equivalence between visual and om-
niscient model for the alignment term if we consider that
each shade is associated to a single particle.

The visual alignment terms is defined as:

ωvisu.
∥ =

∑
k

(∫ φ⇓k

φ⇑k

(Oi(ϕ) cosϕ−Di(ϕ) sinϕ)bϵ(ϕ)dϕ

)
(S10)

On the previous section we discussed the piece-wise
constant properties of Ri(ϕ), the same is true for Di(ϕ)
and Oi(ϕ), being independent of ϕ Taking Eq. (S10) and
Eq. (4b), we can express the alignment for the visual
model as two components, a radial and a azimuthal to
be:

ωvisu.
∥ =

〈
ω∥,ϕ + ω∥,r

U

〉
(S11)

ω∥,ϕ =
∑
k

Ok(∆φk)

(∫ φ⇓k

φ⇑k

cosϕbϵ(ϕ)dϕ

)
(S12)

ω∥,r =
∑
k

−Dk(∆φk)

(∫ φ⇓k

φ⇑k

sinϕbϵ(ϕ)dϕ

)
(S13)

Eq. (S13) is the exact form as Eq. (S2) with the weight
of the integral being Di(∆φk) instead of R2

i (∆φk) result-
ing in

ω∥,r =
∑

k
−2Dk(∆φk)
Rk(∆φk)

sin(φk) (1 + ϵ cosφk cos∆φk)

(S14)
As for Eq. S12 the developing the integral and assum-

ing ∆ϕ ≈ sin∆ϕ we have:

ω∥,ϕ =
∑

k
Ok(∆φk)
Rk(∆φk)

(2 cosφk(1 + ϵ cos∆φk cosφk) + ϵ(1− cos∆φk))
(S15)

Once more, for the case where there is no occlusion nor
aggregation k = j and taking into account the physical
constrains of the particles: cos∆φk ≈ 1 and φk = θij ,
then Eqs. (S14-15) becomes

ω∥,r ≈
N∑
j ̸=i

−2Dk(∆φk)

Rk(∆φk)
sin(θij)bϵ(θij) (S16)

ω∥,ϕ ≈
N∑
j ̸=i

2Ok(∆φk)

Rk(∆φk)
cos(θij)bϵ(θij) (S17)

This leads to

ωvisu.
∥ ≈

〈
N∑
j ̸=i

2
ei × Vij

R2
k(∆φk)

bϵ(θij)

〉
(S18)

Now Vij = U(ej − ei) then ei × ej =
ei×Vij

U . And
Ri(∆φk) = ||xj − xi||, resulting in

ωvisu.
∥ ≈

〈
N∑
j ̸=i

2
ei × ej

||xj − xi||2
bϵ(θij)

〉
(S19)

The normalization nullifies the factor 2 that is not
present in the omniscient model and shows that the two
models are equivalent when shades are formed by single
particles.
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Fig. S 5. Effect of a blind spot. (a) 2D view: When ϵ = 1,
each particle cannot see at its rear (transparent), but the view
is normal in front (blue). (b) Function bϵ(ϕ) = 1+ϵ cosϕ when
ϵ = 1

S1.4 Blind spot

Figure Fig. S5 illustrates the function bϵ(φ) used to
model a blind spot in the visual field. When ϵ is equal
to 0 there is no effect and with 1 the effect is maximum.

S2 DIGITAL IMPLEMENTATION

S2.1 Omniscient model

As previously stated, the model that we propose has
an omniscient implementation. The alignment term is
shown on Eq. (S7) can be normalized by Eq. (5), which
lead to the implementation of:

ω∥ =

〈
N∑
j ̸=i

ei × ej
||xj − xi||2

bϵ(θij)

〉
(S20)

For attraction term, the implemented equation is:

ω⊙ =

〈
N∑
j ̸=i

||xj − xi|| sin (θij)bϵ(θij)

〉
(S21)

