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Abstract

What drives voters’ decisions to participate in large elections under costly voting,
despite the rational expectation that this has no impact on the outcome? We propose
a new model of ethical voters, by positing that they have Kantian or semi-Kantian
preferences. With such preferences, voters evaluate their behavior in light of what the
outcome would be, should a fraction of the other voters choose the same course of
action. The “other voters” can be either the entire population (“non-partisan ethics”)
or the individuals with same interest (“partisan ethics”). In a model with two candi-
dates and a continuum of voters, we find that turnout is strictly positive as soon as the
evaluation by the voters of the political outcome is not strictly of the “winner-take-all”
kind. Moreover, the equilibrium turnout rates depend on the specifics of the election
at hand, such as the relative stake of the election for the two supporter groups and the
presence of core constituent groups.
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1 Introduction

Election outcomes depend not only on voters’ preferences, but also on whether voters actually
vote, since turnout rates may be correlated with party preferences. To wit, in the 20th
century in the U.S.A., turnout rates in the three groups of registered voters (Democrats,
Republicans, Independents) shifted over time (DeNardo, 1980; Nagel and McNulty, 1996).So
turnout matters, and it has been found to vary not only over time but also across countries,
and to be correlated with macro-economic factors, the type of election, and even the weather
on the day of the election, to name just a few of the variables that have been examined (see,
e.g., Blais and Daoust, 2020; Cancela and Geys, 2016; Frank and Martı́nez i Coma, 2023, and
references therein). Empirical studies have further detected correlates between individual
turnout decisions and individual characteristics such as age, sex, education, occupation,
residential and marital status, etc (see the meta-study by Smets and Van Ham, 2013, and
references therein).

Understanding these patterns requires understanding the individual turnout decision-
making process. This process has been the subject of a host of theories. Perceived benefits
and costs of voting at the individual level are at the center of any rational voter theory of
turnout (Downs, 1957). A variety of factors have been invoked to explain turnout, such as a
desire to express allegiance to the political system, to participate in the democratic process,
to express an opinion, to affirm loyalty to a party, to fulfill one’s duty, or to comply with
a social norm (Riker and Ordeshook, 1968; Fiorina, 1976; Morton, 1987; Schuessler, 2000;
Feddersen, Gailmard, and Sandroni, 2009; D. K. Levine and Mattozzi, 2020). While such
factors have been shown to matter empirically (Blais, 2000; Blais and Achen, 2019; Gerber,
Green, and Larimer, 2008; Rogers, Green, Ternovski, and Young, 2017), it is not clear how
they could explain the patterns evoked above.

The aforementioned patterns suggest that there is a relation between the material impact
of the election outcome and the individual decision to vote, at least for part of the electorate.
A satisfactory theory should deliver predictions about this relation. While models with
voters driven by purely instrumental concerns do deliver such predictions, such concerns are
expected to influence participation decisions only if voters can expect to be pivotal (Krishna
and Morgan, 2015; Ledyard, 1984; Myerson, 2000; Palfrey and Rosenthal, 1985).1 But since
the probability of being pivotal is essentially nil in elections with large enough electorates,
instrumental motives should not matter in such elections, contradicting the patterns evoked

1See also the survey by Dhillon and Peralta, 2002 and the literature discussion in Coate and Conlin, 2004,
as well as the books by Aytaç and Stokes, 2019 and Blais and Daoust, 2020.
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above. We propose a novel theory of turnout in large elections.

The driving force is a form of ethical preferences—dubbed Homo moralis—which can be
interpreted as capturing a form of universalization: when contemplating a course of action,
a Homo moralis evaluates what his material payoff would be if, hypothetically, a share κ
of the population to which he belongs would follow the same course of action, where κ is
the individual’s degree of universalization.2 This idea is reminiscent of Kant’s categorical
imperative (Kant, 1785), although philosophers warn that a Kantian “maxim” is not a
course of action (Braham and van Hees, 2020). In any case, the logic of universalization
spreads over moral theories (Gravel, Laslier, and Trannoy, 2000) and also guides actual
moral judgments (S. Levine, Kleiman-Weber, Schultz, and Cushman, 2020). One obtains
the standard materialistic Homo oeoconomicus for κ = 0, the Kantian model of Laffont, 1975
or Roemer, 2019 for κ = 1, while values of κ between 0 and 1 trigger partial universalization
(Alger and Weibull, 2013).

Given these ethical preferences, in our model each voter will be seen to act on information
about the material consequences of the election, despite a positive cost to vote. The action is
rational in the sense that it maximises a well-defined utility function. It is compatible with
the awareness that no single vote has any impact on the election outcome. Furthermore, at
equilibrium the beliefs about the other voters’ behaviors are taken to be correct.

Specifically, we evaluate the consequences of these preferences in a standard political
model. As in most models of turnout, there are two candidates (or parties, or referendum
proposals), A and B. We take B to be the (known) underdog. Some voters always turn out
to vote, perhaps because of a deep sense of duty, a long-held habit, a strong wish to signal
support of democracy, etc. They are the core voters (DeNardo, 1980), which we will refer
to as the candidate’s base. Our model is about the other voters, who do not systematically
turn out to vote. Their cost of voting is uncertain at the individual level, although the cost
distributions are known, and each such cost-sensitive voter decides on a threshold strategy:
she votes if and only if the realized cost falls short of this threshold (like in Coate and Conlin,
2004; Feddersen and Sandroni, 2006).

The distribution of expressed votes across the two candidates determines the political
outcome. At this level, we keep the familiar zero-sum pattern of electoral competition: the

2These preferences emerged from analysis of the evolutionary foundations of preferences (Alger and
Weibull, 2013). Our approach is thus close in spirit to Conley, Toossi, and Wooders, 2006, who base their
voters’ motivation to participate in elections on evolutionary arguments. See also the book by Hatemi and
McDermott, 2011, which inter alia cites evidence of intriguing correlations between biological factors such
as genes on the one hand, and political preferences and even turnout on the other hand. For experimental
evidence on behavior consistent with Homo moralis preferences, see Van Leeuwen and Alger, forthcoming.
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outcome is positive for one side and negative for the other side. However, it need not be
a winner-take-all election. Our gain-loss function also encompasses institutional settings
where the vote share itself matters and political power is shared so that “the loser gets
some”. This is meant to capture a range of possible institutional settings ranging from the
pure majoritarian case (that will be obtained as a limit case of our model) to a kind of
“random dictatorship”, or “proportional two-party system”3

At the level of the voters we break the symmetry and introduce a parameter ρ ≥ 1 that
we call the stake of the election: this parameter represents the importance of the political
benefit obtained through the election as perceived by the underdog’s supporters relative to
the other group’s supporters. As an illustrating example, if the underdog tends to represent
low-income households, the stake is expected to be higher, the stronger are the redistributive
consequences of the election. We will say that the stake is neutral if ρ = 1. To summarise,
the material consequences of the election for each individual depend on the political outcome,
the stake, and the individual’s cost (that may be incurred or not).

By definition, universalization ethics implies a reference to a group, the population to
which the individual belongs. We examine two settings: the partisan setting and the non-
partisan one. In the non-partisan setting, the reference group can be interpreted as the set of
all (independent) voters, while in the partisan setting there are two distinct populations, one
for each candidate. In the partisan setting, the voter applies the universalization argument
to the set of co-partisans, by evaluating what the outcome of the election would be if—
hypothetically—a share κ of the co-partisans were to choose the same threshold as the voter
himself. By contrast, in the non-partisan setting, the voter applies the universalization
argument to the set of independent voters, and chooses two rather than one cost threshold,
by taking into account the expected benefits and costs over the two possible preference
realizations, “behind a veil of ignorance”.4

Our objective is to characterize rational behavior in these (one or two) population games,
assuming that all voters have the same degree of universalization κ. The rich setting enables
us to address a host of questions: is turnout positive in equilibrium, and how do turnout

3Modifying this way the political benefit function in a two-party model in order to contrast proportional
representation with winner-take-all is used, for instance by Lizzeri and Persico, 2001. Studying turnout,
Herrera, Morelli, and Nunnari, 2016 similarly modify the outcome function.

4This setting does not appear in the existing literature. Existing models are therefore not suited to
explain turnout rates of voters who may change their ranking over parties between elections, and who are
humble enough to realize that the information on which they base their party preference may be wrong, or
who consider democratic participation as a norm for all citizens, not only for those who happen to be on
their side.
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rates depend on the primitives (the way in which the relative margins affect the material
benefits accruing to the parties, the candidates’ bases, the stake of the election)? Are there
equilibria in which the underdog wins the election? Finally, do equilibria exist, and if so,
can there be multiple equilibria?

Prior to summarizing our findings, we compare our formalization of ethically driven voters
to existing ones. An early formalization (Harsanyi, 1980) of ethical voters posits that voters
are rule utilitarians: in the words of Harsanyi, 1977 such a voter does not look at the various
issues from a partisan point of view but from the standpoint of an impartial but humane and
sympathetic observer.5 Furthermore, Harsanyi defines the moral behavior of rule-utilitarian
individuals as “involving a firm commitment [...] to a specific moral strategy” (p.115 in
Harsanyi, 1980), where the moral strategy maximizes the sum of individual utilities. Our
non-partisan setting is in line with Harsanyi’s view of voters as “impartial observers”, but
our formalization of ethically driven voters does not amount to altruistic utilitariansim, but
instead to a self-centered universalization thought experiment: a voter considers each course
of action in the light of what her material well-being would be if some share of the others
voters were to choose the same course of action.6

Our formalization of ethical voters should not be confused either with group-based voter
participation models in which strategic decisions are made at the collective level and an
ethical voter applies a decision rule —that is a cost threshold, like in our model— which
maximizes the group’s aggregate material well-being, given the other group’s cost threshold.7

By adopting this dutiful behavior, such a voter receives a constant payoff D > 0. For
each group, the equilibrium cost threshold optimally trades off the probability of winning
against the group-aggregate expected cost of voting, given the other group’s threshold. A
counter-intuitive feature of these models is that, at the individual level, each ethical voter
would be perfectly happy to incur any positive voting cost, since D is assumed to exceed

5The full quote is: “In any social situation, each participant will tend to look at the various issues from
his own, self-centered, partisan point of view. In contrast, if anybody wants to assert the situation from a
moral point of view in terms of some standard of justice and equity, this will essentially amount to looking
at it from the the standpoint of an impartial but humane and sympathetic observer.” (p.623 in Harsanyi,
1977)

6Alger and Weibull, 2017 and Laslier, 2023 study the relation between (partial) universalisation ethics
and (partial) Beckerian altruism.

7In Coate and Conlin, 2004 or Herrera et al., 2016 voters are like in our partisan setting. By contrast, the
model adopted by Feddersen and Sandroni, 2006 can be viewed as a mix of our non-partisan and partisan
settings: their voters face no uncertainty regarding their party preference, but they care about the expected
cost of voting for the supporters of both parties. See also the group-based models by Morton, 1991 and
Bierbrauer, Tsyvinski, and Werquin, 2022, which have both endogenous turnout and endogenous party
platforms.
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the largest possible cost realization. The duty that such a voter feels obliged to fulfill thus
consists of reducing the aggregate cost of voting, by abstaining from voting when the realized
cost is above the equilibrium threshold: some voters “receive a [duty] payoff for not voting”
(Feddersen and Sandroni, 2006, p. 1272). By contrast, in our model a voter’s utility depends
directly on the material benefit she would enjoy if some share of the others also applied the
same cost threshold, and she considers only own cost when evaluating cost thresholds. In
other words, in our model the decision to incur a positive voting cost is individually rational.
In particular, a voter would be willing to incur a positive cost to vote even if no other voter
voted, whereas in the above mentioned models an ethical voter votes only because she knows
that a share of the other voters will apply the same decision rule .

We now turn to the description of our results. They heavily depend on the shape of the po-
litical outcome function that captures the institution, being more or less power-sharing, from
random dictatorship to pure majoritarian. Since some effects vanish when the institution
become close to winner-take-all, we first describe the results for the general power-sharing
cases.

With power-sharing, we can establish existence generally in the non-partisan setting,
while in the partisan setting equilibria sometimes fail to exist. We find that for any positive
degree of universalization κ, in any equilibrium aggregate turnout is strictly positive (except
in two knife-edge cases). This is because the universalization thought experiment makes each
voter act as if their decision had a real weight on the outcome, and because the smallest
possible cost realizations are close to zero. The result that positive voting costs are incurred
in any equilibrium is qualitatively similar to results found in existing models on ethical
voting, However, the driver is very different, as already mentioned. We further derive results
which shed light on aspects that have hitherto been neglected in the literature.

Firstly, the inclusion in the model of core constituents, or bases, is novel. We show that
the relative size of the candidates’ bases are crucial. In particular, if the underdog’s base
exceeds that of the leader, there may exist equilibria in which the underdog wins. This result
is explained by the cost advantage that a large base confers on the cost-sensitive voters: the
base enables them to reach higher turnout levels at a lower cost. This contrasts sharply with
the results in other models with known underdogs (Feddersen and Sandroni, 2006; Herrera
et al., 2016), where the underdog gets the smallest (expected) vote share in the unique
equilibrium (in Feddersen and Sandroni, 2006, the underdog may win due to the assumed
uncertainty about the share of ethical voters).

Secondly, analysis of the non-partisan setting, in which voters select their participation
strategy behind the veil of ignorance as to which candidate they will support, is also novel to
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the literature. In this setting the voters take into account the effects of both cost thresholds
on the expected utility, thereby internalizing the externalities they generate across the two
groups of cost-sensitive voters. We show that as a result the only candidate that obtains
a turnout among its cost-sensitive supporters is that with the highest expected net benefit
from voting. By contrast, in the partisan setting there is no internalization of externalities,
and the cost-sensitive voters of both groups incur a positive expected voting cost in any
equilibrium.

Thirdly, by contrast to most of the literature, we do not impose assumptions that guar-
antee equilibrium existence and uniqueness. To get a sense of how common non-existence
and multiplicity is, we provide illustrating examples, as well as an online tool that enables
the reader to explore other parameter sets. We also derive sufficient conditions for existence
and uniqueness.

Without power sharing, that is in the majoritarian, winner-take-all case, the incentive to
vote provided by the κ-unviversalization reasoning vanishes so that, except for some knife-
edge values of the parameters, costly participation is nil for both sides in the partisan case. In
the non-partisan case, either costly participation is nil for both sides leaving the front-runner
to win, or is positive for one and only one side, leading to a tied outcome.

In the next section we describe the political model, and in the following two sections we
analyze the partisan and the non-partisan settings, assuming that voters have Homo moralis
preferences. A final section provides a summary of the results.

2 The political model

2.1 Institutional setting and political outcome

An election is taking place with two candidates, A and B (or more generally, two alternatives,
such as political parties, two proposals in a referendum, etc.). The electorate is formalized
as a continuum, divided in two groups: a group of size ā supporting A, and a group of size
b̄ < ā supporting B. Since the B-supporters are less numerous in the population, we will
refer to their group as the underdog supporters, and the group of A-supporters as the leader
supporters.

