
HAL Id: hal-04569794
https://hal.science/hal-04569794

Submitted on 6 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Parameterized Broadcast Networks with Registers: from
NP to the Frontiers of Decidability
Lucie Guillou, Corto Mascle, Nicolas Waldburger

To cite this version:
Lucie Guillou, Corto Mascle, Nicolas Waldburger. Parameterized Broadcast Networks with Regis-
ters: from NP to the Frontiers of Decidability. FoSSaCS 2024 - 27th International Conference on
Foundations of Software Science and Computation Structures, Apr 2024, Luxembourg, Luxembourg.
pp.250-270, �10.1007/978-3-031-57231-9�. �hal-04569794�

https://hal.science/hal-04569794
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ar
X

iv
:2

30
6.

01
51

7v
2

 [
cs

.L
O

]
 4

 M
ar

 2
02

4

Parameterized Broadcast Networks with

Registers: from NP to the Frontiers of

Decidability⋆

Lucie Guillou1, Corto Mascle2, and Nicolas Waldburger3

1 IRIF, CNRS, Université Paris Cité
2 LaBRI, Université de Bordeaux
3 IRISA, Université de Rennes

Abstract. We consider the parameterized verification of networks of
agents which communicate through unreliable broadcasts. In this model,
agents have local registers whose values are unordered and initially dis-
tinct and may therefore be thought of as identifiers. When an agent
broadcasts a message, it appends to the message the value stored in one
of its registers. Upon reception, an agent can store the received value
or test it for equality against one of its own registers. We consider the
coverability problem, where one asks whether a given state of the system
may be reached by at least one agent. We establish that this problem is
decidable, although non-primitive recursive. We contrast this with the
undecidability of the closely related target problem where all agents must
synchronize on a given state. On the other hand, we show that the cov-
erability problem is NP-complete when each agent only has one register.

Keywords: Parameterized verification · Well quasi-orders · Distributed
systems

1 Introduction

We consider Broadcast Networks of Register Automata (BNRA), a model for
networks of agents communicating by broadcasts. These systems are composed
of an arbitrary number of agents whose behavior is specified with a finite au-
tomaton. This automaton is equipped with a finite set of private registers that
contain values from an infinite unordered set. Initially, registers all contain dis-
tinct values, so these values can be used as identifiers. A broadcast message is
composed of a symbol from a finite alphabet along with the value of one of the
sender’s registers. When an agent broadcasts a message, any subset of agents
may receive it; this models unreliable systems with unexpected crashes and dis-
connections. Upon reception, an agent may store the received value or test it for
equality with one of its register values. For example, an agent can check that
several received messages have the same value.

⋆ Partly supported by ANR project PaVeDyS (ANR-23-CE48-0005).

http://arxiv.org/abs/2306.01517v2

2 L. Guillou, C. Mascle, N. Waldburger

This model was introduced in [10], as a natural extension of Reconfigurable
Broadcast Networks [12]. In [10], the authors established that coverability is
undecidable if the agents are allowed to send two values per message. They
moreover claimed that, with one value per message, coverability was decidable
and PSPACE-complete; however, the proof turned out to be incorrect [22]. As
we will see, the complexity of that problem is in fact much higher.

In this paper we establish the decidability of the coverability problem and
its completeness for the hyper-Ackermannian complexity class Fωω , showing
that the problem has nonprimitive recursive complexity. The lower bound comes
from lossy channel systems, which consist (in their simplest version) of a finite
automaton that uses an unreliable FIFO memory from which any letter may
be erased at any time [3, 8, 26]. We further establish that our model lies at the
frontier of decidability by showing undecidability of the target problem (where
all agents must synchronize in a given state). We contrast these results with the
NP-completeness of the coverability problem if each agent has only one register.

Related work Broadcast protocols are a widely studied class of systems in which
processes are represented by nodes of a graph and can send messages to their
neighbors in the graph. There are many versions depending on how one models
processes, the communication graph, the shape of messages... A model with a
fully connected communication graph and messages ranging over a finite alpha-
bet was presented in [13]. When working with parameterized questions over this
model (i.e., working with systems of arbitrary size), many basic problems are
undecidable [14]; similar negative results were found for Ad Hoc Networks where
the communication graph is fixed but arbitrary [12]. This lead the community
to consider Reconfigurable Broadcast Networks (RBN) where a broadcast can
be received by an arbitrary subset of agents [12].

Parameterized verification problems over RBN have been the subject of ex-
tensive study in recent years, concerning for instance reachability questions [5,
11], liveness [9] or alternative communication assumptions [4]; however, RBN
have weak expressivity, in particular because agents are anonymous. In [10],
RBN were extended to BNRA, the model studied in this article, by the addition
of registers allowing processes to exchange identifiers.

Other approaches exist to define parameterized models with registers [6],
such as dynamic register automata in which processes are allowed to spawn
other processes with new identifiers and communicate integers values [1]. While
basic problems on these models are in general undecidable, some restrictions on
communications allow to obtain decidability [2, 20].

Parameterized verification problems often relate to the theory of well quasi-
orders and the associated high complexities obtained from bounds on the length
of sequences with no increasing pair (see for example [25]). In particular, our
model is linked to data nets, a classical model connected to well-quasi-orders.
Data nets are Petri nets in which tokens are labeled with natural numbers and
can exchange and compare their labels using inequality tests [18]; in this model,
the coverability problem is Fωωω -complete [15]. When one restricts data nets to
only equality tests, the coverability problem becomes Fωω -complete [21]. Data

Parameterized broadcast networks with registers 3

nets with equality tests do not subsume BNRA. Indeed, in data nets, each process
can only carry one integer at a time, and problems on models of data nets where
tokens carry tuples of integers are typically undecidable [17].

Overview We start with the model definition and some preliminary results in
Section 2. As our decidability proof is quite technical, we start by proving de-
cidability of the coverability problem in a subcase called signature protocols in
Section 3. We then rely on the intuitions built in that subcase to generalize
the proof to the general case in Section 4. We also show the undecidability of
the closely-related target problem. Finally, we prove the NP-completeness of
the coverability problem for protocols with one register in Section 5. Due to
space constraints, a lot of proofs, as well as some technical definitions, are only
sketched in this version. Detailed proofs can be found in the appendix.

In this document, each notion is linked to its definition using the knowledge
package. On electronic devices, clicking on words or symbols allows to access
their definitions.

2 Preliminaries

2.1 Definitions of the Model

A Broadcast Network of Register Automata (BNRA) [10] is a model describing
broadcast networks of agents with local registers. A finite transition system
describes the behavior of an agent; an agent can broadcast and receive messages
with integer values, store them in local registers and perform (dis)equality tests.
There are arbitrarily many agents. When an agent broadcasts a message, every
other agent may receive it, but does not have to do so.

Definition 1. A protocol with r registers is a tuple P = (Q,M, ∆, q0) with Q
a finite set of states, q0 ∈ Q an initial state, M a finite set of message types
and ∆ ⊆ Q× Op×Q a finite set of transitions, with operations Op =

{br(m, i), rec(m, i, ∗), rec(m, i, ↓), rec(m, i,=), rec(m, i, 6=) |m ∈ M, 1 ≤ i ≤ r}.

Label br stands for broadcasts and rec for receptions. In a reception rec(m, i, α),
α is its action. The set of actions is Actions := {=, 6=, ↓, ∗}, where ‘=’ is an
equality test, ‘ 6=’ is a disequality test, ‘ ↓ ’ is a store action and ‘∗’ is a dummy
action with no effect. The size of P is |P| := |Q|+ |M|+ |∆|+ r.

We now define the semantics of those systems. Essentially, we have a finite
set of agents with r registers each; all registers initially contain distinct values. A
step consists of an agent broadcasting a message that other agents may receive.

Definition 2 (Semantics). Let (Q,M, ∆, q0) be a protocol with r registers,
and A a finite non-empty set of agents. A configuration over A is a function

https://www.irif.fr/~colcombe/knowledge_en.html

4 L. Guillou, C. Mascle, N. Waldburger

q0 q1

q3q2 q4q5

br(m1, 1)

br(m2, 1)rec(m2, 1, ↓) rec(m3, 2, ↓)

br(m3, 2)
br(m4, 1)

rec(m4, 1,=)

br(m4, 1)

rec(m1, 1,=)

Fig. 1: Example of a protocol.

γ : A → Q×Nr mapping each agent to its state and its register values. We write
st(γ) for the state component of γ and data(γ) for its register component.

An initial configuration γ is one where for all a ∈ A, st(γ)(a) = q0 and
data(γ)(a, i) 6= data(γ)(a′, i′) for all (a, i) 6= (a′, i′).

Given a finite non-empty set of agents A and two configurations γ, γ′ over A,
a step γ −→ γ′ is defined when there exist m ∈ M, a0 ∈ A and i ∈ [1, r] such that
(st(γ)(a0), br(m, i), st(γ

′)(a0)) ∈ ∆, data(γ)(a0) = data(γ′)(a0) and, for all a 6=
a0, either γ

′(a) = γ(a) or there exists (st(γ)(a), rec(m, j, α), st(γ′)(a)) ∈ ∆ s.t.
data(γ′)(a, j′) = data(γ)(a, j′) for j′ 6= j and:

– if α = ‘∗’ then data(γ′)(a, j) = data(γ)(a, j),
– if α = ‘ ↓ ’ then data(γ′)(a, j) = data(γ)(a0, i),
– if α = ‘=’ then data(γ′)(a, j) = data(γ)(a, j) = data(γ)(a0, i),
– if α = ‘ 6=’ then data(γ′)(a, j) = data(γ)(a, j) 6= data(γ)(a0, i).

A run over A is a sequence of steps ρ : γ0 −→ γ1 −→ · · · −→ γk with γ0, . . . , γk

configurations over A. We write γ0
∗
−→ γk when there exists such a run. A run is

initial when γ0 is an initial configuration.

Remark 3. In our model, agents may only send one value per message. Indeed,
coverability is undecidable if agents can broadcast several values at once [10].

Example 4. Figure 1 shows a protocol with 2 registers. Let A = {a1, a2}. We
denote by 〈st(γ)(a1), data(γ)(a1), st(γ)(a2), data(γ)(a2)〉 a configuration γ over
A. The following sequence is an initial run:

〈q0, (1, 2), q0, (3, 4)〉 −→ 〈q1, (1, 2), q2, (1, 4)〉 −→ 〈q3, (1, 4), q3, (1, 4)〉

−→ 〈q4, (1, 4), q3, (1, 4)〉 −→ 〈q4, (1, 4), q4, (1, 4)〉

The broadcast messages are, in this order: (m2, 1) by a1, (m3, 4) by a2, (m4, 1)
by a2 and (m4, 1) by a1. In this run, each broadcast message is received by the
other agent; in general, however, this does not have to be true. ⊓⊔

Remark 5. From a run ρ : γ0
∗
−→ γ, we can build a larger run ρ′ in which, for

each agent a of ρ, there are arbitrarily many extra agents in ρ′ that end in the
same state as a, all with distinct register values. To obtain this, ρ′ make many

Parameterized broadcast networks with registers 5

copies of ρ run in parallel on disjoint sets of agents. Because all these copies of
ρ do not interact with one another and because all agents start with distinct
values in initial configurations, the different copies of ρ have no register values
in common. This property is called copycat principle: if state q is coverable, then
for all n there exists an augmented run which puts n agents on q.

Definition 6. The coverability problem Cover asks, given a protocol P and
a state qf , whether there is a finite non-empty set of agents A, an initial run

γ0
∗
−→ γf over A that covers qf , i.e., there is a ∈ A such that st(γf)(a) = qf .
The target problem Target asks, given a protocol P and a state qf , whether

there is there is a finite non-empty set of agents A and an initial run γ0
∗
−→ γf

over A such that, for every a ∈ A, st(γf)(a) = qf , i.e., all agents end on qf .

Example 7. Let P the protocol of Figure 1. As proven in Example 4, (P , q4) is a
positive instance of Cover and Target. However, let P ′ the protocol obtained
from P by removing the loop on q4; (P ′, q4) becomes a negative instance of
Target. Indeed, there must be an agent staying on q3 to broadcast m4. Also,
(P , q5) is a negative instance of Cover: we would need to be able to have one
agent on q2 and one agent on q0 with the same value in their first registers.
However, an agent in q0 has performed no transition so it cannot share register
values with other agents. ⊓⊔

Remark 8. In [10], the authors consider the query problem where one looks for
a run reaching a configuration satisfying some queries. In fact, this problem
exponentially reduces toCover hence our complexity result of Fωω also holds for
the query problem. In the case with one register, one can even find a polynomial-
time reduction hence our NP result also holds with queries.

We finally introduce signature BNRA, an interesting restriction of our model
where register 1 is broadcast-only and all other registers are reception-only. Said
otherwise, the first register acts as a permanent identifier with which agents sign
their messages. An example of such a protocol is displayed in Fig. 2. Under this
restriction, a message is composed of a message type along with the identifier
of the sender. This restriction is relevant for pedagogical purposes: we will see
that it falls into the same complexity class as the general case but makes the
decidability procedure simpler.

Definition 9 (Signature protocols). A signature protocol with r registers is
a protocol P = (Q,M, ∆, q0) where register 1 appears only in broadcasts in ∆
and registers i ≥ 2 appear only in receptions in ∆.

2.2 Classical Definitions

Fast-growing hierarchy For α an ordinal in Cantor normal form, we denote by Fα

the class of functions corresponding to level α in the Fast-Growing Hierarchy.
We denote by Fα the associated complexity class and use the notion of Fα-
completeness. All these notions are defined in [23]. We will specifically work with

6 L. Guillou, C. Mascle, N. Waldburger

complexity class Fωω . For readers unfamiliar with these notions, Fωω -complete
problems are decidable but with very high complexity (non-primitive recursive,
and even much higher than the Ackermann class Fω).

We highlight that our main result is the decidability of the problem. We show
that the problem lies in Fωω because it does not complicate our decidability proof
significantly; also, it fits nicely into the landscape of high-complexity problems
arising from well quasi-orders.

Well-quasi orders For our decidability result, we rely on the theory of well
quasi-orders in the context of subword ordering. Let Σ be a finite alphabet,
w1, w2 ∈ Σ∗, w1 is a subword of w2, denoted w1 � w2, when w1 can be obtained
from w2 by erasing some letters. A sequence of words w0, w1, . . . is good if there
exist i < j such that wi � wj , and bad otherwise. Higman’s lemma [16] states
that every bad sequence of words over a finite alphabet is finite, but there is
no uniform bound. In order to bound the length of all bad sequences, one must
bound the growth of the sequence of words. We will use the following result,
known as the Length function theorem [24]:

Theorem 10 (Length function theorem [24]). Let Σ a finite alphabet and
g : N → N a primitive recursive function. There exists a function f ∈ Fω|Σ|−1

such that, for all n ∈ N, every bad sequence w1, w2, . . . such that |wi| ≤ g(i)(n)
for all i has at most f(n) terms (where g(i) denotes g applied i times).

2.3 A Complexity Lower Bound for COVER Using LCS

Lossy channel systems (LCS) are systems where finite-state processes communi-
cate by sending messages from a finite alphabet through lossy FIFO channels.
Unlike in the non-lossy case [7], reachability of a state is decidable for lossy chan-
nel systems [3], but has non-primitive recursive complexity [26] and is in fact
Fωω -complete [8]. By simulating LCS using BNRA, we obtain our Fωω lower
bound for the coverability problem:

Proposition 11. Cover for signature BNRA is Fωω -hard.

Proof sketch. Given an LCS L, we build a signature protocol P with two regis-
ters. Each agent starts by receiving a foreign identifier and storing it in its second
register; using equality tests, it then only accepts messages with this identifier.
Each agent has at most one predecessor, so the communication graph is a forest
where messages propagate from roots to leaves. Each branch simulates an execu-
tion of L. Each agent of the branch simulates a step of the execution: it receives
from its predecessor a configuration of L, chooses the next configuration of L
and broadcasts it, sending first the location of L and then, letter by letter, the
content of the channel. It could be that some messages are not received, hence
the lossiness. The full proof can be found in Appendix A. ⊓⊔

Parameterized broadcast networks with registers 7

3 Coverability Decidability for Signature Protocols

This section and the next one are dedicated to the proof of our main result:

Theorem 12. Cover for BNRA is decidable and Fωω -complete.

For the sake of clarity, in this section, we will first focus on the case of
signature BNRA. As a preliminary, we start by defining a notion of local run
meant to represent the projection of a run onto a given agent.

3.1 Local runs

A local configuration is a pair (q, ν) ∈ Q × Nr. An internal step from (q, ν) to

(q′, ν′) with transition δ ∈ ∆, denoted (q, ν)
int(δ)
−−−→ (q′, ν′), is defined when ν = ν′

and δ = (q,br(m, i), q′) is a broadcast. A reception step from (q, ν) to (q′, ν′)

with transition δ ∈ ∆ and value v ∈ N, denoted (q, ν)
ext(δ,v)
−−−−→ (q′, ν′), is defined

when δ is of the form (q, rec(m, j, α), q′) with ν(j′) = ν′(j′) for all j′ 6= j and:
– if α = ‘∗’ then ν(j) = ν′(j),
– if α = ‘ ↓ ’ then ν′(j) = v,

– if α = ‘=’ then ν(j) = ν′(j) = v,
– if α = ‘ 6=’ then ν(j) = ν′(j) 6= v.

