PENCILS AND SET OPERATORS IN 3D CGA
Clément Chomicki, Stéphane Breuils, Venceslas Biri, Vincent Nozick

To cite this version:
Clément Chomicki, Stéphane Breuils, Venceslas Biri, Vincent Nozick. PENCILS AND SET OPERATORS IN 3D CGA. 2024. hal-04569529

HAL Id: hal-04569529
https://hal.science/hal-04569529
Preprint submitted on 6 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PENCILS AND SET OPERATORS IN 3D CGA

CLÉMENT CHOMICKI, STÉPHANE BREUILS, VENCESLAS BIRI and VINCENT NOZICK

Abstract. Geometric Algebra can be considered as a language that unifies mathematics, physics and computer sciences etc. Among other, CGA is of special interest for its powerful transformations and its ability to represent any hypersphere or hyperplane. Moreover, CGA is an algebra capable of representing pencils of spheres. This paper presents a reinterpretation of every objects of 3D CGA as pencils of spheres and introduces set operators on its elements (i.e. union, intersection, complement, etc). As an application, these operators are used to find the smallest tangent sphere of two skew lines.

1. Introduction

Clifford Algebras, also known as Geometric Algebras (GA), form a powerful and flexible mathematical framework, ideally tailored for investigating geometry and its associated fields. Most geometric algebras share the possibility to construct their objects with some of their points or by intersection [7, 1, 5]. This common property comes from the fact that these algebras allow the manipulation of pencils of objects, as established by preexisting work [8, 3, 2]. This paper presents a way to manipulate CGA objects through their pencils and defines set operators that applies to them. The choice of CGA comes from its very handy non-degenerate basis, the fact that it handles spheres, its wide popularity and also from the wide range of geometric transformations that comes with it.

This papers starts with a short introduction to CGA in Sec. 1.1, followed by some notations in Sec. 1.2. The proposal of a construction of CGA from pencils then follows in Sec. 2, allowing some set operator to be introduced in Sec. 2.2, that are extended for the specific case of grade-2 pencils in Sec. 2.3. An applicative case then illustrates our contributions in Sec. 3, before the conclusion in Sec. 4.

1.1. Conformal Geometric Algebra

Conformal Geometric Algebra (CGA) [7] is a well-known family of geometric algebras built on $\mathbb{R}^{d+1,1}$ that allows the representation of any hyperspheres and hyperplanes of dimension $n \leq d$, built by intersection of other hyperspheres or hyperplanes or by the wedge of $n+1$ of their points.

2010 MSC: primary 34K06, 34K25; secondary 39.
Keywords: Geometric Algebra, Conformal Mapping, Clifford Algebra, Conformal Geometric Algebra (CGA), Pencil, Skew Lines.
1.2. Notations

Most of the notations in this paper are inspired from [4] and [6]. In addition, the followings are specified:

\[A^* \] dual [4] of \(A \) with \(A^* = AI^{-1} \)
\[\wedge, \vee, \times, . \] outer, anti-outer, commutator and inner products [6]
\[A \equiv B \] \(A \) equals \(B \) up to a non-zero scalar multiplicator

2. CGA view from the perspective of pencils

The previous section introduces CGA in any dimension. This section and the followings focus on CGA of \(\mathbb{R}^3 \) and its pencils.

2.1. Constructing CGA with pencils

This section aims to show that any objects of CGA is a pencil of spheres.

Definition 2.1. The 4-vectors of CGA are called spheres. Their set is denoted \(\text{Spheres} \). They represent any sphere of real, imaginary, or infinite radius. A dual sphere of radius \(r \) and center of projective coordinates \((x, y, z, w)\) is of the form:

\[
S^* = w^2e_o + xwe_1 + ywe_2 + zwe_3 + \frac{x^2 + y^2 + z^2 - r^2}{2}e_\infty
\]

(2.1)

Definition 2.2. A \(n \)-pencil is the intersection of \(n \) spheres, computed by their anti-outer product \(a \lor b = (a^* \land b^*)^* \). It is thus a blade of grade \(5 - n \).

