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Webly Supervised Semantic Embeddings for

Large Scale Zero-Shot Learning

Yannick Le Cacheux, Adrian Popescu, and Herv Le Borgne

Universit Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract. Zero-shot learning (ZSL) makes object recognition in images
possible in absence of visual training data for a part of the classes from
a dataset. When the number of classes is large, classes are usually repre-
sented by semantic class prototypes learned automatically from unanno-
tated text collections. This typically leads to much lower performances
than with manually designed semantic prototypes such as attributes.
While most ZSL works focus on the visual aspect and reuse standard
semantic prototypes learned from generic text collections, we focus on
the problem of semantic class prototype design for large scale ZSL. More
specifically, we investigate the use of noisy textual metadata associated
to photos as text collections, as we hypothesize they are likely to pro-
vide more plausible semantic embeddings for visual classes if exploited
appropriately. We thus make use of a source-based filtering strategy to
improve the robustness of semantic prototypes. Evaluation on the large
scale ImageNet dataset shows a significant improvement in ZSL perfor-
mances over two strong baselines, and over usual semantic embeddings
used in previous works. We show that this improvement is obtained for
several embedding methods, leading to state of the art results when one
uses automatically created visual and text features.

1 Introduction

Zero-shot learning (ZSL) is useful when an artificial agent needs to recognize
classes which have no associated visual data but can be represented by semantic
knowledge [1]. The agent is first trained with a set of seen classes, which have
visual samples. Then, it needs to recognize instances from either only unseen
classes (classical zero-shot learning scenario) or both seen and unseen classes
(generalized zero-shot learning). To do so, it has access to visual features and to
semantic class prototypes. Most (generalized) zero-shot learning works focus on
the proposal of adapted loss functions [2–7] or on the induction of visual features
for unseen classes via generative approaches [8–11]. Here, we use standard com-
ponents for the visual part of the ZSL pipeline and instead study the influence
of semantic class prototypes. Early works exploit manually created attributes
[12–14] to define these prototypes. While efficient, it requires a very costly anno-
tation effort and is difficult to scale to large datasets. Different strategies were
proposed to automate the creation of prototypes in order to tackle large scale
ZSL. An early attempt [15] exploited WordNet to extract part attributes. This
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method nevertheless assumes that tested datasets can be mapped to WordNet,
which is often impossible. The current trend, which leverages advances in natural
language processing [16–18], is to exploit standard word embeddings as semantic
prototypes. These embeddings are extracted from generic large scale text col-
lections such as Wikipedia [17, 16] or Common Crawl [19, 20]. The advantage of
such methods is that prototype creation is based solely on webly supervised or
unsupervised collections. However, following [21, 22], only standard embeddings
extracted from generic collections were tested in ZSL.

We tackle the creation of semantic class prototypes for large scale ZSL via
a method enabling to suitably leverage more adapted text collections for word
embedding creation. The standard generic texts are replaced by metadata asso-
ciated with photo corpora because the latter are more likely to capture relevant
visual relations between words. Our method includes processing of the textual
content to improve the semantic plausibility of prototypes [20] and exploits a
source-based voting strategy to improve robustness of word co-occurrences [23,
24]. We evaluate the proposed approach for automatic building of semantic pro-
totypes using different text collections. We also perform an ablation study to
test the robustness with respect to collection size and provide a detailed error
analysis. Results for a large scale collection show our approach enables consis-
tent performance improvement compared to existing automatic prototypes. In-
teresting performance is also obtained for smaller datasets, where the proposed
prototypes reduce the gap with manual prototypes. Our contributions can be
summarized as follows:

– We focus on the understudied problem of semantic prototype design for ZSL,
and propose a method to create better embeddings from noisy tags datasets.

– We conduct extensive experiments and ablation studies to (1) demonstrate
the effectiveness of the proposed method; (2) provide a variety of results
with different embeddings which can be used for future fair comparison; (3)
provide insight on the remaining challenges to close the gap between manual
and unsupervised semantic prototypes.

– We collect new corpora and produce state-of-the-art semantic class proto-
types for large-scale ZSL which will be released to the community. The code
is released at https://github.com/yannick-lc/semantic-embeddings-zsl

2 Related Work

Zero-shot learning. Zero-shot learning [25–28] attempts to classify samples
belonging to unseen classes, for which no training samples are available. Visual
samples are available during training for seen classes and both seen classes and
unseen classes have “semantic” prototypes associated to them.