Such a reception step corresponds to receiving message (m, v); in a local run,
one does not specify the origin of a received message. A local step (q, ν) −→ (q′, ν′)
is either a reception step or an internal step. A local run u is a sequence of local
steps denoted (q0, ν0)

∗
−→ (q, ν). Its length |u| is its number of steps.

A value v ∈ N appearing in u is initial if it appears in ν0 and non-initial
otherwise. For v ∈ N, the v-input Inv(u) (resp. v-output Outv(u)) is the sequence
m0 · · ·mℓ ∈ M∗ of message types received (resp. broadcast) with value v in u.

3.2 Unfolding Trees

We first prove decidability ofCover for signature BNRA. Note that, in signature
protocols, the initial values of reception-only registers are not relevant as they
can never be shared with other agents. We deduce from this idea the following
informal observation:

Observation 13 In signature BNRA, when some agent receives a message, it
can compare the value of the message only with the ones of previously received
messages, i.e., check whether the sender is the same.

If we want to turn a local run u of an agent a into an actual run, we must
match a’s receptions with broadcasts. Because of Observation 13, what matters
is not the actual values of the receptions in u but which ones are equal to which.
Therefore, for a value v received in u, if m1 . . .mk ∈ M∗ are the message types
received in u with value v in this order, it means that to execute u, a need
another agent a′ to broadcast messages types m1 to mk, all with the same value.
We describe what an agent needs from other agents as a set of specifications
which are words of M∗.

8 L. Guillou, C. Mascle, N. Waldburger

q0

q1 q2 q3 q4

q5

q6

q7

br(go, 1)

br(hlt, 1)
br(rdy, 1)br(rdy, 1)

rec(rdy, 2, ↓)

rec(rdy, 3, ↓) rec(go, 2,=) rec(hlt, 3,=)

rec(rdy, 2, ∗)

Fig. 2: Example of a signature protocol.

To represent runs, we consider unfolding trees that abstract runs by repre-
senting such specifications, dependencies between them and how they are carried
out. In this tree, each node is assigned a local run and the specification that it
carries out. Because of copycat arguments, we will in fact be able to duplicate
agents so that each agent only accomplishes one task, hence the tree structure.

Definition 14. An unfolding tree τ over P is a finite tree where nodes µ have
three labels:

– a local run of P, written lr(µ);
– a value in N, written val(µ);
– a specification spec(µ) ∈ M∗.

Moreover, all nodes µ in τ must satisfy the three following conditions:

(i) Initial values of lr(µ) are never received in lr(µ),
(ii) spec(µ) � Outval(µ)(lr(µ)), (recall that � denotes the subword relation)

(iii) For each value v received in lr(µ), µ has a child µ′ s.t. Inv(lr(µ)) � spec(µ′).

Lastly, given τ an unfolding tree, we define its size by |τ | :=
∑

µ∈τ |µ| where
|µ| := |lr(µ)| + |spec(µ)|. Note that the size of τ takes into account the size of
its nodes, so that a tree τ can be stored in space polynomial in |τ | (renaming the
values appearing in τ if needed).

We explain this definition. Condition (i) enforces that the local run cannot
cheat by receiving its initial values. Condition (ii) expresses that lr(µ) broadcasts
(at least) the messages of spec(µ). We can use the subword relation � (instead
of equality) because messages do not have to be received. Condition (iii) expresses
that, for each value v received in the local run lr(µ), µ has a child who is able
to broadcast the sequence of messages that lr(µ) receives with value v.

Example 15. Figure 2 provides an example of a signature protocol. Let A =
{a1, a2, a3}. We denote a configuration γ by 〈st(γ)(a1), (data(γ)(a1)),
st(γ)(a2), (data(γ)(a2)), st(γ)(a3), (data(γ)(a3))〉. Irrelevant register values are
denoted by . Let ρ be the run over A of initial configuration
〈q0, (1, ,), q0, (2, ,), q0, (3, ,)〉 where the following occurs:

Parameterized broadcast networks with registers 9

Node µ1 (a1 in ρ)
spec = ε

v = 1

reg 1
reg 2
reg 3

q0
1

→
ext(δ01, 2)

q1
1
2

→
ext(δ12, 3)

q2
1
2
3

→
ext(δ23, 2)

q3
1
2
3

→
ext(δ34, 3)

q4
1
2
3

q0
2

→
int(δ00)

q5
2

→
ext(δ05, 4)

q5
2

→
int(δ56)

q6
2Node µ2 (a2)

spec = rdy · go
v = 2

q0
3

→
int(δ00)

q0
3

→
ext(δ05, 5)

q5
3

→
int(δ57)

q7
3 Node µ3 (a3)

spec = rdy · hlt
v = 3

q0
4

→
int(δ00)

q0
4Node µ4 (a3)

spec = rdy

v = 4

q0
5

→
ext(δ05, 6)

q5
5

→
int(δ55)

q5
5 Node µ5 (a2)

spec = rdy

v = 5

q0
6

→
int(δ00)

q0
6 Node µ6 (a3)

spec = rdy

v = 6

Fig. 3: Example of an unfolding tree derived from ρ. Grids correspond to local
runs, a column of a grid is a local configuration. Transition δij is the transition
between state qi and state qj , for example δ01 = (q0, rec(rdy, 2, ↓), q1). If δ is a
reception of m ∈ M, ext(δ, v) corresponds to receiving message (m, v); if δ is a
broadcast of m ∈ M, int(δ) corresponds to broadcasting (m, id) where id is the
value in the first register of the agent. Initial values of reception-only registers
are irrevelant and written as ‘ ’. Colors correspond to message types.

– a2 broadcasts rdy, a1 receives: 〈q1, (1, 2,), q0, (2, ,), q0, (3, ,)〉,
– a3 broadcasts rdy, a1 and a2 receive: 〈q2, (1, 2, 3), q5, (2, ,), q0, (3, ,)〉,
– a2 broadcasts rdy, a3 receives: 〈q2, (1, 2, 3), q5, (2, ,), q5, (3, ,)〉,
– a2 broadcasts go, a1 receives: 〈q3, (1, 2, 3), q6, (2, ,), q5, (3, ,)〉,
– a3 broadcasts hlt, a1 receives: 〈q4, (1, 2, 3), q6, (2, ,), q7, (3, ,)〉.

Figure 3 provides an unfolding tree derived from ρ by applying a procedure
introduced later. Because agents a2 and a3 broadcast to several other agents,
they each correspond to several nodes of the tree.

We explain why this tree is an unfolding tree. Condition (i) is trivially sat-
isfied. Condition (ii) holds at every node because the local run of each node
exactly broadcasts the specification of the node. Condition (iii) is satisfied at
µ1: In2(lr(µ1)) = rdy · go = spec(µ2) and In3(lr(µ1)) = rdy · hlt = spec(µ3). It is
also satisfied at µ2, µ3 and µ5 because their local runs only receive rdy and they
each have a child with specification rdy. It is trivially satisfied at µ4 and µ6 as
their local runs have no reception. ⊓⊔

10 L. Guillou, C. Mascle, N. Waldburger

Lemma 16. Given a signature protocol P with a state qf , qf is coverable in P
if and only if there exists an unfolding tree whose root is labelled by a local run
covering qf . We call such an unfolding tree a coverability witness.

Proof. Given a run ρ, agent a satisfies a specification w ∈ M∗ in ρ if the sequence
of message types broadcast by a admits w as subword.

Let τ be a coverability witness. We prove the following property by strong
induction on the depth of µ: for every µ in τ , there exists a run ρ with an agent
a whose local run in ρ is lr(µ) and who satisfies specification spec(µ). This
is trivially true for leaves of τ because their local runs have no reception (by
condition (iii)) hence are actual runs by themselves. Let µ a node of τ , u :=
lr(µ) and v1, . . . , vc the values received in u. These values are non-initial thanks
to condition (i); applying condition (iii) gives the existence of corresponding
children µ1, . . . , µc in τ . We apply the induction hypothesis on the subtrees
rooted in µ1, . . . , µc to obtain runs ρ1, . . . , ρc satisfying the specifications of the
children of µ. Up to renaming agents, we can assume the set of agents of these
runs are disjoint; up to renaming values, we can assume that vj = val(µj) for
all j and that all agents start with distinct values. We build an initial run ρ
whose agents is the union of the agents of the c runs along with a fresh agent
a. In ρ, we make ρ1 to ρc progress in parallel and make a follow the local run
u, matching each reception with value vj in u with a broadcast in ρj . This is
possible because, for all j, Invj (u) � spec(µj) � Outvj (ρj) (by (ii)).

Conversely, we prove the following by induction on the length of ρ: for every
initial run ρ, for every agent a in ρ and for every v ∈ N, there exists an unfolding
tree whose root has as local run the projection of ρ onto a and as specification
the v-output of a in ρ. If ρ is the empty run, consider the unfolding tree with a
single node whose local run and specification are empty. Suppose now that ρ has
non-zero length, let a an agent in ρ, v ∈ N and let ρp the prefix run of ρ of length
|ρ| − 1. Let τ1 the unfolding tree obtained by applying the induction hypothesis
to ρp, a and v, and consider τ2 obtained by simply appending the last step of a
in ρ to the local run at the root of τ1. If this last step is a broadcast, we obtain
an unfolding tree; if the broadcast value is v, we append the broadcast message
type to the specification at the root of τ2 and we are done. Suppose that, in the
last step of ρ, a performs a reception (q, rec(m, i, α), q′) of a message (m, v′).
We might need to adapt τ2 to respect condition (iii) at the root. Let a′ the agent
broadcasting in the last step of ρ. Let τ3 the unfolding tree obtained by applying
the induction to ρp, a

′ and v′. Let τ4 the unfolding tree obtained by appending
the last broadcast to the local run at the root of τ3 and the corresponding
message type to the specification at the root of τ3. Attaching τ4 below the root
of τ2 gives an unfolding tree satisfying the desired properties. ⊓⊔

The unfolding tree τ of Figure 3 is built from ρ of Example 15 using the
previous procedure. Observe that the unfolding tree τ is a coverability witness
for q4. However, one can find a smaller coverability witness. Indeed, in the right
branch of τ , µ5 and µ6 have the same specification, therefore µ5 can be deleted
and replaced with µ6. More generally, we would have also been able to shorten
the tree if we had spec(µ5) � spec(µ6).

Parameterized broadcast networks with registers 11

Remark 17. With the previous notion of coverability witness, the root has to
cover qf but may have an empty specification. However, we will later need the
length of the specification of a node to be equal to the number of tasks that
it must carry out. For this reason, we will, in the rest of this paper, consider
that the roots of coverability witnesses have a specification of length 1. This can
be formally achieved by introducing a new message type mf that may only be
broadcast from qf and require that, at the root, spec = mf .

3.3 Bounding the Size of a Coverability Witness

In all the following, we fix a positive instance (P , qf) ofCover with r+1 registers
(i.e., r registers used for reception) and a coverability witness τ of minimal size.
We turn the observation above into an argument that will be useful towards
bounding the length of branches of a coverability witness:

Lemma 18. If a coverability witness τ for (P , qf) of minimal size has two nodes
µ, µ′ with µ a strict ancestor of µ′ then spec(µ) cannot be a subword of spec(µ′).

Proof. Otherwise, replacing the subtree rooted in µ with the one rooted in µ′

would contradict minimality of τ . ⊓⊔

We would now like to use the Length function theorem to bound the height
of τ , using the previous lemma. To do so, we need a bound on the size of a node
with respect to its depth. The following lemma bounds the number of steps of a
local run between two local configurations: we argue that if the local run is long
enough we can replace it with a shorter one that can be executed using the same
input. This will in turn bound the length of a local run of a node with respect
to the size of its specification, which is the first step towards our goal.

Lemma 19. There exists a primitive recursive function ψ so that, for every local
run u : (q, ν)

∗
−→ (q′, ν′), there exists u′ : (q, ν)

∗
−→ (q′, ν′) with |u′| < ψ(|P|, r)

and for all value v′ ∈ N, there exists v ∈ N such that Inv′(u
′) � Inv(u).

Proof. Let ψ(n, 0) = n + 1 and ψ(n, k + 1) = 2ψ(n, k) · (|∆|2ψ(n,k) + 1) + 1
for all k. Observe that ψ(n, k) is a tower of exponentials of height k, which is
primitive-recursive although non-elementary. A register i ≥ 2 is active in a local
run u if u has some ‘ ↓ ’ action on register i. Let u a local run, k the number of
active registers in u, n := |P| and M := ψ(n, k). We prove by induction on the
number k of active registers in u that if |u| ≥ ψ(n, k) then u can be shortened.

If k = 0, any state repetition can be removed. Suppose that |u| > ψ(n, k+1)
and that the set I of active registers of u is such that |I| = k+ 1. If there exists
an infix run of u of length M with only k active registers, we shorten u using the
induction hypothesis. Otherwise, every sequence of M steps in u has a ‘ ↓ ’ on
every register of I. Because |u| > 2M (|∆|2M +1), u contains at least |∆|2M +1
disjoint sequences of length 2M and some s ∈ ∆2M appears twice: in infix run
u1 first, then in infix run u2. We build a shorter run u′ by removing all steps
between u1 and u2 and merging u1 and u2 (see Fig. 4). We need suitable values

12 L. Guillou, C. Mascle, N. Waldburger

Original
local run

reg 2

reg 3

reg 4 v2

v1

‘ ↓ ’ actions

Shortened
local run

reg 2

reg 3

reg 4

s

v′2

m2

m1

fresh
values

v1

s s

Fig. 4: Illustration of the proof of Lemma 19.

for the reception steps in s in the shortened run u′. For a given register i ∈ I, we
would like to pick a ‘ ↓ ’ step on register i in s, use values from u1 before that
step and values from u2 after that step. This would guarantee that all equality
and disequality tests still pass. However, there is an issue if a value v appears in
several registers in u. For example, if v1 = v2 = v in Figure 4, we might interleave
receptions of v on registers 2 and 4: if we had a ext(rec(m1, 2,=), v) in u1 and a
ext(rec(m2, 4,=), v) in u2, we could have m1 before m2 in Inv(u) but m1 after
m2 in Inv(u

′), so that we do not have Inv(u
′) � Inv(u). We solve this issue by

introducing fresh values between values of u1 and values of u2; because |s| = 2M ,
there is a ‘ ↓ ’ for each register in I in each half of s. In the shortened run u′,
before the first ‘ ↓ ’ on register i (excluded), we use values of u1, and after the
last ‘ ↓ ’ on register i (included), we use values of u2. For every value v appearing
in register i between these two steps in u1, we select a fresh value vf (i.e., a value
that does not appear anywhere in the run) and consistently replace v with vf
(hatched blocks in Fig. 4). With this technique, receptions with values from u1
and receptions with values from u2 cannot get interleaved in u′. Therefore, for
every value that appeared in u, we have Inv(u

′) � Inv(u). Also, for every fresh
value v′ there is a value v such that Inv′(u

′) � Inv(u). Moreover, u′ is shorter
than u; we conclude by iterating this shortening procedure. ⊓⊔

Using the previous lemma, we will bound the size of a node in τ with respect
to its specification therefore with respect to its parent’s size. By induction, we
will then obtain a bound depending on the depth, and apply the Length function
theorem to bound the height of the tree.

Lemma 20. For all nodes µ, µ′ in τ :

1. |lr(µ)| ≤ ψ(|P|, r) |spec(µ)|,
2. if µ is the child of µ′, |spec(µ)| ≤ ψ(|P|, r) |spec(µ′)|.

Proof. Thanks to Remark 17, we assume that the specification at the root is of
length 1. For the first item, by minimality of τ , lr(µ) ends with the last broadcast

Parameterized broadcast networks with registers 13

required by spec(µ); we identify in lr(µ) the broadcast steps witnessing spec(µ)
and shorten the local run between these steps using Lemma 19. We thus obtain
|lr(µ)| ≤ ψ(|P|, r) |spec(µ)|, proving 1. For the second item, by minimality of τ ,
|spec(µ)| ≤ maxv∈N |Inv(lr(µ′))| ≤ |lr(µ′)| ≤ ψ(|P|, r) |spec(µ′)|. ⊓⊔

Proposition 21. There exists a function f of class Fω|M|−1 s.t. |τ | ≤ f(|P|).

Proof. Let n := |P|, let r + 1 be the number of registers in P . Thanks to
Lemma 18, for all µ 6= µ′ in τ with µ ancestor of µ′, spec(µ) is not a sub-
word of spec(µ′). Let µ1, . . . , µm the node appearing in a branch of τ , from
root to leaf. The sequence spec(µ1), . . . , spec(µm) is a bad sequence. For all
i ∈ [1,m], |spec(µi+1)| ≤ ψ(n, r) |spec(µi)| by Lemma 20. By direct induction,
|spec(µi)| is bounded by g(i)(n) where g : n 7→ nψ(n, n) is a primitive recursive
function. Let h of class Fω|M|−1 the function obtained when applying the Length
function theorem on g and M; we have m ≤ h(n).

