
HAL Id: hal-04569962
https://hal.science/hal-04569962v1

Submitted on 6 May 2024 (v1), last revised 2 Sep 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Technical Appendix for Polynomial Time Presolve
Algorithms for Rotation-Based Models Solving the

Robust Stable Matching Problem
Sulian Le Bozec-Chiffoleau, Charles Prud’Homme, Gilles Simonin

To cite this version:
Sulian Le Bozec-Chiffoleau, Charles Prud’Homme, Gilles Simonin. Technical Appendix for Polynomial
Time Presolve Algorithms for Rotation-Based Models Solving the Robust Stable Matching Problem.
IMT Atlantique. 2024. �hal-04569962v1�

https://hal.science/hal-04569962v1
https://hal.archives-ouvertes.fr

Technical Appendix for Polynomial Time Presolve Algorithms for Rotation-Based
Models Solving the Robust Stable Matching Problem

Sulian Le Bozec-Chiffoleau1 , Charles Prud’homme1 and Gilles Simonin1

1TASC, Institut Mines Telecom Atlantique, LS2N UMR 6004, Nantes, France
{sulian.le-bozec-chiffoleau, charles.prudhomme, gilles.simonin}@imt-atlantique.fr

Abstract

This document is the Technical Appendix for the
paper ”Polynomial Time Presolve Algorithms for
Rotation-Based Models Solving the Robust Stable
Matching Problem” accepted at IJCAI-2024. Sec-
tion 1 contains the complete proof of a lemma from
the IJCAI paper. Section 2 describes the constraints
used in the constraint programming model used in
the paper, and Section 3 presents the full results of
the experiments. In Section 4, there is a link to the
GitHub repository containing the Java code for the
experiments.

A Complete proof of Lemma 4
Lemma (Increasing property). Let A, B, C and D be four
closed subsets of R(I). If A∆B ⊆ C∆D then dG(A,B) ≤
dG(C,D).

Proof. Let A, B, C and D be four closed subsets of R(I)
such that A∆B ⊆ C∆D.
A and B are closed subsets so ∀(ρa, ρb, ρ) ∈ (A∆B)2 ×
R(I) such that ρa ◁ ρ ◁ ρb, ρ ∈ A∆B. We say that A∆B
is convex. Likewise, C∆D is convex. So, if A∆B = C∆D
the proof is trivial. Otherwise, we observe the evolution of the
distance value when we add the rotations of C∆D \ A∆B to
A∆B. To do so, we distinguish three sets of rotations (see
Fig. 1):

• V− = {ρ ∈ C∆D \ A∆B : ∃ρ′ ∈ A∆B, ρ ◁ ρ′}
• V+ = {ρ ∈ C∆D \ A∆B : ∃ρ′ ∈ A∆B, ρ′ ◁ ρ}
• Vi = {ρ ∈ C∆D \ A∆B : ∀ρ′ ∈ A∆B, ρ ∈ I(ρ′)}

By convexity of A∆B and C∆D, those three sets are also
convex and C∆D \ A∆B is the disjoint union of the three of
them.

As a reminder, each rotation generating a pair is a prede-
cessor of the rotation eliminating it. And each pair has at
most one rotation generating it and one rotation eliminating
it. Also, each rotation generates as many pairs as it elimi-
nates. Then, each pair eliminated in V− can not be generated
in A∆B. Therefore, we do not suppress the pairs that are
already present. So:

∣∣ ⋃
ρ∈(A∆B)∪V−

G(ρ) \
⋃

ρ∈(A∆B)∪V−

E(ρ)
∣∣ ≥ ∣∣ ⋃

ρ∈A∆B

G(ρ) \
⋃

ρ∈A∆B

E(ρ)
∣∣

Also, each pair generated in V+ can not be eliminated nor
generated in A∆B. Therefore, we suppress at most as much
pairs than we add. So:∣∣ ⋃
ρ∈(A∆B)∪V+

