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Abstract

2D transport codes for tokamak plasma fluid simulations remain of pri-
mary importance to prepare tokamak operation. Considered as reduced
models, they indeed allow fairly rapid simulations for ranges of param-
eters and geometries relevant to tokamak operation. In these codes, the
turbulence has been smoothed by averaging, which necessitates closing
the transport fluxes transverse to the magnetic field lines (resulting from
the averaging of stresses due to fluctuations) and inevitably involves free
parameters to be determined. Recently, Baschetti et al. 2021 proposed a
more predictive approach than the one implemented in the current com-
munity codes, in which the transverse diffusion coefficients (turbulent
viscosity) are determined from the kinetic energy of the turbulence and
its dissipation rate, estimated from two additional transport equations
with free parameters to be determined. In this paper, we explore the
efficiency of a variational data assimilation approach in fixing them.
Using a numerical twin experiment, the paper shows how the methodolo-
gies and regularisation strategies used can increase the efficiency of the
calibration procedure as well as its robustness to time sparsity and noise.
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1 Introduction

Magnetic fusion is a promising way to produce carbon free energy in large
quantities. It is based on the fusion of two light isotopes of hydrogen into a
heavier one in a hot plasma confined by a magnetic field in a toroidal machine
called tokamak, Figure 1. The International Tokamak Experimental Reactor
(ITER) is to date the most ambitious of these devices under construction by
its size and its ultimate goal of achieving a ratio of energy produced to energy
consumed equal to 10, ITER-Organization (2023). However, many physical
and technological issues remain that require intensive numerical simulations to
complement the sparse experimental measurements and incomplete theoretical
models.

Thus, in view of ITER operation and the design of optimized plasma sce-
narii, reduced models implemented in fluid transport codes (as in Wiesen
et al. (2015) or Bufferand et al. (2015)) are well adapted to provide relevant
information on appropriate return times, similarly to the Reynolds averaged
Navier–Stokes (RANS) codes commonly used for engineering applications with
neutral fluids Pope (2000). Despite the increase in computing power and the
performance of numerical methods, they are currently the only models capable
of performing simulations in the ranges of parameters and geometries relevant
to tokamaks.

In these fluid reduced models, turbulence has been smoothed out by aver-
aging. The transport fluxes (transverse to the magnetic field lines, Figure
1) resulting from the averaging of stresses due to fluctuations and assumed
to be driven by local gradients are characterized by ad-hoc diffusion coeffi-
cients (turbulent eddy viscosity) whose values must be determined. In a recent
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Fig. 1: Sketch of a simple magnetic geometry in a Tokamak with coordinates
of the torus. Particles are (imperfectly) bound to helicoidal trajectories which
follow the total magnetic field lines.
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study, Baschetti et al. Baschetti et al. (2021) has proposed an advanced mod-
elling that significantly improves the predictive capability of the model. In this
model, the transverse diffusion coefficients are determined from the turbulence
kinetic energy κ ≡ 1

2 ⟨v
′2
⊥⟩ and its dissipation rate ε such that D⊥ ∝ κ2/ϵ.

κ and ε are determined self-consistently by 2 additional transport equations
designed on the knowledge of the physical mechanisms at play at the plasma
edge in tokamaks. Inherent to the model reduction, free parameters remain in
these equations and must be calibrated.

For that purpose, and to improve the reliability and predictability of such
reduced models, we explore in the present work data assimilation with the
ultimate objective to use data bases provided by experimental measurements
or higher fidelity numerical models. While data assimilation is traditionally
used in oceanography or meteorology Bennett (2002); Kalnay (2003) to esti-
mate a global current state with sparse measurements of different accuracy,
the mathematical methods that are used have the potential to increase the
accuracy of any numerical model with loosely defined parameters, assuming
data from the modelled system is available. In the present work, we chose to
exploit the Variational Data Assimilation (VDA) framework Dimet and Tala-
grand (1986) which involves the minimization of a cost function defined as
the distance between the data of reference and the values computed by the
model Dimet and Talagrand (1986). The gradient of the cost function can then
be obtained by automatic differentiation, allowing the use of efficient minimi-
sation algorithms (e.g. conjugate gradient, quasi-Newton, . . . ) Lions (1971).
However, as a complex nonlinear optimization problem, the convergence of
the calibration procedure at a reasonable rate is not necessarily guaranteed.
Fortunately, the formulation as an optimization problem gives access to dif-
ferent strategies typical of this field of mathematics, like the re-scaling of the
optimization variables or the use of penalization function, which can greatly
improve the performances of the algorithm. Following Auroux et al. (2022), a
recently published proof of concept of the application of the VDA strategy to
improve the precision of a κ− ϵ type model for turbulence, this article aims at
detailing the choice of the methodologies used to increase the efficiency of the
calibration procedure as well as at testing its robustness. The paper is orga-
nized as follows. In section 2 we briefly define the κ− ϵ model averaged to 1D
in the radial direction and decoupled to the plasma transport equations . In
section 3 we give details on the calibration problem as well as on the algorithm
to solve it, including the definition of the cost, the computation of its gra-
dient and the different strategies to improve the whole procedure. In section
4 we introduce the configuration of reference for the calibration tests as well
as an experimental illustration of different methods to improve the algorithm.
Finally, in section 5, the robustness of the calibration algorithm is tested by
introducing noise and sparsity in the data.

Following Auroux et al. (2022), a recently published proof of concept of the
application of the VDA strategy to improve the precision of a κ−ϵ type model
for turbulence, this article aims at detailing the choice of the methodologies
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used to increase the efficiency of the calibration procedure as well as at testing
its robustness. In section 2 we briefly define the κ − ϵ model averaged to 1-
D in the radial direction and decoupled to the plasma transport equations,
Baschetti et al. (2021). Section 3 details the calibration problem as well as the
algorithm to solve it, including the definition of the cost, the computation of its
gradient and the different strategies to improve the whole procedure. Section
4 introduces the configuration of reference for the calibration tests as well as
an experimental illustration of different methods to improve the algorithm.
Finally, in section 5, the robustness of the calibration algorithm is tested by
introducing noise and sparsity in the data.

2 Reduced model

We consider here the κ-ε model reduced to 1D in the radial direction following
the procedure defined in Baschetti et al. (2021) (Section 3). The model is
here decoupled from fluid plasma equations and thus plasma flow variables are
considered constant in time. As defined in the Introduction, κ ≡ 1

2 ⟨v
′2
⊥⟩ and

ε relates a damping process acting on κ to determine the turbulent diffusion
with D⊥ = Cκ2/ϵ, where C is constant.

2.1 κ − ε model

The whole original model equations are detailed in Baschetti et al. (2021). The
evolution of κ and ε is governed by local dynamics and transverse and parallel
transport to the magnetic field lines, Figure 1. Both fields are understood to be
proportional to energies and thus defined to be positive. The radial coordinate
r varies between 0 and a, the little radius of the torus, corresponding to the
plasma center and the tokamak wall, respectively.

We normalize κ and ε by typical scales, so that Z = κ/κ0 and Y = ε/ε0.
We also normalize the radial position by the plasma minor radius a, so that
ρ = r/a, ρ ∈ [0, 1].