Each voter either votes for their preferred candidate or abstains, and candidates A and
B receive a ≤ ā and b ≤ b̄ votes, respectively, which generates the relative margins α and
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β = −α:
α =

a− b

a+ b
, β =

b− a

a+ b
. (1)

The outcome of the election generates some material (instrumental) benefit to the voters.
The material benefit is given by a strictly increasing and twice differentiable function h :

R → R of the relative margin of one’s candidate. We assume that h is symmetric around 0,
i.e., h(−x) = −h(x) and h′(x) = h′(−x), and that h′′(0) < 0 for all x > 0. This assumption
captures the idea that the competition between the two candidates is zero-sum, and that
the marginal impact on the material benefit is the largest at x = 0, the threshold value
of x above which the candidate wins the election by securing a greater total turnout than
the other candidate. In particular, our setting includes functions for which the slope of h
at 0 is arbitrarily large, while it is close to 0 elsewhere; this limit case of our model thus
approximates the classical winner-take-all setting. However, by including h-functions such
that the slope is sizeable everywhere, our model also encompasses situations where voters
care about the margin of victory: this assumption is natural for parliamentary elections,
where margins determine the number of seats obtained. The other limit case, opposed to
the winner-take-all setting, consists in taking h to be linear. A possible interpretation is
that the decision will be taken by one side or the other, yielding outcomes +1 and -1, with
a probability that is precisely equal to the proportion of votes obtained by A and B. This
has a flavor of proportional representation and could be called “random dictatorship among
participants”.8

We further assume that there is a parameter ρ, which we call the stake of the election,
such that the material benefit to A-supporters is

h (α) , (2)

while that to B-supporters is
ρ · h (β) . (3)

If ρ > 1 the election is more important for the underdog supporters than for the leader
supporters. We will say that the stake is neutral if ρ = 1.

8Herrera et al., 2016 posit the material benefit function aγ/(aγ+bγ) for the A-supporters and bγ/(aγ+bγ)
for the B-supporters, where the parameter γ ∈ [1,+∞) captures the power sharing rule. In Appendix A
we identify a function h that is a linear transformation of the material benefit term in Herrera et al., 2016.
Rescaling the cost accordingly, this shows that our model benefit term is more general.

8



2.2 Voting costs and strategies

Some voters always turn out to vote—they may be driven by a strong sense of civic duty,
a strong social pressure, a habit, or any other motivation outside of this model. There is
a mass 0 < a0 < ā of such voters who vote for A, and a mass 0 < b0 < b̄ of such voters
who vote for B. We will refer to a0 as A’s base and to b0 as B’s base. The model examines
the behavior of the remaining voters, a mass av = ā − a0 of which are A-supporters, and a
mass bv = b̄ − b0 of which are B-supporters. These voters are cost-sensitive: each of them
faces a positive random cost of voting, and their turnout decision depends on their realized
cost. Formally, the function fA : R+ → R≥0 maps each cost to the probability density for a
cost-sensitive A-supporter to have that voting cost. We assume that

1. the support of fA, i.e. {x ∈ R>0 : fA (x) > 0}, is either an interval (0, c̄], for some
c̄ ∈ R+, or R+;

2. fA is continuous on its support.

We use FA(c) to denote the proportion of cost-sensitive A-supporters whose cost realization
falls short of c:

FA(c) =

∫ c

0

fA(t) dt, (4)

so that 1 = F (+∞). The same assumptions apply to group B, with notation fB, and FB.

We will study two different models of how the voting strategies are chosen: the partisan
and the non-partisan one, but in both cases, we restrict attention to threshold strategies.
A cost-sensitive A-supporter i chooses a threshold siA ∈ R≥0 ∪ {∞}, and votes (for A) if
the cost realization ciA does not exceed siA and abstains otherwise. Likewise, a cost-sensitive
B-supporter j chooses a threshold sjB ∈ R≥0 ∪ {∞}. Voters have correct beliefs about the
voting cost distributions.

We restrict attention to type-homogenous strategy profiles, in which all voters with the
same preference over the candidates choose the same strategy. At a type-homogenous strat-
egy profile s = (sA, sB), the realized turnouts are

a(sA) = a0 + avFA(sA) (5)

and
b(sB) = b0 + bvFB(sB), (6)
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respectively, for the two candidates, and the following relative vote margins obtain:

α(s) =
a(sA)− b(sB)

a(sA) + b(sB)
, β(s) = −α(s). (7)

2.3 Example

Throughout we will use the following specification for h to provide numerical examples to
illustrate our general results and discussions:

h (x) =
arctan (mx)

arctan (m)
. (8)

The parameter m ∈ R+ changes the slope of h: the larger is m, the larger is the marginal
benefit for small margins and the smaller is the marginal benefit for large margins. The
linear case obtains (by continuity) for m = 0 and the step function for m → ∞, giving m a
similar role as the power-sharing parameter γ in the Herrera et al., 2016 benefit term. This
is illustrated in Figure 1.

Figure 1: h as defined in equation (8) for different values of m

The examples will always use uniform cost distributions with support [0, θA] and [0, θA]

for A- and B-supporters. The model is fully specified with the parameters m, ρ, θA, θB, ā,
b̄, a0, b0.

3 Partisan ethics (ex post setting)

Our formalization of an ethical voter amounts to assuming that their utility function belongs
to the Homo moralis preference class (Alger and Weibull, 2013). Following Alger and Laslier,

10



2022, who also study a model with a continuum of voters with such preferences, we posit
that Homo moralis preferences induce each voter to evaluate any strategy in the light of
the material benefit that would realize if—hypothetically—a fraction κ ∈ [0, 1] of the other
voters were also to play this strategy instead of the strategies they are actually using. The
parameter κ is the degree of universalization, here assumed to be common to all cost-sensitive
voters.

3.1 Partisan ethics: payoff computations

Under partisan ethics, the reference group is taken to be the other cost-sensitive voters who
have same preferences over the two candidates; the participation strategy is decided ex post,
once the voter’s affiliation is known. Thus, each voter i in group A (resp. each voter j in
group B) evaluates any strategy siA (resp. sjB) in the light of the material benefit that would
realize if—hypothetically—a fraction κ ∈ [0, 1] of the other cost-sensitive A-supporters (resp.
B-supporters) were also to play siA (resp. sjB) instead of the strategies they are actually using.

At a type-homogenous strategy profile s = (sA, sB), each A-supporter obtains expected
net material benefit

EUA(s) = h(α(s))−
∫ sA

c=0

cfA(c) dc (9)

and each B-supporter obtains expected net material benefit

EUB(s) = ρh(β(s))−
∫ sB

c=0

cfB(c) dc. (10)

Homo moralis preferences induce each A-supporter i to consider the hypothetical number of
votes

aκ(sA, s
i
A) = a0 + (1− κ)avFA(sA) + κavFA(s

i
A) (11)

in favor of A, with the corresponding relative vote margin

ακ(s, siA) =
aκ(sA, s

i
A)− b(sB)

aκ(sA, siA) + b(sB)
, (12)

and this defines the voter’s expected utility

EUκ
A(s, s

i
A) = h(ακ(s, siA))−

∫ siA

c=0

cfA(c) dc. (13)
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Likewise, each B-supporter j considers the hypothetical number of votes

bκ(sB, s
j
B) = b0 + (1− κ)bvFB(sB) + κbvFB(s

j
B), (14)

in favor of B, with the corresponding relative vote margin

βκ(s, sjB) =
bκ(sB, s

j
B)− a(sA)

a(sA) + bκ(sB, s
j
B)
, (15)

and obtains expected utility

EUκ
B(s, s

j
B) = ρh(βκ(s, sjB))−

∫ sjB

c=0

cfB(c) dc. (16)

These equations reveal the main driver of the behavior of voters under partisan ethics in
our model. Consider Equation 13. When κ > 0 an increase in siA affects the vote share in
favor of A and thus, given our assumption on h, the political benefit of an A-supporter. But,
at siA = 0, the marginal effect on the expected payed cost of an increase in siA is 0×fA(0) = 0.
It follows that setting a 0 threshold is never a best response for an A-supporter.9

3.2 A change of variables

Before going further, we proceed to a change of variables that simplifies the analysis. Seeing
from (5) and (6) that the threshold sA that yields turnout a is F−1

A

(
a−a0
av

)
∈ [0,∞] and the

threshold sB that yields turnout b is F−1
B

(
b−b0
bv

)
∈ [0,∞], we write the expected utilities in

(13) and (16) as
EUA

(
a, b, ai

)
= h

(
ακ
(
a, b, ai

))
− CA

(
ai
)

(17)

and
EUB

(
a, b, bj

)
= ρh

(
βκ
(
a, b, bj

))
− CB

(
bj
)
, (18)

where

ακ
(
a, b, ai

)
=

(1− κ) a+ κai − b

(1− κ) a+ κai + b
(19)

βκ
(
a, b, bj

)
=

(1− κ) b+ κbj − a

(1− κ) b+ κbi + a
, (20)

9This reasoning will, however, be seen to break down in the limit case that we use to examine winner-
take-all elections, because the political outcome function h is then locally flat.
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and

CA (ai) =
∫ F−1

A

(
ai−a0

av

)
0 cfA (c) dc

CB (bj) =
∫ F−1

B

(
bj−b0

bv

)
0 cfB (c) dc.

(21)

Henceforth, the strategy of A-supporter i is thus a “turnout” ai ∈ [a0, ā], and that of B-
supporter j a “turnout” bj ∈ [b0, b̄], although it should be clear to the reader that what these
voters are really choosing are the cost thresholds that would yield these turnout levels. This
change of variables facilitates analysis because the functions CA and CB are strictly convex,
for any cost distributions FA and FB satisfying our assumptions.

Lemma 1. Both CA and CB are strictly convex and strictly increasing.

Proof. By a substitution z = FA (c)

CA (a) =

∫ a−a0
av

0

F−1
A (z) dz. (22)

Then,

C ′
A (a) =

1

av
F−1
A

(
a− a0
av

)
> 0 (23)

for a > a0, with C ′
A (a0) = 0, and

C ′′
A (a) =

1

a2v

1

fA

(
F−1
A

(
a−a0
av

)) > 0 (24)

for a ≥ a0. The same argument applies to CB.

Unless stated otherwise, in the numerical examples below we use the functions

CA (a) = θA
2

(
a−a0
av

)2
CB (b) = θB

2

(
b−b0
bv

)2
,

(25)

which correspond to a uniformly distributed cost on [0, θA] for the A-supporters and a uni-
formly distributed cost on [0, θB] for the B-supporters.
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3.3 Partisan ethics: comparison with group-based models

We are now in a position to provide a detailed comparison between our formalization of
ethical voters and that adopted in group-based models (first formalized by Coate and Conlin,
2004, and Feddersen and Sandroni, 2006). In these models an ethical voter gets a “duty
payoff” D from “doing their part” (Feddersen and Sandroni, 2006), where D exceeds the
highest possible cost realization. A decision simply based on a “duty to vote” would thus
lead all the ethical voters to vote. Dependence of an ethical voter’s turnout decision on their
cost realization obtains by positing that an ethical voter adopts a cost threshold in order to
reduce the aggregate cost; this cost reduction is traded off against the loss with the associated
reduced probability of winning. In other words, “doing their part” entails abstaining when
the cost realization exceeds the threshold. The predicted turnout rates are obtained as “an
equilibrium between two party planners”, each of which “looks at the total electoral benefit”
for their preferred candidate “net of the total cost incurred by his supporters” (Herrera et al.,
2016, p. 612).

By contrast, in our model each voter simply maximizes his own expected utility, and
there is no constant duty payoff. Such utility maximization imposes fewer demands on
the information that the voter needs in order to select an ethical behavior, compared to
the group-based models, in which an ethical voter needs to place herself or himself in the
shoes of a social planner to understand which cost threshold she should adopt to obtain
the constant duty payoff D. With Homo moralis preferences, a voter instead evaluates
each possible strategy applying a simple universalization calculus to the benefit, while the
expected cost of the deviation is the individual’s own true expected cost. Indeed, Homo
moralis preferences make a voter evaluate a strategy in the light of the expected material
utility that would obtain if a share κ of the others also adopted the same strategy; whether
or not others adopted a different threshold than they do would be irrelevant for this voter’s
expected cost of voting.

In spite of this important conceptual difference between our model and group-based
models, in some settings the two models are mathematically equivalent. We will begin our
analysis with such a setting.

Consider the special case of our model where all ethical voters have degree of universal-
ization κ = 1. The expected utilities in (17) and (18) then boil down to

EUA

(
a, b, ai

)
= h

(
ai − b

ai + b

)
− CA

(
ai
)

(26)
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and
EUB

(
a, b, bj

)
= ρh

(
bj − a

a+ bj

)
− CB

(
bj
)
. (27)

The strategy profile (a∗, b∗) is a type-homogenous Nash equilibrium if and only if a∗ ∈ argmaxai∈[a0,ā] h
(

ai−b∗

ai+b∗

)
− CA (ai)

b∗ ∈ argmaxbj∈[b0,b̄] ρh
(

bj−a∗

a∗+bj

)
− CB (bj) .

(28)

The mathematical equivalence of this setting with group-based models is easy to see, since
any (a∗, b∗) satisfying (28) could alternatively be interpreted as representing a Nash equilib-
rium of a game played by “two party planners”, each of which “looks at the total electoral
benefit” for their preferred candidate “net of the total cost incurred by his supporters” (Her-
rera et al., 2016, p. 612); likewise, see Definition 1 in Feddersen and Sandroni, 2006 for the
conditions ensuring that the cost threshold of each party maximizes its supporters aggregate
expected material payoff, given the other party’s cost threshold, and also the description of
equilibrium on p.1481 in Coate and Conlin, 2004.10 We can thus state our first observation:

Remark 1. If all cost-sensitive voters have Homo moralis preferences with degree of univer-
salization κ = 1, any pair of threholds implemented at a type-homogenous Nash equilibrium
of the two-population game is implemented at a Nash equilibrium of the two-player game
between two party planners, each of whom seeks to maximize the aggregate material payoffs
of their respective constituent groups. The type-homogenous Nash equilibrium implements
the cost thresholds in a decentralized manner (in the sense that each voter simply maximizes
her own expected utility).

Having established this mathematical equivalence with group-based models of ethical
voters in the special case κ = 1, we note that equilibrium existence is not guaranteed. Indeed,
while a sufficient condition for an equilibrium to exist is that both objective functions in (28)
are quasi-concave in ai respectively bj, the strict convexity of h for negative relative margins,
together with the strict convexity of the functions CA and CB, implies that quasi-concavity is
not guaranteed. Facing the same issue with their benefit function (see Footnote 12), Herrera
et al., 2016 identify and impose conditions on the cost distributions that imply equilibrium

10There are also other differences between our model and those by Feddersen and Sandroni, 2006 and
Coate and Conlin, 2004. For example, in the former each party considers the aggregate societal cost, and
not only the aggregate cost of its supporters, while in the latter there is ex ante uncertainty about the
distribution of voters into A- and B-supporters. However, our focus here is on underlining the mathematical
similarity between type-homogenous Nash equilibria in our model with κ = 1 and the characterization of
equilibrium in the group-based models.
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existence, and even uniqueness. While we will return to the issues of existence and uniqueness
in the last subsection, we will first establish properties of equilibria conditional on their
existence in the general model.