By immediate induction, thanks to Lemma 20.2, for every node µ at depth d,
|spec(µ)| ≤ ψ(n, r)d+1 which, by Lemma 20.1 and because d ≤ h(n), bounds the
size of every node by h′(n) = ψ(n, n)h(n)+2. By minimality of τ , the number of
children of a node is bounded by the number of values appearing in its local run
hence by h′(n), so the total number of nodes in τ is bounded by h′(n)h(n)+1

and the size of τ by f(n) := h′(n)h(n)+2. Because Fω|M|−1 is closed under
composition with primitive-recursive functions, f is in Fω|M|−1 . ⊓⊔

The previous argument shows thatCover for signature protocols is decidable
and lies in complexity class Fωω . Because the hardness from Proposition 11 holds
for signature protocols, Cover is in fact complete for this complexity class.

We now extend this method to the general case.

4 Coverability Decidability in the General Case

4.1 Generalizing Unfolding Trees

In the general case, a new phenomenon appears: an agent may broadcast a value
that it did not initially have but that it has received and stored. In particular,
an agent starting with value v could broadcast v then require someone else to
make a broadcast with value v as well. For example, in the run described in
Example 4, 1 is initially a value of a1 that a2 receives and rebroadcasts to a1.

We now have two types of specifications. Boss specifications describe the
task of broadcasting with one of its own initial values; this is the specification
we had in signature protocols and, as before, it consists of a word bw ∈ M∗

describing a sequence of message types that should be all broadcast with the
same value. Follower specifications describe the task of broadcasting with a non-
initial value received previously. More precisely, a follower specification is a pair
(fw, fm) ∈ M∗ ×M asking to broadcast a message (fm, v) under the condition
of previously receiving the sequence of message types fw with value v.

14 L. Guillou, C. Mascle, N. Waldburger

A key idea is that, if an agent that had v initially receives some message
(m, v), then intuitively we can isolate a subset of agents that did not have v ini-
tially but that are able to broadcast (m, v) after receiving a sequence of messages
with that value. We can then copy them many times in the spirit of the copycat
principle. Each copy receives the necessary sequence of messages in parallel, and
they then provide us with an unbounded supply of messages (m, v). In short, if
an agent broadcasts (m, v) while not having v as an initial value, then we can
consider that we have an unlimited supply of messages (m, v).

Example 22. Assume that A = {a1, a2, a3} and let v be initial for a1. Consider
an execution where the broadcasts with value v are: a1 broadcasts a · b, then a2
broadcasts c, then a1 broadcasts a3 then a3 broadcasts b. The follower specifica-
tion of a2’s task would be of the form (w, c) where w � a · b: a2 must be able to
broadcast (c, v) once a · b has been broadcast with value v. By contrast, a3’s fol-
lower specification would be of the form (w·w′, c) where w � a·b and w′ ∈ {a, c}∗

is a subword of a3 enriched with as many c as desired, because a2 may be cloned
at will. For example, one could have w = b and w′ = c · a · c4 · a · c2. This idea is
formalized in Appendix B with the notion of decomposition. Using this notion,
the previous condition becomes: w · w′ admits decomposition (a · b, c, a3). ⊓⊔

In our new unfolding trees, a node is either a boss node or a follower node,
depending on its type of specification. A boss node with a boss specification bw

must broadcast that sequence of message types with one of its initial values. A
follower node µ with follower specification (fw, fm) is allowed to receive sequence
of messages fw with value val(µ) (which must be non-initial) without it being
broadcast by its children. Other conditions are similar to the ones for signature
protocols: if µ is a node and v 6= val(µ) a non-initial value received in its local
run, µ must have a boss child broadcasting this word. Moreover, for each (m, v)
received where v is an initial value of the local run, µ must have a follower child
that is able to broadcast (m, v) after receiving messages sent previously with
value v; the formal statement is more technical because it takes into account the
observation of Example 22. The formal definition of unfolding tree is given in
Appendix B.

Example 23. Figure 5 depicts the unfolding tree associated to a1 in the run of
Example 4. Follower node µ3 can have a m2 reception that is not matched by its
children because m2 is in fw(µ3). µ1 broadcasts (m2, 1) before receiving (m4, 1)
hence the follower specification of µ3 witnesses broadcast of (m4, 1). ⊓⊔

A coverability witness is again an unfolding tree whose root covers qf (or
broadcasts a message mf , see Remark 17), with the extra condition that the
root is a boss node (a follower node implicitly relies on its parent’s ability to
broadcast).

Proposition 24. An instance of Cover (P , qf) is positive if and only if there
exists a coverability witness for that instance.

Parameterized broadcast networks with registers 15

Boss node µ1 (a1 in ρ)

bw = ε

v = 1

reg 1
reg 2

q0
1

→
int(δb2)

q1
1

→
ext(δr3, 2)

q3
1
2

→
ext(δr4, 1)

q4
1
2

→
int(δb4)

q4
1
2

q0

2

→
ext(δr2, 3)

q2
3
2

→
int(δb3)

q3
3
2

Boss node µ2 (a2)

bw = m3

v = 2

q0 →
ext(δr2, 1)

q2
1

→
int(δb3)

q3
1

→
int(δb4)

q3
1

Follower node µ3 (a2)

fw = m2, fm = m4

v = 1

q0
3

→
int(δb2)

q1
3

Boss node µ4 (a1)

bw = m2

v = 3

Fig. 5: Example of an unfolding tree. δri (resp. δbi) denotes the reception (resp.
broadcast) transition of message mi in the protocol described in Fig. 1. Values
that are never broadcast are omitted and written as ‘ ’.

Proof sketch. The proof is quite similar to the one of Lemma 16, but is made
more technical by the addition of follower nodes. When translating an unfolding
tree to a run, if the root of the tree is a follower node µ of specification (fw, fm),
then we actually obtain a partial run, i.e., a run except that the receptions from
fw are not matched by broadcasts in the run. We then combine this partial run
with the run corresponding to the parent of µ and with the runs of other children
of µ so that every reception is matched with a broadcast. For the translation
from run to tree, we inductively construct the tree by extracting from the run
the agents and values responsible for satisfying the specifications of each node
and analyzing the messages they receive to determine their set of children (as in
Example 22). See Appendix C for the proof. ⊓⊔

Bounding the Size of the Unfolding Tree. Our aim is again to bound the
size of a minimal coverability witness. In the following, we fix an instance (P , qf)
with r registers and a coverability witness of minimal size. We start by providing
new conditions under which a branch can be shortened; for boss specifications, it
is the condition of Lemma 18 but for follower specifications, the subword relation
goes the opposite direction because the shorter the requirement fw, the better.
Details can be found in Appendix D.

Lemma 25. Let µ 6= µ′ be two nodes of τ such that µ is an ancestor of µ′. If one
of those conditions holds, then τ can be shortened (contradicting its minimality):

– µ and µ′ are boss nodes with boss specifications respectively bw and bw′, and
bw � bw′;

– µ and µ′ are follower nodes with follower specifications respectively (fw, fm)
and (fw′, fm′), and fw′ � fw and fm′ = fm.

We can generalize Lemma 19 to bound the size of a node by the number of
messages that it must broadcast times a primitive-recursive function ψ(|P|, r).

16 L. Guillou, C. Mascle, N. Waldburger

altitude

-2

-1

0

1

Boss

Follower

Boss

Boss

Follower

BossBoss

Follower

Follower

Boss

Fig. 6: Rearrangement of a tree. The root is in red, black solid arrows connect
parents to children, blue dashed arrows highlight that long words of messages
are sent upwards.

The proof is more technical than the one of Lemma 19 but the idea is essentially
the same. The formal statement is given below. , and the proof can be found in
Appendix E. One can therefore bound the size of a node with respect to the size
of the nodes that it must broadcast to.

Lemma 26. There exists a primitive recursive function ψ such that, for every
protocol P with r registers, for all local runs u0 : (q0, ν0)

∗
−→ (q, ν), u : (q, ν)

∗
−→

(q′, ν′), uf : (q′, ν′)
∗
−→ (qf , νf), there exists a local run u′ : (q, ν)

∗
−→ (q′, ν′) with

|u′| ≤ ψ(|P|, r) and for all v′ ∈ N:

1. if v′ appears in u0, u, or uf , Inv′(u
′) � Inv′(u),

2. otherwise, there exists v ∈ N, not initial in u0, such that Inv′(u
′) � Inv(u).

It is however now much harder than in the signature case to bound the size of
the coverability witness. Indeed, the broadcasts no longer go only from children
to parents in the unfolding tree. If µp is the parent of µc, then µc broadcasts
to µp if µc is a boss node, but µp broadcasts to µc if µc is a follower node,
in which case µc only broadcasts one message to µp. Therefore, we cannot in
general bound |µp| with respect to |µc| nor |µc| with respect to |µp|, making us
unable to apply the Length function theorem immediately.

This leads us to arrange the unfolding tree so that long broadcast sequences
are sent upwards, using the notion of altitude depicted in Figure 6, formally
defined as follows. The altitude of the root is 0, the altitude of a boss node is the
altitude of its parent minus one, and the altitude of a follower node is the altitude
of its parent plus one. We denote the altitude of µ by alt(µ). This way the nodes
of maximal altitude are the ones that do not need to send long sequences of
messages. We will bound the size of nodes with respect to their altitude, from
the highest to the lowest, and then use the Length function theorem to bound
the maximal and minimal altitudes. We present here a sketch of the proof. ;
details are postponed to Appendix F.

Parameterized broadcast networks with registers 17

Let altmax ≥ 0 (resp. altmin ≤ 0) denote the maximum (resp. minimum)
altitude in τ . We first bound the size of a node with respect to the difference
between its altitude and altmax.

Lemma 27. There is a primitive recursive function f0 such that, for every node
µ of τ , |µ| ≤ f0(|P|+ altmax− alt(µ)).

Proof sketch. We proceed by induction on the altitude, from highest to lowest. A
node of maximal altitude has at most one message to broadcast (a follower node
must broadcast one message to its parent), so its size is bounded by ψ(|P|, r)
by Lemma 26 (applying the Lemma to its local run minus its final step, i.e., the
step making the broadcast to its parent). Let µ be a node of τ whose neighbors
of higher altitude have size bounded by K. We claim that |µ| ≤ (ψ(|P|, r) +
2) (|M| rK +K), with ψ the primitive-recursive function defined in Lemma 26.
The idea is similar to the one for Lemma 20. The neighbors of higher altitude
are the nodes which require sequences of messages from µ. Their size bounds the
number of messages that µ needs to send; we then apply Lemma 26 to bound
the size of the local run of µ. Lemma 37 in the appendix details these ideas. We
finally obtain f0 by iteratively applying the inequality above. ⊓⊔

We now bound altmax and altmin:

Lemma 28. altmax and |altmin| are bounded by a function of class Fω|M| .

Proof sketch. We first bound altmax. Consider a branch of τ that has a node
at altitude altmax. We follow this branch from the root to a node of altitude
altmax: for every j ∈ [1, altmax], let µj be the first node of the branch that
has altitude j. All such nodes are necessarily follower nodes as they are above
their parent. Sequence µaltmax, . . . , µ2, µ1 is so that the ith term is at altitude
altmax − i hence its size is bounded by f0(|P| + i) (Lemma 27). With the
observation of Lemma 25, we retrieve from the follower specifications of this
sequence of nodes a bad sequence and we apply the Length function theorem to
bound altmax. This yields in turn a bound on the size of the root of τ . In order
to bound altmin, we proceed similarly, using boss nodes this time. We follow
a branch from the root to a node of altitude altmin. The sequence of nodes
that are lower than all previous ones yields a sequence of boss specifications,
which is a bad sequence by Lemma 25, and whose growth can be bounded using
Lemma 27 and the bound on altmax. We apply the Length function theorem
to bound |altmin|. ⊓⊔

Once we have bounded altmax and altmin, we can infer a bound on the
size of all nodes (Lemma 27), and then on the length of branches: by minimality,
a branch cannot have two nodes with the same specification. The bound on the
size of the tree then follows from the observation that bounding the size of nodes
of τ also allows to bound their number of children.

We obtain a computable bound (of the class Fωω) on the size of a minimal
coverability witness if it exists. Our decidability procedure computes that bound,
enumerates all trees of size below the bound and checks for each of them whether

18 L. Guillou, C. Mascle, N. Waldburger

it is coverability witness. This yields the main result of this paper, whose proof
can be found in Appendix G:

Theorem 12. Cover for BNRA is decidable and Fωω -complete.

4.2 Undecidability of the target problem

A natural next problem, after Cover, is the target problem (Target). Our
Cover procedure heavily relies on the ability to add agents at no cost. For
Target we need to guarantee that those agents can then reach the target state,
which makes the problem harder. In fact,Target is undecidable, which indicates
that our model lies at the frontier of decidability.

Proposition 29. Target is undecidable for BNRA, even with two registers.

Proof sketch. We simulate a Minsky machine with two counters. As in Propo-
sition 11, each agent starts by storing some other agent’s identifier, called its
“predecessor”. It then only accepts messages from its predecessor. As there are
finitely many agents, there is a cycle in the predecessor graph.

In a cycle, we use the fact that all agents must reach state qf to simulate faith-
fully a run of the machine: agents alternate between receptions and broadcasts
so that, in the end, they have received and sent the same number of messages,
implying that no message has been lost along the cycle. We then simulate the
machine by having an agent (the leader) choose transitions and the other ones
simulate the counter values by memorizing a counter (1 or 2) and a binary value
(0 or 1). For instance, an increment of counter 1 takes the form of a message
propagated in the cycle from the leader until it finds an agent simulating counter
1 and having bit 0. This agent switches to 1 and sends an acknowledgment that
propagates back to the leader. The full proof is provided in Appendix H. ⊓⊔

5 Cover in 1-BNRA

In this section, we establish the NP-completeness of the restriction of Cover to
BNRA with one register per agent, called 1-BNRA. Here we simply sketch the
key observations that allow us to abstract runs into short witnesses, leading to
an NP algorithm for the problem.

In 1-BNRA, thanks to the copycat principle, any message can be broadcast
with a fresh value, therefore one can always circumvent ‘ 6=’ tests. In the end,
our main challenge for 1-BNRA is ‘=’ tests upon reception. For this reason, we
look at clusters of agents that share the value in their registers.

Consider a run in which some agent a reaches some state q,; we can duplicate
a many times to have an unlimited supply of agents in state q. Now assume
that, at some point in the run, agent a stored a received value. Consider the
last storing action performed by a: a was in a state q1 and performed transition
(q1, rec(m, 1, ↓), q2) upon reception of a message (m, v). Because we can assume
that we have an unlimited supply of agents in q1 thanks to the copycat principle,

Parameterized broadcast networks with registers 19

we can make as many agents as we want take transition (q1, rec(m, 1, ↓), q2) at
the same time as a by receiving the same message (m, v). These new agents end
up in q2 with value v, and then follow a along every transition until they all
reach q, still with value v. In summary, because a has stored a value in the run,
we can have an unlimited supply of agents in state q with the same value as a.

Following those observations, we define an abstract semantics with abstract
configurations of the form (S, b,K) with S,K ⊆ Q and b ∈ Q ∪ {⊥}. The first
component S is a set of states that we know we can cover (hence we can assume
that there are arbitrarily many agents in all these states). We start with S = {q0}
and try to increase it. To do so, we use the two other components (the gang)
to keep track of the set of agents sharing a value v: b (the boss) is the state of
the agent which had that value at the start, K (the clique) is the set of states
covered by other agents with that value. As mentioned above, we may assume
that every state of K is filled with as many agents with value v as we need. We
will thus define abstract steps which allow to simulate steps of the agents with
the value we are following. When they cover states outside of S, we may add
those to S and reset b to q0 and K to ∅, to then start following another value. We
can bound the length of relevant abstract runs, and thus use them as witnesses
for our NP upper bound.

TheNP lower bound follows from a reduction from 3SAT. An agent a sends a
sequence of messages representing a valuation, with its identifier, to other agents
who play the role of an external memory by broadcasting back the valuation.
This then allows a to check the satisfaction of a 3SAT formula.

Theorem 30. The coverability problem for 1-BNRA is NP-complete.

The formal proofs of the upper and lower bounds are given in Appendix I.

6 Conclusion

We established the decidability (and Fωω -completeness) of the coverability prob-
lem for BNRA, as well as the NP-completeness of the problem for 1-BNRA.
Concerning future work, one may want to push decidability further, for instance
by enriching our protocols with inequality tests, as done in classical models such
as data nets [15]. Reductions of other distributed models to this one are also
being studied.