The normalized system now reads:

∂tZ =
1

ρ
∇ρ

(
ρDgBZ

Z2

Y
∇ρZ

)
+ γZZ −KZ2 − Y, (1a)

∂tY =
1

ρ
∇ρ

(
ρDgBY

Z2

Y
∇ρY

)
+ γY Y − γZ

Y 2

Z3/2
, (1b)

with initial and boundary conditions such that:

Z(t = 0, ρ) = Z0, ∇ρZ(t, ρ = 0) = 0, Z(t, ρ = 1) = 0,

Y (t = 0, ρ) = Y0, ∇ρY (t, ρ = 0) = 0, Y (t, ρ = 1) = 0.
(1c)

The general structure of the equations above allow to split the model in two
parts: a local prey-predatory model, which can either tend to a limit cycle or
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converge similarly to an underdamped oscillator, and nonlinear diffusion terms
which couple the variables at different radii, modelling the way the turbulence
diffuses itself. The parameter K ≪ 1 in (1a) is akin to a Kubo number as
it quantifies the condition of low turbulence regime Baschetti et al. (2021).
γZ and γY denote normalized growth rates. The diffusion weights DgBZ and
DgBY will be identified independently but their target values will be equal in
the configurations considered, so we usually refer to their common value as
DgB .

2.2 Spatial discretisation

The dimensionless radial coordinate ρ is discretized in Nρ + 1 values,
(ρj)j∈J0,NρK such that ρ0 = 0 and ρj+1 = ρj + ∆r, with ∆r = 1/Nρ so that
ρj ∈ J0, 1K. The toroidal geometry is approximated by a cylinder of length
2πA, with A = R/a the aspect ratio of the torus, and the toroidal angle ϕ
is replaced by the coordinate xϕ (slab geometry). Our cylindrical space Ω is
divided into cells (ωj)j∈J1,NρK corresponding to hollow cylinders with outer
and inner radii respectively equal to ρj and ρj−1. We can easily compute their
volumes Vj , inner surfaces S

−
j and outer surfaces S+

j :

S+
j = 2πρj × 2πA , (2a)

S−
j = 2πρj−1 × 2πA , (2b)

Vj = 2π(ρ2j − ρ2j−1)× 2πA , (2c)

Fig. 2: Representation of the cells in the original toroidal geometry. For sim-
plicity, at the discrete level, it is approximated by a cylindrical geometry (slab),
with cells corresponding to embedded hollow cylinders with outer and inner
radii respectively equal to ρj and ρj−1.

where Xj is the value of any variable or parameter X at the middle radius
(ρj + ρj−1)/2 of the cell ωj . Let’s now integrate system (1) on the volume of
each cell. From (1a), at any j ∈ J1, NtK, we get :
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∫
ωj

∂tZ =

∫ 2πA

0

∫ 2π

0

∫ ρj

ρj−1

1

ρ
∇ρ

(
ρDgBZDZ,Y ∇ρZ

)
dρ ρ dθ dxϕ

+

∫
ωj

(γZZ −KZ2 − Y ) , (3a)

with DZ,Y = Z2/Y . For the local terms, we simply approximate the variables
and parameters by their values at the middle point multiplied by the volume
of the cell. The diffusion term is integrated with regard to the radius :

Vj∂tZj = DgBZ

∫ 2πA

0

∫ 2π

0

[
ρDZ,Y ∇ρZ

]ρj

ρj−1

dθ dxϕ

+ γZ,j

(
Zj −KjZ

2
j − Yj

)
Vj . (3b)

Then since the variables and parameters are already averaged in the toroidal
and poloidal directions, we get :

∂tZj =
DgBZ

Vj

(
DZ,Y (ρj)(∇ρZ)(ρj)S

+
j −DZ,Y (ρj−1)(∇ρZ)(ρj−1)S

−
j

)
+ γZ,jZj −KjZ

2
j − Yj . (3c)

From there, we simply approximateDZ,Y (ρj) byD+
j := (DZ,Y ; j+1+DZ,Y ; j)/2

and (∇ρZ)(ρj) by D−
j := (Zj+1 − Zj)/∆ρ. We finally get :

∂tZj =
DgBZ

Vj

(
D+

j S
+
j

Zj+1 − Zj

∆ρ
−D−

j S
−
j

Zj − Zj−1

∆ρ

)
+ γZ,jZj −KjZ

2
j − Yj . (4)

Taking into account boundary conditions, we get (∇ρZ)(ρ0) = 0, and
(∇ρZ)(ρNρ) is approximated by −ZNρ . Furthermore, we consider that DZ,Y =

Z2/Y also has a limit of zero at the SOL boundary, so thatD+
Nρ

= DZ,Y ; Nρ
/2:

∂tZ1 =
DgBZ

V1
D+

1 S
+
1

Z2 − Z1

∆ρ
+ γZ,jZ1 −K1Z

2
1 − Y1, (5a)

∂tZNρ
=

DgBZ

VNρ

(
−D+

Nρ
S+
Nρ

ZNρ

∆ρ
−D−

Nρ
S−
Nρ

ZNρ
− ZNρ−1

∆ρ

)
+ γZ,Nρ

ZNρ
−KNρ

Z2
Nρ

− YNρ
. (5b)
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With equations (4), (5a) and (5b) we can define a linear operator D(D) :
RNρ → RNρ which depends on the viscosity vector D, and is applied to X = Z
or Y to obtain the corresponding diffusion term :

∀j ∈ J1, Nρ − 1K, D+
j = D−

j+1 = (Dj+1 +Dj)/2 , (6a)

∀j ∈ J2, Nρ − 1K,

(D(D)X)j =
1

Vj

(
D+

j S
+
j

Xj+1 −Xj

∆ρ
−D−

j S
−
j

Xj −Xj−1

∆ρ

)
, (6b)

(D(D)X)1 =
1

V1
D+

1 S
+
1

X2 −X1

∆ρ
, (6c)

(D(D)X)Nρ =
1

VNρ

(
−

DNρ

2
S+
Nρ

YNρ

∆ρ
−D−

Nρ
S−
Nρ

XNρ −XNρ−1

∆ρ

)
. (6d)

Hence after a similar reasoning for Y , we simply write the discrete system as :

∂tZ =DgBZD
(
Z2

Y

)
Z + γZZ −KZ2 − Y, (7a)

∂tY =DgBY D
(
Z2

Y

)
Y + γY Y − γZ

Y 2

Z3/2
. (7b)

2.3 Time discretization

A partially implicit time discretization is used in the parameter fitting proce-
dure to compute the trajectory of the normalised κ and ε. The derivative is
approximated using both the values of the variables at steps n and n+ 1, but
in a way that gives a linear system (from now on the indices are linked to the
time step) :

Zn+1 − Zn = ∆t

(
DgBZD

(
Z2
n

Yn

)
Zn+1 + γZZn −KZ2

n − Yn

)
, (8a)

Yn+1 − Yn = ∆t

(
DgBZD

(
Z2
n

Yn

)
Yn+1 +

(
γY − γZ

Yn

Z
3/2
n

)
Yn+1

)
. (8b)

Indeed D
(
Z2
n/Yn

)
is a linear operator depending on terms of the step n,

and Yn+1 at the end of the right hand side of (8b) is multiplied by a term
depending only on the step n as well. This simple strategy only adds the
computational cost necessary for the resolution of a tridiagonal linear system,
but largely improve the stability of the scheme. On the one hand, the implicit
resolution of the anisotropic Laplacian avoids to have CFL type conditions on
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Radial grid
spacing ∆ρ

Time step ∆t

Time elapsed
between two

recordings ∆obj
t

Data time
interval length LT

1/150 5× 10−3 5× 10−2 40

Table 1: Default numerical values for the discretisation data in the parameter
fitting procedure

the value of the time step ∆t. On the other hand, by inverting the local part
of (8b), we get:

Yn+1 −∆t

(
γY − γZ

Yn

Z
3/2
n

)
Yn+1 = Yn. (9a)

And so,

Yn+1 =
Yn

1−∆t

(
γY − γZ

Yn

Z
3/2
n

) . (9b)

If Yn+1 is given by (9b), it will remain positive as long as ∆t < 1/γY , which
is manageable because it depends directly on the parameters.