The first ZSL approaches were introduced a decade ago [27, 26, 28] and a
strong research effort has been devoted to the topic ever since [1, 29, 3, 30–33].
Several of these works relied on a triplet loss to group relevant visual sample close
to the prototype in the joint space while discarding irrelevant ones [2, 4–6, 34, 7].
In the generalized zero-shot learning (GZSL) setting, performance is evaluated
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both on seen and unseen classes [35]. Then, a strong bias towards recognizing
seen classes appears [36]. It is nevertheless possible to tune the hyper-parameters
of a ZSL method to boost its performance in a GZSL setting [37]. Recent gener-
ative approaches propose to learn discriminative models on unseen classes from
artificial samples resulting from a generative model previously learned on seen
classes [8–11]. The transductive ZSL setting assumes that the unlabelled visual
testing samples can be used during training [38–41]. This usually boosts the
performance, but we consider such a hypothesis too restrictive in practice, and
this setting is out of the scope here.

Semantic representation. Semantic prototypes can be created either manu-
ally or automatically. Since the former are difficult to scale, we focus on auto-
matically created ones, that usually rely on large-scale datasets collected on the
Web. The extraction of word representations from the contexts in which they
appear is a longstanding topic in natural language processing (NLP). Explicit
Semantic Analysis (ESA) [42] is an early attempt to exploit topically structured
collections to derive vectorial representations of words. It proposes to represent
each word by its tf-idf weights with regard to a large collection of Wikipedia
entries (articles). ESA was later improved by adding a temporal aspect to it [43]
or by the detection and use of concepts instead of unigrams [44]. ESA and its
derivates have good performance in word relatedness and text classification tasks.
However, they are relatively difficult to scale because they live in the vectorial
space defined by Wikipedia concepts which typically includes millions of entries.

The most influential word representation models in the past years are based
on the exploitation of the local context. Compared to ESA, they have the ad-
vantage of being orders of magnitude more compact, with typical sizes in the
range of hundreds of dimensions. word2vec embeddings [45] are learned from
co-occurrences in local context window which are modeled using continuous bag-
of-words and skip grams. This model usually outperforms bag-of-words [45, 19,
20]. Some preprocessing steps such as removal of duplicate sentences, phrase
detection to replace unigrams, use of subword information or frequent word sub-
sampling is beneficial to the performances [20]. One shortcoming of word embed-
dings as proposed in [45] is that they only take into account the local context of
words. GloVe [18] was introduced as an alternative method which also includes a
global component obtained via matrix factorization. The model trains efficiently
only on non-zero word-word co-occurrence matrix instead of a sparse matrix
or on local windows. It provides superior performance compared to continuous
bag-of-words and skip gram models on a series of NLP tasks, including word
analogy and similarity. The FastText model [19] derives from that proposed by
Mikolov but considers a set of n-grams that can compose the words, compute
some embeddings then represent a word as the sum of the vector representation
of its n-grams. It thus models the internal structure of the words and allows
to compute out of vocabulary word representations. The state of the art in a
large array of natural language processing task was recently improved by the
introduction of contextual models such as ELMo [46], GPT [47] or BERT [48].
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These approaches make use of deep networks and model language at sentence
level instead of word level as was the case for skip grams and GloVe. While very
interesting for tasks in which words are contextualized, they are not directly
applicable to our ZSL scenario which requires the representation of individual
words/class names.

Multimodal representations. The word representation approaches presented
above exploit only textual resources and there are also attempts to create mul-
timodal word embeddings. Early works projected the vocabulary on a bag-of-
visual-words space for image retrieval [49]. More recently, vis-w2v [50] exploits
synthetic scenes to learn visual relations between classes. The main challenge
here is to model the diversity of natural scenes via synthetic scenes. ViCo [51]
exploit word co-occurrences in natural images in order to improve purely tex-
tual GloVe embeddings. Visual and textual components complement each other
and thus improve performance in tasks such as visual question answering, image
retrieval or image captioning. However, an inherent drawback of all these mul-
timodal representations requires representative images of any word to consider
and is thus not usable in ZSL for unseen classes. Regarding visual features only,
[52, 53] showed that one can train convolutional networks on a dataset of unan-
notated images collected on the Web, and that these networks perform well in a
transfer learning context. Previous works in ZSL used embeddings to represent
the semantic prototype, either at a small scale on CUB [54] or at a larger scale
on ImageNet, using word2vec [2, 35, 55] (possibly trained on wikipedia [6, 21]),
GloVe [34, 22], FastText or ELMo [56]. However, they only use publicly avail-
able pre-trained models, while we propose a method to design prototypes that
perform better in a ZSL context.

