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PENCILS AND SET OPERATORS IN 3D CGA

CLÉMENT CHOMICKI, STÉPHANE BREUILS, VENCESLAS BIRI and VINCENT
NOZICK

Abstract. Geometric Algebra can be considered as a language that unifies mathe-

matics, physics and computer sciences etc. Among other, CGA is of special interest
for its powerful transformations and its ability to represent any hypersphere or hy-

perplane. Moreover, CGA is an algebra capable of representing pencils of spheres.

This paper presents a reinterpretation of every objects of 3D CGA as pencils of
spheres and introduces set operators on its elements (i.e. union, intersection, com-

plement, etc). As an application, these operators are used to find the smallest

tangent sphere of two skew lines.

1. Introduction

Clifford Algebras, also known as Geometric Algebras (GA), form a powerful and
flexible mathematical framework, ideally tailored for investigating geometry and
its associated fields. Most geometric algebras share the possibility to construct
their objects with some of their points or by intersection [7, 1, 5]. This common
property comes from the fact that these algebras allow the manipulation of pencils
of objects, as established by preexisting work [8, 3, 2]. This paper presents a way
to manipulate CGA objects through their pencils and defines set operators that
applies to them. The choice of CGA comes from its very handy non-degenerate
basis, the fact that it handles spheres, its wide popularity and also from the wide
range of geometric transformations that comes with it.

This papers starts with a short introduction to CGA in Sec. 1.1, followed by
some notations in Sec. 1.2. The proposal of a construction of CGA from pencils
then follows in Sec. 2, allowing some set operator to be introduced in Sec. 2.2, that
are extended for the specific case of grade-2 pencils in Sec. 2.3. An applicative
case then illustrates our contributions in Sec. 3, before the conclusion in Sec. 4.

1.1. Conformal Geometric Algebra

Conformal Geometric Algebra (CGA) [7] is a well-known family of geometric al-
gebras built on Rd+1,1 that allows the representation of any hyperspheres and
hyperplanes of dimension n ≤ d, built by intersection of other hyperspheres or
hyperplanes or by the wedge of n+ 1 of their points.
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1.2. Notations

Most of the notations in this paper are inspired from [4] and [6]. In addition, the
followings are specified:

A∗ dual [4] of A with A∗ = AI−1

∧ ,∨ ,× , · outer, anti-outer, commutator and inner products [6]

A ≡ B A equals B up to a non-zero scalar multiplicator

2. CGA view from the perspective of pencils

The previous section introduces CGA in any dimension. This section and the
followings focus on CGA of R3 and its pencils.

2.1. Constructing CGA with pencils

This section aims to show that any objects of CGA is a pencil of spheres.

Definition 2.1. The 4-vectors of CGA are called spheres. Their set is denoted
Spheres. They represent any sphere of real, imaginary, or infinite radius. A dual
sphere of radius r and center of projective coordinates (x, y, z, w) is of the form:

S∗ = w2eo + xwe1 + ywe2 + zwe3 +
x2 + y2 + z2 − r2

2
e∞ (2.1)

Definition 2.2. A n-pencil is the intersection of n spheres, computed by their
anti-outer product

(
a ∨ b = (a∗ ∧ b∗)∗

)
. It is thus a blade of grade 5− n.

More precisely, a n-pencil is the vector space generated by the n spheres.

Definition 2.3. The anti-outer-product null space of a n-pencil A, denoted
NA(A) is defined as

NA (A) = {S ∈ Spheres | A ∨ S = 0} (2.2)

It corresponds to the set of all spheres in the object. For now on, the mention of
the inclusion of any pencil A in a pencil B refers to the property NA(A) ⊂ NA(B).

Definition 2.4. A point is a 4-pencil representing a location in the space.
Denoted p, a point of projective coordinates (x, y, z, w) is of the form:

p = w2eo + xwe1 + ywe2 + zwe3 +
x2 + y2 + z2

2
e∞ (2.3)

A point also happens to be the dual of a sphere of radius zero.

Definition 2.5. The outer-product null space of a n-pencil A, denoted NO (A)
is defined as

NO (A) = {p ∈ Points | A ∧ p = 0} (2.4)

It corresponds to the set of all points (thought as 4-pencils) in which the object
is included. For now on, the mention of the inclusion of any point p in a pencil A
refers to the property p ∈ NO(A).
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Definition 2.6. A pencil is said flat iif. it does not contain any sphere of finite
radius. Flat pencils are the pencils containing the point at infinity e∞. A pencil
is said round iif. it contains at least one finite-radius sphere.

All geometric objects of CGA being blades and all blades of CGA being pencils,
then all objects of CGA can be defined as pencils.