Obviously the scheme is still not stable for any set of parameters. This is
actually a good test because solvers are rarely expected to give exploitable
results in every regime, so the minimisation algorithm must be able to cope
with regions -not precisely identified a priori - of forbidden sets of parameters.

The modification of the solver algorithm to compute the cost is straight-
forward : when the model reaches a time ti corresponding to recorded data
vectors Zobj

i and Y obj
i , the squared difference between the logarithm of the

current value of Z and Y and of the data Zobj
i and Y obj

i , the cost function
is added. The solver of the model is derived by the automatic differentiation
tool Tapenade Hascoët and Pascual (2012), mostly as a proof of concept. For
this simple solver the derivative could have been written directly but an auto-
matic differentiation tool will be quite useful when extending to more complete
models with substantially more complex solvers.

Table 1 displays the default values of the discretization parameters. The
data is generated with the same time step as the one used by the model
solver in the parameter fitting algorithm (∆t = 5 × 10−3) to ensure that we
effectively consider twin experiments. However we don’t need data at every
time step, and so we can have multiple solver iterations between two records.
By default the solution is recorded every 10 iterations, giving a data time step
(∆obj

t = 5 × 10−2). The influence of data time step will be briefly studied in
Section 5.

Furthermore, an important factor for the efficiency of the algorithm is
the length of the time interval in the cost function. Since the model is often
locally oscillatory, the objective data and the currently computed trajectory
may quickly run out of phase even if the parameters are relatively close from
their target values. Hence it is interesting to reduce the length of the time
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interval to at most a few oscillations, and we use by default a length of 40,
approximately equal to four oscillation periods for the considered configuration
(see Figure 5).

3 Model calibration

The fitting procedure is only tested on twin experiments, fairly virtual cases
where the target data are generated by the model itself, for some parameters
that we try to find back. Although avoiding the problem of uncertainty and
unavailability of the observations, it is already a sufficient test to give insights
on the good behaviour of the algorithm and its ability to detect more or less
complex sets of parameter values.

3.1 Definition of the problem

The target data are constituted of two sets of vectors (Zobj
i ) and (Y obj

i ) (the
exponent obj stands for objective) containing approximations of Z and Y at
different radial positions for a given set of times (ti)i∈J0,NT K separated by the

data time step ∆obj
t . The data time step ∆obj

t is a multiple of the time step
(here 10 times bigger, as stated in Table 1) used in the numerical solver to gen-
erate the data themselves. Since the data are generated here, they are already
complete, in the right format, and we do not have to take into account possible
differences of confidence on the different observations. With real data, these
problems will be mostly treated in the definition of the cost function, including
operators to get the generated trajectory in the format of the data and adding
a covariance matrix in the definition of the cost to account for observation
errors. Here we can simply use an Euclidean scalar product of the difference
between the generated trajectory and the data. For a given set of parameters
p, knowing the target set of vectors (Zobj

i ) and (Y obj
i ) corresponding to times

(ti)i∈J0,NT K the cost functional simply reads:

j(p) =
∑

i∈J0,NT K

1

2

(
∥(Z(p))(ti)− Zobj

i ∥22 + ∥(Y (p))(ti)− Y obj
i ∥22

)
. (10)

Furthermore, as we will see in Section 4.4, considering an error relative to the
value of the parameters can be useful to maximise the use of the information
in the data. Indeed the variable can have important scale variations and an
error at a small scale can have a huge impact after the exponential growth.
Hence, we will alternatively use a cost based on the difference between the
logarithms :

jl(p) =
∑

i∈J0,NT K

1

2

(
∥ log((Z(p))(ti))− log(Zobj

i )∥22

+ ∥ log((Y (p))(ti))− log(Y obj
i )∥22

)
. (11)
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Concerning the parameters to identify, they are 5 in the model given in (1),
namely DgBZ , DgBY , γZ , γY and Z. We add to these parameters the initial
states Z(t0) and Y (t0), simply written Z0 and Y0. In our case, the initial states

are directly given by the first vectors in the data sets, Zobj
0 and Y obj

0 . However,
even if the target initial conditions are given in the data, it is not obvious that
the algorithm will easily converge towards them : at least in an intermediate
state of the optimisation algorithm, it may be more advantageous to have the
initial state different from the one given by the data if it allows for a reduction
of the distance to the data as a whole. For real physical problems the data
will most likely not be available at any point in space, and not directly for
the turbulent variables κ and ε, so it is important to show that the initial
condition can be identified.

All parameters are considered constant in time -as said above- and
dependent on the radius, except DgBZ and DgBY which are simple scalars.
Considering that the purpose of the model is to evaluate the viscosity coef-
ficient, correcting it with an ad-hoc parameter at every space point would
clearly reduce its interest. Hence we authorize ourselves the simplification of
considering DgBZ and DgBY as scalars.

Summing up, we have 7 different parameters (including the initial con-
ditions), among which 5 vary with the radius, and all of them are used as
unknowns of the inverse problem :

� DgBZ and DgBY ∈ R+ the coefficients of the (nonlinear) diffusion term,
necessarily positive for a physically coherent diffusion effect.

� γZ and γY ∈ L∞([0, 1] → R+) the normalised effective growth rates. They
may vary consequently in scale and could theoretically change of sign, but
this case is not considered here, even if the PDE solver can marginally
converge for negative values.

� K ∈ L∞([0, 1] → R+) the Kubo parameter (also referred to the Strouhal
number) weighting the nonlinear saturation term in the equation (1) for Z.
The value of K is usually fairly negligible between 10−1 and 10−4, but it is
supposed to remain positive to act as a saturation term.

� Z0 and Y0 ∈ L∞([0, 1] → R+) the initial states of the model. They are
supposed positive due to the physical definition of Z and Y -and the
mathematical operations performed on them make this condition necessary.

Despite the boundaries defined here, most of the parameters are allowed to take
negative values at intermediate states of the minimisation algorithm, because it
improves the convergence of the chosen minimizer. However their final retrieved
values should indeed be positive.

3.2 Minimizer

The complete principle of the algorithm is illustrated in Figure 3.
First the κ − ϵ model is solved for a given set of data parameters and

the values of Z and Y are recorded for different values of the time variable
separated by ∆obj

t . Then we have a loop between a nonlinear minimisation
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Fig. 3: Block scheme of the minimisation algorithm.

routine, the Fortran routine m1qn3 Gilbert and Lemaréchal (2009), and the
derived version of the whole procedure returning the cost, i.e., the 1D κ − ϵ
model solver slightly modified to compute the difference with the target data.
Since the gradient is necessarily 0 at the minimum, the loop stops when the
2-norm of the gradient of the cost function has been enough reduced with
regards to its initial value, namely, ∥∇j∥/∥∇j0∥ < ϵg = 10−7.