3 Semantic Class Prototypes for Large Scale ZSL

Problem formulation. The zero-shot learning (ZSL) task considers a set Cs

of seen classes used during training and a set Cu of unseen classes that are
available for the test only. In generalized zero-shot learning (GZSL), additional
samples from the seen classes are used for testing as well. However, in both cases,
Cs∩Cu = ∅. Each class has a semantic class prototype sc ∈ R

K that characterizes
it. We consider a training set {(xi, yi), i = 1 . . . N} with labels yi ∈ Cs and visual
features xi ∈ R

D. The task is to learn a compatibility function f : RD×R
K → R

assigning a similarity score to a visual sample x and a class prototype s. f is
usually obtained by minimizing a regularized loss function:

1

N

N∑

i=1

|Cs|∑

c=1

L(f(xi, sc), yi) + λΩ[f ] (1)

where Ω is a regularization term weighted by λ which constrains the parameters
of f , and L is a loss function. Once a function f is learned, the testing phase
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consists in determining the label ŷ ∈ Cu (or ŷ ∈ Cs∪Cu for GZSL) corresponding
to a visual sample x such that ŷ = argmax

c∈Cu

f(x, sc).

We propose to automatically derive semantic class prototypes sc with a
method able to adequately leverage noisy corpora which are adapted for vi-
sual tasks instead of standard text corpora previously used in ZSL [16, 18, 19].
More specifically, a corpus must contain enough visual information to enable
to learn discriminative embeddings. We therefore create two corpora, flwiki and
flcust, with this goal in mind.

Corpus collection. flwiki is constituted based on Wikipedia. We select salient
concepts by ranking English Wikipedia entries by their number of incoming links
and keeping the top 120, 000 of the list. The default Flickr ranking algorithm is
then used to collect up to 5000 photo metadata for each concept. Metadata fields
which are exploited here include: (1) title – a free text description of the photo
(2) tags – a list of tags attributed to the photo and (3) the unique identifier of the
user. Note that there is no guarantee as to the relevance of textual metadata for
the content of each photo since the users are free to upload any text they wish.
Also, photo annotations can be made in any language. We illustrate title and
tags from Flickr with the following examples:“smfur Pagophila eburnea Ivory

Gull” and “minnesota flying inflight gull arctic juvenile duluth rare lakesuperior

canalpark ivorygull saintlouiscounty”. The title includes the Icelandic, Latin and
English variants of the name while the tags give indications about the location
and activity of the ivory gull. Importantly, tags can be single words (“gull”) or
concatenated ones (“ivorygull”,“lakesuperior”). This first collection is made of
62.7 million image metadata pieces and 1.11 billion words.

The flwiki collection allows to learn generic embeddings that can be used
to address large scale ZSL. However, these embeddings are still quite “generic”
since they are representative of the Wikipedia concepts. For a given ZSL prob-
lem, the visual samples of unseen classes are unknown during training, but the
name of these classes can be known before the actual production (testing) phase.
Such a hypothesis is implicitly made by most generative ZSL approaches, which
synthesize faked visual samples from the prototype only [8–11]. Following a sim-
ilar hypothesis, we build flcust, a custom subset of FlickR, which is built using
the class names from the three ZSL used in evaluation datasets (ImageNet-ZSL,
CUB and AWA). The collection process is similar to that deployed for flwiki.
The only difference is that we use specific class names, which may each have
several variants. This collection includes 61.9 million metadata pieces and 995
million unique words.