3.4 Partisan ethics: a never-a-best-response result

In the general model voters may have any degree of universalization κ ∈ [0, 1], and have the
utilities specified in (17) and (18). Then, the strategy profile (a∗, b∗) is a type-homogenous
Nash equilibrium if and only if a∗ ∈ argmaxai∈[a0,ā] h

(
(1−κ)a∗+κai−b∗

(1−κ)a∗+κai+b∗

)
− CA (ai)

b∗ ∈ argmaxbj∈[b0,b̄] ρh
(

(1−κ)b∗+κbj−a∗

a∗+(1−κ)b∗+κbi

)
− CB (bj) .

(29)

By contrast to the special case κ = 1, where each individual best-responds to the other
group’s turnout only, when κ < 1 each individual best-responds to both groups’ turnouts.

Proposition 1. Under partisan ethics,

• if κ = 0, there exists a unique equilibrium, (a∗, b∗) = (a0, b0);

• if κ ∈ (0, 1], a = a0 (resp. b = b0) is never a best response for a voter in group A (resp.
B), and thus any equilibrium (a∗, b∗) is such that ā ≥ a∗ > a0 and b̄ ≥ b∗ > b0.

Proof. For any level of turnouts (a, b) from the other voters, A-supporter i’s marginal utility
of ai is

∂

∂ai
Uκ
A

(
a, b, ai

)
= h′(ακ(a, b, ai))

2κb

[(1− κ) a+ κai + b]2
− C ′

A

(
ai
)
, (30)

where h′
> 0. Recalling, from the proof of Lemma 1, that

CA (x) =

∫ F−1
A

(
x−a0
av

)
0

cfA (c) dc (31)

C ′
A (x) =

1

av
F−1
A

(
x− a0
av

)
, (32)

we see that C ′
A(a0) = 0. It follows that if κ = 0 the unique best response to any (a, b) is

ai = a0, while if κ > 0 ai = a0 is never a best response. Identical arguments apply to any
B-supporter.
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With purely instrumentally driven voters (κ = 0), the cost-sensitive voters are not willing
to incur any cost to vote, since with a continuum of voters each individual vote has a nil
effect on the election outcome. The second part of the proposition shows that a willingness
to incur some cost of voting arises as soon as the degree of universalization is strictly positive.
This is because (i) for any κ ∈ (0, 1], the individual voter considers the outcome that would
realize if some positive share of the voters voted: in some sense, it is as if the individual
voter had an impact on the outcome, and (ii) the smallest cost realizations approach zero
(as per our assumption on the cost distributions).

3.5 Partisan ethics: further properties of equilibria

By Proposition 1, for any κ > 0 any equilibrium (a∗, b∗) satisfies the following first-order
conditions:

∂

∂ai
Uκ
A

(
a, b, ai

)
|ai=a∗,b=b∗ =

2κb∗h′(α(a∗, b∗))

(a∗ + b∗)2
− C ′

A (a∗)

{
= 0 if a∗ ∈ (a0, ā)

≥ 0 if a∗ = ā
(33)

∂

∂bi
Uκ
B

(
a, b, bj

)
|a=a∗,bj=b∗ =

2κa∗ρh′(β(a∗, b∗))

(a∗ + b∗)2
− C ′

B (b∗)

{
= 0 if b∗ ∈ (b0, b̄)

≥ 0 if b∗ = b̄.
(34)

Notice that, for any interior equilibrium (a∗, b∗) ∈ (a0, ā)× (b0, b̄), the two equations and the
fact that α(a, b) = −β(a, b) and h′(x) = h′(−x) together imply:

b∗

ρa∗
=
C ′

A(a
∗)

C ′
B(b

∗)
. (35)

A number of results can be obtained from conditions (33)-(35). In order to prepare the
ground for this, we first derive some properties of the functions CA and CB, which depend
on the mass of cost-sensitive voters (av and bv) relative to that of the bases (a0 and b0), and
the cost distributions FA and FB (see (21)).

Lemma 2. The functions CA and CB have the following properties:

1. if a0 ≥ b0, av ≥ bv, and FA(c) ≥ FB(c) for all c ∈ R+, with at least one of the
inequalities holding strictly, then C ′

A (x) < C ′
B (x) for all x;

2. if a0 < b0, then for any cost distributions FA and FB, ∃ x̄ ∈ (b0, b̄] such that C ′
A (x) >

C ′
B (x) for all x < x̄.
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The lemma contains two statements about the derivatives of CA and CB. These deriva-
tives have a clear interpretation. For any given turnout x by the cost-sensitive voters in
group A, C ′

A(x) is the (expected) marginal cost that each of these voters would need to incur
to increase this turnout marginally. This means that the first part of the lemma establishes
sufficient conditions for the leader supporters to enjoy an absolute cost advantage over the
underdog supporters: this occurs when their base and its mass of cost-sensitive voters is at
least as large and its cost distribution FA is more favorable, compared to the corresponding
features of the underdog supporters. Note that the underdog supporters cannot enjoy such
an absolute cost advantage, since the assumption ā > b̄ implies that if b0 ≥ a0, then bv < av.
If the underdog’s base exceeds that of the leader (b0 > a0) its supporters can still have a
cost advantage over the leader supporters for turnouts close enough to the underdog’s base
b0, as shown in the second part of the lemma. This results from the marginal cost for the
underdog supporters then being close to zero, while that of the leader supporters is strictly
positive for these turnout levels. This property holds whether the cost distributions FA and
FB favor the underdog or the leader supporters.

With these observations in hand, we first examine settings where the leader supporters
enjoy a cost advantage over the underdog supporters, like in the first part of Lemma 2: their
base is at least as large, their mass of cost-sensitive voters is at least as large, and the cost
distributions favor the leader supporters.

Proposition 2 (Partisan ethics). Suppose that the leader supporters enjoy a cost advantage
over the underdog supporters: their base is at least as large (a0 ≥ b0), their mass of cost-
sensitive voters is at least as large (av ≥ bv), and the cost distributions favor them (FA(c) ≥
FB(c) for all c ∈ R+), with at least one of the inequalities holding strictly. Then:

1. if the stake is neutral or almost neutral (i.e., ρ ≥ 1 is close enough to 1), the leader
wins (α(a∗, b∗) > 0) at any equilibrium (a∗, b∗);

2. for a large enough stake ρ, there may exist equilibria (a∗, b∗) in which the underdog
wins (α(a∗, b∗) < 0).

Proof. Suppose, by contradiction, that b∗ ≥ a∗, in which case either both a∗ and b∗ are
interior, or b∗ = b̄ and a∗ is interior. Lemma 2 then implies that C ′

A(a
∗) < C ′

B(b
∗). Hence,

b∗C ′
B(b

∗) > a∗C ′
A(a

∗). If b∗ is interior, or if b∗ = b̄ and the first-order condition (34) holds
as an equality, the inequality b∗C ′

B(b
∗) > a∗C ′

A(a
∗) contradicts (35) if ρ = 1. If b∗ = b̄ and

the first-order condition holds as a strict inequality, i.e., h′(β(a∗, b∗)) 2κa∗ρ
(a∗+b∗)2

− C ′
B (b∗) > 0,

then this inequality and (33) together imply b∗C ′
B(b

∗) < ρa∗C ′
A(a

∗). A contradiction with
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the inequality b∗C ′
B(b

∗) > a∗C ′
A(a

∗) is reached if ρ = 1. By continuity, the contradiction
also obtains for ρ = 1 + ε for some ε > 0. This proves the first statement. For the second
statement, note first that the contradiction does not obtain for large values of ρ. A numerical
example below (see Figure 2) suffices to prove the statement.

Example 1. When the leader supporters have an absolute cost advantage, one might expect
the leader to always win. The proposition confirms this intuition as long as the underdog
supporters’ stake ρ is not too large. However, as shown by way of an example in Figure
2, the leader may lose if ρ is large. In this figure, the backward bending curve shows, for
each turnout b by the B-supporters, the turnout a which for each cost-sensitive A-supporter
i maximizes her expected utility, given that all the other A-supporters also choose a. We
will refer to such a value of a as an A-consistent turnout. In the figure, the dome-shaped
curve shows the B-consistent turnouts, defined in a similar manner. A type-homogenous
equilibrium (a∗, b∗) is such that a∗ is A-consistent given b∗, and b∗ is B-consistent given a∗.
In other words, any (a∗, b∗) where the two curves intersect is an equilibrium. In the figure
we thus see that there exists a unique equilibrium, in which the underdog wins, since (a∗, b∗)

is above the dashed line, along which the turnouts are equal.

In sum, this result shows that if voters are equipped with Homo moralis preferences,
the underdog supporters can overcome a seemingly unsurmountable challenge, as captured
by their absolute cost disadvantage, if they perceive a high enough stake. In the example
the underdog wins even though its supporters represent only 1.5/3.4 ≈ 44% of the elec-
torate. Note further that approximately 1.313/(0.5 + 1.4) ≈ 69% of the A-supporters and
1.359/(0.4+1.1) ≈ 91% of the B-supporters participate in the election, although the degree
of universalization is only κ = 0.5. In other words, full universalization is not necessary for
high rates of participation to obtain.
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Figure 2: An example where the underdog wins in spite of the leader supporters’s cost
advantage (θA < θB, av > bv, and a0 > b0), thanks to a high enough stake ρ.

We turn now to settings where the underdog supporters enjoy a cost advantage for some
turnout rates, thanks to a larger base.

Proposition 3 (Partisan ethics). Suppose that the underdog’s base exceeds that of the leader
(b0 > a0). Then, for some parameter values, there exist equilibria (a∗, b∗) in which the
underdog wins (α(a∗, b∗) < 0), even if the stake is neutral (ρ = 1).

A numerical example proves this result:

Example 2. Figure 3 shows an equilibrium in which the underdog wins even though ρ = 1

and the two cost distributions are identical (θA = θB). Hence, the underdog’s victory is here
entirely driven by its greater base, b0 = 0.7 > 0.5 = a0.

Figure 3: An example where the underdog wins thanks to a larger base (b0 > a0), in spite
of a neutral stake (ρ = 1) and identical cost distributions (θA = θB).
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To get a sense of how large a victory the underdog may obtain thanks to a larger base, a
general result can be found when the relative frequency of cost-sensitive voters is the same
for groups A and B, that is a0/av = b0/bv, and all the cost-sensitive voters face the same
cost distribution, that is FA = FB = F . The following proposition provides bounds on how
different the equilibrium turnout rates in the two groups can then be, for interior equilibria.
These bounds depend only on the stake ρ and are universal with respect to the form of
the function h and to the value of the parameter κ. They are therefore valid whether the
election is winner-take all, a random dictatorship, or anything in between, and for any degree
of morality κ ∈ (0, 1].

Proposition 4 (Partisan ethics). Suppose that a0
av

= b0
bv

, that FA(c) = FB(c) = F (c) for
all c ∈ R+, and that ρ > 1. Then under partisan ethics, at any interior equilibrium
(a∗, b∗) ∈ (a0, ā)× (b0, b̄):

a∗

av
<
b∗

bv
< ρ · a

∗

av
. (36)

Proof. Given that a∗ and b∗ are interior, equation (35) applies, and writes:

b∗

bv
F−1

(
b∗

bv
− r

)
= ρ · a

∗

av
F−1

(
a∗

av
− r

)
(37)

for r = a0/av = b0/bv.

First, suppose that b∗

bv
≤ a∗

av
, then: F−1

(
b∗

bv
− r
)

≥ ρ · F−1
(

a∗

av
− r
)

and since ρ >

1, F−1
(

b∗

bv
− r
)
> F−1

(
a∗

av
− r
)

. Because F is non-decreasing, this implies b∗

bv
> a∗

av
, a

contradiction. We conclude that indeed b∗

bv
> a∗

av
.

Next, suppose that b∗

bv
≥ ρa∗

av
. Then, similar reasoning yields F−1

(
b∗

bv
− r
)

≤

F−1
(

a∗

av
− r
)

and b∗

bv
≤ a∗

av
< ρa∗

av
, a contradiction, showing that indeed b∗

bv
< ρa∗

av
.

The first inequality in (36) is similar to the “partial underdog compensation” result found
in Herrera et al., 2016 (see the first part of their Proposition 1): the share of cost-sensitive
underdog supporters who participate in the election is strictly greater than that of the leader
supporters. We thus generalize their result by showing that it holds in a different setting
than theirs, since (a) in their model there are only cost-sensitive voters (a0 = b0 = 0),
(b) we do not restrict attention to settings with a unique equilibrium, and (c) we do not
restrict attention to a particular functional form for the benefit function h. However, as
shown in Proposition 2, the underdog may win if ρ is large enough, in which case a “full
underdog compensation” arises. The second inequality in (36) puts an upper bound on this
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full compensation, which is increasing in the stake ρ. Note further that in the limit as ρ
tends to the neutral case (ρ = 1), the two inequalities imply that the share of cost-sensitive
underdog supporters who participate in the election tends to that of the leader supporters.

3.6 Partisan ethics: issues with equilibrium existence and multi-
plicity

Having derived results on the properties of equilibria, should they exist, we now turn to the
questions of existence and uniqueness. By means of examples, we will show that equilibria
sometimes fail to exist, and that there sometimes are multiple equilibria.

Example 3. We begin by noting that equilibria may fail to exist. This is illustrated in
Figure 4a, where the curve showing the A-consistent turnouts does not intersect with the
curve showing the B-consistent turnouts.

Example 4. However, in other settings there are many equilibria. In Figure 4b we show an
example with five equilibria: two of them exhibit low turnouts and a victory by the leader,
while the other three exhibit high turnouts and a victory by the underdog.

Figure 5 provides some insight into how the number of equilibria varies with the parameter
values. The figures in the first column show the number of equilibria (a number that varies
between 0 and 5). The figures in the second (respectively third) column then show, for the
same parameter configurations, the number of equilibria in which the underdog (respectively
the leader) wins the election. In the first three lines, it is the universalization parameter (κ)
that varies along the horizontal axis: on the vertical axis it is the curvature parameter of
the benefit function (m) that varies in the first line of figures, while it is the underdog’s base
(b0) in the second line and the stake (ρ) in the third line of figures. The parameter values
used for the first three lines correspond to the case considered in Proposition 4, and in each
group there are almost as many cost-sensitive voters as core voters (a0/av = b0/bv ≈ 0.94).
Moreover, in the first two lines, where the stake ρ is fixed, it is high enough to generate
equilibria where the underdog wins (ρ = 5). Finally, in the fourth line of figures it is the
sizes of the cost-sensitive constituencies (av on the horizontal axis and bv on the vertical
axis) that vary.

In the three first lines the following patterns appear. First, equilibrium multiplicity
(respectively non-existence) appears only for sufficiently low (respectively high) values of κ.
Second, the first line shows that when there exists a unique equilibrium, the leader wins
when the value of the curvature parameter m is either low enough or high enough, while
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the underdog wins for the set of values of m in between. We further see that as κ increases,
the interval of m-values for which the underdog wins gets closer to 0. Third, the size of
the base b0 has an unambiguously positive effect on the underdog’s prospects of winning, as
seen in the second line. Fourth, in the third line we see that, at least when the base of the
leader exceeds that of the underdog, an increase in the stake ρ does not necessarily lead to
an increase in the number of equilibria with a victory for the underdog.