The m1qn3 routine implements a limited memory BFGS algorithm for
unconstrained nonlinear optimisation (see Gilbert and Lemaréchal (1989)). It
is a very efficient numerical minimiser, which converges quickly in terms of
iterations, with a negligible cost in terms of computational time and memory
space, compared to the evaluation of the cost and its gradient. It relies on
the evaluation of an approximated value for the Hessian using the gradient
and estimates from a given number M of past iterations. A larger M would
generally improve the precision of the Hessian approximation -hence reducing
the number of iterations before convergence- but also increasing its compu-
tational and memory cost of each iteration. For all calibration tests, we have
set M = 20 since it has been reported that a higher value does not generally
reduce significantly the number of iterations before convergence. Among the
two possible modes of initialisation of the approximated Hessian, we choose
the Diagonal Initial Scaling (DIS) which should further reduce the number of
iterations. Each iteration of this minimiser may actually require multiple ”sim-
ulations”, i.e. evaluations of the cost function and of its gradient, because a
line search along the computed descent direction is performed until some Wolfe
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conditions Wolfe (1969) are satisfied. Most of the time the initial step-size of 1
is sufficient, and in an unconstrained optimisation context, the number of sim-
ulations is rarely more than 30% larger than the number of iterations Gilbert
and Lemaréchal (1989).

During this line search, if we reach a set of parameters for which the cost
can’t be computed (typically because the direct solver does not converge), a
special value is returned to m1qn3 and the step-size is divided by ten. Although
this is useful to avoid too big steps typically in the first iterations, it is not
a very efficient strategy when the set of parameter is close to a region where
the direct solver does not converge, as it simply slows the algorithm without
really pushing it in a safer direction. This is where the scheme we have chosen
becomes quite useful because its trajectory smoothly expands before diverging
by reaching negative values. It will then allow to compute a considerable error
near the region of non convergence and a gradient which will naturally push
the parameters in safer territories, while not slowing down the algorithm.

Nevertheless it is not always sufficient, as the algorithm is sometimes unable
to find a suitable step-size near the boundaries of the region of convergence
of the numerical scheme. We want to avoid the use of a constrained mini-
mizer because we expect to find a minimum for which the constraints are not
active, and the constrained solver are generally largely heavier computation-
ally. Instead we will introduce multiple regularising strategies to avoid the
divergence of the algorithm as well as to improve its general convergence.

3.3 Scaling

Scaling functions are used to improve the conditioning of the problem and
impose boundaries on some parameters. Each of the 7 parameters can have
a different scaling function s, defined element-wisely for the non constant
parameters. A given parameter x of the set p, corresponds with the rescaled
parameter x̄ ∈ p̄, such that x = sx(x̄). In this form, the scaled cost function is
j̄(p̄) = j((sx(x̄))x̄∈p̄) and its gradient with regards to x̄ reads:

∇x̄j̄ =
∂sx
∂x̄

∇xj(p) . (12)

Hence the gradient with regards to the rescaled parameter is multiplied by the
derivative of the scaling function sx. Moreover, the range of values assumed by
the rescaled parameter is different from the non scaled parameter, so the gra-
dient may have a greater or lesser impact on the movement of the parameter.
For a simple gradient descent, the value of the parameter x at the iteration
n+1 is obtained from its value xn at iteration n as (with αn the step for this
iteration) :

xn+1 = sx
(
s−1
x (xn)− αn

∂sx
∂x̄

∇xj(p)
)
. (13)



Springer Nature 2021 LATEX template

Inverse problem for reduced fusion plasma turbulent transport models 13

Hence for a linear scaling, s : x 7→ (k x),

xn+1 = k
(
k−1xn − αnk∇xj(p)

)
= xn − k2αn∇xj(p) .

(14)

Thus in this case the variation of the parameter x between iteration is enhanced
by k2. A sophisticated solver like m1qn3 usually compensates itself for the bad
conditioning, but a rough a priori scaling for the parameters can significantly
improve the convergence.

Moreover the scaling can be used to impose limits on a parameter : we
just have to use a scaling function whose image is bounded, typically with
horizontal asymptote. However, this adds nonlinearity and leads to a vanishing
gradient as soon as the parameter get closer to the limit, what could finally
slow down the convergence. Hence this strategy is better used sparsely. For
a given rescaled parameter x̄, we use for the scaling either one of the two
following functions, which includes each time a linear coefficient kx :

� the linear function x̄ 7→ kxx̄
� an exponential function, x̄ 7→ ekxx̄. In this case the gradient is multiplied by
kxe

kxx̄ = kxx, so that the gradient is increased as the value of the parameter
increases.

By default the scaling functions for each parameter are linear with coefficients
kx = 1, which is equivalent to no scaling at all.

3.4 Penalisation

Penalisation terms are added to the cost function to help keeping expected
shapes and values for the parameters. They directly depend on the parameters
and not on the result of the physical model. In this article we only use a
penalisation on the radial derivative : for each parameter which depends on
the radius, the quadratic norm of its derivative with respect to the radius
multiplied by a scalar weight wρ is added to the cost function :

wρ

Nρ−1∑
i=1

(
xi+1 − xi

∆ρ

)2

. (15)

This penalisation is expected to inhibit the apparition of oscillations on the
parameters, and improve the convergence rate at later stage of the calibration.
Alternatively, for the initial states Z0 and Y0, we may also use a logarithmic
version of the radial penalisation function :

wρ

Nρ−1∑
i=1

(
xi+1 − xi

∆ρ(xi+1 + xi)/2

)2

. (16)
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Fig. 4: Radial profile of u = γY /γZ . The vertical dashed and dotted lines
indicate respectively the middles and boundaries of the tanh shaped transition
regions. The dash-dot lines are linked to the expected local behaviour : the
horizontal one indicates the critical value ucrit ≈ 0.89 of u between the stable
(u ≥ ucrit) and the unstable (u < ucrit) fixed point, while the vertical ones
delimitate the stable region around ρ = 0.55.

The weight of the radial derivative penalisation, wρ, is chosen identical for
each parameter and equal to 0 by default.

Finally to maximise the efficiency of the regularising strategies it can be
interesting to launch the algorithm twice, starting the second launch with
the parameters obtained after the first, typically to change the weights of
the different penalisation between the two launches. In this case we label the
successive weights with exponents 1 or 2 whether they are used on the first
or the second launch. By default all penalisation weights are set to zero. The
next section will progressively introduce the different regularising strategies
and illustrates experimentally their effects.

4 Tuning of the algorithm parameters and
numerical results

4.1 Reference configuration for the calibration algorithm

We introduce here the configuration on which the calibration algorithm will
be tested for the reduced model (1). It consists of the choice of some specific
radial shapes or constant values for each parameter varying with the radius.
We will then test different values for the diffusion weights. This configuration
will be used to generate the data, so that we can expect here the calibration
algorithm to retrieve the corresponding shapes and values of the parameters.

In order to illustrate how the stability of the local system is modified by the
diffusion, we use a constant γ = γZ = 1 and K = 5× 10−2 and a fixed profile
of u = γZ

γY
enforcing limit cycle for the local solutions except in the vicinity
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Fig. 5: Contour plot of Z versus time t and radial position ρ. Left : DgB =
10−8, Right : DgB = 10−4.

of ρ = 0.55 where the local analysis predicts convergence. The variation of u
is governed by standard tanh-shaped step functions S(ρ, ρb, δρb) and window
function Π(ρ, ρb1, δρb1, ρb2, δρb2) defined, respectively, as:

S(ρ, ρb, δρb) = 0.5
(
1 + tanh

(ρ− ρb
δρb

))
, (17a)

Π(ρ, ρb1, δρb1, ρb2, δρb2) = 0.5
(
S(ρ, ρb1, δρb1)− S(ρ, ρb2, δρb2)

)
. (17b)

For the present simulation we have thus set:

u = 0.75 + (ut − 0.75)Π(ρ, ρb1, δρb, ρb2, δρb). (18a)

The width of the two transition regions is chosen identical for both step
functions, namely:

ut = 1.15 ; ρb1 = 0.5 ; ρb2 = 0.6 ; δρb = 0.05. (18b)

Since the distance ρb2 − ρb1 = 2δρb is small, the step function does reach
its target value and ut is adjusted to ensure that u > 0.89 in the window
0.528 ≤ ρ ≤ 0.572, reaching u ≈ 0.9 at ρ = 0.55 (see Figure 4). Finally we
choose flat initial conditions Z0 = Y0 = 2.