Each collection therefore consists in a list of C ≤ 120, 000 concepts. For each
class c, we have a metadata set Mc = {m1, . . . ,mNc

} made of Nc ≤ 5, 000
metadata pieces. Each metadata piece mn consists in a user ID idn and a list
of Tn words Wn = {w1, . . . , wTn

}, where the words are extracted from titles and
tags. Tn is typically in the range of one to two dozens. Note that stop words
were discarded during preprocessing.
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Creation of embeddings. To create text representations, a vocabulary V =
{v1, . . . , vV } is constituted to include all V distinct words in the corpus. We
similarly create a set U = {u1, . . . , uU} of all distinct users IDs. The usual
skip-gram task [16] aims to find word representations which contain predictive
information regarding the words surrounding a given word. Given a sequence
{w1, . . . , wT } of T training words such that wt ∈ V and a context of size S, the
objective is to maximize

T∑

t=1

∑

−S≤i≤S
i 6=0

log p(wt+i|wt) (2)

Writing vwt
∈ V the unique word associated with the tth training word wt

and vwt
and v′

wt
the corresponding “input” and “output” vector representations,

p(wi|wt) can be computed such that

p(wi|wt) =
exp(v′⊤

wi
vwt

)
∑V

j=1 exp(v
′⊤
j vwt

)
(3)

Unlike in standard text collections, such as Wikipedia, the order of words
in each metadata collection Mn is arbitrary. Consequently, using a fixed size
window to capture the context of a word is not suitable. We tested the use of
fixed size windows in preliminary experiments and results were suboptimal.

Instead, we consider that two words vi and vj appear in the same context if
both of them appear in the same list of words Wn of metadata result mn. The
skip-gram objective in Equation 2 can therefore be rewritten as

C∑

c=1

Nc∑

n=1

∑

(vi,vj)
vi,vj∈Wn, i 6=j

log p(vi|vj) (4)

This is equivalent to extracting all pairs of words (vi, vj) such that vi, vj
belong to the same Wn in a training file, and feeding this resulting corpus to a
word embedding model. This has the advantage of enabling the use of available
implementations such as word2vec [16] to learn the word embeddings.

Addressing repetitive tags. It is noteworthy that many users perform bulk
tagging [24] which consists in attributing the same textual description to a whole
set of photos. Users also do semi-bulk, i.e. they attribute a part of tags to an
entire photo set and then complete these annotations with photo-specific tags.
Bulk is known to bias language models obtained from Flickr [24, 23]. To account
for this problem, we add an additional processing step for the two collections.
The authors of [23] and [24] suggested to replace simple tag co-occurrences by
the number of distinct Flickr users who associated the two words and reported
interesting gains in image retrieval and automatic geotagging respectively.
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In our case, this translates into adding a pair (vi, vj) in the training file only
once for each user and thus avoiding the effect of bulk tagging. A positive side
effect of filtering pairs with unique users is that the size of the training file is re-
duced and embeddings are learned faster. A comparison of performance obtained
with raw co-occurrence and with user filtering is provided in the supplementary
material.

The same ideas can easily be applied to other word embedding approaches.
In the next section, we provide experimental results with three such approaches:
word2vec [16], GloVe [18] and FastText[19].

4 Experiments

4.1 Evaluation protocol

Baseline methods. To the best of our knowledge, our work is the first to
explicitly address the problem of semantic class prototype design for large scale
ZSL. We compare to the pre-trained embeddings (noted pt), as they are usually
used in previous ZSL works [2, 22, 55]. word2vec is trained on Google News with
100 billion words, GloVe is trained on Common Crawl with 840 billion words
and the same collection with 600 billion words is used for FastText.

We also propose two baseline methods, (wiki) and (clue), to which ours can
be fairly compared. They consist in learning the embeddings from two different
text collections. Wikipedia (wiki) is classically exploited to create embeddings
because it covers a wide array of topics [42]. wiki content is made of entries
which describe unambiguous concepts with well formed sentences such as “The
ivory gull is found in the Arctic, in the northernmost parts of Europe and North

America.”. The encyclopedia provides good baseline models for a wide variety
of tasks [16, 20, 18]. Here we exploit a dump from January 2019 which includes
20.84 billion words. It is the same data as that from which were extracted the
120, 000 concepts for our method. While useful to create transferable embed-
dings, Wikipedia text does nevertheless not specifically describe visual relations
between words. The second baseline is based on visually oriented textual con-
tent similar to the one used in our method. The ClueWeb12 [57] collection (clue)
consists of over 700 million Web pages which were collected so as to cover a wide
variety of topics and to avoid spam. We extracted visual metadata from the title
and alt HTML attributes associated to clue images. The title content is quite
similar to that we extracted from FlickR in our method. clue content is often
made of short texts such as “ivory gull flying” which does not encode a lot of
context. After sentence deduplication [20], the resulting collection includes 628
million unique metadata pieces and 3.69 billion words.