S2.2 Visual model

On the main text, we described the continuous form
of the equations for attraction (Eq. (4a)) and for align-
ment (Eq. (4b)) and Sections S1.1 and S1.3 expanded on
equivalency between these visual terms when there is no

er

e

a

a

2

2

𝜑 𝜑 

𝜑 

𝜑 𝜑 

Fig. S 6. Point of view of the i-th particle (black) of the j-th
particle in t-1 (contour) and t (solid color)

occlusion or aggregation. Here, we go in more depth on
how the visual components are derived and calculated, as
well as the formulation of the implementation for equa-
tions for the numerical simulations.
Consider the point of view of the i-th particle in 2

consecutive time steps for the j-th particle:
Each particle has a radius a, the over index represent

+ time t and - time t-dt. er and eϕ are the unit vectors
of the polar coordinates referred to θi, where the former

is radial and the later azimuthal.
−→
V ij is the relative ve-

locity vector perceived by the particle i of the net velocity
of the particle j. Then from the geometry of the problem
we have

R±
i =

a

sin∆φ± (S22)

Then the Ri vectors can be described as follows:

−→
R+

i = R+
i er (S23)

−→
R−

i = R−
i [cos∆φ̄er − sin∆φ̄eϕ] (S24)

Consequently the distance associated with the movement

of
−→
V ij is:

U
−→
V ijδt = (R+

i −R−
i cos∆φ̄)er +R−

i sin∆φ̄eϕ (S25)

−→
V ij =

[R+
i −R−

i cos∆φ̄,R−
i sin∆φ̄]

Uδt
(S26)

From Eq. (S26) we can do the decomposition in radial
and azimutal components to calculate Oi and Di

Oi =
1

Uδt
− R−

i cos∆φ̄

R+
i Uδt

(S27)

Di =
R−

i sin∆φ̄

R+
i Uδt

(S28)
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Note that on a robotic implementation this method of
calculating the optic flow and its divergence (Oi and Di),
would be entirely replaced by its direct measurement via
a specialized optic flow sensor.

For the computer implementation of the alignment
term of the visual model, we use Eq. (S26) to calculate
the cross product of the relative vectors over R2

i (∆φk)

ω∥ =

〈∑
k

sin2(∆φk)

−→
V ik × ei

Ua2
(1 + ϵ cosφk)

〉
(S29)

Note that there are two approximations (cos∆φk ≈ 1
and sin∆φk ≈ ∆φk) on Eq. (S29).
As for attraction, we use at Eq. (S6) written on the

terms described above.

ω⊙ =

〈∑
k

2a2
sin(φk)

sin(∆φk)
(1 + ϵ cosφk cos∆φk)

〉
(S30)

S2.3 Algorithm to detect corresponding features
necessary to compute optic flow

The optic flow is the perception of relative movement
and we use a feature matching-inspired algorithm to cal-
culate it in numeric simulation. But this feature match
requires that you discriminate and detect the same fea-
ture in two consecutive time steps. Here we present the
algorithm to match different features given the binary
characteristic of Vi(ϕ). In the model this will be the as-
sumption to use Eqs. (S27) and (S28). Note that shades
can split or join in between time steps. To detect these
events, we employ a minimum distance error to correlate
two set of features in two consecutive time steps.

In Fig. S7, we illustrate the algorithm used, where
yellow boxes are associated to corresponding shades. To
correspond to each other, shades should be associated to
radial and azimuthal velocities bounded by U .

This algorithm is also illustrated on the following
pseudo-code (see Algorithm ).

The model is implemented on python 3.10 (it will be
available for download on [1] and [2]. This includes the
implementation of the algorithm described by Fig. S7, all
model equations, data management and figure creation.
There is a markdown file that only include the model
implementation without data logging.

0

0 1 2 0j=

0 01 2 3k=

k
=

j=

0
3

2
1

0

0 1 2 0

Fig. S 7. Example of two consecutive visual fields. The
matrix at the bottom illustrate the algorithm we use to find
corresponding shades between two time steps. ∆ϕ̄ is the delta
between the mid point of the shades between two consecutive
time steps.