2.2. Set operator on pencils: the easy cases

Previous section presents pencils as vector spaces of spheres, this section introduces
set operators for them. Let’s first define an empty pencil and the pencil of all
spheres. Relying on Def. 2.3 gives us I as the only blade containing no spheres,
and 1 as the only blade containing every spheres. Therefore I is the empty pencil
and 1 the pencil of all spheres.

Definition 2.7. Two pencils are said independent iif they share no sphere.

First of all, if two pencils are not independents, then their anti-outer product is 0.
The independence criterion brings the following theorems:

Theorem 2.8. The union A∪B of two independent pencils A and B is A∨B.
The set complement of any pencil A is its dual A∗. The intersection of two pencils
A and B whose complement are independent is A ∧B.

Proof. Consider A and B independents n and m-pencils. A = S1 ∨ · · · ∨ Sn,
B = Sn+1 ∨ · · · ∨ Sm+n, then A ∨ B = S1 ∨ · · · ∨ Sm+n, hence the union. Also
A ∨ A∗ ≡ 1 is the whole space, hence A∗ is the complement of A. The union
and complement operators are enough to create the intersection operator, hence
taking any A and B so that A∗ and B∗ are independent, (A∗ ∨ B∗)∗ = A ∧ B is
the intersection of A and B. □

The operators used ensure closure of the resulting sets. Commutativity is also
given by the anti-commutativity of the products, as the sign of a pencil is irrelevant.

Theorem 2.9. Any round n-pencil A can be decomposed into a flat (n − 1)-
pencil Flat(A) = A ∧ e∞ and its smallest sphere Small(A) = A ∧ Flat(A).

Proof. This theorem is proven for every grade. For 2-pencils, the fact that a
circle C is the dual of a point pair p1∧p2 is used. For clarity, two functions Center
and Radius are used, giving the center and the radius of an object.

Small(1) = e∗∞ Small(S) = S with S a sphere (2.5)

Small(I) = 0 Small(p) ≡ p∗ with p a point (2.6)

Small(p1 ∧ p2) ≡ Center(p1 ∧ p2)−
Radius2(p1 ∧ p2)

2
e∞ (2.7)

Small
(
(p1 ∧ p2)

∗) ≡ Center(p1 ∧ p2) +
Radius2(p1 ∧ p2)

2
e∞ (2.8)

≡ Center(C)− Radius2(C)

2
e∞ (2.9)
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In every case, the resulting sphere is the smallest possible, with all the points of
the pencil on its equator. The case of the 0-pencil differs as it contains no spheres,
therefore the result is 0. For a 5-pencil, the result is the dual of the point at
infinity, which can be interpreted as a sphere of radius 0 centered on it. □

This brings meaning to 1-vectors that are not points (duals of spheres of non-
null radius), which can now be interpreted as the intersection of a flat point Fp
(their center) and a small sphere S of same center, hence of the form Fp ∨ S.

2.3. Set operator on 2-pencils

The previous section introduces set operators for independent and equal pencils,
while this section introduces set operators for 2-pencils that are neither indepen-
dent nor equal. 2-pencils consist of circles with real or imaginary radii. When two
circles are not independent, they intersect at a common sphere. Therefore this
section examines two circles C1 = Sa ∨ Sb and C2 = Sa ∨ Sc. The initial step
involves finding the symmetric difference C1△C2 = (C1 ∪ C2) \ (C1 ∩ C2).

Theorem 2.10. Consider Sa, Sb and Sc three independent spheres with S2
a ̸= 0.

(Sa ∨ Sb)× (Sa ∨ Sc) ≡ (Sb ∨ Sc)
∗ (2.10)

Proof. Consider C∗
1 = Sa∧Sb and C∗

2 = Sa∧Sc with Sa of non-zero radius and
potentially a plane. Sa, Sb and Sc can be chosen orthogonal, meaning that their
inner product two by two is 0.

C1 × C2 = −C∗
1 × C∗

2 = (Sa ∧ Sb)(Sa ∧ Sc) = −S2
a(Sb ∧ Sc) ≡ Sc (2.11)

Hence the property is true for a shared non-punctual sphere. □

This permits a general formulation for the symmetric difference of two circles.

Theorem 2.11. Consider C1 and C2 two circles.

C1△C2 = (C1 × C2)
∗ + C1 ∨ C2 + C1 ∧ C∗

2 (2.12)

Proof. The three terms yield C1△C2 across three distinct scenarios: indepen-
dence, equality, and neither. Each term evaluates to 0 in the absence of the
respective case, thereby complementing one another. □

Theorem 2.12. If C1 and C2 are round and share exactly one common round
sphere, then

C1 ∪ C2 = C1 ∨ Flat(C1△C2) (2.13)

Proof.