To limit the number of free parameters, the diffusion weights are kept equal
DgBZ = DgBY = DgB . When they are increased, two effects become more and
more evident (see Figure 5 with DgB = 10−4). First the absorbing condition
at ρ = 1 obtained by enforcing Z = 0 and Y = 0 is now coupled with the
other points in the radial profile governing a gradient in the values of Z and Y .
Secondly, after a transient period, the local oscillations have the same period
at each radius, but with a certain delay constant in time. Even the region
characterized by stable fixed points exhibits relaxation oscillations due to the
radial coupling induced by the diffusion.
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D0
gBZ D0

gBY γ0
Z γ0

Y K0

10−5 10−5 1.2 0.7 0.02

Table 2: Initial guesses used in each test of the calibration procedure.

In the next subsections, we will show how the parameter fitting procedure
handles the different behaviours linked to the different values of DgB . Regu-
larising strategies will be introduced one after the other to improve either the
robustness or the overall computational cost of the algorithm.

4.2 Choice of the scaling and of the time interval

We use, for all the tests of the calibration procedure, the same first guesses for
each different parameter except for the initial states because they vary consid-
erably depending on the configuration. The first guesses generate a trajectory
with oscillations of large amplitude (above 50) so that the data is generally
almost negligible in the first steps of the iteration, during which the amplitude
of the oscillation is quickly reduced. Consequently the initial norm of the gradi-
ent does not change too much with the objective parameters, and the stopping
condition based on the ratio of reduction of this norm is almost equivalent to
an absolute condition on the norm. It also has to be kept quite low to have a
precise identification of the parameters, here by default at ϵg = 10−9.

4.2.1 Scaling

Running the basic version of the algorithm with Dobj
gB = 10−8 and time interval

[0, 40] the algorithm does converge to the stopping threshold of 10−9. However
the evolution of the parameters clearly shows room to improve, as it can be seen
in Figure 6. In the non scaled version, DgBZ and DgBY quickly increase in the
beginning (whereas, they should be decreasing), while most of the parameters
stay constant until around the simulation 40. This is typically a sign that the
descent direction has a much higher component for DgBZ and DgBY , making
the problem poorly conditioned. Indeed if we plot a radial mean of the gradient
with regard to each parameter (see Figure 7) the gradient with regards toDgBZ

and DgBY is clearly orders of magnitude higher than the one with regards to
the other parameters. And since the target and initial values for DgBZ and
DgBY are also quite low, their relative values move very quickly. Additionally
a difference in the gradient value can be remarked for both Z0 and Y0.

We then introduce some scaling to improve the conditioning of the problem.
The simplest idea would be to use a linear scaling function with a very low
coefficient somewhere between 10−3 and 10−6. However considering that we
want an evolution of DgBZ and DgBY spanning multiple orders of magnitude,
it is tempting to use instead its logarithm inside the minimisation routine. This
leads to an exponential scaling function s : x̄ 7→ k exp(x̄) for x̄ the rescaled
parameter and k the linear scaling coefficient. It has two interesting properties.
First it insures that the parameter is always positive. Secondly it leads to a
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Fig. 6: Evolution of the errors on the parameters for the 100 first simulations
of calibration runs with different types of scaling for DgBZ and DgBY . The
error on the parameters are shown even for simulations which are not kept as
valid iterations, usually when the initial step size lead to extreme values.
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Fig. 7: Evolution of the norm of the gradient of the cost with regards to each
parameter for the 100 first simulations of calibration runs with no scaling on
DgBZ and DgBY . In contrast with Figure 6, we only plot values at the end
of iterations, not the intermediate simulations. An L2 norm is used for the
parameters dependent on the radius.

gradient decreasing with the value of the parameter :

∇x̄j = ∇x̄s(x̄)∇xj = k exp(x̄)∇xj ,

that yields

∇x̄j = x∇xj . (19)
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Fig. 8: Evolution of the cost and the norm of its gradient for the 100 first
simulations of calibration runs with different types of scaling for DgBZ and
DgBY . The value of the cost and its gradient are set to zero when the direct
model does not converge.

However this compensates an opposite evolution of the gradient with regards
to the value DgB . If we approximate (with, for simplicity, an explicit scheme of
time step ∆t) the value of the gradient with regard to DgBZ on one iteration
we have ∇DgBZ

j = [∇DgBZ
Z] (Z − Zobj) with

∇DgBZ
Z = ∇DgBZ

(
Z0 +∆t

(
DgBZ

1

ρ
∇ρ(ρ

Z2
0

Y0
∇ρZ0) + γzZ0 −KZ2

0 − Y0

))
that yields

∇DgBZ
j =

(
∆t

1

ρ
∇ρ(ρ

Z2
0

Y0
∇ρZ0)

)
(Z − Zobj) . (20)

We have that the gradient with regard to DgBZ and DgBY is higher if the
radial gradient of either Z and Y is higher. And indeed this is what occurs if
there is less diffusion, namely, for lower values of DgBZ and DgBY .

Hence we introduce and compare both the linear scaling with the best
coefficient experimentally found and the exponential scaling with a linear coef-
ficient of 1.0 (see Figure 6). In both cases the other parameters start evolving
much faster as expected. It mostly prevent DgBZ and DgBY to reach unneces-
sary high values which may then slow down the convergence, or even possibly
prevent it. If we now consider the plot of the cost and gradient norm, Figure 8,
the times where the value is below the limit of the graph correspond to set of
parameters which make the solver diverge. We can see that this happens mul-
tiple times without the exponential scaling and this is often caused by either
DgBZ or DgBY being lower than 0. Hence, since the exponential scaling ensure
the positivity of DgBZ and DgBY and does not require to find an efficient scal-
ing coefficient we keep it for the following, although it should be noted that
after the initial phase both the exponential scaling and the 1/10000 linear
scaling lead to very similar results (see Figure 9). Finally the gradient norm
value with regards to Y0 and Z0 seen in Figure 7 appears noticeably lower
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Fig. 9: Evolution of the cost and the norm of its gradient at the end of all
the iterations of calibration runs with different types of scaling for DgBZ and
DgBY , with regards to the number of simulations.
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Fig. 10: Number of simulations (left) and total number of iterations of the
direct κ− ϵ solver (right) for different time intervals.

than the other ones. A simple linear scaling of coefficient 10 is introduced to
compensate and it effectively speed up again the convergence (see Figure 9).