Vit−1 ← [(φ⇑l + φ⇓l)/2] at t-1 ∀φ in ϕi,t−1

∆Vit−1 ← [φ⇓l − φ⇑l] at t-1 ∀φ in ϕi,t−1

Vit ← [(φ⇑k + φ⇓k)/2] at t ∀φ in ϕi,t

∆Vit ← [φ⇓k − φ⇑k] at t ∀φ in ϕi,t

ω ← ωk,t−1δt ▷ Previous known rotation
Require: l&k ≥ 0

V isualDist← ∥Vit−1 − Vit∥ ▷ A k x l matrix
RefDist← min(sin∆Vit , sin∆Vit−1)2Uδt/a+ ω

V isualArea← ∥ 1
∆Vit

− 1
sin∆Vit−1

∥ ▷ A k x l matrix

RefArea← 2Uδt/a
for all values in V isualArea, V isualDist, RefDist &
RefArea do

if V alueV isualArea ¡ RefDist & V alueV isualArea
¡ V alueV isualArea then

Pairt ← [φ⇑k, φ⇓k]
Pairt−1 ← [φ⇑l, φ⇓l]

end if
end for

Corresponding shades between time steps
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S3 DETAILED PHASE DIAGRAMS (FIG. 3)

S3.1 Visual Model
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Fig. S 8. Phase diagrams for N = 50 individuals. These phase diagrams are for: (a)-(c) noise strength kη = 0.01, where there
is no blind angle (ϵ = 0) and maximum (ϵ = 1), respectively. (b)-(d) noise strength kη = 0.1, where there is no blind angle
(ϵ = 0) and maximum (ϵ = 1), respectively In (e), is illustrated how, in the phase space (k∥, k⊙), the colors represents different
values of P and M , and contours show the opacity O; these colors also represents the phases discussed earlier.
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Fig. S 9. Phase Diagram and Phase Reproduction for different Flock sizes for the Visual model. i) Phase Diagram, ii)Swarming,
iii)Schooling, iv)Milling. a)N=5, b)N=10, ca)N=30, d)N=100, e)N=300.

https://www.youtube.com/playlist?list=PLFmseTew_fO51MnDLCJHfVFqoYrOQpar9
https://www.youtube.com/playlist?list=PLFmseTew_fO43lhJkTZUZ-KTiBCfK5R2H
https://www.youtube.com/playlist?list=PLFmseTew_fO7MFWYxoe_pN25JjmsAPC37
https://www.youtube.com/playlist?list=PLFmseTew_fO5OhltyRSW8Vg-jVxXsaKK6
https://www.youtube.com/playlist?list=PLFmseTew_fO5_Oe4VSo4HsM7nU_48OsRq
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Fig. S 10. Phase diagram for the Visual model of a flock size of 50 individuals, kη =0.01 and no blind angle. a) Integrated
metrics, b) Separated metrics and c) Variance between the 10 experiments final metrics.
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Fig. S 11. Phase diagram for the Visual model of a flock size of 50 individuals, kη =0.01 and maximum blind angle. a)
Integrated metrics, b) Separated metrics and c) Variance between the 10 experiments final metrics.
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Fig. S 12. Phase diagram for the Visual model of a flock size of 50 individuals, kη =0.1 and no blind angle. a) Integrated
metrics, b) Separated metrics and c) Variance between the 10 experiments final metrics.
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Fig. S 13. Phase diagram for the Visual model of a flock size of 50 individuals, kη =0.1 and maximum blind angle. a)
Integrated metrics, b) Separated metrics and c) Variance between the 10 experiments final metrics.
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S3.2 Omniscient Model

Fig. S 14. Illustration of the phases observed for the omniscient model and a flock size of N = 50 individuals. With kη = 0.01.
The scale bar measures 30a (10a each section). We observe three phases: (a) Swarming (k⊙ = 0.06, k∥ = 0, ϵ = 0); (b)
Schooling (k⊙ = 0.06, k∥ = 0.2, ϵ = 1); (c)Milling (k⊙ = 0.06, k∥ = 0.06, ϵ = 1).