Acknowledgements. We are grateful to Arnaud Sangnier for encouraging us to
work on BNRA, for the discussions about his work in [10] and for his valuable
advice. We also thank Philippe Schnoebelen for the interesting discussion and
Sylvain Schmitz for the exchange on complexity class Fωω and related topics.

References

1. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of dynamic
register automata. In: 34th International Conference on Foundation of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2014. LIPIcs,

20 L. Guillou, C. Mascle, N. Waldburger

vol. 29, pp. 653–665. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014).
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653

2. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of buffered
dynamic register automata. In: Networked Systems, NETYS 2015. Lec-
ture Notes in Computer Science, vol. 9466, pp. 15–31. Springer (2015).
https://doi.org/10.1007/978-3-319-26850-7_2

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable
channels. Information and Computation 127(2), 91–101 (1996).
https://doi.org/10.1006/inco.1996.0053

4. Balasubramanian, A.R., Bertrand, N., Markey, N.: Parameterized verification
of synchronization in constrained reconfigurable broadcast networks. In: Tools
and Algorithms for the Construction and Analysis of Systems, TACAS 2018.
Lecture Notes in Computer Science, vol. 10806, pp. 38–54. Springer (2018).
https://doi.org/10.1007/978-3-319-89963-3_3

5. Balasubramanian, A.R., Guillou, L., Weil-Kennedy, C.: Parameterized
analysis of reconfigurable broadcast networks. In: Foundations of Soft-
ware Science and Computation Structures, FoSSaCS 2022. Lecture
Notes in Computer Science, vol. 13242, pp. 61–80. Springer (2022).
https://doi.org/10.1007/978-3-030-99253-8_4

6. Bollig, B., Ryabinin, F., Sangnier, A.: Reachability in distributed memory au-
tomata. In: Annual Conference on Computer Science Logic, CSL 2021. LIPIcs,
vol. 183, pp. 13:1–13:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.CSL.2021.13

7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2), 323–342 (1983). https://doi.org/10.1145/322374.322380

8. Chambart, P., Schnoebelen, P.: The ordinal recursive complexity of
lossy channel systems. In: Annual IEEE Symposium on Logic in Com-
puter Science, LICS 2008. pp. 205–216. IEEE Computer Society (2008).
https://doi.org/10.1109/LICS.2008.47

9. Chini, P., Meyer, R., Saivasan, P.: Liveness in broadcast networks. Computing
104(10), 2203–2223 (2022). https://doi.org/10.1007/s00607-021-00986-y

10. Delzanno, G., Sangnier, A., Traverso, R.: Parameterized verification of broad-
cast networks of register automata. In: Reachability Problems , RP 2013.
Lecture Notes in Computer Science, vol. 8169, pp. 109–121. Springer (2013).
https://doi.org/10.1007/978-3-642-41036-9_11

11. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the com-
plexity of parameterized reachability in reconfigurable broadcast net-
works. In: IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2012. LIPIcs, vol. 18,
pp. 289–300. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012).
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289

12. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. In: CONCUR 2010. Lecture Notes in Computer Science, vol. 6269, pp.
313–327. Springer (2010). https://doi.org/10.1007/978-3-642-15375-4_22

13. Emerson, E.A., Namjoshi, K.S.: On model checking for non-deterministic
infinite-state systems. In: Annual IEEE Symposium on Logic in Com-
puter Science, LICS 1998. pp. 70–80. IEEE Computer Society (1998).
https://doi.org/10.1109/LICS.1998.705644

14. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast pro-
tocols. In: 14th Annual IEEE Symposium on Logic in Computer Science,

https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.653
https://doi.org/10.1007/978-3-319-26850-7_2
https://doi.org/10.1007/978-3-319-26850-7_2
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1006/inco.1996.0053
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-319-89963-3_3
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.1007/978-3-030-99253-8_4
https://doi.org/10.4230/LIPIcs.CSL.2021.13
https://doi.org/10.4230/LIPIcs.CSL.2021.13
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1109/LICS.2008.47
https://doi.org/10.1007/s00607-021-00986-y
https://doi.org/10.1007/s00607-021-00986-y
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.1007/978-3-642-41036-9_11
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.289
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1007/978-3-642-15375-4_22
https://doi.org/10.1109/LICS.1998.705644
https://doi.org/10.1109/LICS.1998.705644

Parameterized broadcast networks with registers 21

Trento, Italy, July 2-5, 1999. pp. 352–359. IEEE Computer Society (1999).
https://doi.org/10.1109/LICS.1999.782630

15. Haddad, S., Schmitz, S., Schnoebelen, P.: The ordinal-recursive complexity of
timed-arc petri nets, data nets, and other enriched nets. In: Proceedings of
the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012,
Dubrovnik, Croatia, June 25-28, 2012. pp. 355–364. IEEE Computer Society
(2012). https://doi.org/10.1109/LICS.2012.46

16. Higman, G.: Ordering by divisibility in abstract algebras. Proceed-
ings of the London Mathematical Society s3-2(1), 326–336 (1952).
https://doi.org/10.1112/plms/s3-2.1.326

17. Lasota, S.: Decidability border for petri nets with data: WQO dichotomy conjec-
ture. In: Kordon, F., Moldt, D. (eds.) Application and Theory of Petri Nets and
Concurrency - 37th International Conference, PETRI NETS 2016, Toruń, Poland,
June 19-24, 2016. Proceedings. Lecture Notes in Computer Science, vol. 9698,
pp. 20–36. Springer (2016). https://doi.org/10.1007/978-3-319-39086-4_3,
https://doi.org/10.1007/978-3-319-39086-4_3

18. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets
with tokens which carry data. Fundam. Informaticae 88(3), 251–274 (2008).
https://doi.org/10.1007/978-3-540-73094-1_19

19. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA
(1967)

20. Rezine, O.: Verification of networks of communicating processes: Reachability prob-
lems and decidability issues. Ph.D. thesis, Uppsala University, Sweden (2017)

21. Rosa-Velardo, F.: Ordinal recursive complexity of unordered
data nets. Information and Computation 254, 41–58 (2017).
https://doi.org/10.1016/j.ic.2017.02.002

22. Sangnier, A.: Erratum to parameterized verification of broadcast networks of reg-
ister automata (2023), https://www.irif.fr/~sangnier/publications.html

23. Schmitz, S.: Complexity hierarchies beyond elementary. ACM Transactions on
Computation Theory 8(1), 3:1–3:36 (2016). https://doi.org/10.1145/2858784

24. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with Higman’s
lemma. In: International Colloquium on Automata, Languages and Programming,
ICALP 2011. Lecture Notes in Computer Science, vol. 6756, pp. 441–452. Springer
(2011). https://doi.org/10.1007/978-3-642-22012-8_35

25. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio,
P.R., Melgratti, H.C. (eds.) CONCUR 2013 - Concurrency Theory - 24th Interna-
tional Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8052, pp. 5–24. Springer
(2013). https://doi.org/10.1007/978-3-642-40184-8_2

26. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive re-
cursive complexity. Information Processing Letters 83(5), 251–261 (2002).
https://doi.org/10.1016/S0020-0190(01)00337-4

https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1109/LICS.2012.46
https://doi.org/10.1109/LICS.2012.46
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1007/978-3-319-39086-4_3
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1007/978-3-540-73094-1_19
https://doi.org/10.1016/j.ic.2017.02.002
https://doi.org/10.1016/j.ic.2017.02.002
https://www.irif.fr/~sangnier/publications.html
https://doi.org/10.1145/2858784
https://doi.org/10.1145/2858784
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-22012-8_35
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1007/978-3-642-40184-8_2
https://doi.org/10.1016/S0020-0190(01)00337-4
https://doi.org/10.1016/S0020-0190(01)00337-4

22 L. Guillou, C. Mascle, N. Waldburger

A Proof of Proposition 11

Proposition 11. Cover for signature BNRA is Fωω -hard.

Proof. We provide here a polynomial-time reduction from reachability for lossy
channel systems with a single channel. A lossy channel system with a single
channel is a finite-state machine that has the ability to buffer symbols in a lossy
FIFO queue [26]. Let L := (L,Σ,D) be a lossy channel system, where L is a
finite set of locations, Σ is a finite set of symbols and D ⊆ L×{read(x),write(x) |
x ∈ Σ} × L; write(x) corresponds to writing x at the end of the channel and
read(x) to reading x at the beginning the channel. A configuration of L is a pair
in L × Σ∗ denoting the location and the content of the channel. There exists a

step from (l, w) to (l′, w′) using d ∈ D, denoted (l, w)
d
−→L (l′, w′), when

– d = (l,write(x), l′) for some x ∈ Σ and w′ � w · x,
– d = (l, read(x), l′) for some x ∈ Σ and x · w′ � w.

where � denotes the subword order, which encodes the lossiness of the channel.
The existence of a step is denoted (l, w) −→L (l′, w′), and its transitive clo-

sure is denoted
∗
−→L. The (location) reachability problem asks, given L and two

locations ls, lf ∈ L, whether (ls, ε)
∗
−→L (lf , w) for some w.

We construct a signature protocol P with two registers (register 1 is broad-
cast-only, register 2 is reception-only) and a state qf that may be covered if and
only if (L, qi, qf) is a positive instance of the reachability problem.

In some initial phase, each agent may become a link and store some other
agent’s identifier (its predecessor); in that case, it will test further messages for
equality so that only messages from the predecessor are accepted. Otherwise, it
will become a root and will not receive any message in the future. A depiction
of this initial phase can be found in Figure 7a.

The predecessor graph of a run of P , defined by the graph (A, E) where
(a′, a) ∈ E whenever a′ is the predecessor of a, will be a forest where each branch
will simulate an execution of L. A given agent a of a given branch encodes one
step of the execution in the lossy channel system. A root agent is at the root
of its tree and simply broadcasts the initial configuration (ls, ε) of L; special
character # encodes the end of the broadcast of the channel’s content. If a is
a link agent, then it will receive from its predecessor a location of the system
and (a subword of) the content of the channel. Agent a will in turn broadcast
to the next agent in the branch, sending the new location of the system and the
new content of the channel which a rebroadcasts on-the-fly letter by letter as it
receives it. Agent a only modifies the beginning of the channel if it decides to
encode a pop and the end of the channel if it decides to encode a push. Messages
might get lost, which is why we cannot encode non-lossy channel systems.

Observe that this construction only guarantees that agents have at most
one predecesor; it does not guarantee that all agents are in the same branch
or that any agent is the predecessor of at most one agent. This is fine because
the information only propagates forward in a branch, and never propagates in
between branches.

Parameterized broadcast networks with registers 23

From state wait, an agents will receive the location l from its predecessor
and go to state s(l); from there, it will non-deterministically pick a transition
of L and apply it. See Figure 7b for a depiction of transitions from some state
s(l1) (all s(l), l 6= l1, and corresponding transitions are omitted in the figure).
Finally, the objective state of our system is qf := f(lf).

q0

root

link

f(l0)

wait

br(init, 1) br(ls, 1) br(#, 1)

rec(init, 2, ↓) br(init, 1)

(a) The initial part of P

wait s(l1)

t(d) u(d) f(l2)

t(d′) u(d′) f(l3)

rec(l1, 2,=)

b
r(
l2
, 1
)

rec(a, 2,=)

rec(a, 2,=) br(a, 1)

rec(b, 2,=) br(b, 1)

rec(#, 2,=) br(#, 1)

br(a, 1)rec(a, 2,=)

rec(b, 2,=) br(b, 1)

rec(#, 2,=) br(#, 1)br(l3, 1)

br(a, 1)

(b) Part of P encoding transitions from l1. Here, L has symbols Σ = {a, b} and there
are two transitions from l1: d = (l1, read(a), l2) and d′ = (l1,write(b), l3).

Fig. 7: Depiction of the protocol P built in the lossy channel system reduction
of Proposition 11.

We claim that (P , qf) is a positive instance of Coverif and only if (L, lf) is
a positive instance of the reachability problem for lossy channel systems. First,
suppose that there exists w ∈ Σ∗ such that (l0, ε)

∗
−→L (lf , w). Decompose the

witness into (l0, w0) −→L (l1, w1) −→L (l2, w2) · · · −→L (ln, wn) with ln = lf and
wn = w. We build an initial run of P that covers qf . It has set of agents A :=
{0, . . . , n}. Agent 0 becomes the root and for all i ≥ 1, agent i becomes a link

24 L. Guillou, C. Mascle, N. Waldburger

with predecessor agent i − 1. By induction on i, we build an execution using
agents 0 to i such that agent i ends on state f(li) and the sequence of message
types sent by agent i admits as subword init · li ·wi ·#. For i = 0, this condition is
easily met by making agent 0 become root. We make agent i+1 do the following.
It receives from agent i state li and goes to s(li). It moves to t(d) where d ∈ D is

such that (li, wi)
d
−→L (li+1, wi+1). It then follows the branch and gets to f(li+1).

– if d = (li,write(x), li+1) is a push, then wi+1 = w′
i · y where w′

i � wi and
y ∈ {ε, x}. We can make agent i+1 broadcast init · li ·w′

i ·x ·# which admits
as subword init · li+1 · wi+1 ·#.

– if d = (li, read(x), li+1) is a pop then wi = u · w′
i+1 where wi+1 � w′

i+1 and
x � u. By lossiness, agent i+1 only receives x from u and goes to u(d). We
make it broadcast init·li+1 ·w

′
i+1 ·# which admits as subword init·li+1 ·wi+1 ·#.

This concludes the induction step. When applied to i = n, this builds an initial
run where agent n ends on f(ln), which is a witness that (P , qf) is positive.

Suppose now that (P , qf) is positive. Let ρ : γ0
∗
−→ γf where γf covers qf .

The predecessor graph obtained at the end of ρ is a forest; there can be no cycle
as it would imply that all agents in the cycle are link, which is a contradiction
by considering the agent of the cycle sending the first init message. Consider in
ρ a branch of agents a0, . . . , an such that ai is the predecessor of ai+1 for each
i ∈ [0, n− 1], a0 is the root and an covers qf .

From the run ρ projected onto this branch, it is quite simple to build an
execution of L that covers qf . By structure of the protocol, because an covers qf ,
every agent ai ends on some f(li) and broadcasts a word of the form init·li ·wi ·#;
this can be proven with an immediate backwards induction. It then suffices to
analyse the behavior of ai+1 to prove that (li, wi) −→L (li+1, wi+1). In particular,
because a0 is a root, l0 = ls and w0 = ε, which concludes the proof. ⊓⊔

B Definitions and Notations of Section 4

We will first define the notion of decomposition, which is a formalization of the
observation in Example 22. A decomposition is a tuple dec = (w0,m1, . . . ,mℓ, wℓ)
with w0, . . . , wℓ ∈ M∗, and m1, · · · ,mℓ ∈ M, with mi 6= mj for all i 6= j. In
particular we have ℓ ≤ |M|. A word w ∈ M∗ admits decomposition dec =
(w0,m1, . . . ,mℓ, wℓ) if w � w′

0w
′
1 · · ·w

′
ℓ where for all j, w

′
j can be obtained from

wj by adding letters from {m1, . . . ,mj}. We denote by Ldec the language of
words that admit decomposition dec.

We are now ready to formally define unfolding trees in the general case.

Definition 31. An unfolding tree τ over P is a finite tree where nodes µ have
three labels:

– a local run of P, written lr(µ), starting in the initial state with distinct
register values;

– a value in N, written val(µ);

Parameterized broadcast networks with registers 25

– a specification spec(µ), which is either a word bw(µ) ∈ M∗ (boss specifi-
cation) or a pair (fw(µ), fm(µ)) ∈ M∗ ×M (follower specification). In the
first case we say that the node is a boss node, otherwise it is a follower node.

Moreover, all nodes µ must satisfy the four following conditions:

(i) For each non-initial value v 6= val(µ) of lr(µ), µ has a child µ′ which is a
boss node such that Inv(lr(µ)) is a subword of bw(µ′).

(ii) For each initial value v in lr(µ), there is a decomposition
dec = (w0,m1, w1, . . . ,mℓ, wℓ) s.t.:
– lr(µ) may be split into successive local runs u0, . . . , uℓ where, for all
i ∈ [1, ℓ], wi � Outv(ui) and Inv(ui) ∈ {m1, . . . ,mi−1}∗,

– for all i ∈ [1, ℓ], µ has a child µi which is a follower node such that
fm(µi) = mi and fw(µi) ∈ Ldeci where deci = (w0,m1, w1, . . . ,mi−1, wi−1).

(iii) If µ is a follower node then val(µ) is not an initial value of u, Inval(µ)(u) � fw(µ)

and Outval(µ)(u) contains fm(µ).

(iv) If µ is a boss node, then val(µ) is an initial value of lr(µ) and the decompo-
sition dec of (ii) for val(µ) satisfies that bw(µ) ∈ Ldec.

Lastly, as before, given τ an unfolding tree, we define its size by |τ | :=
∑

µ∈τ |lr(µ)|+ |spec(µ)|+ 1.

We now explain this definition. Let µ be a node of an unfolding tree τ and let
u := lr(µ). As before, u encodes the local run of a given agent, spec(µ) encodes
the specification that this local run carries out and val(µ) encodes the value for
which the specification is carried out.