4.2.2 Time interval

We now want to focus on the importance of the choice of the time interval.
It may indeed be critical for the overall computation cost of the whole algo-
rithm, since it may influence the convergence rate and is directly linked to
the computation cost of each iteration, the time step being fixed. For the case
we consider the mean period of oscillation of Z and Y at each radial point is
around 10, and the first tests were performed with a time interval of length
LT = 40 so with approximately 4 oscillations. As it can be seen in the left
part of Figure 10, the number of simulations is minimised for a time interval
of length LT = 10, corresponding with one mean oscillation. This is a consid-
erable improvement in total computational cost because it more than halves
the number of simulations necessary for the convergence and divides by 4 the
number of iterations of the direct solver at each iteration, so approximately
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Fig. 11: Ratio of initial and final errors (L2 distances with targets) on the
parameters for different time interval lengths.

reducing the overall cost by a factor of 10, as it can be remarked on the right
part of Figure 10. However this reduction of the computational cost is com-
pensated by a reduction of the precision on the recovered parameters. Figure
11 shows the improvement (ratio of initial and final L2 distances with tar-
gets) on the parameters for the different time interval tested. Indeed the final
precision on the parameters is considerably higher for longer time intervals.
This is partially due to a stopping threshold too high for the lower time inter-
vals. Moreover the improvement on the initial condition Y0 and Z0 seem to
evolve less than for the other parameters while the difference on the precision
of DgBZ and DgBY is huge. Obviously the shorter time interval would allow to
identify quickly and precisely the initial condition, what would allow a faster
convergence of the algorithm. However using the rest of the data would be
beneficial to increase the precision on the other parameters, and would explic-
itly insure that the simulation matches most of the data. Indeed it is then
possible to do a first minimisation with a short time interval length, and then
improve it with a longer one using the parameters retrieved by the first run
pend,1 as first guesses for the second : pend,1 = p0,2. In this case we remove
the scaling on DgBZ and DgBY for the second run of the algorithm, because
theirs initially low values lead to very low gradient components. Since the gra-
dient norm significantly increases when passing from the first to the second
minimisation, the second stopping condition is relative to the new gradient :
∥∇j(p0,2)∥/∥∇j(pend,2)∥ < ϵ2g = 10−9. As we can see in Table 3, we obtain
less simulations in total as well as an even more precise estimation.

For the following we will then focus on an interval length corresponding
roughly with the mean period of one oscillation, assuming in most cases that
the precision obtained is sufficient or could be improved efficiently with a
second run of the algorithm.

4.3 Radial derivative penalisation

Two issue lead to the consideration of a penalisation on the radial derivative of
the parameters. First the apparition during the minimisation of big oscillations
and spikes, especially close to the wall (right) boundary, which may reach the
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LT number of simulations err DgBZ err DgBY

40 685 1.18× 10−2 2.5× 10−2

10 then 40 554 (313 then 241) 1.52× 10−3 6.79× 10−4

LT err γZ err γY err K err Z0 err Y0

40 2.73× 10−6 5.85× 10−7 2.04× 10−5 8.27× 10−6 8.15× 10−6

10 then 40 3.34× 10−7 4.5× 10−8 3.73× 10−6 1.12× 10−6 1.01× 10−6

Table 3: Comparison of the results of one run of the algorithm over a long
time interval [0, LT ] against a run over a short time one followed by a run over
a long one. The error on the parameters is a L2 distance between the retrieved
parameters and their target counterparts.

region of instability of the direct solver with a risk of the divergence of the
calibration algorithm. Indeed the value of the Dirichlet boundary condition
is spread by diffusion so that it is the dominant term in the vicinity of the
boundary. But until the diffusion weights DgBZ and DgBY reach their target
values the algorithm try to compensate the error with the other parameters,
leading to very sharp shapes. We expect the radial derivative penalisation to
limit the apparition of those sharp shapes. Secondly for higher value of DgBZ

and DgBY the algorithm does not seem to be able to reach consistently the
expected target parameters. In this case the very high diffusion will generally
flatten the variables Z and Y so that the shape of the parameters is significantly
harder to recover from them. Thus for the tested highest value of DgB the
algorithm seems to stay stuck on quasi local minima from where it can’t get
out in a reasonable number of iterations. The radial derivative penalisation
should make the cost function convex, in order to help the convergence towards
the global minimum.

We will focus first on the latter issue, and try to improve on the former in
section 4.5. If we consider the shape recovered for γZ with a target DgBZ =
DgBY = 10−2 (see Figure 12) we see that sharp oscillations are visible next
to both boundaries. Furthermore, the shape obtained is different for the two
tested time intervals and even if we let the algorithm run until 4000 simulations
the oscillations are still very noticeable. On the other hand, the orange curve
shows the result with a small radial derivative penalisation weight wρ = 2.5×
10−7. This specific value is set to correspond with the one used in Auroux
et al. (2022), where the formula for the penalisation is just a difference, not
divided by the radial step. Indeed the boundaries are almost flat but there
is a noticeable error on the bell shape of γY (and generally where the radial
derivative of γY is the highest). Hence, although this method introduces an
artificial error, it is quite predictable in the sense that we have a good idea of
where the recovered shape may be less precise. Moreover the convergence rate
is largely increased with only 715 simulations to reach the stopping condition
against 1145 without penalisation.
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Fig. 12: Final recovered shape of γY for different time intervals, with or with-
out penalisation of the radial gradient. The violet dashed curve is ran until
reaching the limit of simulations instead of a threshold on the gradient norm.
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Fig. 13: Values of the target and first guesses for the initial states Z0 and
Y0 for the different DgB . The targets are obtained by running the simulation

until t = 40, starting with Z(0) = Y (0) = 2.0 for the given Dobj
gB .

However, since many parameters are flat, this situation could be a little too
favourable to the radial derivative penalisation. To have a more fair comparison
without changing the case of study, we will try to start the time interval from
later than the value 0. Since the system is autonomous this is equivalent to
consider as initial states Z0 and Y0 the shapes recorded in the data at a given
time. We choose to start at the time 40 where the limit cycle begin to be well
established and hence the shapes of Z and Y are far from being flat, as it can
be seen in Figure 13. The first guesses for the initial conditions Y0 and Z0 are
also adapted to not be too far from the target values.

Figures 14 and 15 compare the number of simulations and the improve-
ment of the recovered parameters with or without penalisation. Indeed there is
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Fig. 14: Number of simulations before convergence with or without radial
derivative penalisation, for different values of Dobj

gB

a clear improvement on convergence rate for high values of Dobj
gB with penali-

sation while it is more or less equivalent with or without penalisation for lower
values of Dobj

gB . If we compare the improvement on the parameters, they are
more precisely identified without penalisation except for the highest target
DgB . The penalisation is interesting though because it leads to approximately

the same improvement for each target value of Dobj
gB , making it more reliable.

It is still possible to launch a second calibration without penalisation (or with
a reduced weight) starting from the recovered parameters to improve them
even more. However if it is known that the diffusion weights are very low,
it is clearly advantageous to use directly a calibration without radial deriva-
tive penalisation, which gives a much higher precision in the same number of
simulations.

4.4 Logarithmic cost and penalisation

To improve again the efficiency of the algorithm we try to replace the formula
of the cost by a norm of the difference the logarithm of the variables. The
reasoning is that with a simple L2 cost, the biggest differences between the
target and current trajectories is probably be computed when the trajectories
reach their maximal value, and that by comparison, the error at the beginning
of the simulation would appear negligible. However due to the exponential
growth of the local model, a consequent relative error made at the beginning of
the growth will cause a big error in absolute value at the apex of the trajectory.
Hence to maximise the information of the whole trajectory, it seems interesting
to consider a relative error instead of an absolute one, and the former is given
by a difference between the logarithm of the currently generated trajectory
and its target.

If we replace only the formula of the cost the results appear slightly dis-
appointing on our configuration of reference. The two blue curves of Figures
16 and 17 compares the calibrations with a standard and a logarithmic cost
both with a radial derivative penalisation of weight 2.5 × 10−5. As it can be
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Fig. 15: Error reduction on the final recovered parameters with or without
radial derivative penalisation, for different values of Dobj

gB

10−8 10−7 10−6 10−5 10−4 10−3 10−2

Dobj
gB

400

600

800

1000

1200

1400

Number of simulations

std cost
log cost

std cost + log penal
log cost + log penal

Fig. 16: Comparison of the number of simulations for calibrations with and
without logarithmic cost and/or logarithmic radial derivative penalisation, for

different values of Dobj
gB .

seen, while the logarithmic cost systematically reduces the number of simula-
tions necessary for convergence, it also deteriorates the final precision of the
retrieved parameters.