More precisely, a \(n \)-pencil is the vector space generated by the \(n \) spheres.

Definition 2.3. The anti-outer-product null space of a \(n \)-pencil \(A \), denoted \(NA(A) \) is defined as

\[
NA(A) = \{ S \in \text{Spheres} \mid A \lor S = 0 \}
\]

(2.2)

It corresponds to the set of all spheres in the object. For now on, the mention of the inclusion of any pencil \(A \) in a pencil \(B \) refers to the property \(NA(A) \subseteq NA(B) \).

Definition 2.4. A point is a 4-pencil representing a location in the space. Denoted \(p \), a point of projective coordinates \((x, y, z, w)\) is of the form:

\[
p = w^2e_o + xwe_1 + ywe_2 + zwe_3 + \frac{x^2 + y^2 + z^2}{2}e_\infty
\]

(2.3)

A point also happens to be the dual of a sphere of radius zero.

Definition 2.5. The outer-product null space of a \(n \)-pencil \(A \), denoted \(NO(A) \) is defined as

\[
NO(A) = \{ p \in \text{Points} \mid A \land p = 0 \}
\]

(2.4)

It corresponds to the set of all points (thought as 4-pencils) in which the object is included. For now on, the mention of the inclusion of any point \(p \) in a pencil \(A \) refers to the property \(p \in NO(A) \).
Definition 2.6. A pencil is said flat iif. it does not contain any sphere of finite radius. Flat pencils are the pencils containing the point at infinity e_∞. A pencil is said round iif. it contains at least one finite-radius sphere.

All geometric objects of CGA being blades and all blades of CGA being pencils, then all objects of CGA can be defined as pencils.

2.2. Set operator on pencils: the easy cases

Previous section presents pencils as vector spaces of spheres, this section introduces set operators for them. Let’s first define an empty pencil and the pencil of all spheres. Relying on Def. 2.3 gives us I as the only blade containing no spheres, and 1 as the only blade containing every spheres. Therefore I is the empty pencil and 1 the pencil of all spheres.

Definition 2.7. Two pencils are said independent iif they share no sphere.

First of all, if two pencils are not independents, then their anti-outer product is 0. The independence criterion brings the following theorems:

Theorem 2.8. The union $A \cup B$ of two independent pencils A and B is $A \vee B$. The set complement of any pencil A is its dual A^*. The intersection of two pencils A and B whose complement are independent is $A \wedge B$.

Proof. Consider A and B independents n- and m-pencils. $A = S_1 \vee \cdots \vee S_n$, $B = S_{n+1} \vee \cdots \vee S_{m+n}$, then $A \vee B = S_1 \vee \cdots \vee S_{m+n}$, hence the union. Also $A \wedge A^* \equiv 1$ is the whole space, hence A^* is the complement of A. The union and complement operators are enough to create the intersection operator, hence taking any A and B so that A^* and B^* are independent, $(A^* \vee B^*)^* = A \wedge B$ is the intersection of A and B. □

The operators used ensure closure of the resulting sets. Commutativity is also given by the anti-commutativity of the products, as the sign of a pencil is irrelevant.

Theorem 2.9. Any round n-pencil A can be decomposed into a flat $(n - 1)$-pencil $\text{Flat}(A) = A \wedge e_\infty$ and its smallest sphere $\text{Small}(A) = A \wedge \text{Flat}(A)$.