Conditions (i) and (ii) state that the specifications of the children of µ are
witnesses that messages received in the local run lr(µ) can be broadcast by other
agents. Conditions (iii) and (iv) state that µ is a witness that its specification is
carried out.

As before, condition (i) expresses that, for every non-initial value v of u, µ
must have a boss child witnessing that Inv(u) can indeed be broadcast. Because
v was first stored by a reception step of u, any other (fresh) value with sequence
of message types containing Inv(u) also works and we do not impose the value
label of this child to be v.

We now explain condition (ii), which states the existence of a decomposition
for each initial value, which serves as a summary of the broadcasts made with
that value. Let v be an initial value of u. Consider a run where u is the local
run of agent a. If another agent broadcasts with value v, it has first received
and stored v. By duplicating agents, we may afterwards assume that we have
an unlimited supply of messages (m, v). Therefore the crucial information is the
times at which each message type is first broadcast with v by an agent other
than a.

The decomposition dec = (w0,m1, w1, . . . ,mℓ, wℓ) should be understood as
follows: In the run we are representing, a first broadcasts messages of w0 with
value v, after which other agents are able to broadcast (m1, v). Then a broadcasts
w1 (and may receive m1), after which other agents can broadcast (m2, v), and

26 L. Guillou, C. Mascle, N. Waldburger

so on. To sustain that description, we need to be able to split u into u0, . . . , uℓ,
with each ui broadcasting wi and only receiving messages m1, . . . ,mi−1 over
value v. We also need a follower child for each mi to witness that other agents
may broadcast it. For every i, the sequence of messages available with value v
during ui is Outv(ui) expanded by freely adding symbols from {m1, . . . ,mi−1}.
Therefore, the follower child µi responsible for the broadcast of (mi, v) may first
receive with value v a subword of w′

0 · w′
1 · · ·w

′
i−1 where, for all j ≤ i − 1, wj

is obtained from Outv(ui) by adding symbols from {m1, . . . ,mj−1}, which we
state as fw(µi) ∈ Ldeci .

Condition (iii) directly states that a follower node µ receives word fw(µ) with
value val(µ) and broadcasts message (fm(µ),val(µ)). Condition (iv) expresses
that a boss node witnesses the broadcast of a sequence of messages bw(µ) with a
single value; whereas in the signature protocol case, in this sequence, some mes-
sages may come from auxiliary agents encoded in follower children, which is why
we have the condition that bw(µ) ∈ Ldec and not simply Outval(µ)(u) � bw(µ).

C Proof of Proposition 24

Proposition 24. An instance of Cover (P , qf) is positive if and only if there
exists a coverability witness for that instance.

We make the meaning of the specification labels more concrete by defining
the criteria for an initial run to satisfy a specification.

– A run ρ satisfies a boss specification bw if there exists v ∈ N such that bw is
a subword of the sequence of messages sent with value v in ρ.

– A run ρ satisfies a follower specification (fw, fm) if there exist a value v and
an agent a such that v is not an initial value of a, the v-input of a in ρ is a
subword of fw and agent a broadcasts fm with value v at some point.

For an unfolding tree, satisfying a specification simply means that its root is
labeled with that specification or a better one.

– An unfolding tree satisfies a boss specification bw if its root µ is a boss node
and bw is a subword of its specification label bw(µ).

– An unfolding tree satisfies a follower specification (fw, fm) if its root µ is a
follower node such that fm = fm(µ) and fw(µ) is a subword of fw.

Note that Coverreduces to the existence of an initial run satisfying a boss
specification: it suffices to consider M′ := M∪{mf} with mf /∈ M and to add
a loop on qf broadcasting mf . Therefore, it suffices to prove that initial runs
of P and unfolding trees satisfy the same boss specifications. We prove the two
directions in the two following sections: we construct an unfolding tree from a
run in Section C.1 and a run from an unfolding tree in Section C.2.

Parameterized broadcast networks with registers 27

C.1 Construction of an unfolding tree from an initial run

Lemma 32. If there exists an initial run ρ of P satisfying some specification
spec then there exists a finite unfolding tree τ over P satisfying spec.

Proof. We proceed by strong induction on N × {follower, boss} ordered by lex-
icographic order (follower being lower than boss). The first component is the
length of the run and the second component is the type of specification.This
means that, for a fixed run length, we prove our property for boss specifications
then for follower specifications.

If ρ is of length 0, then its specification must be an empty boss specification
and the tree with a single node labeled with an empty local run and an empty
specification satisfies it.

Let ρ be an initial run, and assume that the property is true for initial runs
whose length is less than the one of ρ. Write A the set of agents of ρ. Because ρ
satisfies spec, there exist a value v and an agent a in ρ such that:

– if spec is a boss specification bw, bw is a subword of the sequence of message
types sent with value v in ρ and a is the agent which has v as an initial
value,

– if spec is a follower specification (fw, fm), then a is an agent whose v-input
is a subword of fw and that broadcasts fm with value v.

If the last step of u does not include a broadcast with value v, then we remove
it and apply the induction hypothesis. Assume that the last step of ρ involves a
broadcast with value v. Let u the local run of a in ρ. We set the root µ of our
tree τ to have local run u, value v and specification spec as labels, and attach
subtrees to it so that it forms an unfolding tree.

We do the following for every value v′ in u. If v′ is non-initial in u and v′ 6= v,
because the last step of ρ is a broadcast with value v, we apply the induction
hypothesis on ρ without its last step to obtain an unfolding tree τ ′ whose root
is a boss node with boss specification Inv′(u), and we attach τ ′ below µ in τ . If
v′ = v and v′ is non-initial then spec is a follower specification and we do not
need to add any children, as the v′-input of u is covered by the specification.
Assume now that v′ is initial in u. We split ρ according to the first broadcast of
each message type by agents other than a; we obtain m1, . . . ,mℓ ∈ M distinct
message types such that ρ = ρ0 · ρ1 · . . . · ρℓ where, for all i ∈ [1, l]:

– agents from A \ {a} do not broadcast mi with value v′ in ρ0 · . . . · ρi−1,
– ρi starts with a broadcast of mi with value v′ by some agent ai ∈ A \ {a}.

Let wi the sequence broadcast by a with value v′ in ρi. This forms a decom-
position dec := (w0,m1, w1, . . . ,mℓ, wℓ). For all i ∈ [1, ℓ], we write deci for the
decomposition deci = (w0,m1, w1, . . . ,mi−1, wi−1). For every i ∈ [1, ℓ − 1], let
ρ̃i the run ρ0 · . . . · ρi−1 plus the first step of ρi (where (mi, v

′) is broadcast).
Let w′

i the v
′-input of ai in ρ̃i: it is in Ldeci by construction of dec. Agent ai

is a witness that ρ̃i satisfies follower specification (w′
i,mi). If ρ̃i is smaller than

ρ, we apply the induction hypothesis and obtain an unfolding tree τi satisfying

28 L. Guillou, C. Mascle, N. Waldburger

follower specification (w′
i,mi). If ρ̃i = ρ, then i = ℓ, v′ = v (ρ ends with a broad-

cast with value v) and ρ ends with a broadcast (mℓ, v) by agent aℓ. Moreover,
since v′ = v, v is initial for a and spec is a boss specification bw. Because in our
induction order boss specifications are above follower specifications, we can ap-
ply the induction hypothesis and obtain an unfolding tree τℓ satisfying follower
specification (w′

ℓ,mℓ). We have obtained, for every i ∈ [1, ℓ], an unfolding tree
τi satisfying follower specification (w′

i,mi), which we attach below µ.
Overall we have attached one boss node below µ for each non-initial value

in u (except v if µ is a follower node), thanks to which (i) is satisfied at µ, and
there are well-chosen follower nodes below µ for each initial value in u, thanks
to which (ii) is satisfied as well. Conditions (iii) and (iv) hold because ρ satisfies
spec for agent a. We have therefore built an unfolding tree τ satisfying spec. ⊓⊔

C.2 Construction of an initial run from an unfolding tree

Lemma 33. If there exists an unfolding tree over P satisfying a boss specifica-
tion bw ∈ M∗ then there exists an initial run ρ of P satisfying bw.

We start by defining partial runs, which are runs where some receptions are
not matched by broadcasts. Intuitively, this will allow us to build partial runs
from unfolding trees whose root is a follower node, which implicitly rely on their
parent for some broadcasts. We will therefore construct inductively partial runs
from nodes of the tree; we will obtain complete runs by matching reception and
broadcasts of different partial runs.

Definition 34. Let γ, γ′ two configurations.
A partial step γ −→p γ

′ is defined if either γ −→ γ′ (normal step) or there exist

m ∈ M, v ∈ N such that for all agent a either γ(a) = γ′(a) or γ(a)
ext(δ,v)
−−−−→ γ′(a)

with δ a transition receiving message type m (unmatched reception).
A partial run is a sequence of partial steps. Note that a local run can be seen

as a partial run with a single agent. A partial run is initial if it starts in an initial
configuration. The v-input Inv(ρ) of a partial run ρ is the sequence m0 · · ·mk

of message types corresponding to unmatched receptions with value v in ρ. Its
v-output Outv(ρ) is the sequence of message types corresponding to broadcasts
with value v in ρ.

We will prove the following, more general version of Lemma 33:

Lemma 35. For every unfolding tree τ :

– if τ satisfies a boss specification bw ∈ M∗, then there exists an initial run ρ
satisfying bw,

– if τ satisfies a follower specification (fw, fm) then there exist an initial partial
run ρ and a value v such that:
• all unmatched receptions in ρ are with value v,
• Inv(ρ) � fw,
• Outv(ρ) contains fm.

Parameterized broadcast networks with registers 29

Proof. We prove it by induction on the size of the unfolding tree. Let τ be a
unfolding tree, µ its root, u := lr(µ) and V the set of values appearing in u.
We will combine u with runs given by children of µ to construct ρ satisfying the
desired property. We build ρ inductively in two steps.

Step 1: Non-initial Values For each non-initial value v 6= val(µ) of u, µ has
a boss child of specification w such that Inv(u) � w. By induction hypothesis,
there is an initial run ρ′ satisfying boss specification w. Up to renaming agents,
assume that ρ and ρ′ have disjoint agents. We rename values in ρ′ so that w is
broadcast in ρ′ with value v, and ρ′ has no other shared value with ρ. We use
the broadcasts made by ρ′ to match the unmatched receptions with value v in
ρ: this gives us a new partial run ρ with no unmatched reception with value v
and whose behaviour on other values of V is the same as before.

Step 2: Initial Values Let v be an initial value of u, and dec =
(w0,m1, w1, . . . ,mℓ, wℓ) the decomposition from condition (ii). We have that, for
all j ∈ [1, ℓ], µ has a follower child µj labelled by fm(µj) = mj and fw(µj) ∈
Ldecj with decj = (w0,m1, w1, . . . ,mj−1, wj−1).

The behavior of the run ρ with respect to v is the one of u, as we have not
added any broadcasts or receptions with v. Hence we can split ρ into ρ0, . . . , ρℓ
with wi � Outv(ρi) and Inv(ρi) ∈ {m1, . . . ,mi}∗ for all i.

By induction hypothesis applied to µj , for all j, there exists an initial partial
run ρ̃j whose only unmatched receptions are on v, Inv(ρ̃j) � fw(µj) and such
that ρ̃j broadcasts (mj , v) in its last step. Again, we rename agents and values
so that the sets of agents of ρ and of every ρ̃j are all disjoint and the only shared
value between any of these runs is v. As fw(µj) ∈ Ldecj and Inv(ρ̃j) � fw(µj),
we can split ρ̃j into ρ̃j,0, . . . , ρ̃j,j−1 so that Inv(ρ̃j,i) � w̃j,i where w̃j,i can be
obtained by adding letters from {m1, . . . ,mj} to wi.

We use the following composition operation: consider ρ and one of the ρ̃j .
We can design a new run in which we execute both runs in parallel over disjoint
sets of agents. We match each ρ̃j,i with ρi so that the broadcasts of ρi with value
v forming wi are received in ρ̃j,i and the only remaining missing broadcasts in
that section of the run are of m1, . . . ,mi. We obtain a run section whose v-
output still contains wi and whose v-input only contains m1, . . . ,mi. This lets
us get to a point where the next step in ρ̃j is a broadcast (mj , v) and ρ has been
executed up to the beginning of ρj . We may then use the (mj , v) broadcast at
any moment in the rest of ρ either to complete an unmatched reception or to
extend the v-output of ρ.

This construction is illustrated in Figure
The resulting run ρ′ can still be split into ρ′0 · · · ρ

′
ℓ where wi � Outv(ρi) and

Inv(ρi) ∈ {m1, . . . ,mi}∗ for all i. Its input on all values other than v is the same
as the one of ρ. This procedure can thus be iterated.

If v = val(µ) then we have bw(µ) ∈ Ldec, and we need to ensure that bw(µ)
is broadcast in ρ with value v. Let bw0, . . . , bwℓ such that bw(µ) � bw0 · · · bwℓ
and for all j, bwj can be obtained by adding letters from {m1, . . . ,mj} in wj . We

30 L. Guillou, C. Mascle, N. Waldburger

lr(µ) ρ1 ρ2
br(a)

rec(b)

br(a)

rec(c) rec(a)

br(b)

rec(a)rec(b)

br(c)

bw(µ) = aac ρ1 satisfies (a, b) ρ2 satisfies (ab, c)

dec = (a, b, a, c, ε) dec1 = (a) dec2 = (a, b, a)

br(a)

rec(b)

br(a)

rec(c)

rec(a) rec(b)

br(c)
ρ2

lr(µ)

We compose lr(µ) with ρ2
to obtain a partial run ρ′

which outputs the desired
word aac

br(a)

rec(b)

br(a)

rec(c)rec(b)

br(c)

rec(a) rec(b)

br(c)
ρ2

ρ′

We compose ρ′ with ρ2 to
match an unmatched recep-
tion b

.

.

.

... and iterate compositions
with ρ1 and ρ2 until the
run does not have any un-
matched reception.

Fig. 8: An illustration of the composition operation from the proof of Lemma 33

use the composition operation to extend the output of ρ, so that bwi � Outv(ρi)
for all i.

Then, in all cases, we apply the composition as many times as necessary
to match the unmatched receptions: while there is an unmatched reception of
some (mj , v) we compose ρ with ρ̃j to eliminate it. We may be adding some
unmatched receptions of (mi, v) for some i < j. This procedure terminates as
the number of unmatched receptions of mℓ, . . . ,m1 decreases at each iteration
for the lexicographic ordering.

In the end we obtain a run ρ with no unmatched reception on v, and such
that, if v = val(µ) and µ is a boss node, bw(µ) � Outv(ρ).

Concluding the procedure We distinguish two cases depending on the type
of specification of µ.

– If µ is a boss node of boss specification bw, we apply steps 1 and 2 to every
value in V , which can be done because val(µ) is initial in u. We then obtain
an initial run ρ with no unmatched receptions satisfying boss specification
bw for value val(µ).

– if µ is a follower node, we apply steps 1 and 2 to every value in V \ {val(µ)}
to obtain a partial run ρ with no unmatched reception on values different
from val(µ). Moreover, because the behavior of ρ with respect to val(µ) is

Parameterized broadcast networks with registers 31

the one of u, we have that Inval(µ)(ρ) � fw and Outval(µ)(ρ) contains fm,

concluding the proof.
⊓⊔

D Proof of Lemma 25

Lemma 25. Let µ 6= µ′ be two nodes of τ such that µ is an ancestor of µ′. If one
of those conditions holds, then τ can be shortened (contradicting its minimality):

– µ and µ′ are boss nodes with boss specifications respectively bw and bw′, and
bw � bw′;

– µ and µ′ are follower nodes with follower specifications respectively (fw, fm)
and (fw′, fm′), and fw′ � fw and fm′ = fm.

Proof. Let τµ, τµ′ be the subtrees rooted in µ, µ′ respectively. Let τ ′ be the
tree obtained by replacing τµ with τµ′ ; it is strictly smaller than τ . We prove
that τ ′ is an unfolding tree. The only problematic node is the parent of µ if
it exists, because it does not have the same children in τ and in τ ′. Assume
that µ is not the root of τ , and let µp its parent in τ ′. The only problematic
values are the ones that had µ as witness in conditions (i) (if µ is a boss node)
and (ii) (if µ is a follower node). Let v such a value. If µ is a boss node (v
is non-initial), we have Inv(lr(µp)) � bw(µ) � bw(µ′) hence condition (i) is
also satisfied. If µ is a follower node (v is initial), then, reusing the notations
of condition (ii), µ was such that fm(µ) = mi and fw(µ) ∈ Ldeci . In this case,
we also have fm(µ′) = mi and, because fw(µ′) � fw(µ) and Ldeci is closed by
subword, we have fw(µ′) ∈ Ldeci and condition (ii) is satisfied. In both cases, τ ′

is an unfolding tree with the same root specification as τ hence a coverability
witness. ⊓⊔

E Generalization of Lemma 19

Lemma 26. There exists a primitive recursive function ψ such that, for every
protocol P with r registers, for all local runs u0 : (q0, ν0)

∗
−→ (q, ν), u : (q, ν)

∗
−→

(q′, ν′), uf : (q′, ν′)
∗
−→ (qf , νf), there exists a local run u′ : (q, ν)

∗
−→ (q′, ν′) with

|u′| ≤ ψ(|P|, r) and for all v′ ∈ N:

1. if v′ appears in u0, u, or uf , Inv′(u
′) � Inv′(u),

2. otherwise, there exists v ∈ N, not initial in u0, such that Inv′(u
′) � Inv(u).