(a) An example of failure of equilibrium existence (b) An example with five equilibria

Figure 4: Two extreme cases on multiplicity of equilibria
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(a) Number of equilibria (b) Number of equilibria with
a > b (A wins)

(c) Number of equilibria with
b > a (B wins)

Figure 5: Existence and multiplicity of equilibria, depending on (κ,m) (first line), (κ, ρ)
(second line), (κ, b0) (third line), and (av, bv) (fourth line)
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3.7 Partisan ethics: sufficient conditions for equilibrium existence
and uniqueness

Here we identify sufficient conditions for there to exist a unique equilibrium (a∗, b∗) of the
population game studied above. To prepare the ground for the statements and proofs, we
define the auxiliary functions

ΦA (a, b) = κh (α (a, b))− CA (a) , (38)

ΦB (a, b) = ρκh (−α (a, b))− CB (b) . (39)

We also define the auxiliary game: this is a simultaneous-move game between two players,
call them Alice and Bob, who have strategy sets [a0, ā] and [b0, b̄], and payoff functions ΦA

and ΦB, respectively.

In the following statements, by single-peaked, we mean that a function defined on [a0, ā]

(or [b0, b̄]) is strictly increasing up to some a ∈ (a0, ā) (or b ∈
(
b0, b̄

)
), and strictly decreasing

thereafter. In case it is differentiable, this amounts to its first-derivative being first strictly
positive, crossing zero once from above, and then being strictly negative.

Assumption 1. Assume that for all (a, b), ai 7→ EUκ
A (a, b, ai) and bi 7→ EUκ

B (a, b, bi) are
single-peaked. Moreover, assume that for all b, a 7→ ΦA (a, b) is single-peaked, and for all a,
b 7→ ΦB (a, b) is single-peaked.

Lemma 3. Under Assumption 1, (a∗, b∗) is an equilibrium of the population game if, and
only if, it is a Nash equilibrium of the auxiliary game.

By reducing the analysis to that of a standard two-player game, this Lemma facilitates
identification of sufficient conditions for there to exist a unique equilibrium of the population
game.

Assumption 2. Let h (x) = arctan(mx)
arctan(m)

, and assume that:

1. κ ∈ (0, 1],

2. fk(c)c
Fk(c)

, k = A,B, is decreasing,

3. m ≤ 1 or for some r < 2m
(m−1)2

,

lim
c→0

FA (c)

cr
> 0, (40)
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4. m ≤ 1 or for some r < 2m
ρ(m−1)2

,

lim
c→0

FB (c)

cr
> 0, (41)

5. s̄B ≥ ρā
(
m2+1

)
2κbvm arctan(m)

, and

6. s̄A ≥ b̄
(
m2+1

)
2κavm arctan(m)

.

Proposition 5. Under Assumption 1, there exists a unique equilibrium of the population
game. Moreover, Assumption 1 holds under Assumption 2.

Conditions 2-6 of Assumption 2 are reminiscent of those that Herrera et al., 2016 adopt to
ensure equilibrium existence and uniqueness in their model (see their “decreasing generalized
reversed hazard rate (DGRHR) property” and their Condition 1). These conditions ensure
that the density for low costs is large enough to avoid possible multiple peaks for low turnouts
levels.

Observe that, for arbitrarily large m, part 3 and 4 of Assumption 2 require FA and FB to
be arbitrarily steep at 0. Therefore, there cannot be a single continuous cost distribution on
[0,∞) that satisfies Assumption 2 for all m > 0. A similar observation holds for arbitrarily
large γ in Condition 1 of Herrera et al., 2016. Under both our and their assumptions, it is
therefore impossible to guarantee existence and uniqueness while taking the limit m→ ∞ (or
γ → ∞, respectively). The next section deals with this limit whilst dropping Assumption 2.
In fact, in case a0 = b0 and ā 6= b̄, part 4 of Proposition 6 in the next section suggests that
there cannot be a sufficient condition that implies existence independently of m.

3.8 Partisan ethics: the winner-take-all limit

The pure winner-take-all case corresponds to a discontinuous step-function sign(·) in lieu of
our function h(·). Our continuous model is not suitable for handling this case. Therefore, we
proceed by approximation as follows (the details and proofs of the propositions can be found
in the Appendix). A sequence of benefit functions ht that all satisfy the hypothesis of our
model is called an approximating sequence if the sequence converges to the winner-take-all
benefit function sign(·). An outcome (a, b) is sustained as a limit winner take all equilibrium
if there exists an approximating sequence ht and a sequence (at, bt) that converges to (a, b),
with (at, bt) an equilibrium for ht, for all t.
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Our first result states that, at equilibrium, only two situations can occur. In the first
situation, which is also the generic one, costly participation is (in the limit) nil for both
supporter groups, leaving the bases to determine the result of the election. In the second
situation, participation is such that the result is (in the limit) tied and such that all (in the
limit) of the voters turn out in one of the groups. This second situation can only occur when
the two parameters ā and b̄ are equal.

Proposition 6 (Partisan ethics). Let (a, b) be sustained as a limit equilibrium of the winner-
take-all case.

1. If a0 6= b0 and ā 6= b̄, (a, b) = (a0, b0). (The underdog wins if b0 > a0 while the leader
wins if a0 > b0.)

2. If a0 6= b0 and ā = b̄ either (a, b) = (a0, b0) or (a, b) =
(
b̄, b̄
)
.

3. If a0 = b0 and ā = b̄, (a, b) =
(
b̄, b̄
)
.

4. If a0 = b0 and ā 6= b̄, no such pair (a, b) exists.

Example 5. While the proposition does not make any claims about existence, we provide
some illustrating examples with existence, for increasingly large values of m. Interestingly,
even in the winner-take-all limit, there may exist equilibria in which the underdog wins. We
illustrate this in Figure 6a, which also provides numerical evidence for existence in the first
case of Proposition 6. In Figure 6b, we illustrate the second case of Proposition 6.

(a) Case 1 of Proposition 6 (b) Case 2 of Proposition 6

Figure 6: Possible equilibrium turnouts a and b depending on m
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Our second result shows that in the case examined in Proposition 4, if the stake (ρ) is
smaller than the ratio between the sizes of the two groups of cost-sensitive voters, then costly
participation is (approximately) nil for both.

Proposition 7 (Partisan ethics). Suppose that a0
av

= b0
bv

and FA(c) = FB(c) = F (c) for all
c ∈ R+. Let r = av/bv = a0/b0. If ρ < r then, in the ex post setting, only (a0, b0) can be
sustained as a limit winner-take-all equilibrium, and the leader wins.

4 Non-partisan ethics (ex ante setting)

We here follow Harsanyi’s view by considering non-partisan ethics.11 In the non-partisan set-
ting a cost-sensitive voter i chooses a strategy which is a pair of thresholds si = (siA, s

i
B) ∈

[0,∞]2. This strategy means that the voter abstains when her cost for voting is larger than
siA if she prefers candidate A, and when her cost for voting is larger than siB if she prefers
candidate B (siA = ∞ respectively siB = ∞ means that she votes independent of the realized
cost). Two interpretations are possible. In the first, there is ex ante uncertainty regarding
the candidate that i prefers, and she selects the strategy behind the veil of ignorance, before
this uncertainty is resolved. This may well describe how independent voters reason. In the
second interpretation, there is no such uncertainty, but due to her ethical concern the indi-
vidual adopts the viewpoint of Harsanyi’s impartial observer, by inserting a veil of ignorance
in her reasoning. Whatever interpretation is chosen, i selects the strategy si = (siA, s

i
B)

before knowing her actual cost of voting. Voters have correct beliefs about the voting cost
distributions, described in Section 2. Each individual votes for A or B, or abstains. Individ-
ual i in group A with realized cost ciA votes for A if and only if ciA ≤ siA. The corresponding
assumptions are made for group B.

4.1 Non-partisan ethics: payoff computations

As in the partisan setting, we are looking for homogenous equilibria, which here means
that all the cost-sensitive voters choose the same strategy. At a homogenous equilibrium
s = (sA, sB), the realized turnouts are a(s) = a0 + avFA(sA) and b(s) = b0 + bvFB(sB),

11Most models in the literature stick to partisan ethics. A notable exception is Feddersen and Sandroni,
2006, who adopt a mix of partisan and non-partisan ethics: the group-optimal cost threshold is obtained by
maximizing the material benefit that accrues to the group net of the expected cost for both groups.
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respectively, for the two candidates, and the following relative vote margins obtain:

α(s) =
a(sA)− b(sB)

a(sA) + b(sB)
, β(s) = −α(s), (42)

so that each voter obtains expected net material benefit

EU(s) =
av

av + bv
h(α(s)) +

bv
av + bv

ρh(β(s)) (43)

− av
av + bv

∫ sA

c=0

cfA(c) dc−
bv

av + bv

∫ sB

c=0

cfB(c) dc.

With a non-partisan ethic, the voter takes into account both the expected benefits and the
expected costs that the thresholds sA and sB entail; the benefits are weighed by the relative
population shares of the groups, to reflect the ex ante perspective that the voter adopts.
Henceforth, we will without loss of generality drop the constant positive factor 1/(av + bv).
Since h(−x) = −h(x), the expected net material benefit can then be rewritten as follows:

EU(s) = (av − ρbv)h(α(s))− av

∫ sA

c=0

cfA(c) dc− bv

∫ sB

c=0

cfB(c) dc. (44)

This gives the following expression for the expected utility of a voter i with Homo moralis
preferences, given that all the other voters use strategy s:

EUκ(s, si) = (av − ρbv)h(α
κ(s, si))− av

∫ siA

c=0

cfA(c) dc− bv

∫ siB

c=0

cfB(c) dc. (45)

where

ακ(s, si) =
(1− κ)[a(sA)− b(sB)] + κ[a(siA)− b(siB)]

(1− κ)[a(sA) + b(sB)] + κ[a(siA) + b(siB)]
. (46)

Applying the same change of variables as we did under partisan ethics, we henceforth assume
that an individual i’s strategy is a pair (ai, bi) ∈ [a0, ā] × [b0, b̄], and we write (a, b) for the
strategy used by the other voters at a homogenous equilibrium, so that the expected utility
of i writes

EUκ(a, b, ai, bi) = (av − ρbv) · h(ακ
(
a, b, ai, bi

)
)− avCA

(
ai
)
− bvCB

(
bi
)
, (47)

where
ακ
(
a, b, ai, bi

)
=

(1− κ) a+ κai − (1− κ)b− κbi

(1− κ) a+ κai + (1− κ) b+ κbi
. (48)
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Under our assumptions, this is a continuously differentiable function of (ai, bi).

4.2 Non-partisan ethics: equilibrium existence

By contrast to the partisan setting, here we can establish general equilibrium existence,
thanks to the aforementioned change of variables together with Lemma 1.

Proposition 8 (Non-partisan voters). An equilibrium always exists.

Proof. Consider the auxiliary function

Φ(a, b) = κλh(α(a, b))− avCA (a)− bvCB (b) (49)

where λ = av − ρbv. It takes values in R ∪ {−∞}. We begin by showing that (a∗, b∗)

is an equilibrium if it is a global maximum of Φ. Thus, let (a∗, b∗) be a point where Φ

reaches its maximum, and suppose, by contradiction, that there exists (a′, b′) such that
EUκ(a∗, b∗, a′, b′) > EU (a∗, b∗), that is:

avCA (a∗) + bvCB(b
∗)− avCA (a′)− bvCB(b

′) > λ [h (α (a∗, b∗))− h (α (aκ, bκ))] (50)

for aκ = (1− κ) a∗ + κa′ and bκ = (1 − κ)b∗ + κb′. Since (a∗, b∗) maximizes Φ, we have
Φ (aκ, bκ) ≤ Φ (a∗, b∗), which writes:

avCA (a∗) + bvCB (b∗)− avCA (aκ)− bvCB (bκ) ≤ κλ [h (α (a∗, b∗))− h (α (aκ, bκ))] . (51)

Combining the two previous equations we find, upon rearranging the terms,

(1− κ) avCA (a∗)+κavCA (a′)+(1− κ) bvCB (b∗)+κbvCB (b′) < avCA (aκ)+bvCB (bκ) . (52)

This contradicts the convexity of the functions CA, CB (see Lemma 1).

The second part of the proof consists in showing that Φ admits a maximum, which is a
sufficient condition for an equilibrium to exist, given the first part of the proof. To see this,
first note that h (α (a, b)) is continuous on [a0, ā] × [b0, b̄] and takes values in R. Moreover,
in the case where CA, CB are continuous functions on [a0, ā]× [b0, b̄] taking values in R, one
can conclude by the extreme value theorem, observing that Φ is continuous and takes values
in R. In the remaining case, where CA (ā) = ∞ or CB

(
b̄
)
= ∞, we have that CA (a) → ∞

for a → ā or CB (b) → ∞ for b → b̄. Then, since h is bounded on [a0, ā] × [b0, b̄], one can
find some εA, εB ≥ 0 such that Φ takes real values on [a0, ā− εA]× [b0, b̄− εB] and such that
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Φ (a, b) < Φ
(
min (a, ā− εA) ,min

(
b, b̄− εB

))
, which allows to conclude using the extreme

value theorem on [a0, ā− εA]× [b0, b̄− εB].

4.3 Non-partisan ethics: equilibrium properties

We first show that at equilibrium, exactly one group incurs positive voting costs (except in
two knife-edge cases, in which nobody votes).

Proposition 9 (Non-partisan ethics). If κ = 0 and/or av = ρbv, then (a∗, b∗) = (a0, b0) is
the unique equilibrium, while if κ ∈ (0, 1] then:

• if av > ρbv, any equilibrium is such that a∗ > a0 and b∗ = b0;

• if ρbv > av any equilibrium is such that a∗ = a0 and b∗ > b0.

Proof. Given that all other voters use strategy (a, b), individual i’s expected marginal utility
from ai is,

∂

∂ai
EUκ

(
a, b, ai, bi

)
= (av − ρbv)h

′(ακ(a, b, ai, bi))
∂ακ(a, b, ai, bi)

∂ai
− avC

′
A(a

i)

= (av − ρbv)h
′ (ακ(a, b, ai, bi)

) 2κ[(1− κ)b+ κbi]

[(1− κ) a+ κai + (1− κ)b+ κbi]2
− avC

′
A

(
ai
)

(53)

and the expected marginal utility from bi is:

∂

∂bi
EUκ

(
a, b, ai, bi

)
= (ρbv − av)h

′(βκ(a, b, ai, bi))
∂βκ(a, b, ai, bi)

∂bi
− bvC

′
B(b

i)

= (ρbv − av)h
′ (βκ(a, b, ai, bi)

) 2κ[(1− κ)a+ κai]

[(1− κ) a+ κai + (1− κ)b+ κbi]2
− bvC

′
B

(
bi
)
. (54)

Since C ′
A(a0) = C ′

B(b0) = 0, and CA(a
i), CB(b

i) > 0 for ai > 0 or bi > 0 (see (23)), a
best response (ai, bi) to (a, b) has ai > a0 if and only if the first of the two terms in (53)
is strictly positive. Since h is strictly increasing, and b ≥ b0 > 0, this is true if and only if
κ(av − ρbv) > 0; otherwise, any best response has ai = a0. Likewise, a best response (ai, bi)

to (a, b) has bi > b0 if and only if κ(ρbv − av) > 0; otherwise, any best response has bi = b0.
These arguments prove the proposition.