16

M
il

li
n

g 
M

 

Polarization P 

1
0

0 .5

.5

Milling

SchoolingSwarming

Unstable

1

Opacity O 

A
tt

ra
ct

io
n

  
.2

.1

.0
1

0

Alignment  Alignment  

A
tt

ra
ct

io
n

  

.2.10 .2.10

.2
.1

0

.1

Fig. S 15. Phase diagrams for omniscient model and flock size of N = 50 individuals. These phase diagrams are for: (a)-(c)
noise strength kη = 0.01, ϵ = 0 and ϵ = 1, respectively. (b)-(d) noise strength kη = 0.1, ϵ = 0 and ϵ = 1) respectively In (e), is
illustrated how, in the phase space (k∥, k⊙), the colors represents different values of P and M , and contours show the opacity
O; these colors also represents the phases discussed earlier.
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https://www.youtube.com/playlist?list=PLFmseTew_fO4ylUFwLcxtOnlhVAXMMYga
https://www.youtube.com/playlist?list=PLFmseTew_fO6dozdgT_Pdld6SV7reXBSS
https://www.youtube.com/playlist?list=PLFmseTew_fO6tdI3ZcWCl2jHaqs1IfZPh
https://www.youtube.com/playlist?list=PLFmseTew_fO67is_TBgoL5Rzda6b5kJUE
https://www.youtube.com/playlist?list=PLFmseTew_fO7vY1rlx2ZqPLHJGIGU-kY6
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Fig. S 17. Phase diagram for the Omniscient model of a flock size of 50 individuals, kη =0.01 and no blind angle. a) Integrated
metrics, b) Separated metrics and c) Variance between the 10 experiments final metrics.
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Fig. S 18. Phase diagram for the Omniscient model of a flock size of 50 individuals, kη =0.01 and maximum blind angle. a)
Integrated metrics, b) Separated metrics and c) Variance between the 10 experiments final metrics.
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Fig. S 19. Phase diagram for the Omniscient model of a flock size of 50 individuals, kη =0.1 and no blind angle. a) Integrated
metrics, b) Separated metrics and c) Variance between the 10 experiments final metrics.
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Fig. S 20. Phase diagram for the Omniscient model of a flock size of 50 individuals, kη =0.1 and maximum blind angle. a)
Integrated metrics, b) Separated metrics and c) Variance between the 10 experiments final metrics.
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S4 VIDEO SNAPSHOTS OF TIME STEP STABILITY ANALYSIS

S4.1 Visual model
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Fig. S 21. Snapshot of the time step stability at δt=0.001 for the Visual model. Reproduction of a milling phase for a flock
size of 50 individuals, k⊙ =0.06,k∥ =0.06 and kη =0.01. a) Evolution of the flock metrics, b-j different snapshots. , Video S1
(https://youtu.be/DDjb5NUwKIU).

https://youtu.be/DDjb5NUwKIU
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Fig. S 22. Snapshot of the time step stability at δt=0.01 for the Visual model. Reproduction of a milling phase for a flock
size of 50 individuals, k⊙ =0.06,k∥ =0.06 and kη =0.01. a) Evolution of the flock metrics, b-j different snapshots. , Video S2
(https://youtube.com/shorts/dOo7oabdQKo).

https://youtube.com/shorts/dOo7oabdQKo
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Fig. S 23. Snapshot of the time step stability at δt=0.1 for the Visual model. Reproduction of a milling phase for a flock
size of 50 individuals, k⊙ =0.06,k∥ =0.06 and kη =0.01. a) Evolution of the flock metrics, b-j different snapshots. , Video S3
(https://youtu.be/1KMUSWcKyN8).

https://youtu.be/1KMUSWcKyN8
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S4.2 Omniscient model
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Fig. S 24. Snapshot of the time step stability at δt=0.001 for the Omniscient model. Reproduction of a milling phase for a
flock size of 50 individuals, k⊙ =0.06,k∥ =0.06 and kη =0.01. a) Evolution of the flock metrics, b-j different snapshots. , Video
S4 (https://youtu.be/r77__ozLFvc).

https://youtu.be/r77__ozLFvc
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Fig. S 25. Snapshot of the time step stability at δt=0.01 for the Omniscient model. Reproduction of a milling phase for a
flock size of 50 individuals, k⊙ =0.06,k∥ =0.06 and kη =0.01. a) Evolution of the flock metrics, b-j different snapshots. , Video
S5 (https://youtube.com/shorts/f_McHAyXwzU).

https://youtube.com/shorts/f_McHAyXwzU
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Fig. S 26. Snapshot of the time step stability at δt=0.1 for the Omniscient model. Reproduction of a milling phase for a flock
size of 50 individuals, k⊙ =0.06,k∥ =0.06 and kη =0.01. a) Evolution of the flock metrics, b-j different snapshots. , Video S6
(https://youtu.be/NiVgYHt-Fkc).