However we can also point out that if the variation of the relative values
of the variables Z and Y are more relevant than their absolute variation, the
penalisation of the radial derivative might be more adapted if it was applied to
the derivative of the logarithm, specifically for Z0 and Y0. Indeed changing the
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Fig. 17: Comparison of the reduction of the error on the parameters, for
calibrations with and without logarithmic cost and/or logarithmic radial

derivative penalisation, for different values of Dobj
gB .

formula of the penalisation for the initial states -while still keeping the same
cost- appear to improve considerably the precision of the retrieved parameters,
for each kind of costs (ref. Figures 16 and 17). Only for the highest value of

Dobj
gB the basic penalisation leads to slightly better results for γZ , γY and K,

but this is easily compensated by the largely higher number of simulations
necessary for convergence. Since Z0 and Y0 are significantly superior to 1, it
seems likely that the effect of the logarithmic penalisation is mostly equivalent
to a reduced weight wρ for Z0 and Y0 in this case. It could essentially be a
strategy to limit the need to modify the weight of the penalisation depending
on the values of the initial states, which would make the algorithm more robust.
Considering other configurations could help confirm this interesting premise.
Regardless of these consideration, with this new penalisation, the logarithmic
cost appear the most efficient, being able to reduce the number of simulation
while keeping a good precision.

4.5 Reduction of the penalisation weight over multiple
launches

Finally to improve again the robustness of the algorithm we try to launch the
algorithm twice with a reduction of the penalisation weight between the two,
while keeping the same time interval length. This is mostly because the radial
penalisation weight chosen is still not enough to limit the apparition of sharp
shapes on the wall boundary of the domain (ρ = 1) during the first hundred
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Fig. 18: Comparison of the evolution of the shape of γZ during the first
100 simulations (one in five, the later ones are darker) with or without the
double launch of the minimisation routine. The calibrations are made with the
standard cost and LT = 10. For the double launch, ϵ1g = 10−7, and it is not
reached for the plotted simulations.

iterations, as can be seen in the first figure of 18. This effect seems more intense
with lower diffusion coefficients so we focus specifically on DgBobj = 10−8.

To prevent this specific issue, launching twice the minimisation algorithm
with different radial penalisation weights does not appear very efficient. Still in
Figure 18, we see a slight reduction of the maximum value at the edge boundary
as we increase the weight of the first launch of the algorithm w1

ρ, but this is at
the cost of a considerably increased computational cost. Figure 19 shows that
even with a moderate first weight w1

ρ = 2.5× 10−5, the number of simulations
is considerably increased even if we try to optimize the stopping threshold of
the first launch ϵ1g. Furthermore considering higher weights generally lead to
a convergence of the first launch on a set of parameters very far from their
targets values so that the stability of the whole is once again at risk when the
minimiser is launched for the second time.

Hence, since the double launch does not seem very promising with our
configuration of reference, we don’t keep it for the the robustness tests of
Section 5.

5 Robustness of the algorithm

As the algorithm seems rather efficient at identifying the parameters that were
used to generate the data, we have to consider the fact that real data will not
exactly correspond to a trajectory that the model can generate. Indeed the
model is by design a simplification of the full turbulent system and there will
always be noise and biases due to the measurement method. Thus it seems
important to test our minimisation algorithm with data that is not the full and
unaltered record of Z and Y generated with the same model as the one whose
parameters are fitted. For this purpose, we will add some generated noise to the
data, and try to reduce the amount of information available both in time and
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Fig. 19: Comparison of the total number of simulations with two launches
of the algorithm for different values of the first stopping threshold ϵ1g. The
logarithmic versions of both the cost and the radial derivative penalisation for
Z0 and Y0 are used. The horizontal line show the number of simulations of the
procedure with only one launch of the algorithm for the corresponding case.

Dobj
gB D0

gBZ D0
gBY γ0

Z γ0
Y K0 Z0

0 Y 0
0

10−8 to 10−4 10−5 10−5 1.2 0.7 0.02 5 5

10−2 10−5 10−5 1.2 0.7 0.02 1.4 1.4

Table 4: Initial guesses for each test of the calibration procedure in Section 5

in space. For all calibrations, the time window starts at 40. The first guesses
are the same as in the last section, and reminded in Table 4. The stopping
threshold, the radial penalisation weight and the length of the time windows,
which are slightly adapted depending on the the value of Dobj

gB and the chosen
cost type, are defined in Table 5. The stopping threshold ϵg is increased for the

standard cost for most values of Dobj
gB because the final iterations add almost

no precision to the parameters, while the descent direction loose too much
precision with the noise, leading to possible divergences. For Dobj

gB = 10−2

however, a consequent reduction of the gradient norm is important to retrieve
the parameters with a decent precision. Finally, the scaling function types and
coefficients for each parameter are reported in Table 6.

5.1 Time sparsity

We first want to test the influence of the time step ∆tobj between two values
tobji and tobji+1 of the time variable corresponding to recorded vectors of data

(Zobj
i , Y obj

i ) and (Zobj
i+1, Y

obj
i+1), representing Z and Y on the whole radial space.

Figures 20 and 21 show the number of simulations as well as the final errors on
the retrieved parameters for the two extremal values ofDobj

gB . The test are made
with a logarithmic cost but similar results are expected with a standard cost.
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Dobj
gB Log cost LT ϵg wρ Log penal

10−8 to 10−2 Yes 10 10−7 2.5 × 10−7 Yes

10−8 to 10−4 No 10 10−7 2.5 × 10−7 Yes

10−2 No 10 10−9 2.5 × 10−7 Yes

Table 5: Time interval, penalisation type and weights used in the tests of
the calibration procedure in Section 5. Log penal indicate whether the radial
derivative penalisation for Z0 and Y0 is computed on their logarithm or not.

D0
gBZ D0

gBY γ0
Z γ0

Y K0 Z0
0 Y 0

0

Scaling type Exp Exp Lin Lin Lin Lin Lin

Linear coef k 5 5 1 1 1 5 5

Table 6: Scaling types and coefficients used in each test of the calibration
procedure in Section 5 for the different parameters. For the scaling types, Exp
stands for exponential, and Lin for linear.

10−2 10−1 100
Δtobj

400

600

800

1000

1200
Number of simulations

Dobj
gB =10−8 Dobj

gB =10−2

Fig. 20: Impact of the data time step on the number of simulations for different
values of Dobj

gB . We use the logarithmic version of the cost.

The main takeaway seem to be that the algorithm is remarkably insensitive
to the time sparsity as curves for both the error reduction and the number
of simulations necessary for convergence are quite flat. The reduction of the
number of data samples even allow a better identification of the initial states
since it gives more importance to the initial data sample, which is equal to the
initial steps. However, in real settings, using of all data data sample available
still seems better to reduce the effect of model error or noises, as we will see
in Section 5.2.
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Fig. 21: Impact of the data time step on the number of simulations for different
values of Dobj

gB . We use the logarithmic version of the cost.

5.2 Resistance to noises

So far we have used data generated by the model itself, so that we know they
can be precisely reproduced by a given set of parameters. But indeed this
would not be the case for real data, because the governing equations are always
a simplification of the real system, and any measurement device has a limit
on the accuracy it can achieve, most of the time largely above the machine
precision. A simple way to reproduce those kinds of discrepancies between the
model and the data is to add some generated noise to the data we consider.