Evaluation datasets. The generic object recognition in ZSL requires to be
evaluated at a large scale and is thus usually conducted on ImageNet [58]. Frome
et al. [2] proposed to use the 1, 000 classes of ILSVRC for training and different
subsets of the remaining 20, 841 classes to test. However, it has been recently
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showed that a structural bias appears in this setting which allows a “trivial
model” to outperform most existing ZSL models [22]. For this reason, we adopt
the evaluation protocol proposed by Hascoet et al. that considers the same train-
ing classes as Frome et al. but uses 500 classes with a minimal structural bias
for testing [22].

To get insight into the gap existing between manual attributes and unsuper-
vised embeddings, we also conduct experiments on two smaller benchmarks on
which the ZSL task is usually conducted with manual attributes specific to each
dataset: Caltech UCSD Birds 200-2011 (CUB) [13] and Animals with Attributes
2 (AwA2) [21]. CUB is a fine-grained dataset of 11788 pictures representing 200
bird species and AWA2 a coarse-grained dataset of 37322 pictures depicting 50
animal species. The manual attributes of CUB and AwA2 are respectively 312
and 85-dimensional. In our setting, we are only concerned with semantic pro-
totypes which can be obtained automatically; our results therefore cannot be
directly compared to the state-of-the-art algorithms which exploit manual at-
tributes. For CUB and AWA2, we adopt the experimental protocol of Xian et

al. [21] which relies on proposed splits that avoid any overlap between the (un-
seen) test classes and the ImageNet classes used to pretrain visual features on
ILSVRC. For ImageNet, we use the same visual features as [22] while for CUB
and AwA2 we adopt those of [21].

ZSL methods. Experiments are conducted with different existing ZSL meth-
ods: we provide results for DeViSE [2], ESZSL [3] and ConSE [32] as they are the
three standard methods used in [22], and therefore the only methods for which
comparable results are currently available. Although results for other models –
namely GCN-6 [59], GCN-2 and ADGPM [60] – are also reported in [22], these
models are based on graph-convolutional networks [61] which make use of addi-
tional intermediate nodes in the WordNet hierarchy. Such methods are outside
the scope of this study. We additionally provide results for SynC [6] as well as
two linear methods, consisting in a linear projection from the visual to the visual
space (LinearV→S), and a linear projection from the semantic to the visual space
(LinearS→V ) inspired by [30], who proposed to compute similarities in the visual
space to avoid the hubness problem [62].

We train the models with the usual protocol for ZSL: hyperparameters are de-
termined using a subset of training classes as validation. We sample respectively
200 and 50 such classes at random among the 1000 and 150 training classes of
ImageNet and CUB, and use the 8 classes not in ILSVRC among the 40 training
classes of AwA2. Since ConSE and DeViSE results depend on a random initial-
ization of the models’ parameters, we report results averaged over 5 runs for
these two models.

Implementation details. Word embeddings are computed using the origi-
nal implementations of word2vec [16], GloVe [18] and FastText[19], with the
same hyperparameters (see supplementary materials). In particular, we follow
the usual text processing steps they propose. Semantic prototypes for all classes
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Table 1. ZSL accuracy at large scale (ImageNet dataset), for three embedding models.
Each time, the three baselines (pt, wiki and clue) are compared to our method flwiki

and its variation flcust. Results marked with “*” correspond to a setting close to Table 2
from Hascoet et al. [22], and are consistent with reported results.

Model word2vec GloVe FastText

Source pt wiki clue flwiki flcust pt wiki clue flwiki flcust pt wiki clue flwiki flcust

LinearV →S 6.8 9.8 9.6 10.5 12.6 10.2 6.2 4.2 9.6 9.2 6.0 8.9 2.8 11.6 14.2

LinearS→V 11.6 11.8 12.2 12.8 17.1 14.1 7.9 8.0 9.2 11.4 14.4 12.1 8.0 13.3 17.2

ESZSL 10.5 10.0 10.7 9.5 15.3 14.1* 8.0 10.3 11.1 12.0 14.2 10.1 1.1 11.9 15.8

ConSE 9.9 10.5 11.3 11.9 13.5 11.3* 8.1 7.8 11.3 11.9 11.0 10.5 5.4 12.6 14.5

Devise 9.0 9.8 9.9 9.6 13.3 11.0* 5.9 5.4 3.8 3.4 12.3 10.1 5.6 10.3 13.8

SynC
o−vs−o

12.2 12.4 12.6 12.5 16.3 15.0 10.9 11.2 12.4 13.3 14.6 12.6 7.0 13.2 16.5

Table 2. ZSL accuracy at smaller scale with unsupervised semantic class prototypes.
Results are reported on the CUB and Awa2 datasets, for three embedding models.