G(ρ) \
⋃

ρ∈(A∆B)∪V+

E(ρ)
∣∣ ≥ ∣∣ ⋃

ρ∈A∆B

G(ρ) \
⋃

ρ∈A∆B

E(ρ)
∣∣

Given two incomparable meta-rotations, their set of pairs
they generate or eliminate are disjoints. So:∣∣ ⋃
ρ∈(A∆B)∪Vi

G(ρ) \
⋃

ρ∈(A∆B)∪Vi

E(ρ)
∣∣ =

∣∣ ⋃
ρ∈A∆B

G(ρ) \
⋃

ρ∈A∆B

E(ρ)
∣∣

+
∣∣ ⋃
ρ∈Vi

G(ρ) \
⋃

ρ∈Vi

E(ρ)
∣∣

We have shown that by adding all the rotations of either
V−, V+ or Vi to A∆B, we can not reduce the value of the
distance. Hence, we can prove by a decreasing recurrence on
the size of C∆D \ A∆B that dG(A,B) ≤ dG(C,D).

Figure 1: Visual representation of V−, V+ and Vi

B Details on two particular constraints
B.1 The constraint CLOSEDSUBSET

Description and properties
The CLOSEDSUBSET constraint is a global constraint over a
set variable and is defined as follows:

CLOSEDSUBSET(S, H(X)) ≡ The set variable S is a closed
subset of the partially ordered space X represented by the
Hasse diagram H(X)

As a reminder, a closed subset is a subset S ⊆ X for which
all predecessors of any element of S are also in S. Below, we
state some properties easy to demonstrate that will be needed
to filter the constraint:
Lemma B.1.1. There exists a solution satisfying
CLOSEDSUBSET(S, H(X)) if and only if ∀v ∈ S,∀u ∈
N−(v), u ∈ S.
Where N−(v) denotes the set of predecessors of v resp. to
the partial order represented by H(X).

Lemma B.1.2. An element v ∈ S does not belong to any
solution satisfying CLOSEDSUBSET(S, H(X)) if and only if
∃u ∈ N−(v) such that u /∈ S.

Lemma B.1.3. An element u ∈ S belongs to every solution
satisfying CLOSEDSUBSET(S, H(X)) if and only if ∃v ∈
N+(u) such that v ∈ S.
Where N+(u) denotes the set of successors of u resp. to the
partial order represented by H(X).

Filtering the constraint
We provide a propagator (Algorithm B.1) for
CLOSEDSUBSET and based on Lemmas B.1.2 and B.1.3 that
allow to filter the set variable S.

Algorithm B.1 Propagator CLOSEDSUBSET

Require: S , H(X) and S+ (resp. S−) the set of elements
added (resp. suppressed) to S since the last call of the
propagator

Ensure: Filtering the bounds of S
1: for u ∈ S− do ▷ Lemma B.1.2
2: for v ∈ N+(u) do
3: S ← S\{v}
4: for v ∈ S+ do ▷ Lemma B.1.3
5: for u ∈ N−(v) do
6: S ← S ∪ {u}

Remark. When the propagator is called for the first time,
S− = X\S and S+ = S.

We denote N = |X|. At the creation of the constraint, we
compute the predecessors and successors of every element
of X , which can be done in O(N3) time by computing the
transitive closure of H(X). Then, the time complexity of
Algorithm B.1 is O(N2).

Correctness and completeness
Algorithm B.1 directly implements the test of the predicates
enonciated in Lemmas B.1.2 and B.1.3, which is precised by
the comments in the pseudo-code. These lemmas consider all
the possible cases of the filtering which are the necessary and
sufficient conditions to add an element to the lower bound S
and to remove an element from the upper bound S. Thus,
we can affirm that if we reach a fix point in the filtering of
S relatevely to constraint CLOSEDSUBSET, the filtering is
complete.

Furthermore, the two loops in Algorithm B.1 do not inter-
fere with each other, since one decreases S by only observing
the elements recently suppressed from S, and the other in-
creases S by only observing the elements recently added to
S. Also, if an element is suppressed from S, it means one of
his predecessors belongs to S− and then every one of its suc-
cessors will also be suppressed from S. Therefore, it is not
necessary to call again Algorithm B.1 in order to take into
account the recent suppression. A similar reasoning goes for
elements added to S. Thus, Algorithm B.1 is idempotent and
returns a fix point.