This proposition shows that both the degree of universalization (κ) and the stake of
the election for the underdog supporters (ρ) matter for the qualitative nature of the set of
equilibria. First, if voters are driven solely by instrumental motives (κ = 0) or if the expected
benefit that one group obtains from a positive margin of its candidate exactly outweighs the
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expected cost that the other group garners from this margin (ρ = av/bv), then turnout is
confined to the bases a0 and b0, in which case the underdog wins if and only if it has a
larger base than the leader (b0 > a0). Second, whenever av 6= ρbv, any positive degree of
universalization κ > 0 triggers participation of a positive mass of cost-sensitive voters. The
reason is clear: a κ > 0 triggers in the individual voter a utility kick from contemplating
the margin that her preferred candidate would obtain if all the other cost-sensitive voters
selected the same strategy as herself; the voter is willing to incur a positive voting cost
to obtain this utility kick. Third, and in stark contrast with the partisan setting, here a
voter internalizes the negative externality that voting for one candidate has on the group
supporting the other candidate. Hence, she votes only if she belongs to the group that
obtains the highest expected benefit from its candidate’s margin.

Henceforth we examine only non-trivial settings where κ(av−ρbv) 6= 0. To begin, consider
the case av > ρbv and define

A(a∗) ≡ ∂

∂ai
EUκ

(
a, b, ai, bi

)
|ai=a∗,b=bi=b0

= (av − ρbv)h
′(α(a∗, b0))

2κb0
(a∗ + b0)2

− avC
′
A (a∗) . (55)

The necessary first-order condition for any equilibrium a∗ is thus A(a∗) ≥ 0, which must hold as an
equality if a∗ lies in the interior (a0, ā). The necessary second-order condition for such an interior
solution is:

∂2

∂(ai)2
EUκ

(
a, b, ai, bi

)
|ai=a∗,b=bi=b0 = (av − ρbv)h

′′(α(a∗, b0))
4κ2b20

(a∗ + b0)4

− (av − ρbv)h
′(α(a∗, b0))

4κ2b0
(a∗ + b0)3

− avC
′′
A (a∗) ≤ 0. (56)

Likewise, for ρbv > av, define

B(b∗) ≡ ∂

∂bi
EUκ

(
a, b, ai, bi

)
|a=ai=a0,bi=b∗

= (ρbv − av)h
′(β(a0, b

∗))
2κa0

(a0 + b∗)2
− bvC

′
B (b∗) , (57)

so that the necessary first-order condition for any equilibrium b∗ is B(b∗) ≥ 0, which must hold as
an equality if b∗ lies in the interior (b0, b̄). The necessary second-order condition for such an interior
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solution is:

∂2

∂(bi)2
EUκ

(
a, b, ai, bi

)
|a=ai=a0,bi=b∗ = (ρbv − av)h

′′(β(a0, b
∗))

4κ2a20
(a0 + b∗)4

− (ρbv − av)h
′(β(a0, b

∗))
4κ2a0

(a0 + b∗)3

− bvC
′′
B (b∗) ≤ 0. (58)

If there is a unique a∗ (respectively b∗) satisfying both the first-order and second-order
conditions, then it is the unique equilibrium. The following proposition identifies a sufficient
condition for this to obtain.

Proposition 10 (Non-partisan ethics). Suppose that κ ∈ (0, 1]. If av > ρbv and a0 ≥ b0,
there is a unique equilibrium (a∗, b0). At this equilibrium, the leader wins: α(a∗, b0) > 0.
Likewise, if ρbv > av and b0 ≥ a0, there is a unique equilibrium (a0, b

∗). At this equilibrium,
the underdog wins: β(a0, b∗) > 0.

Proof. It is sufficient to prove the result for one of the cases, say ρbv > av. We begin by
proving the following claim: if h′′(β(a0, b)) ≤ 0 for all b ∈ [b0, b̄] there either exists a unique
b∗ ∈ (b0, b̄) satisfying B(b∗) = 0 and such that (58) holds strictly, or B (b) > 0 for all
b ∈

(
b0, b̄

)
. To see this, note first that if h′′(β(a0, b)) ≤ 0 for all b ∈ [b0, b̄], then the first term

in B(b∗) is non-increasing in b∗; this term is also strictly positive for b∗ = b0 (since h′ > 0).
Since the second term equals 0 for b∗ = b0 and is strictly increasing in b∗, the claim follows.

If b0 ≥ a0, the two statements in the proposition then follow immediately from the fact
that ρbv > av implies b∗ > b0 and a∗ = a0. Indeed, β(a0, b) is thus strictly positive for any
b ∈ (b0, b̄), and our assumptions on h then imply that h′′(β(a0, b)) ≤ 0 for any b ∈ (b0, b̄].

This proposition again underlines the crucial role played by the bases, a0 and b0. If the
cost-sensitive voters who do participate in the election can rely on a base that is larger than
that of the other candidate, then they win the election independent of their turnout rate.
This implies a decreasing marginal benefit and an increasing marginal cost of increases in
the turnout, which in turn implies equilibrium uniqueness. Proposition 12 provides a more
general result on equilibrium uniqueness that relies on the same idea.

We turn now to settings where the group that votes (i.e., the leader supporters if av > ρbv

and the underdog supporters if ρbv > av) has a smaller base than the other group, in
which case the marginal benefit is increasing for turnout rates close enough to the base,
implying that there may be multiple candidates a∗ (respectively b∗) satisfying the first-
and second-order conditions. Each such candidate is an equilibrium if there do not exist
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utility-enhancing global deviations. The main question we investigate is whether equilibrium
uniqueness obtains. Examination of the special case of full universalization provides some
initial insights.

Proposition 11 (Non-partisan ethics). Suppose that κ = 1. If there exist multiple equilibria,
they all generate the same expected utility to the cost-sensitive voters who do turn out to
vote.

Proof. It is sufficient to prove the result for one of the cases, say ρbv > av. Plugging in
a = a0 and κ = 1 into the expected utility (47), the expected utility becomes independent
of b, the turnout rate among the other voters, and thus a function of bi only:

EUκ(a0, b, a0, b
i) = (ρbv − av)h

(
bi − a0
a0 + bi

)
− CB(b

i). (59)

Hence, each individual voter simply chooses some value of bi that maximizes this expression.
If there are multiple solutions, they must yield the same expected utility.

This proposition suggests that full universalization can generate multiple turnout rates.
The following example, for the case ρbv > av, further shows that full universalization can
does not guarantee a high turnout rate.

Example 6. As shown in Figure 7, if bv = 0.609 and the other parameter values are as
specified in the figure legend, there are two equilibria, shown as stars: the underdog wins
at one of them (b∗ ≈ 0.6 > a0) but loses at the other (b∗ is close to b0 = 0.2). The figure
further shows that small variations in the parameter values may induce discrete jumps in
b∗. Indeed, for bv slightly above 0.609, there is a unique equilibrium turnout, at which the
underdog wins, while for bv slightly below 0.609, there is a unique equilibrium turnout, close
to b0.
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Figure 7: Existence of two equilibria when κ = 1

While multiplicity of equilibria appears only in knife-edge cases under full universalization
(κ = 1), we will now see that it is a quite common phenomenon under partial universalization
(κ ∈ (0, 1)).

Example 7. Considering still the case ρbv > av, Figure 8 shows, for κ = 0.4, an example
with two equilibria, indicated by stars. Like in the example under full universalization in
Figure 7, here one equilibrium turnout is close to the base, b∗ ≈ 0.12, while the other makes
the underdog win, b∗ ≈ 0.49 > a0 = 0.45. This victory obtains despite the underdog’s base
being weak compared to that of the leader (compare b0 = 0.1 to a0 = 0.45). We further see
in the figure that the high-turnout equilibrium gives a substantially higher expected utility
than the low-turnout one.
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Figure 8: Utility from deviating from each equilibrium candidate

In the preceding example the underdog supporters face a coordination problem, and
they would prefer to coordinate on the high-turnout equilibrium. A question of interest
is whether such coordination problems — i.e., co-existence of equilibria with substantially
different turnouts, where one equilibrium is preferred to the other(s) — are common. We here
examine the necessary conditions for global deviations not to exist. This will provide some
insights generate insights about parameter values that might give rise to such multiplicity
of equilibria. We do this for the case ρbv > av.

Thus, consider some turnout rate b ∈ (b0, b̄). For b to be an equilibrium, an individual
voter must not wish to deviate to any b′ 6= b. Considering first downward deviations b′ < b,
the following condition must hold:

(ρbv − av) [h(β(a0, b))− h(βκ(a0, b, a0, b
′))] ≥ CB(b)− CB(b

′) ∀b′ ∈ [b0, b), (60)

where
β (a0, b) =

b− a0
a0 + b

(61)

and
βκ (a0, b, a0, b

′) =
(1− κ)b+ κb′ − a0
a0 + (1− κ) b+ κb′

. (62)

Any downward deviation b′ < b reduces the cost, i.e., the right-hand side of (60) is strictly
positive. For any b′ < b the left-hand side is equal to zero if κ = 0, and it is increasing in
κ: the utility loss that the voter incurs from a decline in its preferred candidate’s margin
gets larger as her degree of universalization gets larger. Hence, any value of κ > 0 imposes
an upper bound on the turnout rate that can be sustained in equilibrium. In particular, the
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voter must not be tempted by abstention (b′ = b0), the deviation that would maximize the
cost saving CB(b) − CB(b

′), and we note that the deviation to abstention generates a cost
saving that is larger the smaller is the base b0. Taken together, these observations suggest
that the underdog supporters can achieve a victory only if κ is large enough, and that this
constraint on κ is stronger the weaker is the base b0. Noting further that CB is decreasing in
the size of the cost-sensitive electorate bv (see (21)), ceteris paribus the constraint on κ is also
stronger the smaller is bv. Finally, (60) clearly implies that the stake for the B-supporters
(ρ) must be large for an equilibrium with a higher turnout to be sustained.

Considering now upward deviations b′ > b, the following condition must hold for an
individual not to wish to deviate:

CB(b
′)− CB(b) ≥ (ρbv − av) [h(β

κ(a0, b, a0, b
′))− h(β(a0, b)] ∀b′ ∈ (b, b̄]. (63)

Any upward deviation b′ > b raises the cost, i.e., the left-hand side is strictly positive. But it
also raises the utility gain that the voter obtains from an increase in its preferred candidate’s
margin, as long as her degree of universalization is strictly positive: the right-hand side equals
zero if κ = 0 and is increasing in κ. Hence, for any κ > 0 there is a lower bound on the
turnout rate that can be sustained in equilibrium. In particular, if the underdog has a small
base b0 and κ is close enough to 1 — so that the right-hand side of (63) is large — we should
expect existence of equilibria with a turnout rate close to b0 only if voting costs are high
enough. Since CB is decreasing in the size of the cost-sensitive electorate (bv), ceteris paribus
low turnout equilibria also require bv to be small enough. Finally, (63) clearly implies that
low turnout equilibria are more likely to be sustained the smaller is the stake ρ.

Taken together, the preceding arguments suggest that the aforementioned coordination
problem should be expected only if κ is neither too large nor too small, a0 − b0 is large
enough, and ρbv − av is neither too large nor too small.

Recalling that the same arguments apply to the case av > ρbv, the leader’s supporters
may also face a coordination problem: if the leader’s base a0 is small enough compared to
that of the underdog b0, and κ is moderate, then there may exist two equilibria, one with a
high turnout and with a low turnout, and the leader may suffer a sizeable loss in the latter.

Example 8. We illustrate this in Figure 9, which shows the set of equilibrium turnouts for
the leader supporters, as a function of a0, and for three values of κ. For κ = 1, we see that
there is a unique equilibrium for any value of a0, while for κ = 0.8 and κ = 0.5, there are
two equilibria for small values of a0 and a unique equilibrium for large enough values of a0.
The leader wins at equilibria above the dashed line, which corresponds to a = b0. The figure
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thus shows that if the base a0 is small, the leader supporters face a coordination problem:
they may win or lose. By contrast, a victory for the leader is guaranteed if the base a0 is
large enough.

Figure 9: Set of equilibrium turnouts a for different values of a0

We now examine whether there may be even more than two equilibria.

Example 9. Returning to settings where ρbv − av > 0, Figure 10 shows an example with
three equilibria. Like for the example with two equilibria above (recall Figure 8), here the
expected utility is higher the higher is the equilibrium turnout.
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Figure 10: Utility from deviation for each equilibrium candidate

By contrast to the partisan setting, however, in our numerical examples we did not
identify any parameter values for which there are more than three equilibria.

Example 10. In Figure 11, we still examine the case ρbv > av and we vary two parameters
at a time. Then, we plot the number of equilibria in panel (a) and the number of equilibria
such that the underdog wins in panel (b).

The first line of figures shows how the set of equilibria varies with the degree of univer-
salization κ and the stake ρ. For high (resp. low) enough values of ρ and κ there is a unique
equilibrium, in which the underdog wins (resp. loses). The coordination problem appears
either if κ is not very high but ρ is, or the reverse, and it is the combination of a modest κ
and a high ρ that favors the appearance of more than two equilibria.

The second line of figures then shows how the set of equilibria varies with the degree
of universalization κ and m, the curvature parameter for the h function (see (8)). For low
enough values of m, the expected utility is concave and equilibrium uniqueness obtains.
Multiplicity of equilibria appears for a value of m around 5.

Note that the first two lines of figures confirm one of the conclusions from our analysis
of global deviations above: multiplicity of equilibria appears only for values of κ neither too
close to 0, nor too close to 1. One exception appears in the second line, however, where a
value of ρ slightly below 2 corresponds to a knife-edge case with two equilibria for κ = 1.
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(a) Number of equilibria (b) Number of equilibria with b > a0 (B wins)

Figure 11: Multiplicity of equilibria, depending on (κ,m) (first line), (κ, ρ) (second line),
(κ, b0) (third line), and (a0, b0) (fourth line) 40



4.4 Non-partisan ethics: sufficient conditions for equilibrium
uniqueness

Sufficient conditions for uniqueness are analogous to the partisan case described in Sec-
tion 3.7. We will show that uniqueness holds if the auxiliary function from the proof of
Proposition 8 is single-peaked in a suitable sense. Recall

Φ (a, b) = κavh (α (a, b)) + ρκbvh (β (a, b))− avCA (a)− bvCB (b)

= κ (av − ρbv)h (α (a, b))− avCA (a)− bvCB (b)

= κ (ρbv − av)h (β (a, b))− avCA (a)− bvCB (b)

(64)

As opposed to the partisan case (see Section 3.7) it is sufficient to assume single-
peakedness in the following sense: a univariate function is called single-peaked if it is strictly
increasing until reaching its unique maximum, where the latter could be equal to b̄. Recall
also Proposition 9: if ρbv > av, any equilibrium is such that a = a0, and vice-versa, if
av > ρbv, any equilibrium is such that b = b0.

Proposition 12. Let κ > 0. If ρbv > av and b 7→ Φ (a0, b) is single-peaked, there exists a
unique equilibrium. Similarly, if av > ρbv and a 7→ Φ (a, b0) is single-peaked, there exists a
unique equilibrium.