First we add to every radial component of every sample of data a random
real in the interval ]− ϵN/2; ϵN/2[ for a varying amplitude ϵN . Since this may
lead to the apparition of negative values, we then take the maximum between
the each scalar element of the noisy data and Zmin = Ymin = 10−6.

Since we want to show the effect of the choice of cost type (standard or
logarithmic), we limit ourselves to one value for the diffusion coefficients :

Dobj
gB = 10−8. Figures 22 and 23 show the results of the calibration algorithm

for a growing uniform noise amplitude. The logarithmic cost version appears
considerably less stable, losing precision on the final parameters and starting
to diverge faster as soon as the noise amplitude increases. Indeed since the
amplitude of the noise does not depend on the amplitude of the variables, the
addition of the noise leads to a significant modification of the relative value
of the variables when and where they are originally low. The worst case is
indeed when the value of the variable is inferior to the amplitude of the noise,
since a negative value could be reached. The enforcement of the minima Zmin
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Fig. 22: Number of simulations before convergence for different noises ampli-
tudes. Dobj

gB = 10−8. The vertical axis is logarithmic.
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Fig. 23: Final error on the parameter for different noises amplitudes. Dobj
gB =

10−8.

and Ymin cannot avoid a sudden fall of the relative value of Z or Y that
the algorithm will try to reproduce, leading to inaccuracies in the retrieved
parameter or even divergences.

To have a more fair comparison with the logarithmic cost, we create a
relative noise simply by multiplying the uniform noise by the value of the
variables before adding it. With X̃ the noisy version of the variable X = Z or
Y and U the realisation of a vector of random variables following the uniform
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Fig. 24: Number of simulations before convergence for different noises ampli-
tudes with a relative noise. Dobj

gB = 10−8. The vertical axis is logarithmic.
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Fig. 25: Final error on the parameter for different noises amplitudes with a
relative noise. Dobj

gB = 10−8.

law on [0,1] :

X̃ = X +XϵNU (21)

The results for this new case are given in Figures 24 and 25.
Although this time both cost function allow the convergence in almost every

case, the standard cost still seems slightly more robust. Indeed it converges
for one more case and seem to have a lower error on the retrieved parameters
for the highest noises amplitude. The logarithmic cost seems however to be
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advantageous in term of computational cost, requiring less simulations for
convergence in almost every cases.

All in all, the algorithm appears quite robust with the standard cost, since
in both configuration we can converge with noises of order of magnitude similar
to the data. Moreover the final error on the parameters stays relatively stable
until a noise amplitude of ϵN = 10−1, where it begins to sensibly increase. This
is already a considerable amplitude so it is satisfying that we can still have a
precise identification at this point.

The presence of noise may also make the assimilation more dependent on
the data time step ∆obj

t . Indeed, with more data sample the error introduced
by the noise are more likely to compensate each other and we can expect a
better precision on the retrieved parameters. Figure 26 shows how the error
on the parameters evolve while changing ∆obj

t with added uniform noise (not
relative), using the standard version of the cost. We use rather large uniform

noise amplitude, ϵN = 0.1 for Dobj
gB = 10−2, which is almost a twentieth of the

maximum value in the data, and even ϵN = 1 for Dobj
gB = 10−8, what put the

noise in the same order of magnitude as the recorded variables. Accordingly,
we can notice a progressive increase of the error on the parameters γZ , γY and
K with ∆obj

t , so using as much data as possible -inside an appropriately chosen
time interval- is probably always the best option. Concerning the number of
simulations necessary for convergence, it seems weakly impacted by ∆obj

t . It

grows slowly until ∆obj
t = 0.5 for Dobj

gB = 10−8 and is almost constant for

Dobj
gB = 10−8 (see Figure 27). At this point, the robustness of the minimisation

algorithm with the standard cost appears quite satisfying, as it can converge
with both added noise and time sparsity, and so without requiring much more
simulations to converge.

5.3 Radial sparsity

In this last section we briefly study the impact of not having data available at
any radial point. We simply choose a radius ρmax and do not use the difference
of the current trajectory and the data corresponding to any radius above in the
formula of the cost. Figure 28 shows the shape of the retrieved parameters for
different values of ρmax. As can be seen, after ρmax the shape of the retrieved
parameters almost immediately departs from their target except in the case
ρmax = 0.8. Even in this last case since the shapes after ρ = 0.8 are simply
flat, the fact that the parameter are fully recovered could just be the effect of
the radial derivative penalisation. Moreover the convergence is very slow, with
1604 simulations for ρ = 0.8, 3186 for ρ = 0.5 and even ending at the limit
of 4000 simulations without reaching the stopping condition for ρ = 0.3. Thus
it appears impossible to reliably estimate the shape of a parameter in radial
regions where we don’t have data available : the calibration algorithm is not
really able to deal with spatial sparsity in this case.
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Fig. 26: Final error on the retrieved parameters with uniform noise for dif-
ferent values of ∆obj

t , for different configurations with the standard cost. The

amplitude of the added noise is ϵN = 1.0 for Dobj
gB = 10−8 and ϵN = 0.1 for

Dobj
gB = 10−2.

6 Conclusion

In this paper we have presented a variational data assimilation approach to
identify the parameters of a 1D time dependent κ − ϵ model for tokamak
plasma turbulence. Using a twin numerical experiment, the paper shows how
the tuning of parameters intern to the optimisation routine as well as different
regularisation strategies can improve the efficiency of the calibration algorithm.
The methods used are very general and the different considerations taken to
tune the algorithm could be transposed for the calibration of many transitory
model for turbulence or not. The main results of the paper can be summarized
as:

� A scaling adapted to each parameter as well as a good choice of the time
interval when dealing with oscillatory variables can considerably impact the
convergence rate of the algorithm.

� The introduction of a penalisation on the radial derivative of the param-
eters improves the robustness of the algorithm, and notably reduced the
imprecision due to a Dirichlet boundary condition on cases with higher
diffusion.

� The introduction of different formulas for the cost and the radial derivative
penalisation for accounting for the higher dependency of the local system to
relative differences in the value of the variables rather than absolute ones
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Fig. 27: Number of iterations before convergence for different values of ∆obj
t

with added noise, using the standard formula for the cost. The amplitude of
the added noise is ϵN = 1.0 for Dobj

gB = 10−8 and ϵN = 0.1 for Dobj
gB = 10−2.

mainly lead to a reduction of the number of simulations necessary for the
convergence of the algorithm.

� Applying the minimisation routine twice while reducing the weight of the
radial penalty between the two runs to avoid the appearance of erroneous
values near the wall boundary had too small an effect compared to the
increase in the number of simulations.

� The main default of the calibration procedure seems to be its inability to
identify the value of the parameters in radial region where data are not
available. With a more complete model where the κ−ϵ equations are coupled
to the plasma equations system Baschetti et al. (2021), the relationship
between different radii will be richer than a diffusion term, so the calibration
procedure should tackle better spatial sparsity.

� Finally, the present results show the robustness of the algorithm to time
sparsity and noise. Although the logarithmic version of the cost has shown
some weakness with noise independent of the local value of the data, the
standard version of the cost seems remarkably robust, being able to converge
with both intense noise and data sparse in time.
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Gilbert, J.-C., Lemaréchal, C.: Some numerical experiments with variable-
storage quasi-newton algorithms. Mathematical Programming 45, 407–435
(1989)
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