Proof. This theorem is proven for every grade. For 2-pencils, the fact that a circle C is the dual of a point pair $p_1 \wedge p_2$ is used. For clarity, two functions Center and Radius are used, giving the center and the radius of an object.

\[
\begin{align*}
\text{Small}(1) &= e_\infty^* \\
\text{Small}(S) &= S & \text{with } S \text{ a sphere} & (2.5) \\
\text{Small}(I) &= 0 \\
\text{Small}(p) &\equiv p^* & \text{with } p \text{ a point} & (2.6)
\end{align*}
\]

\[
\begin{align*}
\text{Small}(p_1 \wedge p_2) &\equiv \text{Center}(p_1 \wedge p_2) - \frac{\text{Radius}^2(p_1 \wedge p_2)}{2} e_\infty & (2.7) \\
\text{Small}((p_1 \wedge p_2)^*) &\equiv \text{Center}(p_1 \wedge p_2) + \frac{\text{Radius}^2(p_1 \wedge p_2)}{2} e_\infty & (2.8) \\
&\equiv \text{Center}(C) - \frac{\text{Radius}^2(C)}{2} e_\infty & (2.9)
\end{align*}
\]
In every case, the resulting sphere is the smallest possible, with all the points of
the pencil on its equator. The case of the 0-pencil differs as it contains no spheres,
therefore the result is 0. For a 5-pencil, the result is the dual of the point at
infinity, which can be interpreted as a sphere of radius 0 centered on it.

This brings meaning to 1-vectors that are not points (duals of spheres of non-
null radius), which can now be interpreted as the intersection of a flat point F_p
(their center) and a small sphere S of same center, hence of the form $F_p \lor S$.

2.3. Set operator on 2-pencils

The previous section introduces set operators for independent and equal pencils,
while this section introduces set operators for 2-pencils that are neither indepen-
dent nor equal. 2-pencils consist of circles with real or imaginary radii. When two
circles are not independent, they intersect at a common sphere. Therefore this
section examines two circles $C_1 = S_a \lor S_b$ and $C_2 = S_a \lor S_c$. The initial step
involves finding the symmetric difference $C_1 \Delta C_2 = (C_1 \lor C_2) \setminus (C_1 \cap C_2)$.

Theorem 2.10. Consider S_a, S_b and S_c three independent spheres with $S_a^2 \neq 0$.

\[
(S_a \lor S_b) \times (S_a \lor S_c) \equiv (S_b \lor S_c)^* \tag{2.10}
\]

Proof. Consider $C_1^* = S_a \land S_b$ and $C_2^* = S_a \land S_c$ with S_a of non-zero radius and
potentially a plane. S_a, S_b and S_c can be chosen orthogonal, meaning that their
inner product two by two is 0.

\[
C_1 \times C_2 = -C_1^* \times C_2^* = (S_a \land S_b)(S_a \land S_c) = -S_a^2(S_b \land S_c) \equiv S_c \tag{2.11}
\]

Hence the property is true for a shared non-punctual sphere. □

This permits a general formulation for the symmetric difference of two circles.

Theorem 2.11. Consider C_1 and C_2 two circles.

\[
C_1 \Delta C_2 = (C_1 \times C_2)^* + C_1 \lor C_2 + C_1 \land C_2^* \tag{2.12}
\]

Proof. The three terms yield $C_1 \Delta C_2$ across three distinct scenarios: independence,
equality, and neither. Each term evaluates to 0 in the absence of the respective case,
thereby complementing one another. □

Theorem 2.12. If C_1 and C_2 are round and share exactly one common round
sphere, then

\[
C_1 \cup C_2 = C_1 \lor \text{Flat}(C_1 \Delta C_2) \tag{2.13}
\]

Proof.

\[
C_1 = S_a \lor S_b \tag{2.14}
\]

\[
F = \text{Flat}(C_1 \times C_2) = \lambda S_b + \mu S_c \tag{2.15}
\]

\[
F \lor C_1 = S_a \lor S_b \lor (\lambda S_b + \mu S_c) \quad \text{with } \lambda, \mu \in \mathbb{R} \tag{2.16}
\]

\[
\equiv S_a \lor S_b \lor S_c \tag{2.17}
\]

□
Theorem 2.13. If \(l_1 \) and \(l_2 \) are two lines lying on a common plane \(P \), then:

\[
l_1 \cup l_2 = l_1 \land ((l_1 \triangle l_2) \lor e_{123})
\]