Proof. We restrict ourselves to the case ρbv > av, as the proof in the opposite case goes
analogously. By Proposition 9, a = a0, so that any equilibrium is entirely described by b,
and b > b0.

Let b be an equilibrium. It satisfies

∂

∂bi
EUκ

(
a0, b, a0, b

i
)∣∣∣∣

bi=b

=
∂

∂b
Φ (a0, b) = 0 (65)

if b ∈ (b0, b̄) and
∂

∂bi
EUκ

(
a0, b, a0, b

i
)∣∣∣∣

bi=b

=
∂

∂b
Φ (a0, b) ≥ 0 (66)

if b = b̄. In both cases, the single-peakedness assumption implies that b is a maximum of
b 7→ Φ (a0, b).

Now, assume for a contradiction that there exist two equilibria b1 6= b2. Then, both are
maxima of the auxiliary function, contradicting the single-peakedness assumption.
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Note that this proposition generalizes Proposition 10: indeed, if, say, av > ρbv and
a0 ≥ b0, then α (a, b0) ≥ 0 for all a ∈ [a0, ā] and therefore h′′ (a, b0) ≥ 0 by assumption.
Recalling that the cost term is strictly convex, a 7→ Φ (a, b0) is strictly concave.

Similar to the partisan case (see Section 3.7), we can pin down sufficient conditions for
single-peakedness for the specifc function we use in our illustrating examples.

Lemma 4. Let κ > 0 and let h (x) = arctan(mx)
arctan(m)

.

1. Let λ = av − ρbv > 0. If

• fA(c)c
FA(c)

is decreasing,

• for some r < 2avm
λ(m2−2m+1)

,

lim
c→0

FA (c)

cr
> 0, (67)

• and s̄A ≥ λb0
(
m2+1

)
2a2vm arctan(m)

,

single-peakedness of a 7→ Φ (a, b0) holds.

2. Let λ = ρbv − av > 0. If

• fB(c)c
FB(c)

is decreasing,

• for some r < 2bvm
λ(m2−2m+1)

,

lim
c→0

FB (c)

cr
> 0, (68)

• and s̄B ≥ λa0
(
m2+1

)
2b2vm arctan(m)

,

single-peakedness of b 7→ Φ (a0, b) holds.

Proof. We restrict ourselves to the case λ = av−ρbv > 0, as the proof for the other case goes
analogously. By an abuse of notation, we write Φ (sA, b0) instead of Φ (a0 + avFA (sA) , b0).
Then, writing M (sA) = a0 + avFA (sA)− b0 and T (sA) = a0 + avFA (sA) + b0,

∂

∂sA
Φ (a0, sB) = λκh′ (α (sA, b0))

2κb0avfA (sA)

T (sA)
2 − avsAfA (sA)

= av
fA (sA)

T (sA)
2 +m2M (sA)

2︸ ︷︷ ︸
>0

λκh′ (α (sA, b0))

(
2mκλb0

arctan (m)
−
(
T (sA)

2 +m2M (sA)
2) sA) .

(69)
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Note that a 7→ Φ (a, b0) is single-peaked if and only if sA 7→ Φ (sA, b0) is single-peaked.
Therefore, it is sufficient to show that φ (sA) =

(
T (sA)

2 +m2M (sA)
2) is strictly increasing,

and eventually greater than 2mκλb0
arctan(m)

. This follows from the conditions in the same way as
in the proof of Proposition 5.

4.5 Non-partisan ethics: the winner-take-all limit

Finally, we adopt the same approximation as in the partisan setting to analyze the winner-
take-all limit.

Proposition 13. [Non-partisan ethics] Only two situations can be sustained as limit equi-
libria in the ex ante, limit “winner-take-all” case. Either cost-sensitive voters incur no cost
and the side with the largest base wins, or the side with the largest base pays no cost and the
side with the smallest base pays to match the other base.

Example 11. The two equilibrium types can co-exist. An illustration is provided in Fig-
ure 12.

Figure 12: Equilibrium b for varying m in the case ρbv > av
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5 Discussion and conclusions

In this paper we have tried to understand what follows if some people base their turnout
decisions on an argument of the form “Voting is the right thing to do because there would
be bad consequences if too many people abstained,” formalized through the Homo moralis
preferences (Alger and Weibull, 2013), which capture well such partial universalization. The
point is particularly relevant in circumstances where voting is costly and each single vote
has a negligible effect on the relative number of votes obtained by the candidates, a feature
that we capture by modeling the electorate as a continuum.

We find, first, that any extent of Homo moralis universalization ethics, i.e., any positive
κ in the model, justifies participation in large electorates in most cases. It is generally true
as long as voters perceive some benefit to any increase in the favorite candidate’s margin.
This corresponds to the power sharing setting of our model, where both the winning and
the losing side stand to gain from further increasing their share of the expressed votes. By
contrast, Homo moralis universalization ethics do not generally justify participation in large
electorates in the winner-take-all limit case of our model, where there is a second reason for
why votes have a negligible impact: the marginal benefit from further increasing the share
of expressed votes is nil except at the point where the two candidates tie precisely.

Second, our analysis reveals why it is important for a candidate to have a large base, that
is, a large share of voters who always turn out to vote for them. The key effect of such a base
is that it can motivate the cost-sensitive voters to vote. This occurs when a large base reduces
the cost that a cost-sensitive voter needs to incur in order to realize that participation would
have a large impact on the benefit. In these cases, the base is a complement to the turnout of
cost-sensitive voters. We show that a large enough base for the underdog compared to that
of the topdog can even trigger a large enough turnout among the cost-sensitive voters for
the underdog to win the election. While this can happen even if the underdog’s supporters
do not perceive a particularly high stake in the election (i.e., even if the stake parameter
ρ = 1), these supporters are even more motivated to incur a cost to vote if the stake is not
neutral (ρ > 1). That being said, if the base is too large, it becomes a substitute for the
cost-sensitive voters’ turnout, since it reduces the marginal benefit of higher turnout rates.

A third pattern that emerges from our analysis is that high values of κ do not necessarily
guarantee high turnout rates, because voters may face coordination problems. Indeed, similar
to the base of one’s group, an increase in the share of other cost-sensitive voters who are
expected to vote dampens the cost that an individual cost-sensitive voter needs to incur to
reach a certain benefit. While this explains why there may exist equilibria with high turnout
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rates, it also explains why such equilibria can sometimes co-exist with equilibria with very
low turnout rates.

Going forward, many questions remain. In particular, it would be interesting to allow
for heterogeneity in the degrees of universalization. On the empirical side, while several
motivations behind turnout decisions have already been documented and studied (Aytaç
and Stokes, 2019; Blais, 2000; Blais and Daoust, 2020; Downs, 1957; Gerber et al., 2008;
Hatemi and McDermott, 2011), it appears that no study has sought to detect universalization
ethics as a driver of turnout decisions.
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A Details on functional forms for political outcome

Using our notation, Herrera et al., 2016 posit the material benefit function aγ/(aγ + bγ) for
the A-supporters and bγ/(aγ + bγ) for the B-supporters, where the parameter γ ∈ [1,+∞)

captures the power sharing rule. By setting

h (α) =
(1 + α)γ − (1− α)γ

(1 + α)γ + (1− α)γ
, (70)

it is straightforward to show that

h (α) = −1 + 2
aγ

aγ + bγ
, (71)

and similarly for β. Indeed,

(1 + α)γ − (1− α)γ

(1 + α)γ + (1− α)γ
=

2a
a+b

γ − 2b
a+b

γ

2a
a+b

γ
+ 2b

a+b

γ

= −(2a)γ + (2b)γ

(2a)γ + (2b)γ
+ 2

(2a)γ

(2a)γ + (2b)γ

= −1 + 2
aγ

aγ + bγ
.

(72)

It remains to show that the function in (70) fits the assumptions of our model. Clearly,
it takes values between −1 and 1 and is symmetric around α = 0. Moreover, it is continuous
and differentiable. Indeed, the first derivative is given by

h′ (α) =
4γ
(
(1− α2)

γ−1
)

((1 + α)γ + (1− α)γ)
2 > 0, (73)

and therefore, the second derivative is given by

h′′ (α) = 4γ
−2α (γ − 1) (1− α2)

γ−2
((1 + α)γ + (1− α)γ)

2

((1 + α)γ + (1− α)γ)
4

− 4γ
2
(
(1− α2)

γ−1
)
((1 + α)γ + (1− α)γ) γ

(
(1 + α)γ−1 − (1− α)γ−1)

((1 + α)γ + (1− α)γ)
4

= −8γ (γ − 1)α
(1− α2)

γ−2

((1 + α)γ + (1− α)γ)
2

− 8γ2
(1− α2)

γ−1 (
(1 + α)γ−1 − (1− α)γ−1)

((1 + α)γ + (1− α)γ)
3

(74)
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It is now straightforward to check that this h satisfies our assumptions on the derivatives for
any γ ∈ [1,+∞).

Re-scaling the cost accordingly, this shows that our benefit term is more general.

B Computing equilibria with the arctan benefit func-
tion and uniform cost

Recall the arctan benefit function, 1
arctan(m)

arctan (mx), that we used throughout our exam-
ples. It turns out that equilibria can be computed efficiently if the cost follows a uniform
distribution.

Partisan voters

Here, we assume that the cost is distributed according to the uniform distribution on [0, θA]

for A-supporters and [0, θB] for B-supporters. We first describe how to compute A-consistent
strategies. The computation of these is almost the same as the computation of equilibria for
nonpartisan voters.

Computing A- or B-consistent strategies

First, we explain how we may compute A-consistent strategies, where B-consistent strategies
can be computed analogously. We look for an A-consistent strategy a given a strategy b

played by B-supporters. The first-order condition for a, 0 = ∂
∂ai
EUκ

A (a, b, ai)
∣∣
ai=a

is given
by

0 =
m

arctan (m)

1

1 +
(
ma−b

b+a

)2 2κb

(b+ a)2
− θA

a− a0
a2v

. (75)

After some algebra, we obtain a polynomial:

0 = a3+

(
2
1−m2

1 +m2
b− a0

)
a2+

(
b2 − 2

1−m2

1 +m2
a0b

)
a− b2a0−

2mκba2v
(1 +m2) θA arctan (m)

(76)

Solving the polynomial gives candidate A-consistent strategies, to which we have to add
ā (but a0 cannot be A-consistent).

Then, in order to rule out a profitable deviation, it is sufficient to compare the utility
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level associated to such a candidate a with the utility at any solution of ∂
∂ai
Uκ (a, b∗, ai) = 0

and with the utility at ā. The equation ∂
∂ai
Uκ (a, b∗, ai) = 0 can be rewritten as another

degree three polynomial equation.

Computing equilibria

In order to find equilibria, we first find pairs (a, b) that simultaneously solve the first order
conditions, i.e. 0 = ∂

∂ai
EUκ

A (a, b, ai)
∣∣
ai=a

and 0 = ∂
∂bi
EUκ

B (a, b, ai)
∣∣
bi=b

. As above, these
can both be rewritten as polynomials in (a, b). We can solve the system of polynomials
numerically using the resultant method, where we use SymPy to compute the resultant and
NumPy to compute roots.

Other candidate equilibria are
(
ā, b̄
)
,
(
a, b̄
)

with a a candidate A-consistent strategy
given b̄ and (ā, b) with b a candidate B-consistent strategy given ā. For each candidate
equilibrium, we check for profitable deviations as described above.

Non-partisan voters

Here, we assume that the cost is distributed according to the uniform distribution on [0, θ].
We may also assume, without loss of generality, that ρbv−av > 0: indeed, we have established
that in this case, a = a0. Finding an equilibrium therefore amounts to finding b > b0. In
case the opposite inequality holds, one needs to find the equilibrium a for b = b0.

Let us write out the first-order condition 0 = ∂
∂bi
EUκ (a, b, ai, bi) |bi=b,ai=a=a0 :

0 =
m (ρbv − av)

arctan (m)

1

1 +
(
m b−a0

b+a0

)2 2κb

(b+ a0)
2 − θ

b− b0
bv

. (77)

It is then straightforward to rewrite this equation as a polynomial equation in b. Finding
roots of the polynomial yields candidate equilibria.

Finally, for some candidate equilibrium b, one can write out ∂
∂bi
EUκ (a, b, ai, bi) |ai=a=a0 ,

observe that it can be rewritten as a polynomial in bi (we use SymPy) and check if any
solution or b̄ is associated with a higher expected utility, in order to rule out profitable
deviations.
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C Proofs of the winner-take-all limit results

C.1 Approximating sequences

Definition 1. Let (ht)t=1,2... be a sequence of functions that all satisfy the hypothesis of the
model and such that, for any x ∈ [−1, 1],

lim
t→∞

ht(x) = sign(x).

Such a sequence (ht)t=1,2,... will be called an approximating sequence.

An example for such an approximating sequence is
(

1
arctan(m)

arctan (mx)
)
m=1,2,...

.

To prepare the proofs, let us first establish that for any ε > 0, h converges uniformly
to 1 on [ε, 1] (and by symmetry, it converges uniformly to −1 on [−1,−ε]). To see this,
notice that ht is increasing. Therefore, for any x ∈ [ε, 1], ht (ε) ≤ ht (x) ≤ 1. Thus,
supx∈[ε,1] |ht (x)− h (x)| ≤ 1 − ht (ε) and the result follows by the pointwise convergence of
ht to one at ε.

The concavity of ht on positive numbers implies that for any x > 0,

lim
t→∞

h′t(x) = 0.

To see this, note that on intervals [y, x] and [x, z], concavity of ht implies ht(z)−ht(x)
z−x

< h′t(x) <
ht(x)−ht(y)

x−y
and apply the sandwich lemma. The same result is likewise obtained for x < 0.

Since h′t is decreasing for x > 0, h′t converges uniformly to 0 on [ε, 1], and likewise on
[−1,−ε].

Definition 2. We say that a pair (a, b) is sustained as a limit winner-take-all equilibrium
under partisan (resp. non partisan) ethics if there exists a sequence (at, bt, ht)t∈N such that

• (ht)t=1,2... is an approximating sequence,

• for all t, (at, bt) is an equilibrium of the partisan (resp. non partisan) game when the
political outcome function is ht, and

• limt→∞ (at, bt) = (a, b).
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C.2 Partisan ethics

Proof of Proposition 6: Let (a, b) be sustained as a limit winner-take-all equilibrium under
partisan ethics by a sequence (at, bt, ht). Because at and bt are larger than a0 > 0 and b0 > 0,
continuity of the function α implies that, if a 6= b, then α(at, bt) converges to α(a, b) 6= 0,
hence h′t(at, bt) tends to 0, using the uniform convergence established above. It follows from
the equilibrium conditions (Equations 33 and 34) that C ′

A

(
at−a0
av

)
tends to 0. By continuity

of the function C ′
A this implies that at tends to a0. The same argument holds for B.

Let us now assume that we have a = b with (a, b) such that a0 ≤ a < a0 + av and
b0 ≤ b < b0 + bv.

Notice that there must be infinitely many (at, bt) such that bt ≤ at or infinitely many
(at, bt) such that at ≤ bt (both can be the case). We will assume that there are infinitely
many bt ≤ at since the argument that will follow works analogously with infinitely many
at ≤ bt. By extracting a subsequence, we will assume that the whole sequence is such that
bt ≤ at.