Model word2vec GloVe FastText

Source pt wiki clue flwiki flcust pt wiki clue flwiki flcust pt wiki clue flwiki flcust

CUB dataset

LinearV →S 7.5 14.0 13.9 12.2 16.3 8.0 11.6 9.8 12.7 14.2 7.2 13.8 12.2 11.6 17.5

LinearS→V 11.3 18.0 17.2 21.5 23.0 18.2 16.0 13.4 14.6 19.0 16.1 16.2 16.0 19.9 24.4

ESZSL 15.8 20.4 17.9 23.0 25.2 19.9 17.5 16.9 19.0 20.8 21.1 18.7 1.7 23.5 26.5

ConSE 8.3 19.5 21.6 18.0 21.1 14.1 15.1 14.9 16.8 18.4 14.0 17.7 19.9 17.6 23.4

Devise 12.6 17.0 15.8 19.0 19.2 14.6 16.3 9.9 18.4 14.8 16.0 13.2 13.7 17.4 22.5

SynC
o−vs−o

15.3 19.8 17.3 20.3 21.3 17.6 17.2 17.6 21.6 20.5 17.0 15.0 15.7 20.2 24.0

Awa2 dataset

LinearV →S 31.1 40.2 38.5 43.6 37.9 40.4 26.9 34.6 40.5 43.3 42.1 39.9 28.1 38.5 41.6

LinearS→V 38.1 44.1 49.7 53.9 55.0 56.6 42.4 48.1 41.2 57.7 54.7 49.3 14.4 50.4 46.5

ESZSL 40.9 42.2 55.8 53.1 57.1 61.4 37.7 49.0 48.2 44.3 48.2 37.6 7.9 49.7 54.6

ConSE 27.4 31.3 34.3 43.3 39.2 31.3 27.4 29.8 38.4 41.4 34.7 31.3 16.7 42.3 42.1

Devise 37.2 34.1 46.6 33.7 43.4 43.2 42.6 44.9 30.6 36.4 52.0 40.7 13.5 32.7 37.6

SynC
o−vs−o

43.9 41.1 45.8 47.1 47.5 46.9 46.6 47.4 50.0 52.1 53.3 40.0 15.2 45.5 48.1

are computed using the same protocol as [22] for fair comparison. For the same
reason, we use the implementation from [22] to run DeViSE, ESZSL, ConSE.
We use the implementation from [6] for SynC, and use a custom straightforward
implementation for LinearV→S and LinearS→V . All semantic prototypes are ℓ2-
normalized except with ESZSL to have a setting similar to [22] when applicable.
We report results without such a normalization in the supplementary materials,
even though the trend is mostly the same.

4.2 Comparison to other approaches

The main results of the evaluation are reported in Table 1 for ImageNet. They
confirm the relevance of our method and text collections to learn semantic proto-
types for ZSL, as the best results are consistently obtained with our prototypes.
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Specifically, for ImageNet, the best result reported on the unbiased split in [22]
is 14.1 with ADGPM, and 13.5 with a “traditional” ZSL model (not making use
of additional nodes in the class hierarchy), which used GloVe embeddings pre-
trained on Common Crawl. By contrast, our best result is 17.2 with FastText,
obtained with embeddings trained on a much smaller dataset.

We also provide results for CUB and AwA2 in Table 2. These results are
less relevant since manual attributes exist for these smaller scale datasets, but
still provide interesting insights. Importantly, these results are obtained using
unsupervised prototypes and should not be directly compared to results ob-
tained with manual attributes. On CUB, the best results are obtained with the
embeddings learned on the flcust collection for the three configurations and sig-
nificantly outperform previous embeddings. Interestingly, there does not seem
to be a clear tendancy on AwA2. It turns out that performance obtainable with
unsupervised prototypes on AwA2 is already quite close to performance with
manual attributes – see Sec. 4.4. Our method is therefore unable to provide a
significant improvement, unlike on the other two datasets.