In conclusion, Algorithm B.1 does not suppress any po-
tential solution, hence the filtering is correct, and filters as
much as possible the set variable S relatively to constraint
CLOSEDSUBSET, hence the filtering is complete.

B.2 The constraint INDEXUNION

Description and properties
The constraint INDEXUNION(I, E , R) contains a set variable
I ⊆ J called the set of indices, a set variable E called the set
of elements, and a family of sets R = (Ri)i∈J . The constraint
is defined as follows:

INDEXUNION(I, E , (Ri)i∈J) ≡ E =
⋃
i∈I

Ri

Lemma B.2.1. There exists a solution satisfying
INDEXUNION(I, E , R) if and only if the following proposi-
tions hold:
- ∀i ∈ I,∀e ∈ Ri, e ∈ E ,
- ∀e ∈ E ,∃i ∈ I, e ∈ Ri.
Lemma B.2.2. An element e ∈ E does not belong to any
solution satisfying INDEXUNION(I, E , R) if and only if ∀i ∈
I, e /∈ Ri.
Lemma B.2.3. An element e ∈ E belongs to every the solu-
tion satisfying INDEXUNION(I, E , R) if and only if ∃i ∈ I,
e ∈ Ri.
Lemma B.2.4. An index i ∈ I does not belong to any solu-
tion satisfying INDEXUNION(I, E , R) if and only if ∃e ∈ Ri,
e /∈ E .
Lemma B.2.5. An index i ∈ I belongs to every the solution
satisfying INDEXUNION(I, E , R) if and only if ∃e ∈ Ri,
e ∈ E and ∀j ∈ I\{i}, e /∈ Rj .

Filtering the constraint
We provide Algorithm B.2 as a propagator of the constraint
INDEXUNION and based on Lemmas B.2.2, B.2.3, B.2.4 and
B.2.5.
Remark. When the propagator is called for the first time,
I− = J\I, I+ = I, E− = (

⋃
i∈J Ri)\E and E+ = E .

We denote N =
∑

i∈J |Ri|, the time complexity of Algo-
rithm B.2 is O(N2).

Correctness and completeness
Algorithm B.2 directly implements the test of the predicates
enonciated in Lemmas B.2.2–B.2.5, which is precised by the
comments in the pseudo-code. These lemmas consider all
the possible cases of the filtering which are the necessary and

Algorithm B.2 Propagator INDEXUNION

Require: I, E , R = (Ri)i∈J and I+ (resp. I−) the set of
indices added (resp. suppressed) to I since the last call
of the propagator (same for E)

Ensure: Filtering the bounds of I and E
1: for i ∈ I− do ▷ Lemma B.2.2
2: for e ∈ Ri do
3: found← FALSE
4: for j ∈ I do
5: if e ∈ Rj then
6: found← TRUE

7: if found = FALSE then
8: E ← E\{e}
9: for i ∈ I+ do ▷ Lemma B.2.3

10: for e ∈ Ri do
11: E ← E ∪ {e}
12: for e ∈ E− do ▷ Lemma B.2.4
13: for j ∈ I do
14: if e ∈ Rj then
15: I ← I\{j}
16: for e ∈ E+ do ▷ Lemma B.2.5
17: found← FALSE
18: index = 0
19: for j ∈ I do
20: if e ∈ Rj then
21: if found = TRUE then
22: found← FALSE
23: BREAK
24: else
25: found← TRUE
26: index = j

27: if found = TRUE then
28: I ← I ∪ {index}

sufficient conditions to add an element to the lower bounds
E and I, and to remove an element from the upper bounds E
and I. Thus, we can affirm that if we reach a fix point in the
filtering of E and I relatively to constraint INDEXUNION, the
filtering is complete.

One call of Algorithm B.2 may not allow to reach a fix
point. However, depending on the CP solver we use, it can
be done by duplicating the constraint in the CP model, which
will allow to call Algorithm B.2 until a fix point is reached.