https://youtu.be/NiVgYHt-Fkc
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S5 VIDEO SNAPSHOTS OF PHASES REPRODUCTION (FIG. 2) (kη = 0.01, N = 50)

S5.1 Visual Model
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Fig. S 27. Swarming phase reproduction for a flock size of 50 individuals for the Visual model. kη =0.06 kη =0.0 kη =0.01
and no blind angle , Video 7 (https://youtu.be/U5yeh-7TOUE).

https://youtu.be/U5yeh-7TOUE
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Fig. S 28. Schooling phase reproduction for a flock size of 50 individuals for the Visual model. kη =0.06 kη =0.2 kη =0.01
and maximum blind angle , Video S8 (https://youtu.be/2sMePYecmzk).

https://youtu.be/2sMePYecmzk
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Fig. S 29. Milling phase reproduction for a flock size of 50 individuals for the Visual model. kη =0.06 kη =0.06 kη =0.01 and
maximum blind angle , Video S9 (https://youtu.be/8dFZNKr1Afw).

https://youtu.be/8dFZNKr1Afw
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S5.2 Omniscient Model
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Fig. S 30. Swarming phase reproduction for a flock size of 50 individuals for the Omniscient model. kη =0.06 kη =0.0
kη =0.01 and no blind angle , Video S10 (https://youtu.be/NgZ8PCJlO2k).

https://youtu.be/NgZ8PCJlO2k
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Fig. S 31. Schooling phase reproduction for a flock size of 50 individuals for the Omniscient model. kη =0.06 kη =0.2 kη =0.01
and maximum blind angle , Video S11 (https://youtu.be/x73EZqu_2a4).

https://youtu.be/x73EZqu_2a4
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Fig. S 32. Milling phase reproduction for a flock size of 50 individuals for the Omniscient model. kη =0.06 kη =0.06 kη =0.01
and maximum blind angle , Video S12 (https://youtu.be/CWpTSvr_zBk).

https://youtu.be/CWpTSvr_zBk
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S6 VIDEO SNAPSHOTS OF BISTABLE PHASE VISUAL MODEL (FIG. 4)
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Fig. S 33. Bistable phase reproduction for a flock size of 50 individuals for the Visual model. kη =0.1 kη =0.2 kη =0.01 and
maximum blind angle , Video S13 (https://youtu.be/JVCp65SVX2Q).

∗ franck.ruffier@cnrs.fr

[1] D. Castro, F. Ruffier, and C. Eloy, Flocking by

https://youtu.be/JVCp65SVX2Q
mailto:franck.ruffier@cnrs.fr


33

eye model, https://gitlab.com/FlokingByEyeDiego/

flokingbyeye (), [Accessed 15-Feb-2024].
[2] D. Castro, F. Ruffier, and C. Eloy, Repository for model-

ing collective behaviours from optic flow and retinal cues,
https://osf.io/46fqx/ (), [Accessed 15-Feb-2024].

https://gitlab.com/FlokingByEyeDiego/flokingbyeye
https://gitlab.com/FlokingByEyeDiego/flokingbyeye
https://osf.io/46fqx/

	Modeling collective behaviors from optic flow and retinal cues
	Abstract
	Contents
	S1 Mathematical development
	S1.1 Visual and Omniscient attraction equivalence proof
	S1.2 Normalization for non-trigonometric equation
	S1.3 Equivalence of the visual and omniscient model for the alignment term
	S1.4 Blind spot

	S2 Digital implementation
	S2.1 Omniscient model
	S2.2 Visual model
	S2.3 Algorithm to detect corresponding features necessary to compute optic flow

	S3 Detailed Phase Diagrams (Fig. 3)
	S3.1 Visual Model
	S3.2 Omniscient Model

	S4 Video Snapshots of Time step stability analysis
	S4.1 Visual model
	S4.2 Omniscient model

	S5 Video Snapshots of Phases Reproduction (Fig. 2) (k = 0.01, N=50)
	S5.1 Visual Model
	S5.2 Omniscient Model

	S6 Video Snapshots of Bistable Phase Visual model (Fig. 4)
	Supplemental References