Within each embeddings methods for all three datasets, the best results are
usually obtained with flcust and flwiki usually performs better than baseline
methods. The gain is especially large when compared to the largest available
pretrained models for word2vec and FastText. This result is obtained although
the largest collections used to create pretrained embeddings are 2 to 3 orders
of magnitude larger than the collections we use. For GloVe on ImageNet, the
model pretrained on Common Crawl has the best performance. This embedding
has poor behavior for all smaller scale datasets, indicating that the combination
of local and global contexts at its core is able to capture interesting information
at large scale. While its performance on the smaller pretrained dataset is signif-
icantly lower than that of FastText, the two models are nearly equivalent when
trained on Common Crawl. A similar finding was reported for text classification
tasks [20]. The strong performance of flcust follows intuition since the collec-
tion was specifically built to cover the concepts which appear in the three test
dataset. This finding confirms the usefulness of smaller but adapted collections
for NLP applications such as medical entity recognition [63] or sentiment anal-
ysis [64]. Note that we also combined flwiki and flcust to obtain a more generic
Flickr model. The obtained results were only marginally better compared to the
single use of flcust and are reported in the supplementary material.

Overall, the best performance is usually obtained with flcust and FastText
embeddings.

4.3 Influence of text collection size

The quality of semantic embeddings is influenced by the size of the text collec-
tions used to learn them. Existing comparisons are usually done among different
collections [16, 18, 19]. While interesting, these comparisons do not provide di-
rect information about the robustness of each collection. To test robustness, we
ablate 50%, 75% and 90% of flcust and wiki collections and report results for
ImageNet using FastText embeddings in Table 3. As expected, performance is
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Table 3. ZSL performance with 0%, 50%, 75% and 90% data removed from wiki and
flcust collections, on the ImageNet dataset. With FastText embeddings.

Collection Data removed 0% 50% 75% 90%

wiki

LinearS→V 12.1 11.6 11.3 10.2
ESZSL 10.1 9.8 9.9 9.6
ConSE 10.5 11.0 10.5 9.9
Devise 10.1 8.3 8.7 8.0

flcust

LinearS→V 17.2 16.8 16.3 15.6
ESZSL 15.8 15.1 15.3 14.3
ConSE 14.5 14.1 14.1 14.3
Devise 13.8 13.4 13.2 12.5

correlated to the collection size, with the best results being obtained for full
text collections and the worst when 90% of them is removed. Interestingly, the
performance drop is not drastic for either of the collection. For instance, with
only 10% of the initial collections, accuracy drops from 12.1 to 10.2 for wiki

(15.7% relative drop) and from 17.2 to 15.6 for flcust (9.3% relative drop). In-
deed, according to the Zipf’s law, the sorted frequency of words in a language
is a decreasing power law. Hence, small corpus contain most of frequent words
and increasing their size is useful only to address rare cases. The relative drop is
smaller for flcust compared to wiki, showing that a collection which is adapted
for the task is more robust to changes in the quantity of available data.

4.4 Comparison to manual attributes

Fig. 1. Ablation of manual attributes on CUB and AwA2. Measured with the linear
model, averaged over 10 runs (points and bars are mean±std) with different attributes
removed each time. Best results for prototypes based on word embeddings are also
reported (horizontal lines).
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Although our webly semantic prototypes enable to achieve much better re-
sults than with previously available prototypes extracted from text corpora, it
is still interesting to compare them to what can be achieved with hand-crafted
attributes. Such attributes do not exist for very large scale datasets such as
ImageNet, but they are provided with smaller scale datasets such as CUB and
AwA2.

To quantify how much better hand-crafted prototypes perform when com-
pared to webly supervised prototypes, we conducted an ablation study on CUB
attributes similar to Sec. 4.3. We started with the full list of attributes, ini-
tially comprising 312 attributes for each bird species, and randomly removed
attributes while measuring the resulting ZSL score. The scores where obtained
with the LinearS→V model due to its good results, robustness and simplicity.
To account for the noise caused by the randomness of the removed attributes,
each reported score is the average of 10 measurements, each with different ran-
dom attributes removed. The remaining attributes are ℓ2-normalized, and the
hyper-parameter is re-selected by cross-validation for each run. Fig. 1 provides
a visualization of the result; a table with the exact scores is available in the
supplementary materials.