Let δ > 0 and consider a deviation b̂t such that

κb̂t + (1− κ) bt = a+ δ, (78)

i.e.
b̂t =

a+ δ − (1− κ) bt
κ

→ a+
δ

κ
. (79)

Since bt → a and since we assumed that a = b < b0 + bv, as long as δ is small enough,
there exists a T ∈ N large enough such that b̂t ∈ [b0, b0 + bv], i.e. such that b̂t is a feasible
deviation for all t > T .

Then, recalling (at, bt) → (a, a), and by possibly increasing T , we can ensure that
β (at, a+ δ) ∈ [ε, 1] for all t > T , for some ε > 0 small enough.

We will now show that b̂t is a profitable deviation for t > T . Indeed, by the uniform
convergence of ht towards 1 on [ε, 1] and the continuity of CB,

Uκ
B,t

(
at, bt, b̂t

)
− Uκ

B,t (at, bt, bt) = ρ ht (β (at, a+ ε))︸ ︷︷ ︸
→1

−ρ ht (β (at, bt))︸ ︷︷ ︸
<0

+CB (bt)− CB

(
b̂t

)
︸ ︷︷ ︸
→CB(a)−CB

(
a+ δ

κ

)
(80)

is strictly positive for t large enough as well as δ small enough. The continuity of CB is used
twice in the argument: first to establish the convergence of the cost terms, and second to
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argue that the cost difference is arbitrarily small for small enough δ.

Having shown that there exist profitable deviations in the approximating sequence of
equilibria for the individuals supporting at least one of the parties, we have reached a con-
tradiction, i.e. there cannot be a limit winner-take-all equilibrium (a, a) with a0 ≤ a < a0+av

and b0 ≤ b < b0 + bv.

Let us now assume that
(
b̄, b̄
)

is sustained as a limit winner-take-all equilibrium and that
ā > b̄ (where by assumption, ā ≥ b̄, but the proof does work analogously if one were to allow
b̄ > ā in the model). Let us assume that ht (β (at, bt)) does not converge to 1. Then, there
exists a ρ such that there exists a subsequence of (at, bt) which satisfies ht (β (at, bt)) < 1−ρ.
Similarly to the sequence of eventually profitable deviations we constructed above for B,
we can then construct a sequence of eventually profitable deviations for A so that we can
conclude that ht (β (at, bt)) → 1. This, in turn, implies that for t large enough, it is profitable
for B-supporters to deviate downwards to zero effort since the benefit of keeping a turnout
of b̄ vanishes as t→ ∞.

Therefore, except in the case ā = b̄, there cannot be a limit winner-take-all equilibrium(
b̄, b̄
)
.

Proof of Proposition 7 . Suppose that another pair (a, b) 6= (a0, b0) is justified. Following
the previous proposition, let l = a = b be the common limit participation.

Recall that, by assumption, b̄ < ā; if l < b̄ then Equation (35) applies for interior
equilibria and writes at the limit:

ρ = r ·
F−1

(
l−a0
av

)
F−1

(
l/r−a0

av

) . (81)

Since F−1 is non-decreasing, and r > 1 the ratio in the above equation is larger than 1,
hence r ≤ ρ. Hence the result.

If the limit is l = b̄ then (33) holds with an equality and (34) with an inequality (≥) so

that the above equality (81) must be replaced by the inequality ρ ≥ r ·
F−1

(
l−a0
av

)
F−1

(
l/r−a0

av

) , leading

to the same conclusion.
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C.3 Non-partisan ethics

Proof of Proposition 13: The other parameters being fixed, let (at, bt) be a sequence of scores
sustained at equilibrium for ht. In view of Proposition 9 we concentrate on the case where
κ > 0 and av 6= ρbv.

Case 1. Suppose first that av > ρbv. In view of Proposition 2, for all t, at > a0 and bt = b0,
and at satisfies the first-order condition (see equation 53):

0 ≤ (av − ρbv)h
′
t

(at − b0
at + b0

) 2κb0
at + b0

− avC
′
A(at), (82)

where < may only hold for at = ā.

1. If a0 ≥ b0. Suppose that for some ε > 0 the sequence (at) has an infinite number
of points at > a0 + ε, then one can extract a sequence aτ that converges to some
ã > a0, then aτ−b0

aτ+b0
tends to ã−b0

ã+b0
> 0, hence h′t

(
aτ−b0
aτ+b0

)
tends to 0. But C ′

A(aτ ) tends
to C ′

A(ã) > 0, a contradiction. We conclude that, in this case,

lim
t→∞

at = a0.

2. If a0 < b0. Reasoning as previously rules out accumulation points ã that would be
strictly larger than b0 or in the open interval (a0, b0), leaving only the two possibilities
ã = a0 or ã = b0.

(a) Suppose first that ã = a0. Consider the response (siA, 0) of player i such that,
taking the Homo Moralis effect into account, i will exactly make the score of A
match the score (b0) of B. That is sia is such that a0 + κavFA(s

i
A) = b0 or, in

other terms:
siA = F−1

A

(
b0 − a0
κav

)
. (83)

Such cost threshold exists if and only if

b0 − a0 ≤ κav. (84)
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Suppose, for the moment, that this condition is met. The expected payoffs are:

EUκ(at, b0, at, b0) = (av − ρbv) · ht
(
at − b0
at + b0

)
− avCA(at) (85)

EUκ(at, b0, a0, b0) = (av − ρbv) · ht (0)− av

∫ siA

c=0

cf(c)dc (86)

When t tends to infinity, at tends to a0 hence CA(at) tends to 0 and ht

(
at−b0
at+b0

)
tends to −1 so that the equilibrium payoff tends to −(av − ρbv). Since ht(0) = 0,
the deviation payoff is always equal to −av

∫ siA
c=0

cf(c)dc, so the deviation not being
profitable implies

av − ρbv ≤ av

∫ siA

c=0

cf(c)dc. (87)

In equation 83 we remark that siA does not depend on ρ, so that the above equation
is better written as:

ρ ≥ ρ∗ =
av
bv

(
1−

∫ siA

c=0

cf(c)dc

)
. (88)

We conclude that if ρ is small, there is a profitable deviation, the possibility
ã = a0 is ruled out and the only limit equilibrium is ã = b0.

If the condition 84 is not satisfied, which occurs if κ is small, then any deviation
in siA will induce a score a smaller than and bounded away from b0, so the limit
electoral payoff will be −1, the cost strictly positive, and the outcome ã = a0 will
not be de-stabilized.

(b) Suppose that ã = b0. Consider the response (siA, s
i
B) = (0, 0) of player i to the

equilibrium that yields the score at for ht. The score of A, as perceived by i is
no longer at but a′t = (1− κ)at + κa0. The payoffs at equilibrium and under this
response are respectively:

EUκ(at, b0, at, b0) = (av − ρbv) · ht
(
at − b0
at + b0

)
− avCA(at) (89)

EUκ(at, b0, a0, b0) = (av − ρbv) · ht
(
a′t − b0
a′t + b0

)
− 0 (90)

When t tends to ∞, at tends to ā = b0, hence a′t tends to (1 − κ)b0 + κa0 and,
because this number is strictly lower than b0, the electoral payoff ht

(
a′t−b0
a′t+b0

)
tends

to −1. Hence the payoff for deviating tends to −(av−ρbv). Because the deviation
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is not profitable, it must be that:

−(av − ρbv) ≤ lim inf
t→∞

[
(av − ρbv) · ht

(
at − b0
at + b0

)
− avCA(at)

]
(91)

The term avCA(at) tends to avCA(b0), a strictly positive number. Letting H∗ =

lim inft→∞ ht

(
at−b0
at+b0

)
, this number is such that −1 ≤ H∗ ≤ 1 and the above

equation writes.
av − ρbv ≥

av
1 +H∗CA(b0). (92)

If H∗ = −1 this inequality cannot be satisfied. So 1 +H∗ > 0, and (92) implies
that av − ρbv cannot be too small. However this equation should be interpreted
with caution because, unlike equation 87, equation 92 cannot be written in general
as a bound on ρ, as could be done in 88. Still we can conclude that if 92 is not
satisfied, ã = b0 is ruled out and the only limit equilibrium is ã = a0.

Comparing the conditions (87) and (92) one can see that they do not match exactly,
so that we cannot exclude the possibility that two different equilibria co-exist in the
limit: one in which A-voters pay to match the B hardliners and one in which they pay
nothing.

Case 2. Next, suppose that av < ρbv. This case is symmetric. In view of Proposition 2, for
all t, at = a0 and bt > b0, and bt satisfies the first-order condition:

0 = (ρbv − av)h
′
t

(bt − a0
bt + a0

) 2κa0
bt + a0

− bvC
′
B(bt). (93)

With the same arguments as previously, one obtains:

• If b0 ≥ a0.
lim
t→∞

bt = b0.

• If b0 < a0. The sequence bt can only have a0 and b0 as accumulation points. As
previously, conditions may be obtained that imply that one limit or the other is only
possible.
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D Other proofs

D.1 Proof of Lemma 3

Proof. Claim: for any b, there exists a unique A-consistent strategy. To prove this, let us
define φ : [a0, ā] → [a0, ā] by

φ (a) = argmax
ai

EUκ
A

(
a, b, ai

)
. (94)

This is indeed well-defined, since the argmax exists and is unique due to the single-peakedness
assumption on EUκ

A. By Berge’s maximum theorem, φ is continuous. Therefore, Brouwer’s
fixed point theorem applies and there exists at least one fixed point, i.e. at least one A-
consistent strategy. By the assumption that for all a, b, the unique maximum of ai 7→
EUκ

A (a, b, ai) lies in (a0, ā), we can conclude that any such A-consistent strategy lies in
(a0, ā) (is interior). Hence, it satisfies the first-order condition

0 =
∂

∂ai
EUκ

A

(
a, b, ai

)∣∣∣∣
ai=a

. (95)

Since
∂

∂a
ΦA (a, b) =

2κbh′(α(a, b))

(a+ b)2
− C ′

A(a), (96)

and recalling (33), we conclude that any fixed point of (94) satisfies

0 =
∂

∂ai
EUκ

A

(
a, b, ai

)∣∣∣∣
ai=a

=
∂

∂a
ΦA (a, b) . (97)

Since the single-peakedness assumption on ΦA implies that there is a unique a that maximizes
ΦA (a, b), this completes the proof of the claim.

By repeating the same argument for B-consistent strategies, we conclude that (a∗, b∗) is
an equilibrium of the population game if and only if

1. a∗ maximizes a 7→ ΦA (a, b∗), and

2. b∗ maximizes b 7→ ΦB (a∗, b).
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D.2 Proof of Proposition 5

Proof. Proving first the first claim, let us define a function ψ : [a0, ā]×
[
b0, b̄

]
→ [a0, ā]×

[
b0, b̄

]
by

ψ (a, b) =

(
argmaxã ΦA (ã, b)

argmaxb̃ΦB

(
a, b̃
)) , (98)

which is well-defined by the assumptions on ΦA and ΦB. Applying Berge’s maximum theo-
rem, we conclude that ψ is continuous, allowing us to apply Brouwer’s theorem. We deduce
that ψ has at least one fixed point, proving equilibrium existence.

In order to prove uniqueness, we again rely on the auxiliary two-player game. Assume,
for a contradiction, that (a1, b1) and (a2, b2) are both equilibria of that game. Then,

ΦA (a1, b1) ≥ ΦA (a2, b1) , (99)

ΦA (a2, b2) ≥ ΦA (a1, b2) , (100)

ΦB (a1, b1) ≥ ΦB (a1, b2) , (101)

ΦB (a2, b2) ≥ ΦB (a2, b1) . (102)

Writing these expressions out,

κh (α (a1, b1))− CA (a1) ≥ κh (α (a2, b1))− CA (a2) , (103)

κh (α (a2, b2))− CA (a2) ≥ κh (α (a1, b2))− CA (a1) , (104)

−ρκh (α (a1, b1))− CB (b1) ≥ −ρκh (α (a1, b2))− CB (b2) , (105)

−ρκh (α (a2, b2))− CB (b2) ≥ −ρκh (α (a2, b1))− CB (b1) . (106)

Rewriting,

κh (α (a1, b1))− κh (α (a2, b1)) ≥ CA (a1)− CA (a2) , (107)

CA (a1)− CA (a2) ≥ κh (α (a1, b2))− κh (α (a2, b2)) , (108)

ρκh (α (a1, b2))− ρκh (α (a1, b1)) ≥ CB (b1)− CB (b2) , (109)

CB (b1)− CB (b2) ≥ ρκh (α (a2, b2))− ρκh (α (a2, b1)) . (110)

Combining and eliminating constant positive factors,

h (α (a1, b1))− h (α (a2, b1)) ≥ h (α (a1, b2))− h (α (a2, b2)) , (111)

h (α (a1, b2))− h (α (a1, b1)) ≥ h (α (a2, b2))− h (α (a2, b1)) . (112)
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Rewriting once more,

h (α (a1, b1)) + h (α (a2, b2)) ≥ h (α (a1, b2)) + h (α (a2, b1)) , (113)

h (α (a1, b2)) + h (α (a2, b1)) ≥ h (α (a2, b2)) + h (α (a1, b1)) . (114)

Combining the two inequalities, we have equality throughout:

h (α (a1, b1)) + h (α (a2, b2)) = h (α (a1, b2)) + h (α (a2, b1)) . (115)

Multiplying with κ and subtracting CA (a1) as well as CA (a2) on both sides,

ΦA (a1, b1) + ΦA (a2, b2) = ΦA (a1, b2) + ΦA (a2, b1) . (116)

Since ΦA (a1, b1) ≥ ΦA (a2, b1) and ΦA (a2, b2) ≥ ΦA (a1, b2), we have

ΦA (a1, b1) = ΦA (a2, b1) and ΦA (a2, b2) = ΦA (a1, b2) . (117)

Since we assumed that a 7→ ΦA (a, b) is single-peaked for any b, we deduce a1 = a2. By
repeating the same argument on ΦB, we deduce b1 = b2, thus proving equilibrium uniqueness
of the auxiliary game. Lemma 3 then implies that this is also the unique equilibrium of the
population game. This completes the proof of the first claim of the proposition.

We turn now to the second claim of the proposition. To begin, for any turnout levels
(a, b) let us write the expected utility of B-supporter i as a function of the cutoff strategy
siB:

EUκ
B

(
a, b, siB

)
= ρh

(
βκ
(
a, b, siB

))
−
∫ siB

0

cf (c) dc, (118)

where
βκ
(
a, b, siB

)
=

(1− κ) b+ κ (bvFB (siB) + b0)− a

(1− κ) b+ κ (bvFB (siB) + b0) + a
. (119)

Likewise, write the associated auxiliary function as a function of sB:

ΦB (a, sB) = ρκh (β (a, sB))−
∫ sB

0

cf (c) dc. (120)

Clearly, since FB is strictly increasing, single-peakedness of EUκ
B (a, b, siB) in siB holds if and

only if single-peakedness of EUκ
B (a, b, bi) in bi holds. Likewise, single-peakedness of Φ (a, sB)

in sB holds if and only if single-peakedness of ΦB (a, b) in b holds.
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We will show that for all (a, b), siB 7→ EUκ
B (a, b, siB) and sB 7→ ΦB (a, sB) are single-

peaked, as the proof goes analogously for EUκ
A and ΦA (with ρ = 1).