The function ψ is actually not the same as in Lemma 19 although it is also
a tower of exponentials.

We start by defining the notion of trace, which is a local run annotated with
received values. A trace is a sequence in ({ext(δ, v) | δ ∈ ∆, v ∈ N} ∪ {int(δ) |
δ ∈ ∆})∗. The trace of a local run u is the trace tr(u) corresponding to the local

steps performed in u. Given a trace tr, we write (q, ν)
tr
−→ (q′, ν′) when there

exists a local run of trace tr from (q, ν) to (q′, ν′).

32 L. Guillou, C. Mascle, N. Waldburger

We actually prove a more general version of the lemma. The previous lemma
can be obtained simply by applying the following one with W the set of initial
values of u0 (W then contains r values) and V the set of values appearing in u0,
u or uf .

Lemma 36. There exists a primitive recursive function ψ(n, r) such that, for

every protocol P with r registers per agent, for every local run u : (q, ν)
∗
−→ (q′, ν′)

in P, for every V ⊆ N finite such that V contains all message values appearing
in u, for every W ⊆ V , there exists a local run u′ : (q, ν)

∗
−→ (q′, ν′) such that we

have len(u′) ≤ ψ(|P| − r + |W |, r) and:

1. for all v ∈ V , Inv(u
′) � Inv(u),

2. for all v′ ∈ N \ V , there exists v ∈ N \W such that Inv′(u
′) � Inv(u).

Intuitively, the set V represents values that are already used and therefore
cannot be used as fresh values, and W represents values that should not be
copied (e.g., initial values of the run). However, stating the lemma only with W
equal to the initial values in u would not allow us to apply the lemma on u an
infix local run of a larger local run u′, because the initial values in u would not
correspond to the ones in u′. This is why we state the lemma for every W ⊆ V .

Original
local run

reg 1

reg 2

reg 3

reg 4 v v

‘ ↓ ’ actions removed part

Shortened
local run

reg 1

reg 2

reg 3

reg 4

s,Θ

v

fresh values

s,Θ s,Θ

Fig. 9: Illustration of the proof of Lemma 26. s ∈ ∆2M corresponds to the re-
peating sequence of transitions of length 2M . Register 4 contains value v ∈ W .
Because both sides have the same Θ, they coincide on values in W such as v;
only values that are not in W are replaced by fresh values, hence v is kept in
the shortened local run.

Parameterized broadcast networks with registers 33

Proof. Given a local run u, register i is active in u if at least one ‘ ↓ ’ step on
register i is performed in u.

We define the function ψ(n, k) recursively as ψ(n, 0) = n+1 and ψ(n, k+1) =
2(ψ(n, k)+ 1)[(n+1)4(ψ(n,k)+1)+1]. This function is clearly primitive recursive,
although non-elementary; it grows as a tower of exponentials of height k where
each floor of the tower is polynomial in n.

We prove the shortening property:
Let W a finite set a values and n := |P| − r+ |W |. Let a local run u : (qi, νi)

∗
−→

(qf , νf) with k active registers with len(u) > ψ(n, k) and let V ⊆ N finite that
contains every message value appearing in u such that W ⊆ V . We claim that u
can be shortened into a local run u′ : (qi, νi)

∗
−→ (qf , νf) with k active registers

such that len(u′) < len(u) and:

– for all v ∈ V , Inv(u
′) � Inv(u),

– for all v′ ∈ N \ V , there exists v ∈ N \W such that Inv′(u
′) is a subword of

Inv(u).

We proceed by induction on the number k of active registers in the local run.
If k = 0, register values do not change in u. As ψ(n, 0) = n+1 ≥ |Q|+1, u goes
through the same state twice, hence all steps in between may be removed to get
u′. Then for all v ∈ N, Inv(u

′) � Inv(u).
Suppose that the property is true for any local run with ≤ k active registers,

and consider one u : (qi, νi)
∗
−→ (qf , νf) with k + 1 active registers such that

len(u) > ψ(|P| − r + |W |, k + 1).
First, if there exists an infix local run ui of u of length ψ(n, k) + 1 with

only k active registers, then it suffices to apply the induction hypothesis on ui.
Suppose now that there exists no such infix local run. Let I ⊆ [1, r] the set of
active registers in u, |I| = k + 1. Let M := ψ(n, k)+1, we have ψ(n, k + 1) =
2M [((n+1)2)2M +1]. In any sequence of M local steps in a row in u, there is a
‘ ↓ ’ transition on every register in I. We can assume that no local configuration
appears twice in u (otherwise we can simply cut the steps between those two
appearances to get u′).

In what follows we will consider two infixes of u of length 2M , following the
same sequence of transitions and with the same values of W appearing at the
same times in the same registers. Their existence is guaranteed by the length of
u. As a ‘ ↓ ’ action is performed twice on each register in those two infixes, we
will be able to reduce the run as in Fig. 9.

For every i, let δi the i-th transition in u, and let θi ∈W ∪ {⊥} be such that

θi =

{

v if the ith step of u is a reception step ext(δi, v) with v ∈W

⊥ otherwise

For every i ∈ [0, (n+1)4M], we write si the sequence δ2M·i+1, δ2M·i+2, · · · , δ2M·i+2M

and Θi the sequence θ2M·i, θ2M·i+1, · · · , θ2M·i+2M . There are |∆|2M possible se-
quences for si and [|W | + 1]2M possible sequences for Θi. By the pigeonhole
principle there exist two indices ia, ib such that the sequences sia and sib are

34 L. Guillou, C. Mascle, N. Waldburger

equal and also the sequences Θia and Θib are equal (as |∆|(|W |+ 1) ≤ (n+ 1)2

because n = |P|−r+|W |). There exist two infix local runs ua : (q1, ν1)
∗
−→ (q2, ν2),

ub : (q3, ν3)
∗
−→ (q4, ν4) in u such that (q2, ν2) appears strictly before (q3, ν3) in

u and ua and ub both have the same sequences of transitions, which we call s,
and of receptions of values from W , which we call Θ.

Although ua and ub have the same sequence of transitions, their traces may
differ because their reception steps may have different values. We build a trace

tr such that (q1, ν1)
tr
−→ (q4, ν4) where the underlying sequence of transitions of

tr is s and the receptions of values of W match Θ.

For every active register i ∈ I, let ei ∈ [1, 2M] denote the index of the first
‘ ↓ ’ on register i in s and fi ∈ [1, 2M] the index of the last ‘ ↓ ’ on register i in s.
By hypothesis, because s is of length 2M , it contains at least two ‘ ↓ ’ on register
i, one in the first half and one in the second half, hence ei ≤M < M + 1 ≤ fi.

For every j ∈ [1, 2M], let δj denote the j-th transition of s. First, if δj is
a broadcast, we define the j-th local step of tr as int(δj). Suppose now that δj
is a reception of the form rec(m, i, α). The j-th local step of ua (resp. ub) has
underlying transition δj hence is a reception step of the form ext(δj , va) for some
va ∈ V (resp. ext(δj , vb) for some vb ∈ V). Because V is finite and W ⊆ V , there
exists an injective function φ : V → N such that for all v ∈W , φ(v) = v and for
all v /∈W , φ(v) /∈ V . We define the j-th local step of tr to be ext(δj , v) where:

– if i /∈ I then its value stays the same throughout u, then we set v = va(= vb)

– if i ∈ I then

• if j < ei, v = va,

• if ei ≤ j < fi, v = φ(va),

• if fi ≤ j, v = vb.

We now claim that (q1, ν1)
tr
−→ (q4, ν4). First, for every active register i, the last

‘ ↓ ’ step on register i has value ν4(i) in tr (as we are in the case fi ≤ j). Hence
if every local step is valid then the final local configuration is (q4, ν4). For every
l ∈ [0, 2M], let trl denote the prefix of tr of length l. We prove by induction
on l that trl is valid from (q1, ν1). It is trivially true for l = 0. Assume that we

have (q1, ν1)
trl−→ (q, ν) and let λ such that trl · λ = trl+1. Let δ the underlying

transition of λ. First, q is the initial state of δ because λ is valid at step l+ 1 of
ua (and ub). Hence if δ is a broadcast then λ is valid from (q, ν). Suppose now
that λ is a reception step; let δ =: rec(m, i, α). Let va, vb be the value of λ in
ua and ub respectively.

Let νa, νb be the content of registers after the l-th step in ua and ub respec-
tively. If i /∈ I then α is either ‘∗’ or a test, which is valid as ν(i) = νa(i) = νb(i)
(value of register i does not change in u). Suppose now that i ∈ I, the only
problematic case is the one of tests, i.e., α ∈ {‘ 6=’, ‘=’}. In this case, we prove
that v α ν(i). First, because the corresponding step is valid in ua and ub, we
have νa(i) α va and νb(i) α vb. We distinguish cases depending on l+ 1:

– l + 1 < ei: ν(i) = νa(i), v = va and νa(i) α va.

Parameterized broadcast networks with registers 35

– ei ≤ l + 1 < fi: We have v = φ(va). Moreover, because ei < l + 1, there is
at least one ‘ ↓ ’ on register i in trl. Consider the last such transition in trl;
its index j satisfies ei ≤ j < fi by definition of ei, hence the value of the
corresponding reception step in ua is νa(i) and its value in trl is φ(νa(i)). One
has νa(i) α va therefore (by injectivity of φ for α = ‘ 6=’) φ(νa(i)) α φ(va).

– fi ≤ l + 1: ν(i) = νb(i) and v = vb, and because the internal step is valid in
ub we have νb(i) α vb.

This proves that λ is valid from (q, ν) which concludes the induction. We have

proven that (q1, ν1)
tr
−→ (q4, ν4); moreover tr is of length 2M and there are at least

4M > 2M + 1 steps between (q1, ν1) and (q4, ν4) in u. Therefore, replacing this

part of u with (q1, ν1)
tr
−→ (q4, ν4) yields a shorter local run u

′ : (qi, νi)
∗
−→ (qf , νf).

It remains to prove the conditions on the v-input of u′ for each v. If suffices
to prove the condition for the part between (q1, ν1) to (q4, ν4), because the rest
of u is left untouched.

Let (qm, νm) the local configuration after M steps of tr from (q1, ν1); write
u1 the local run from (q1, ν1) to (qm, νm) corresponding to the first M steps of
tr in u′, and u2 the local run from (qm, νm) to (q4, ν4) corresponding to the last
M steps of tr in u′.

Let v ∈ V . We claim that Inv(u1) is a subword of Inv(ua) and Inv(u2) is
a subword of Inv(ub). Indeed, in the construction of tr, the reception steps in
the first M steps were those of ua except that some values were replaced with
fresh values in N \ V , and similarly with ub and the last M steps. Overall, this
proves that Inv(u

′) is a subword of Inv(u) for every v ∈ V and values of V satisfy
condition 1.

Let v′ ∈ N \ V ; v′ does not appear in u. Either v′ does not appear in u′

in which case the desired property is true, or there exists v ∈ V such that
v′ = φ(v). As φ is injective and φ(W) = W and v′ /∈ W , v /∈ W . But then
Inv′(u1) is a subword of Inv(ua) and Inv′(u2) is a subword of Inv(ub). Indeed, in
u1, the reception steps with value φ(v) correspond to reception steps in ua with
value v, and similarly for u2 and ub. This proves condition 2 for every v′ ∈ N\V .

Overall, we have proven the existence of a local run u′ : (qi, νi)
∗
−→ (qf , νf) that

satisfies conditions 1 and 2 and that is strictly shorter that u, which proves the
shortening property.

We build a local run of length less that ψ(|P|−r+ |W |, r) as follows. We start
with u(0) := u and V (0) the set of values of messages appearing in u(0). For every
k such that len(u(0)) > ψ(|P|− r+ |W |, r), we apply the shortening property on
u(k) and V (k) to obtain u(k+1) and define V (k+1) by V (k) ∪ X where X is the
set of values of messages in u(k+1), which is finite. The construction stops when
len(u(k)) ≤ ψ(|P| − r + |W |, r), which concludes the proof of the lemma. ⊓⊔

F Bounding the Size of the Minimal Coverability Witness

In this section, we prove that we can obtain a computable bound on τ , and that
the problem is decidable in complexity class Fωω . All bounds provided in this

36 L. Guillou, C. Mascle, N. Waldburger

section are independent from τ . We start by proving that one can bound the
size of a node with respect to the size of its neighbors of higher altitude.

Lemma 37. Let µ be a node of τ such that all neighbors of µ of higher altitude
have size bounded by K. Then |µ| ≤ (ψ(|P|, r) + 2) (|M| rK + K), with ψ the
primitive-recursive function defined in Lemma 26.

Proof. Let u := lr(µ). For each initial value v in u, µ has at most |M| follower
children, by definition of a decomposition. Because there are at most r initial
values, this makes at most |M| r follower children and each one of them requires
at most K messages. If µ is a follower node or the root, then the number of
messages it must broadcast is then bounded by |M| rK + 1. If µ is a boss
node and not the root, then its parent has higher altitude hence |bw(µ)| ≤ K
and µ must broadcast at most |M| r K +K messages in total. This bounds by
|M| rK +K + 1 the number of messages u needs to broadcast. Lemma 26 then
lets us reduce the number of steps between those messages without breaking the
unfolding tree conditions: the inputs of values that were already in the run can
only decrease. For the other values, let v be a value that was not in the run
before, its input is a subword of the one of a previous value. Hence µ has a boss
child whose specification covers the v-input of the new local run. This bounds
|u| by (ψ(|P|, r)+1) (|M| r K+K), with ψ the function described in Lemma 26;
the bound on |µ| follows. ⊓⊔

We now formally prove Lemma 27:

Lemma 27. There is a primitive recursive function f0 such that, for every node
µ of τ , |µ| ≤ f0(|P|+ altmax− alt(µ)).

Proof. Let f0 : k 7→ ((ψ(k, k) + 2)(k2 + 2))k+1. Also, let N := |P|. First, if µ
has altitude altmax, then it has no follower child, hence applying Lemma 37
with K = 0 bounds |µ| by ψ(|P|, r) ≤ ψ(N,N) ≤ f0(N). Let µ be a node with
alt(µ) < altmax, and suppose that the statement is true for altitudes greater
than alt(µ).

Let d = altmax− alt(µ). We apply Lemma 37 with K := f0(N + d− 1):

|µ| ≤(ψ(N,N) + 2)(N2K +K)

≤(ψ(N + d,N + d) + 2)f0(N + d− 1)((N + d)2 + 2)

≤f0(N + d)

⊓⊔

Lemma 38. There exists a function f1 ∈ Fω|M| such that altmax ≤ f1(|P|).

Proof. Let altmax be the maximal altitude of a node in τ . Consider a branch
of τ reaching altitude altmax; for every j ∈ [1, altmax], let µj the first node
of this branch to reach altitude j. For every j ≥ 1, µj is a follower nodes as
otherwise its predecessor in the branch would have altitude greater than j hence
the branch must have crossed altitude j before.

Parameterized broadcast networks with registers 37

We will bound altmax using the Length function theorem. For simplicity, we
will encode the fm part using a fresh character added to our alphabet. This is why
we obtain a function in Fw|M| and not Fw|M|−1 ; in fact, one could obtain the
latter bound using Theorem 5.3. of [24], but the proof would be more involved.

Let # /∈ M be a fresh letter. For all i ∈ [1, altmax] let µ′
i = µaltmax−i+1

and wi = fw(µ′
i) ·# · fm(µ′

i) ∈ (M∪ {#})∗.
We cannot have wi � wj for i < j: indeed, this would imply fw(µ′

i) � fm(µ′
j)

and fm(µ′
i) = fw(µ′

j), which is a contradiction according to Lemma 25. As a
result, the sequence (wi)1≤i≤altmax is a bad sequence over the alphabet M ∪
{#}. Furthermore, by Lemma 27, for all i, |µi| ≤ f0(|P| + i) therefore |wi| ≤

f
(i)
0 (|P|). Because f0 is primitive-recursive, we can apply Theorem 10: there
exists a function f1 ∈ Fω|M| such that the sequence (wi)i∈[1,altmax] is of length
at most f1(|P|), hence altmax ≤ f1(|P|). ⊓⊔

0

1

2

3

4

5

6 alt

root (alt = 0)

altmax

w5

w4

w3

w2

w1

w0

For all i, let wi = fw(µ′

i)#fm(µ′

i) where
µ′

i is the first follower node at altitude
altmax− i+ 1.