In conclusion, Algorithm B.2 does not suppress any poten-
tial solution, hence the filtering is correct, and allows to filter
as much as possible the set variables E and I relatively to
constraint INDEXUNION when the constraint is duplicated in
the model, in this case the filtering is complete.

C Full experimental results
In this section we present the full results obtained during our
experiments conducted on SM, HR and MM instances. Un-
like the results showed in Section 6, Tables 1–3 contain the
statistics on the sizes of Pr, Rup and Rdown. As for the size
of the search space, we notice a great reduction of Pr, Rup

and Rdown when using Algorithm 1, which also explain the

acceleration of LS and CP .

D Source code
The source code used to get the experimental results is
presented in the following GitHub repository :

https://github.com/SulianLBC/RSM-IJCAI-2024

A README file details the structure of the project.

https://github.com/SulianLBC/RSM-IJCAI-2024

n PP time Pr Rup Rdown space b bLS bCP timeLS timeCP proofCP

500 1 0.85 1668.4 92.8 92.8 92.8 – 346.2 345.8‡ 112.04 4.10 1.29
1+2 0.95 6.4 2.8 2.8 5.7 354.8 346 345.8‡ 0.15 0.039 0.039

1000 1 6.42 3782.9 150 150 150 – 756.8 755.8‡ 191.07 33.27 10.47
1+2 6.75 5.7 3.8 3.1 12.1 778.3 755.8† 755.8‡ 0.94 0.29 0.02

2000 1 51.99 8831.6 267.3 267.3 267.3 – 1756.6 1637 226.65 380.62 TimeOut
1+2 53.40 5.2 4.7 4.3 11.1 1650 1633 1632.9‡ 2.62 1.34 0.03

Table 1: Experiments on SM instances (full results)

n-m-c PP time Pr Rup Rdown space b bLS bCP timeLS timeCP proofCP

280-
40-7

1 0.08 543 63.2 63.2 63.2 – 127.3 127.2‡ 4.64 0.80 0.29
1+2 0.13 4.9 1.8 1.8 2.6 131.3 127.5 127.2‡ 4.0E-4 0.006 0.005

500-
63-8

1 0.22 1293.9 130.2 130.2 130.2 – 289.1† 289.1‡ 76.95 5.97 2.451
1+2 0.33 5.2 3.0 2.2 6.3 297.1 289.1† 289.1‡ 0.062 0.037 0.005

840-
70-12

1 0.32 2103.7 195.2 195.2 195.2 – 478.8 477.4‡ 84.41 27.50 8.47
1+2 0.45 3.6 1.7 1.6 5.2 485.6 477.7 477.4‡ 1.5E-3 0.054 0.004

Table 2: Experiments on HR instances (full results)

n-c PP time Pr Rup Rdown space b bLS bCP timeLS timeCP proofCP

100-
3

1 0.08 677.6 69.3 69.3 69.3 – 154.3† 154.3‡ 23.53 1.01 0.39
1+2 0.12 6.8 2.2 2.8 5.8 162.9 154.3† 154.3‡ 0.005 0.011 0.010

300-
5

1 0.53 4478.9 302.6 302.6 302.6 – 986.5 972.1‡ 143.08 170.28 49.69
1+2 0.96 5.1 3.2 3.1 9 984.1 972.2 972.1‡ 0.63 0.33 0.01

500-
10

1 2.38 16424.5 879.3 879.3 879.3 – 4183.7 – 109.46 TimeOut TimeOut
1+2 5.43 4.8 2.6 2.6 14.2 3504.2 3476.9† 3476.9‡ 0.14 3.14 0.05

Table 3: Experiments on MM instances (full results)

	Complete proof of Lemma 4
	Details on two particular constraints
	The constraint ClosedSubSet
	Description and properties
	Filtering the constraint
	Correctness and completeness

	The constraint IndexUnion
	Description and properties
	Filtering the constraint
	Correctness and completeness

	Full experimental results
	Source code