C1 = Sa ∨ Sb (2.14)

F = Flat(C1 × C2) = λSb + µSc (2.15)

F ∨ C1 = Sa ∨ Sb ∨ (λSb + µSc) with λ, µ ∈ R (2.16)

≡ Sa ∨ Sb ∨ Sc (2.17)

□
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Theorem 2.13. If l1 and l2 are two lines lying on a common plane P , then:

l1 ∪ l2 = l1 ∧
(
(l1△l2) ∨ e123

)
(2.18)

Proof.

l1 = P ∨ P⊥ with P⊥ = l1 ∧ P ∗ (2.19)

l1△l2 = (p1 ∧ u ∧ e∞)△(p2 ∧ v ∧ e∞) = p3 ∧ w ∧ e∞ (2.20)

with u, v and w Euclidean vectors of CGA

l3 ∨ e123 = l3 · eo∞ ≡ w and P = l1 ∧ w (2.21)

l1 ∪ l2 = P⊥ ∨ l2 (2.22)

□

3. Applicative case: smallest sphere tangent to two skew lines

Two skew lines la and lb are by definition not co-planar. There is exactly one point
p that minimizes the distance to both lines, passing through a line lc perpendicular
to la and lb and intersecting them in pa and pb. The sphere S of center p and
passing through pa and pb is the smallest sphere tangent to la and lb, and its
diameter is their distance. Finding p is a problem often encountered in computer
vision, which is why Dorst et al. proposed a PGA-based algorithm to find pa
and pb from a point of each line and their directional vector. As an alternative,
Alg 1 produces the sphere S. The line lc is found using Th. 2.11. Subtracting the
direction of lc to both pencils la and lb using Th. 2.8 gives two parallel planes P∥,a
and P∥,b. Summing them results in the plane in-between them, passing through
p. This plane is then intersected with lc, giving the flat point Fp = p∧ e∞, whose
dual is the pencil of all spheres centered on p, then constrained by pa to get S.

Algorithm 1: Find smallest tan-
gent sphere of two skew lines

Function skew lines sphere
Input: la, lb
Output: p ∧ e∞

lc ← (la × lb)
∗

n← lc ∨ e123 // Euclidean vector

P∥,a ← la ∧ (la ∧ n)∗

P∥,b ← lb ∧ (lb ∧ n)∗

Fp← (P∥,a + P∥,b) ∨ lc
Fpa ← P∥,a ∨ lc
xa ← −(eo∞·(Fpa∧eo))/(eo∞·Fpa)
pa ← eo + xa +

1
2x

2
ae∞

return Fp∗ ∧ pa

Figure 1. The algorithm and an illustration of the use case.
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4. Conclusion

This paper introduced an interpretation of CGA objects purely based on pencils
of spheres, as well as some set operators taking advantage of this new framework.
This contribution is illustrated by an application that finds a sphere of interest of
a pair of skew lines. That specific applicative case could be generalized to circles
since lines are circles. In a broader picture, this paper is a first step toward a set
theory re-interpretation of CGA powered by pencils of curves. As a future work,
we intend to extend the set operators to the yet unsupported cases, as well as
proposing more applicative cases to demonstrate their potency.

References

[1] Breuils, S., Nozick, V., Sugimoto, A., Hitzer, E.: Quadric Conformal Geometric Algebra of
R9,6. Advances in Applied Clifford Algebras 28(2), 35 (2018)

[2] Chomicki, C., Breuils, S., Biri, V., Nozick, V.: Intersection of Conic Sections Using Geometric

Algebra. In: B. Sheng, L. Bi, J. Kim, N. Magnenat-Thalmann, D. Thalmann (eds.) Advances
in Computer Graphics, Lecture Notes in Computer Science, pp. 175–187. Springer Nature

Switzerland, Cham (2023). DOI 10.1007/978-3-031-50078-7\ 14

[3] Dorst, L.: 3D Oriented Projective Geometry Through Versors of R3,3. Advances in Applied
Clifford Algebras 26(4), 1137–1172 (2016). Publisher: Springer

[4] Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-
Oriented Approach to Geometry. Elsevier (2010)

[5] Gunn, C.G.: Projective geometric algebra: A new framework for doing euclidean geometry

(2020). eprint: 1901.05873
[6] Perwass, C.: Geometric Algebra with Applications in Engineering, vol. 4 (2009). DOI 10.

1007/978-3-540-89068-3. ISSN: 354089067X, 9783540890676

[7] Sommer, G. (ed.): Geometric Computing with Clifford Algebras. Springer, Berlin, Heidelberg
(2001). DOI 10.1007/978-3-662-04621-0

[8] Vincent, H.: Using geometric algebra to interactively model the geometry of Euclidean and

non-Euclidean spaces. phd, Middlesex University (2007)

Clément Chomicki, LIGM, Université Gustave Eiffel, CNRS, France,
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