In order to ease notation, let

Mκ
(
siB
)
= (1− κ) b+ κ

(
bvFB

(
siB
)
+ b0

)
− a, and

T κ
(
siB
)
= (1− κ) b+ κ

(
bvFB

(
siB
)
+ b0

)
+ a.

(121)

We then have
∂

∂siB
βκ
(
a, b, siB

)
=

2κabvfB (siB)

(T κ (siB))
2 (122)

so that
∂

∂siB
EUκ

B

(
a, b, siB

)
= ρh′

(
βκ
(
a, b, siB

)) 2κabvfB (siB)

(T κ (siB))
2 − siBfB

(
siB
)
. (123)

Hence, for h (x) = arctan(mx)
arctan(m)

,

∂

∂siB
EUκ

B

(
a, b, siB

)
= ρ

2mκabvfB (siB)

arctan (m)

1

(T κ (siB))
2

1

1 +m2
(
Mκ

(
siB

))2(
Tκ

(
siB

))2
− siBfB

(
siB
)

= fB
(
siB
)( 2mκρabv

arctan (m)

1

(T κ (siB))
2
+m2 (Mκ (siB))

2 − siB

)

=
fB (siB)

(T κ (siB))
2
+m2 (Mκ (siB))

2︸ ︷︷ ︸
>0

(
2mκρabv
arctan (m)

−
((
T κ
(
siB
))2

+m2
(
Mκ

(
siB
))2)

siB

)
.

(124)

Consider now the auxiliary function in (120). Since

∂

∂sB
β (a, sB) =

2abvfB (sB)

(T 1 (sB))
2 , (125)

for h (x) = arctan(mx)
arctan(m)

we obtain

∂

∂sB
ΦB (a, sB) = ρκh′ (β (a, sB))

2κabvfB (sB)

(T 1 (sB))
2 − sBfB (sB)

=
fB (sB)

(T 1 (sB))
2 +m2 (M1 (sB))

2︸ ︷︷ ︸
>0

(
2mκρabv
arctan (m)

−
((
T 1 (sB)

)2
+m2

(
M1 (sB)

)2)
sB

)
.

(126)
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Therefore, to show the single-peakedness of EUκ
B (a, b, siA) in siB and of ΦB (a, sB) in sB,

it is sufficient that φκ̃
B (sB)

def
=
((
T κ̃
)2

+m2
(
M κ̃
)2)

sB is, for both κ̃ = κ and κ̃ = 1,

(a) strictly increasing, and

(b) eventually greater than 2mκρabv
arctan(m)

.

To prove (a) it is sufficient to prove that prove that
(
φκ̃
B

)′
(sB) > 0, where

(
φκ̃
B

)′
(sB) =

(
T κ̃
)2

+m2
(
M κ̃
)2

+ 2sBκ̃bvfB (sB)
(
T κ̃ +m2M κ̃

)
. (127)

It is straightforward to see that
(
φκ̃
B

)′
(sB) > 0 holds for m ≤ 1. For m > 1, writing b̃ = b−b0,

and minimizing the expression over a, b̃ and b0 using SymPy (the code is included below),
we show that

(
φκ̃
B

)′
(sB) > 0 if

sB <
2FB (sB)m

ρfB (sB) (m− 1)2
(128)

or, equivalently,
fB (sB) sB
FB (sB)

<
2m

ρ(m− 1)2
. (129)

Since fB(c)c/FB(c) is decreasing (by assumption 2), it is sufficient to have

lim
c→0

fB (c) c

FB (c)
<

2m

ρ(m− 1)2
. (130)

For this, in turn, it is sufficient to have, for some r < 2m
ρ(m−1)2

,

lim
c→0

FB (c)

cr
> 0. (131)

Let us now turn to (b). It is sufficient to give a condition on s̄B such that

s̄B

((
T κ̃
)2

+m2
(
M κ̃
)2)

>
2mκ̃ρabv
arctan (m)

, (132)

where Mκ and T κ are evaluated at siB = s̄B, for both κ̃ = κ and κ̃ = 1.

Using SymPy, we minimize ψ =
((
T κ̃
)2

+m2
(
M κ̃
)2) over a, b̃ and b0; we also maximize

the right-hand side by plugging in a = ā. We find that (132) holds if

s̄B
4κ̃2b2vm

2

m2 + 1
≥ 2mκ̃ρābv

arctanm
, (133)
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or equivalently,

s̄B ≥ ρā (m2 + 1)

2κ̃bvm arctan (m)
. (134)

We also observe that this condition holds for both κ̃ ∈ {κ, 1} if

s̄B ≥ ρā (m2 + 1)

2κbvm arctan (m)
. (135)

SymPy calculations

[1]: from sympy import *

[2]: m,rho, sbi,bars,bv, kap = symbols(r'm \rho s_B \bar{s}_B b_v␣
↪→\tilde{\kappa}',positive=True)

b = Symbol(r"\tilde{b}")

a = Symbol("a")

abar = Symbol(r"\bar{a}",positive=True)

b0 = Symbol("b_0")

FB = Function("F_B")(sbi)

fB = Function("f_B")(sbi)

FBsymb = Symbol("F_B")

fBsymb = Symbol("f_B")

Analyzing φB

[9]: Tkap = kap*bv*FB + (1-kap)*b + b0 + a

Mkap = kap*bv*FB + (1-kap) * b + b0 - a

phi = Tkap**2 + m**2 * Mkap**2 + 2*sbi*kap*rho *bv*fB *(Tkap + m**2*Mkap)

display(collect(expand(phi),[a**2,a]))

−2ρκ̃2b̃bvm
2siBfB

(
siB
)

− 2ρκ̃2b̃bvs
i
BfB

(
siB
)

+ 2ρκ̃2b2vm
2siBFB

(
siB
)
fB
(
siB
)

+

2ρκ̃2b2vs
i
BFB

(
siB
)
fB
(
siB
)
+ 2ρκ̃b̃bvm

2siBfB
(
siB
)
+ 2ρκ̃b̃bvs

i
BfB

(
siB
)
+ 2ρκ̃b0bvm

2siBfB
(
siB
)
+

2ρκ̃b0bvs
i
BfB

(
siB
)
+ κ̃2b̃2m2 + κ̃2b̃2 − 2κ̃2b̃bvm

2FB

(
siB
)
− 2κ̃2b̃bvFB

(
siB
)
+ κ̃2b2vm

2F 2
B

(
siB
)
+

κ̃2b2vF
2
B

(
siB
)
− 2κ̃b̃2m2 − 2κ̃b̃2 − 2κ̃b̃b0m

2 − 2κ̃b̃b0 + 2κ̃b̃bvm
2FB

(
siB
)
+ 2κ̃b̃bvFB

(
siB
)
+

2κ̃b0bvm
2FB

(
siB
)

+ 2κ̃b0bvFB

(
siB
)

+ b̃2m2 + b̃2 + 2b̃b0m
2 + 2b̃b0 + a2

(
m2 + 1

)
+

a
(
−2ρκ̃bvm

2siBfB
(
siB
)
+ 2ρκ̃bvs

i
BfB

(
siB
)
+ 2κ̃b̃m2 − 2κ̃b̃− 2κ̃bvm

2FB

(
siB
)
+ 2κ̃bvFB

(
siB
)
−
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−2b̃m2 + 2b̃− 2b0m
2 + 2b0

)
+ b20m

2 + b20

Indeed, the leading coefficient is positive.

[10]: asol = simplify(solve(diff(phi,a),a)[0])

phi = simplify(phi.subs(a,asol))*(m**2 +1)

display(collect(expand(phi),[b**2,b]))

−ρ2κ̃2b2vm4
(
siB
)2
f 2
B

(
siB
)

+ 2ρ2κ̃2b2vm
2
(
siB
)2
f 2
B

(
siB
)

− ρ2κ̃2b2v
(
siB
)2
f 2
B

(
siB
)

+

8ρκ̃2b2vm
2siBFB

(
siB
)
fB
(
siB
)
+8ρκ̃b0bvm

2siBfB
(
siB
)
+4κ̃2b2vm

2F 2
B

(
siB
)
+8κ̃b0bvm

2FB

(
siB
)
+ b̃2 ·(

4κ̃2m2 − 8κ̃m2 + 4m2
)
+ b̃
(
−8ρκ̃2bvm

2siBfB
(
siB
)
+ 8ρκ̃bvm

2siBfB
(
siB
)
− 8κ̃2bvm

2FB

(
siB
)
−

−8κ̃b0m
2 + 8κ̃bvm

2FB

(
siB
)
+ 8b0m

2
)
+ 4b20m

2

Notice that κ̃2 − 2κ̃+ 1 = (κ̃− 1)2 > 0 for κ̃ 6= 1, showing that the leading coefficient is
positive. Moreover, observe that for κ̃ = 1, the polynomial is actually constant in b̃, i.e. of
degree zero.

[11]: bsol = simplify(solve(Eq(diff(phi,b),0),b)[0])

display(bsol)

ρκ̃bvs
i
BfB(s

i
B) + κ̃bvFB(s

i
B) + b0

κ̃− 1

If κ̃ 6= 1, after minimizing over b̃, we conclude that the expression is minimal for a
negative b̃. For κ̃ = 1, the expression does not change with b̃. In either case, we can plug in
b̃ = 0 because it minimizes the expression over b̃ in our admissible range [0, bv].

[12]: phi = collect(expand(simplify(phi.subs(b,0))),b0)

display(phi)

−ρ2κ̃2b2vm4
(
siB
)2
f 2
B

(
siB
)

+ 2ρ2κ̃2b2vm
2
(
siB
)2
f 2
B

(
siB
)

− ρ2κ̃2b2v
(
siB
)2
f 2
B

(
siB
)

+

8ρκ̃2b2vm
2siBFB

(
siB
)
fB
(
siB
)

+ 4κ̃2b2vm
2F 2

B

(
siB
)

+ 4b20m
2 + b0 ·(

8ρκ̃bvm
2siBfB

(
siB
)
+ 8κ̃bvm

2FB

(
siB
))

Observe that the coefficient in front of b0 is strictly positive, allowing us to minimize
easily over b0.

[13]: b0sol = simplify(solve(Eq(diff(phi,b0),0),b0)[0])

display(b0sol)

−κ̃bv
(
ρsiBfB

(
siB
)
+ FB

(
siB
))

This expression is negative. Since we allow only positive values for b0, our expression is

64



minimal for b0 = 0. The next step is to plug in b0 = 0 and to obtain a polynomial in sB,
regarding FB and fB as constants.

[14]: phi = phi.subs(b0,0).subs(fB,fBsymb).subs(FB,FBsymb)

display(collect(expand(phi),sbi))

4F 2
Bκ̃

2b2vm
2 + 8FBρκ̃

2b2vfBm
2siB +

(
siB
)2 (−ρ2κ̃2b2vf 2

Bm
4 + 2ρ2κ̃2b2vf

2
Bm

2 − ρ2κ̃2b2vf
2
B

)
2FBm

ρfB (m2 − 2m+ 1)

− 2FBm

ρfB (m2 + 2m+ 1)

We see here that that the leading coefficient is negative as long as m4−2m2+1 = (m2−1)2

is positive, i.e. for m 6= 1,−1. Therefore, the polynomial expression is positive as long as
sB is between the roots of the polynomial expression. For m = 1, the expression is always
positive for sB ≥ 0. We calculate the roots below.

[16]: sols = solve(phi,sbi)

for sol in sols:

display(simplify(sol))

2FBm

ρfB (m2 − 2m+ 1)

− 2FBm

ρfB (m2 + 2m+ 1)

The second root being negative whereas sB ≥ 0, this allows us to find a positivity criterion
by comparing sB to the first root.

Analyzing ψB

[17]: psi = Tkap**2 + m**2 * Mkap **2

display(collect(expand(psi),[a**2,a]))

κ̃2b̃2m2 + κ̃2b̃2 − 2κ̃2b̃bvm
2FB

(
siB
)

− 2κ̃2b̃bvFB

(
siB
)

+ κ̃2b2vm
2F 2

B

(
siB
)

+

κ̃2b2vF
2
B

(
siB
)
− 2κ̃b̃2m2 − 2κ̃b̃2 − 2κ̃b̃b0m

2 − 2κ̃b̃b0 + 2κ̃b̃bvm
2FB

(
siB
)
+ 2κ̃b̃bvFB

(
siB
)
+

2κ̃b0bvm
2FB

(
siB
)

+ 2κ̃b0bvFB

(
siB
)

+ b̃2m2 + b̃2 + 2b̃b0m
2 + 2b̃b0 + a2

(
m2 + 1

)
+

a
(
2κ̃b̃m2 − 2κ̃b̃− 2κ̃bvm

2FB

(
siB
)
+ 2κ̃bvFB

(
siB
)
− 2b̃m2 + 2b̃− 2b0m

2 + 2b0

)
+ b20m

2 + b20

The leading coefficient in a being positive, we can minimize easily in a. We plug the
result into ψB.
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[18]: asol = solve(psi.diff(a),a)[0]

psi = simplify(psi.subs(a,asol))

display(collect(expand(psi),[b**2,b]))

4κ̃2b2vm
2F 2

B(s
i
B)

m2 + 1
+

8κ̃b0bvm
2FB(s

i
B)

m2 + 1
+ b̃2 ·

(
4κ̃2m2

m2 + 1
− 8κ̃m2

m2 + 1
+

4m2

m2 + 1

)
+

b̃

(
−8κ̃2bvm

2FB(s
i
B)

m2 + 1
− 8κ̃b0m

2

m2 + 1
+

8κ̃bvm
2FB(s

i
B)

m2 + 1
+

8b0m
2

m2 + 1

)
+

4b20m
2

m2 + 1

This expression as a polynomial in b̃ has a positive leading coefficient for κ̃ 6= 1, and is
otherwise constant in b̃. For κ̃ 6= 1, we minimize over b̃.

[19]: bsol = solve(psi.diff(b),b)[0]

display(bsol)

κ̃bvFB(s
i
B) + b0

κ̃− 1

This solution being negative for κ̃ 6= 1 and the aforementioned expression being constant
in b̃ for κ̃ = 1, we may plug in b̃ = 0 as our lowest possible b̃.

[20]: psi = simplify(psi.subs(b,0))

display(collect(expand(psi),[b0**2,b0]))

4κ̃2b2vm
2F 2

B(s
i
B)

m2 + 1
+

8κ̃b0bvm
2FB(s

i
B)

m2 + 1
+

4b20m
2

m2 + 1

We minimize this expression over b0, which is straightforward due to the positive leading
coefficient.

[21]: b0sol= solve(psi.diff(b0),b0)[0]

display(b0sol)

−κ̃bvFB

(
siB
)

This expression being negative, we may substitute b0 = 0. Moreover, recall that we
assumed sB = s̄B, so that FB(sB) = 1, yielding the minimal ψB for sB = s̄B.

[23]: psi = psi.subs(b0,0)

psi = psi.subs(FB,1)

display(psi)

4κ̃2b2vm
2

m2 + 1
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