By Lemma 27 we can bound the length of
wi by f0(|P| + i), which lets us to bound
the number of red dots using Lemma 25
and the Length function theorem.

Fig. 10: Illustration of the proof of Lemma 38.

The bound on the maximal altitude, along with Lemma 27, bounds the size of
the root of τ by f0(|P|+f1(|P|)). Let altmin := minµ∈τ alt(µ) ≤ 0 the minimal
altitude in τ . By a similar argument but with boss nodes, we can bound |altmin|:

Lemma 39. There exists a function f2 ∈ Fω|M| such that |altmin| ≤ f2(|P|).

Proof. Consider a branch of τ reaching altmin, let µ1, . . . , µ|altmin| be nodes of
τ such that µi is the first node of the branch to reach altitude −i. All these nodes
are boss nodes because a follower node has higher altitude than its parent. For
all i ∈ [0, altmin] let µ′

i = µ|altmin|−i and wi = bw(µ′
i) ∈ M∗. By Lemma 25,

(wi)i∈[1,altmin] is a bad sequence. By Lemmas 27 and 38, for all i, we have

|wi| ≤ f0(|P|+ f1(|P|) + i). Let N := |P|+ f1(|P|) + 1; we have |wi| ≤ f
(i)
0 (N).

Because f0 is primitive recursive, we can apply Theorem 10: we obtain h ∈
Fω|M|−1 such that altmin ≤ h(N). Let f2 : n 7→ h(n + f1(n) + 1); we have
altmin ≤ f2(|P|). Moreover, f2 is a function of Fω|M| because f1, h ∈ Fω|M|

and Fω|M| is closed under composition. ⊓⊔

38 L. Guillou, C. Mascle, N. Waldburger

With the bounds on the maximal and minimal altitudes, Lemma 27 yields a
bound on the size of all nodes in the tree.

Lemma 40. There exists f3 ∈ Fω|M| such that, for all µ in τ , |µ| ≤ f3(|P|).

Proof. Using Lemmas 27, 38 and 39, we obtain that, for every node µ, the value
altmax−alt(µ) is at most f1(|P|)+f2(|P|). Applying Lemma 27 proves that, for
all µ in τ , |µ| ≤ f0(f1(|P|)+f2(|P|)) ≤ f3(|P|) where f3 : n 7→ f0(f1(n)+f2(n));
f3 is in Fω|M| as Fω|M| contains all primitive recursive functions and is closed
under composition. ⊓⊔

Finally, as we now have a bound on all nodes, we can easily bound the length
of branches and the number of children of all nodes to get abound on the total
size of the tree.

Proposition 41. There exists a function f of class Fω|M| s.t. |τ | ≤ f(|P|).

Proof. Recall that the size of τ is defined as the sum of the sizes of its nodes.
Let N = |P|. By Lemma 40, for each µ in τ we have |µ| ≤ f3(N), hence the

local run of µ contains at most f3(N) values. By minimality of τ , each value
requires at most 1 boss child and |M| follower children hence µ has at most
(|M| + 1)f3(N) ≤ Nf3(N) children. Moreover, there are less than f4(N) :=
Nf3(N) possible specifications in τ hence each branch of τ is of length less than
f4(N) (by minimality, a branch does not have twice the same specification). This
bounds the total number of nodes in τ by f5(N) := (Nf3(N))f4(N)+1 hence we
obtain |τ | ≤ f(N) where f : n 7→ f3(n)f5(n). Because Fω|M| is closed under
composition with primitive recursive functions, we have f ∈ Fω|M| . ⊓⊔

G Proof of Theorem 12

We now prove the main result of this paper:

Theorem 12. Cover for BNRA is decidable and Fωω -complete.

Proof. The lower bound is given by the reduction from lossy channel system
reachability in Proposition 11.

For the upper bound, let (P , qf) be an instance of Cover. By Propositions 24
and 41, (P , qf) is positive if and only if it has a coverability witness of size
bounded by f(|P|) where f ∈ Fω|M| . Up to renaming agents and values, we
can moreover assume that all agents and values appearing in this coverability
witness are bounded by f(|P|), which bounds the size of the description of such a
coverability witness by a polynomial in f(|P|). An algorithm for Coverconsists
in enumerating all such descriptions and accepting if one finds a coverability
witness. This can all be done in time exponential in f(|P|), thus this algorithm
terminates in time f ′(|P|) where f ′ ∈ Fω|M| . This proves that Coverlies in
complexity class Fωω . ⊓⊔

Parameterized broadcast networks with registers 39

H Proof of Proposition 29

Proposition 29. Target is undecidable for BNRA, even with two registers.

Proof. We present a reduction from the halting problem for Minsky machines
to Coverfor signature BNRA.

A Minsky Machine with two counters is a tupleM = (Loc, ∆, X, ℓ0, ℓf) where
Loc is a finite set of locations, X = {x1, x2} is a set of two counters, ∆ ⊆
Loc × {x−, x+, x = 0? | x ∈ X} × Loc is a finite set of transitions, ℓ0 ∈ Loc is
an initial location and ℓf ∈ Loc is a final location. A configuration of a Minsky
machine is a tuple (ℓ, v1, v2) ∈ Loc × N × N where v1 (resp. v2) stands for the
value of the counter x1 (resp. x2). We write (ℓ, v1, v2) −→ (ℓ′, v′1, v

′
2) if there is

δ ∈ ∆ such that:

– δ = (ℓ, xi+, ℓ
′) and v′i = vi + 1, v3−i = v′3−i;

– δ = (ℓ, xi−, ℓ′) and v′i = vi − 1, v3−i = v′3−i;
– δ = (ℓ, xi = 0?, ℓ′) and v′i = vi = 0, v3−i = v′3−i.

An execution of the machine is a sequence (ℓ1, v
(1)
1 , v

(1)
2) −→ (ℓ2, v

(2)
1 , v

(2)
2) −→

. . . −→ (ℓk, v
(k)
1 , v

(k)
2). The halting problem asks whether ℓf is coverable. This

problem is well-known to be undecidable [19].

q0

qloc

qcount

loc(ℓ0) wait(δ) loc(ℓ1)

(x1, 0)

(x2, 0)

(x1, 1)

A

Ploc

Pcount

br(init, 1)

rec(init, 2, ↓)

rec(init, 2, ↓)

br(init, 1)

rec((ℓ, x1+, ℓ′), 2,=)

br((ℓ,x1+, ℓ′), 1)

rec((ℓ, x1−, ℓ′), 2,=)

br((ℓ,x1−, ℓ′), 1)

br(δ, 1) rec(δ, 2,=)

rebroadcast loop

rec((ℓ, x1 = 0?, ℓ′), 2,=)

rebroadcast loop

Fig. 11: Partial depiction of the protocol built in Proposition 29. Only one transi-
tion, which is (ℓ0, δ, ℓ1), is represented in the Ploc part above; similarly, only one
increment and one decrement transitions are depicted in the Pcount part below.
The rebroadcast loops rebroadcast all transitions acting on x2 and all acknowl-
edgements; the one on (x1, 0) also rebroadcasts all transitions with x1− and with
zero-tests, and the one on (x1, 1) rebroadcasts all transitions with x1+.

Fix a Minsky Machine M = (Loc, ∆, X, ℓ0, ℓf). We build a signature protocol
P with a state qf such that (P , qf) is a positive instance of Targetif and

40 L. Guillou, C. Mascle, N. Waldburger

only if ℓf is coverable in M . The protocol is represented in Figure 11. As in
Proposition 11, in an initial phase, each agent picks a predecessor by storing
its identifier and only listens to this predecessor afterwards. We call cycle a
sequence of agents a1, a2, . . . , an = a1 where agent ai is the predecessor of ai+1

for all i < n. As all agents have to reach the end state, they must all pick a
predecessor. As there are finitely many agents in a run, a cycle will necessarily
be formed in any run satisfying the Targetrequirement.

The rest of the construction aims at faithfully simulating the machine in
a cycle: Agents in Ploc sends a sequence of instructions and waits after each
one for a confirmation that it was executed. Agents in Pcount simulate counter
values. The messages circulating in a cycle contain either a transition δ ∈ ∆ or
an acknowledgment δ with δ ∈ ∆. An agent a in Pcount first picks a counter xi it
simulates, and goes to state (xi, 0). If a is in (xi, 0) and receives δ corresponding
to an increment of xi, it goes to (xi, 1) and broadcast an acknowledgment δ,
and conversely for decrements. If δ is a zero-test xi = 0? and a is on state
(xi, 1) then it stops, making the whole cycle fail. Otherwise it broadcasts the
acknowledgment δ. Other messages are rebroadcast as such.

An agent a in Ploc starts in state loc(ℓ0). When in state loc(ℓ), it picks and
broadcasts a transition δ = (ℓ, α, ℓ′) ∈ ∆, waits for the acknowledgment δ and
goes to loc(ℓ′). In the case where δ is a zero-test, we have δ = δ: there is no need
for a distinct acknowledgment because there is no action to perform (if the test
fails then no message is transmitted). When in loc(ℓf), a broadcasts a special
message end that propagates in the cycle and makes everyone go to qf . When it
receives itself the message end, it goes to qf .

It is quite easy to see that, if ℓf can be covered in M , one can build a run of
P where all agents end in qf . Let N the highest counter value in the execution
ofM covering qf . The run of P first puts all its agents in the same cycle; exactly
one agent alead goes in Ploc and 2N agents go in Pcount; half of these simulate x1
and half x2, so that the largest counter value is never exceeded. It then suffices to
faithfully simulate the execution of M : alead selects the corresponding sequence
of transitions, their effect is always applied as we have enough agents simulating
each counter. After each round the number of agents in state (xi, 1) is exactly
the value of xi at this point in the run of the machine, hence zero-tests never
cause failure. In the end alead reaches loc(ℓf) and broadcasts end, allowing every
agent in Pcount to get to qf .

For the converse implication, suppose that we have a run ρ of P where all
agents end in qf . As mentioned before, there must be a cycle of agents a1, . . . , an
in this run. Observe that all agents alternate between broadcasts and receptions,
so that to reach qf they must all have made the same number of broadcasts and
receptions. This implies that no message was lost along the cycle.

Note that there may be several agents in Ploc along the cycle; however, they
must all broadcast exactly the same sequence of transitions, otherwise one of
them would lack an acknowledgment and would not get to qf . Let a be the
agent that first reaches loc(ℓf) and a

′ the first agent in Ploc after a in the cycle;
there are only agents in Pcount between a and a′ in the cycle, we call these

Parameterized broadcast networks with registers 41

agents intermediate agents. The intermediate agents faithfully encode the two
counters and all decrements and zero-tests pass, otherwise a′ would lack an
acknowledgment. Therefore, the sequence of transitions of a defines an execution
of M that covers ℓf , which concludes the proof. ⊓⊔

I Proofs of Section 5

In this section the register argument in receptions and broadcasts is always 1,
hence we remove it. Our new set of operations is

OpM = {br(m), rec(m, ∗), rec(m, ↓), rec(m,=), rec(m, 6=) | m ∈ M}.

Also, given a configuration γ, we write data(γ)(a) for data(γ)(a, 1).
Given a run ρ, we write ag(ρ) for its set of agents, and we define the set of

states appearing in it cov(ρ) := {q ∈ Q | ∃i, ∃a, st(γi)(a) = q} as well as its set
of values val(ρ) := {v ∈ N | ∃i, j, a, data(γi)(a, j) = v}.

First, to simplify the proofs, we eliminate reception transitions with action
‘ 6= ’. This is feasible as we can execute several copies of a run in parallel (with
distinct values) so that every broadcast is made in each copy with a different
value. Hence if a agent receives a message, it can always receive it with a value
different from its own, making disequality tests useless. We can thus replace
them with receptions with ‘∗’.

I.1 Removing Disequality Tests

We start by formalising the intuition that a configuration contains more agents
than another one up to renaming.

Definition 42. We define a preorder over the set of configurations as follows:
γ E γ′ if there exists an injective function π : ag(γ) → ag(γ′) such that, for all
a ∈ ag(γ), γ(a) = γ′(π(a)).

Lemma 43. Let (P , qf) an instance of the coverability problem. This instance

is positive if and only if (P̃ , qf) is positive, where P̃ is equal to P where every
disequality test ‘ 6=’ is replaced by dummy action ‘∗’.

Proof. First, if (P , qf) is positive then so is (P̃ , qf), as one can easily lift any

initial run in P to an equivalent initial run in P̃ (transitions are less guarded in
P̃ that in P).

Suppose now that (P̃ , qf) is a positive instance of the coverability problem.

There exists an initial run ρ̃ : γ̃0
∗
−→ γ̃ in P̃ that covers qf . We prove by induction

on the length of ρ̃ that there exists an initial run ρ reaching a configuration γ
such that γ̃ E γ (note that if γ̃ covers a state, then so does γ).

If γ̃ = γ̃0 then ρ = ρ̃ suffices. Suppose that ρ̃ has length k ≥ 1, and that the
result if true for runs of length k − 1. Decompose ρ̃ into ρ̃k−1 : γ̃0

∗
−→ γ̃k−1 of

42 L. Guillou, C. Mascle, N. Waldburger

length k − 1 and a final step γ̃k−1 −→ γ̃k. By induction hypothesis, there exists

ρk−1 : γ0
∗
−→ γk−1 such that γ̃k−1 E γk−1: there exists an injective function

π : Ã → A such that, for all a ∈ Ã, γ̃k−1(a) = γk−1(π(a)), where Ã := ag(ρ̃)
and A := ag(ρ). If γ̃k−1 −→ γ̃k involves no reception transition from P̃ whose
corresponding transition in P has action ‘ 6=’, then we directly lift this step into
a step appended at the end of ρk−1 (making π(a) take a transition whenever a
does so in γ̃k−1 −→ γ̃k). Otherwise, write Ã 6= the subset of Ã corresponding to

agents taking in γ̃k−1 −→ γ̃k a reception transition from P̃ whose corresponding
transition in P has action ‘ 6=’ . Write (q,br(m), q′) ∈ ∆ the broadcast transition
used in this step. Using the copycat principle, we add to γk−1 a fresh agent anew
with state q and a register value that does not appear in γk−1. We first mimic
this broadcast step at the end of ρk−1, making any agent π(a) ∈ π(Ã \ Ã 6=) take
the transition that a takes in γ̃k−1 −→ γ̃k. We then add a new step where anew
broadcasts using transition (q,br(m), q′), and every agent π(a) ∈ π(Ã 6=) takes
the transition corresponding to the transition taken by a in γ̃k−1 −→ γ̃k. Such a
transition is a reception with action ‘ 6=’ in P ; however, because anew does not
share its register value with any process from Ã, all disequality conditions are
satisfied and this step is valid. In the end, every agent π(a) ∈ π(Ã) has taken the
transition in P corresponding to the one a took in P̃ in step γ̃k−1 −→ γ̃k, hence
the configuration γk reached by the constructed run is such that γ̃k E γk. ⊓⊔

I.2 Abstraction

We now define our abstraction. We formalize the definition of a gang:

Definition 44. Let (Q,∆, q0) be a protocol.
A gang is a pair G = (b,K) ∈ (Q∪{⊥})× 2Q. The element b is the boss and

the set K is the clique of the gang.
Let ρ = γ0 −→ γ1 −→ · · · −→ γk be a run and v ∈ val(ρ). The gang of value v

in ρ, written gangv(ρ), is the gang (bv(ρ),Kv(ρ)) such that,

– if there exists a0 ∈ ag(ρ) such that, for every i ∈ [0, k], data(γi)(a0) = v then
bv(ρ) := st(γk)(a0), otherwise bv(ρ) := ⊥,

– Kv(ρ) := {q ∈ Q | ∃i ≤ k, ∃a ∈ A \ {a0}, γi(a) = (q, v)}

We define abstract runs as follows:

Definition 45. An abstract configuration over A is a tuple of 2Q × G where G
designates the set of all gangs. We write ΣA the set of abstract configurations
over A and Σ :=

⋃

A⊆N finite ΣA the set of all abstract configurations.
Given a set of states S ⊆ Q, a message type m and a set of operations O,

we define
−−−→
Sm,A = {s′ ∈ Q | ∃s ∈ S, a ∈ O, (s, rec(m, a), s′) ∈ ∆}.

Given two abstract configurations σ = (S, b,K) and σ′ = (S′, b′,K′), there is
an abstract step from σ to σ′, denoted σ −→ σ′, when K′ ⊆ S′, b′ ∈ S′ ∪{⊥} and
one of the following cases is satisfied.

1. Broadcast from clique: There exists (qbr, br(m), q′br) ∈ ∆ such that:

Parameterized broadcast networks with registers 43

(1) Either b = b′ or there exists (b, rec(m,α), b′) ∈ ∆ for some action α.

(2) K′ = K ∪ {q′br} ∪
−−−−−−−→
Km,{=,∗,↓} ∪

−−−−→
Sm,{↓}.