On CUB, there is still a substantial margin for improvement; even though
our method enables a significant increase over other methods, it is still barely
above results achievable by selecting only 20 attributes among the 312 initial at-
tributes. Interestingly, the difference between webly supervised and hand-crafted
prototypes is not so pronounced on the AwA2 dataset; the ZSL accuracy between
the two settings is even surprisingly close. This may be explained by the fact
that AwA2 only contains 10 test classes; class prototypes need not enable a ZSL
model to subtly distinguish very similar classes. Consequently, our best result is
comparable to the best result enabled by previous methods.

4.5 Error analysis

We analyze how far incorrect predictions are from the correct class by computing
the distance between the predicted class and the correct class. We define the
distance between two classes as the shortest path between them in the WordNet
hierarchy. For a given distance d, we measure the number of predictions that
are exactly d nodes away from the correct class – a distance of 0 being a correct
prediction. Results for wiki and flcust are presented in Figure 2(a); the general
tendency seems to be that classes farther away from the correct class are less
likely to be predicted. Note that no two test classes are a distance of one from
each other, since it is not possible for a test class to be a direct parent or child
of another test class.

We further analyze the main factors behind classification errors. Experiments
below are conducted on ImageNet, with the LinearS→V model trained using the
FastText flcust embeddings. Our first hypothesis was that the distance between
unseen and seen classes influences classification accuracy: the less an unseen class
resembles any seen class, the harder it is to identify. To test this hypothesis, we
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Fig. 2. (a) Distance from predicted class to correct class in the WordNet hierarchy.
Correlation ρ between ZSL accuracy and (b) distance to the closest seen class (c) the
number of immediate unseen test class siblings (d) the number of unseen classes closer
than the closest seen class, for all 500 unseen ImageNet classes.

consider for each unseen class cu the minimal distance to a seen class min
c∈Cs

d(cu, c),

and analyze its relation to the prediction accuracy. The resulting plot is displayed
in Figure 2(b). Surprisingly, the distance to the closest seen class seems to have
little to no effect on the accuracy (correlation ρ = −0.02).

Another hypothesis was that unseen classes close to other unseen classes are
harder to classify than isolated unseen classes, as more confusions are possible.
For each unseen class, we therefore compute the number of immediate siblings, a
sibling being defined as an unseen class having the same parent in the WordNet
hierarchy as the reference (unseen) class. The link between this metric and class
accuracy is slightly stronger, with a correlation ρ = −0.16 as illustrated in
Figure 2(c), but still weak overall.

We combine these two hypotheses by considering the number of unseen
classes closer than the closest seen class for each unseen class. The link with
class accuracy is more pronounced than by simply considering the number of
siblings, with a correlation ρ = −0.22 as illustrated in Fig. 2(d). Examples of
classes at both ends of the spectrum are visible in Figure 3: unseen class morel

(on the left) is close to seen class agaric and has no unseen siblings; its class ac-
curacy is 0.63. On the other hand, classes holly, teak and grevillea (on the right)
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have many unseen siblings and are far from any seen class; their respective accu-
racy are 0.01, 0.00 and 0.03. More generally, classes which are descendant of the
intermediate node woody plant have an average accuracy of 0.053. The full graph
visualization of the 1000 training classes, 500 testing classes and intermediate
nodes of the ImageNet ZSL dataset is provided in the supplementary materials.

Fig. 3. Graph visualization of parts of the WordNet hierarchy. Green and pink leaves
are resp. seen and unseen classes. Intermediate nodes are orange if there is no seen class
among their children, and blue otherwise. Full graph is available in the supp. materials.

5 Conclusion

We proposed a new method to build semantic class prototypes automatically,
thus enabling to better address large scale ZSL. Our results indicate that appro-
priately learning embeddings on specialized collections made of photo metadata
is better than exploiting generic embeddings as it was done previously in ZSL.
This still stands when generic embeddings are learned with collections which
are two to three orders of magnitude larger than specialized collections. Among
photo metadata based collection, the use of Flickr seems preferable to that of
metadata associated to photos from Web pages. This is notably an effect of a
better semantic coverage of classes in Flickr compared to ClueWeb12.
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