(2.18)

Proof.

\[
l_1 = P \lor P_\perp \quad \text{with} \quad P_\perp = l_1 \land P^*
\]

(2.19)

\[
l_1 \triangle l_2 = (p_1 \land u \land e_\infty)\triangle(p_2 \land v \land e_\infty) = p_3 \land w \land e_\infty
\]

(2.20)

with \(u \), \(v \) and \(w \) Euclidean vectors of CGA

\[
l_3 \lor e_{123} = l_3 \land e_\infty \equiv w \quad \text{and} \quad P = l_1 \land w
\]

(2.21)

\[
l_1 \cup l_2 = P_\perp \lor l_2
\]

(2.22)

□

3. **Applicative case: smallest sphere tangent to two skew lines**

Two skew lines \(l_a \) and \(l_b \) are by definition not co-planar. There is exactly one point \(p \) that minimizes the distance to both lines, passing through a line \(l_c \) perpendicular to \(l_a \) and \(l_b \) and intersecting them in \(p_a \) and \(p_b \). The sphere \(S \) of center \(p \) and passing through \(p_a \) and \(p_b \) is the smallest sphere tangent to \(l_a \) and \(l_b \), and its diameter is their distance. Finding \(p \) is a problem often encountered in computer vision, which is why Dorst et al. proposed a PGA-based algorithm to find \(p_a \) and \(p_b \) from a point of each line and their directional vector. As an alternative, Alg 1 produces the sphere \(S \). The line \(l_c \) is found using Th. 2.11. Subtracting the direction of \(l_c \) to both pencils \(l_a \) and \(l_b \) using Th. 2.8 gives two parallel planes \(P_{\parallel,a} \) and \(P_{\parallel,b} \). Summing them results in the plane in-between them, passing through \(p \). This plane is then intersected with \(l_c \), giving the flat point \(F_p = p \lor e_\infty \), whose dual is the pencil of all spheres centered on \(p \), then constrained by \(p_a \) to get \(S \).

Algorithm 1: Find smallest tangent sphere of two skew lines

<table>
<thead>
<tr>
<th>Function</th>
<th>skew_lines_sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
<td>(l_a, l_b)</td>
</tr>
<tr>
<td>Output:</td>
<td>(p \land e_\infty)</td>
</tr>
<tr>
<td>(l_c)</td>
<td>((l_a \times l_b)^*)</td>
</tr>
<tr>
<td>(n)</td>
<td>(l_c \lor e_{123}) // Euclidean vector</td>
</tr>
<tr>
<td>(P_{\parallel,a})</td>
<td>(l_a \land (l_a \land n)^*)</td>
</tr>
<tr>
<td>(P_{\parallel,b})</td>
<td>(l_b \land (l_b \land n)^*)</td>
</tr>
<tr>
<td>(F_p)</td>
<td>((P_{\parallel,a} + P_{\parallel,b}) \lor l_c)</td>
</tr>
<tr>
<td>(F_{p_a})</td>
<td>(P_{\parallel,a} \lor l_c)</td>
</tr>
<tr>
<td>(x_a)</td>
<td>(-e_\infty \cdot (F_{p_a} \land e_0))/(e_\infty \cdot F_{p_a})</td>
</tr>
<tr>
<td>(p_a)</td>
<td>(e_0 + \frac{1}{2} x_a e_\infty)</td>
</tr>
</tbody>
</table>

Figure 1. The algorithm and an illustration of the use case.
4. Conclusion

This paper introduced an interpretation of CGA objects purely based on pencils of spheres, as well as some set operators taking advantage of this new framework. This contribution is illustrated by an application that finds a sphere of interest of a pair of skew lines. That specific applicative case could be generalized to circles since lines are circles. In a broader picture, this paper is a first step toward a set theory re-interpretation of CGA powered by pencils of curves. As a future work, we intend to extend the set operators to the yet unsupported cases, as well as proposing more applicative cases to demonstrate their potency.

REFERENCES