2. Broadcast from boss: there exists m ∈ M such that (b, br(m), b′) ∈ ∆

(1) b, b′ 6= ⊥ (technically implied by the existence of (b, br(m), b′) but written
here to match other cases)

(2) K′ = K ∪
−−−−−−−→
Km,{=,∗,↓} ∪

−−−−→
Sm,{↓}.

3. External broadcast: There exists (qbr, br(m), q′br) ∈ ∆ such that

(1) Either b = b′ or:

– b′ 6= ⊥ and there exists (b, rec(m, ∗), b′) ∈ ∆, or
– b′ = ⊥ and there exists (b, rec(m, ↓), b′) ∈ ∆.

(2) K′ = K ∪
−−−−→
Km,{∗}.

4. Gang reset: S′ = S ∪ K ∪ {b}, K′ = ∅ and b′ = q0

Given a concrete run ρ : γ0
∗
−→ γk, we write absv(ρ) for the abstract configu-

ration (S, gangv(ρ)) where S is the set of all states appearing in ρ.

The initial abstract configuration is σ0 := ({q0}, q0, ∅). As in the concrete
case, an abstract run is a sequence ν = σ0, . . . , σk such that σ0 is the initial
configuration and, for all i, σi −→ σi+1. We denote such a run σ0

∗
−→ σk. Similarly,

we denote by σ
∗
−→ σ′ the existence of a sequence of steps from σ to σ′.

The intuition is that we will keep track of one value at a time, while assuming
that we have unlimited supplies of agents in the states we covered so far. We
follow the gang of one value through the run, which allows us to discover new
states. A gang reset lets us add those new states to the set of covered ones and
switch to another value.

First of all we observe that if there is an abstract run covering a state then
there is a short one.

Lemma 46. For every σ ∈ Σ such that σ0
∗
−→ σ, there exists an abstract run

ν : σ0
∗
−→ σ of less that (|Q|+ 2)3 steps.

Proof. Note that S may never decrease along an abstract run and that K may
only decrease at gang resets. We can hence enforce in the abstract semantics
that, at least every |Q| + 2 steps without reset, either S or K has increased.
Indeed, otherwise the configuration has looped as the boss may only take |Q|+1
values. We may also enforce that S has strictly increased between two resets,
as otherwise one may remove anything that happened between the two resets.
Therefore, there are at most |Q|− 1 gang resets in total, and each portion of the
run with no reset has at most (|Q|+ 2)(|Q|+ 1) steps, yielding the bound. ⊓⊔

It remains to prove that our abstraction is sound and complete.

44 L. Guillou, C. Mascle, N. Waldburger

Completeness In this subsection we prove Lemma 48. To do so, we take a con-
crete run ρ in our model and any value v appearing in the reached configuration.
We prove that there exists an abstract run leading to the abstract configuration
(cov(ρ), gangv(ρ)).

To construct the abstract run, we will first show that for all S such that
cov(ρ) ⊆ S, we can keep track of the set of agents carrying a value v: (S, q0, ∅)

∗
−→

(S, bv(ρ),K) with Kv(ρ) ⊆ K. Then, it is left to show that for all concrete run

ρ and for all value v, σ0
∗
−→ (S, q0, ∅) with cov(ρ) ⊆ S.

Lemma 47. For all initial runs ρ : γ0
∗
−→ γ, S ⊆ Q and v ∈ val(ρ), if cov(ρ) ⊆ S

then there exists K such that (S, q0, ∅)
∗
−→ (S, bv(ρ),K) and Kv(ρ) ⊆ K.

Proof. Let A = ag(ρ). As v appears in ρ, it must appear in γ0; let a0 be the
unique agent such that data(γ0)(a0) = v. We write ρ : γ0 −→ γ1 −→ . . . −→ γk = γ.

For every i ≤ k, let ρi : γ0
∗
−→ γi be the prefix of ρ of length i. We set σ0 =

(S, q0, ∅).
We construct by induction on i a sequence of abstract configurations σi =

(S, bi,Ki) such that σ0 ∗
−→ σi and Kv(ρi) ⊆ Ki. The statement is clear for i = 0.

Suppose now that (S, q0, ∅)
∗
−→ σi. If suffices to prove that σi −→ σi+1. We

consider the last step of ρi+1, which is referred to under the name si+1 in
what follows; si+1 : γi −→ γi+1. Let abr the agent making the broadcast tran-
sition in si+1 and Arec the set of agents receiving this broadcast in si+1. Let
(qbr,br(m), q′

br
) ∈ ∆ denote the transition taken by abr in si+1.

We now make the following case distinction to determine the type of the
abstract step σi −→ σi+1:

1. if data(γi)(abr) = v but there exists j < i such that data(γj)(abr) 6= v then
it is a broadcast from clique,

2. if, for all j ≤ i, data(γj)(abr) = v then it is a broadcast from boss,
3. otherwise it is an external broadcast.

Note that abr may not change its register value in si+1 hence data(γi)(abr) =
data(γi+1)(abr).

Let aboss the agent such that data(γ0)(aboss) = v. In case 2, aboss = abr; in
the other two cases, aboss 6= abr.

It is easy to check that in all cases, the gang given by applying the abstract
semantics covers gangv(ρi+1):

(1) In case 2, this condition is automatically satisfied. In the other two cases,
we look at what aboss does in si+1. If it remains idle then we have bi = bi+1.
Otherwise it takes a reception transition as abr 6= aboss. In case 1 the condi-
tion is then satisfied. In case 3, this reception cannot have action ‘=’ as the
broadcast is from an agent with register value that is not v (data(γi)(abr) 6= v
by hypothesis). For the same reason, if this reception has action ‘ ↓ ’ then
bi+1 = ⊥. If this reception has action ‘∗’ and bi 6= ⊥ then bi+1 6= ⊥ as aboss
keeps value v.

Parameterized broadcast networks with registers 45

(2) In all cases Ki+1 is defined by adding to Ki all states reachable with value v
from it by receiving the broadcast message m from a state of Ki with value
v or from a state of S with value v′ 6= v (plus q′

br
in case 1). As Kv(ρi) ⊆ Ki,

necessarily Kv(ρi+1) ⊆ Ki+1

We have proven that σi −→ σi+1, which concludes the induction step. Apply-
ing the result with i = k proves Lemma 47. ⊓⊔

We may now prove completeness of the abstraction. Intuitively, we start with
S = {q0} and we increase it in the following way: we look at the first state q /∈ S
that is covered in ρ, we follow the gang associated with the value of an agent
that covered q until the gang covers it too (using Lemma 47), then we do a gang
reset to add q to S.

Lemma 48. If ρ is an initial run and v ∈ val(ρ), then there exist S,K such that

σ0
∗
−→ (S, bv(ρ),K) and cov(ρ) ⊆ S and Kv(ρ) ⊆ K.

Proof. Let ρ an initial run. We construct by induction an increasing sequence of
sets C0, . . . , Cm such that Cm = cov(ρ) and for all i, Ci ⊆ cov(ρ), q0 ∈ Ci, and

there exists Si such that σ0
∗
−→ (Si, q0, ∅) and Ci ⊆ Si. First, we set C0 = {q0}

and the property is verified as σ0
∗
−→ ({q0}, q0, ∅).

Now suppose we constructed C0, . . . , Cj . If Cj = cov(ρ) we can stop. Other-

wise let ρp : γ0
∗
−→ γp the longest suffix of ρ such that cov(ρp) ⊆ Cj . Write s the

step immediately after ρp in ρ. By maximality of ρp, ρp · s covers some state q
that is not in Cj . Let a be an agent that is in q after step s, let v be its value at
that point. We set Ci+1 = Ci ∪ {q}.

By induction hypothesis, there exist Sj such that σ0
∗
−→ (Sj , q0, ∅) and Cj ⊆

Sj . Furthermore, as cov(ρp) ⊆ Cj , by Lemma 47 there exists Kj such that

σ0
∗
−→ (Sj , bv(ρp),Kj) and Kv(ρp) ⊆ Kj.
If q ∈ Kj then applying a gang reset suffices. If not, we mimic step s with a

step in the abstract semantics, as in Lemma 47 so that q is added to the clique,
then apply a gang reset to reach (Si+1, q0, ∅) with Ci+1 = Si ∪ {q} ⊆ Si+1.

This concludes our induction.
In the end, there exist Sm such that σ0

∗
−→ (Sm, q0, ∅) and cov(ρ) ⊆ Sj .

Lemma 47 allows us to conclude the proof.¨ ⊓⊔

Soundness It is left to prove that our abstraction is sound, which we will do by
considering an abstract run σ0

∗
−→ σ = (S, b,K) and constructing a concrete run

ρ : γ0
∗
−→ γ that follows the abstract run with an exponential amount of agents

to make sure that we can send some of them through all possible transitions at
each step and never run out.

Lemma 49. For all σ0 ∈ Σinit and σ = (S, b,K) ∈ Σ such that σ0
∗
−→ σ, for all

s ∈ S, there exists a reachable configuration γ covering s.

We in fact prove the following stronger lemma, which directly implies Lemma 49.

46 L. Guillou, C. Mascle, N. Waldburger

Lemma 50. Let σ0 ∈ Σinit, and σ0 → σ1 → · · · → σn an abstract run. For all i
let (Si, bi,Ki) := σi. Let M = |∆|+ 1.

For all i, there exist a set of agents Ai, an initial run ρi : γ0
∗
−→ γi over Ai,

agents a0, · · · , an ∈ Ai and values v0, . . . , vn ∈ N such that:

– for all s ∈ Si, there are at least Mn−i agents (different from ai) in state s
– for all s ∈ Ki, there are at least Mn−i agents (different from ai) in state s

with value vi
– if bi 6= ⊥, then ai is in state bi with value vi.

Proof. We proceed by induction on i. We set A0 = {1, . . . ,Mn}, and we set
γ0(a) = (q0, a) for all a. Clearly γ0 satisfies the requirements with respect to σ0,
with a0 = v0 ∈ A.

Now assume we constructed γ0
∗
−→ · · ·

∗
−→ γi over Ai satisfying the conditions

of the lemma, we construct γi+1 using a case distinction on the form of the
transition σi → σi+1. For each s ∈ S \K we define Ai,s as the set of agents in
state s in γi. We have |Ai,s| ≥ Mn−i thus we can extract M = |∆| + 1 disjoint
sets of agents (Adi,s)d∈∆∪{ε} from it, each set having Mn−i−1 agents. Similarly,
for each s ∈ K we define Ai,s as the set of agents in state s with value vi in
γi. We have |Ai,s| ≥ Mn−i thus we can extract |∆| + 1 disjoint sets of agents
(Adi,s)d∈∆∪{ε} from it each set having Mn−i−1 agents.

Case 1: If σi → σi+1 is a broadcast from clique d = (q,br(m), q′) with
q ∈ Ki, then we make all agents a ∈ Adi,q (which all have value vi) execute that
transition one by one. None of those broadcasts are received by any other agent,
except for the last one: If b 6= b′ then there is a transition (b, rec(m,α), b′) and
we make ai execute it upon receiving the broadcast. We then set ai+1 = ai. For
all k′ ∈ Ki+1 \ (Ki ∪ {q′}) there exists a transition d′ = (k, rec(m,α), k′) such
that either α is = or ∗ and k ∈ Ki or α is ↓ and k ∈ S. In both cases we make
all agents of Ad

′

i,k take that transition. We set vi+1 = vi.

Case 2: If σi → σi+1 is a broadcast from boss d = (bi,br(m), bi+1), then we
make ai (which has value vi) execute that transition, and we set ai+1 = ai. The
agents receiving that message are as follows:

For all k′ ∈ Ki+1 \ Ki there exists a transition d′ = (k, rec(m,α), k′) such
that α is either = or ∗ and k ∈ Ki or α is ↓ and k ∈ S. In both cases we make
all agents of Ad

′

k take that transition. By definition of an abstract run, we must
have bi ∈ Si. Hence we can make all agents of Adi,s execute d, with no agent
receiving the corresponding broadcasts. We set vi+1 = vi.

Case 3: If σi → σi+1 is an external broadcast d = (q,br(m), q′) , then we
make all agents a ∈ Adq execute that transition one by one. None of those broad-
casts are received by any other agent, except for the last one: If bi 6= bi+1 then
there is a transition (bi, rec(m,α), b

′) and either bi+1 = b′′ 6= ⊥ and α = ∗ or
bi+1 = ⊥ and α =↓. In both cases we make ai execute that transition, and we set
ai+1 = ai. For all k

′ ∈ Ki+1 \Ki there exists a transition d′ = (k, rec(m, ∗), k′)

Parameterized broadcast networks with registers 47

with k ∈ Ki. We make all agents of Ad
′

k take that transition. We set vi+1 = vi.

Case 4: If σi → σi+1 is a gang reset then no agent moves and we select
some ai+1 in Aq0 and set vi+1 to be its value.

Throughout the case distinction we have ensured that:

– If bi+1 6= ⊥ then ai+1 is an agent of value vi+1.
– If the step is not a gang reset, then vi+1 = vi and for all k′ ∈ Ki+1 \ Ki,

there exists d ∈ ∆ from some k to k′ such that all agents of Adi,k take
that transition. Furthermore, if d is of the form (k, rec(m, ↓), k′) then the
broadcasting agent has value vi, thus all those agents keep value vi = vi+1.
For all k ∈ Ki, the agents of A

ε
i,k do not move between configurations γi and

γi+1, hence they have state k and value vi+1 in γi+1.
– If the step is a gang reset, the conditions of the lemma hold trivially.

As a result, we have ensured that the conditions of the lemma were respected.
This concludes our induction. ⊓⊔

To obtain Lemma 49, we apply Lemma 50 to an abstract run σ0 → · · ·σn = σ
from σ0 to σ by setting i = n.

I.3 Conclusion

Proposition 51. Let qf be a state, there exists a reachable configuration cover-
ing qf if and only if there exists a reachable abstract configuration (S, b,K) with
qf ∈ S.

Proof. The two implications follow from Lemmas 48 and 49 respectively. ⊓⊔

NP-hardness. We present here a reduction from the 3SAT problem to the
cover problem in 1-BNRAs.

Proposition 52. The cover problem is NP-hard.

Proof. Let x1, . . . , xn be variables and φ =
∧m
j=1 Cj with, for all j, Cj = ℓ1j ∨

ℓ2j ∨ ℓ
3
j and ℓ1j , ℓ

2
j , ℓ

3
j ∈ {xi,¬xi | 1 ≤ i ≤ n}.

Consider the protocol displayed in Figure 12. Our alphabet of messages is
the set of literals {xi,¬xi | 1 ≤ i ≤ n}. Agents may either receive a message, and
repeat it forever or it may broadcast one of xi,¬xi for each i and then try to
receive a message with one of ℓ1j , ℓ

2
j , ℓ

3
j for each j, with their own register value.

If φ is satisfied by some assignment ν, then we construct a run where an
agent a broadcasts the satisfied literals while going from 0 to N and other agents
receive the messages and go to the corresponding states in the lower part of the
protocol while storing the register value of a. Then for each j we select some
ℓpj satisfied by ν. There exists i such that there is an agent in state ℓpj , which
broadcasts ℓpj along with the initial register value of a, allowing a to go to the
next state. As a result, there is a run in which an agent a reaches m′.

48 L. Guillou, C. Mascle, N. Waldburger

0 1 · · · N-1 N 1’ · · · m-1’ m’

x1

rec(x1, ↓)

¬x1

rec(¬x1, ↓)

· · · xn

rec(xn, ↓)

¬xn

rec(¬xn, ↓)

br(x1) br(xN)

rec(ℓ11,=) rec(ℓ1m,=)

br(¬x1) br(¬xN)

rec(ℓ31,=) rec(ℓ3m,=)

rec(ℓ21,=) rec(ℓ2m,=)

br(x1) br(¬x1) br(xn) br(¬xn)

Fig. 12: The protocol used for the NP-hardness proof.

Now suppose there is a run ρ over some set of agents A such that some agent
a ∈ A is in state m′ in the final configuration. For each i, a has broadcast either
xi or ¬xi, but not both. Let ν be the valuation assigning ⊤ to xi if and only if
a has broadcast it. For each j a has received one of ℓ1j , ℓ

2
j , ℓ

3
j along with its own

initial register value (which we call r). For this to happen, a must have broadcast
this literal before, hence it is satisfied by ν.

As a result, ν satisfies a literal of each clause of φ, and thus satisfies φ. This
concludes our reduction. ⊓⊔

Theorem 30. The coverability problem for 1-BNRA is NP-complete.

Proof. The lower bound is given by Proposition 52. For the upper bound, say we
are given a protocol P = (Q,M, ∆, q0, r) and a state qf . By Proposition 51, there
is a reachable configuration covering qf if and only if there is an abstract run
to an abstract configuration (S, b,K) with qf ∈ S. Furthermore, by Lemma 46
if there is such an abstract run then there is one with at most (|Q|+ 2)3 steps.
Thus we can simply guess such an abstract run and verify it in polynomial time.
As a result, the cover problem is in NP. ⊓⊔

	Parameterized Broadcast Networks with Registers: from NP to the Frontiers of Decidability

