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ABSTRACT: We simulate Lagrangian drift on the sea surface and investigate deep learning ap-

proaches to address the shortcomings of current model-based and Markovian approaches, particu-

larly concerning error propagation and computational complexity. We present a novel deep learn-

ing framework, referred to as DriftNet, inspired by the Eulerian Fokker-Planck representation of

Lagrangian dynamics. Through numerical experiments for simulated and real drift trajectories on

the sea surface, we illustrate the effectiveness of DriftNet compared to existing state-of-the-art

schemes. We also delve into the influence of diverse geophysical fields, whether derived from

models or observations, used as inputs by DriftNet on drift simulation. Our objective is to assess

the amount of dynamic information required to accurately simulate realistic trajectories.
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SIGNIFICANCE STATEMENT: We propose a novel Deep Learning model, DriftNet, for con-17

ditional generation of Lagrangian trajectories on the sea surface. Our model is based on Eulerian18

Fokker-Planck formalism and can be conditioned by multiple geophysical fields. We highlight the19

overall over-performance of DriftNet compared to the baseline model-based and learning-based20

approaches. We put in evidence the capacity of the proposed method to extract pertinent infor-21

mation from various geophysical fields, both from modeled and observed data. We highlight the22

significant impact of the observed sea surface height when combined to sea surface currents in the23

quality of the generation of Lagrangian trajectories.24

1. Introduction25

The modeling and simulation of Lagrangian drift on the sea surface holds relevance for various26

applications such as tracking of plastics and other debris [Maximenko et al. (2012)], the study of27

algae and plankton dynamics [Son et al. (2015)], or the prediction of future locations of drifting28

objects that is crucial for search and rescue operations [Breivik et al. (2013)]. Furthermore, the29

analysis of Lagrangian drifts serves as a valuable tool for diagnosing ocean numerical models30

in their capability for reproducing small-scale dynamics [Barron et al. (2007)]. However, repro-31

ducing realistic Lagrangian trajectories on the sea surface poses a significant scientific challenge32

within operational oceanography [Röhrs et al. (2021)].33

From a methodological standpoint, we can distinguish three main categories of approaches for34

Lagrangian drift simulation: model-based approaches [Liubartseva et al. (2018); Zambianchi et al.35

(2017)], probablistic data-driven schemes [Visser (2008)], and more recent deep learning tech-36

niques [Botvynko et al. (2023); Jenkins et al. (2023)]. Model-based approaches involve a sequen-37

tial advection process based on known sea surface velocity fields [Lange and van Sebille (2017)].38

However, small errors in the underlying velocity fields or velocity fields without very fine spa-39

tial resolution may lead to unrealistic Lagrangian trajectories [Callies et al. (2021)]. This often40

impedes their operational usuefulness due to significant uncertainties in the forecasting and recon-41

struction of sea surface dynamics, especially regarding mesoscale ocean dynamics [Prants et al.42

(2017)]. Due to their sequential nature, these schemes also face scalability challenges when simu-43

lating large ensembles of drift trajectories. By contrast, probabilistic data-driven schemes usually44

leverage first-order Markovian models and naturally account for uncertainties in the drift process.45

3



However, they are primarily suited for relatively coarse space-time resolutions. Extending these46

schemes to capture fine-scale patterns poses a challenge [Fine et al. (1998)]. For these two first cat-47

egories, the simulation of the Lagrangian drift relies on location-wise velocities at each time step,48

which may only be applicable for smooth velocity fields. Deep Learning has recently emerged as49

a novel class of numerical tools for the learning-based simulation of movement patterns. We may50

cite applications to pedestrians [Korbmacher and Tordeux (2022)], seabirds [Roy et al. (2022)],51

cars [Jiang et al. (2019)] or maritime vessels [Nguyen and Fablet (2024)]. These applications52

leverage state-of-the-art recurrent neural networks, such as Long Short-Term Memory (LSTM)53

networks [Yu et al. (2019)], as well as deep generative schemes [Goodfellow et al. (2020); Roy54

et al. (2022); Ma et al. (2019); Gan et al. (2020); Julka et al. (2021); Paz et al. (2021)]. Most of55

these studies can be regarded as neural extensions of probabilistic Markovian schemes.56

In this context, we present an innovative Deep Learning framework, referred to as DriftNet, for57

simulating Lagrangian trajectories at the sea surface. The proposed neural model takes as input58

geophysical fields characterizing the ocean dynamics in a spatio-temporal region and produces59

the associated Lagrangian trajectory. Our approach is fully-convolutional and features a spatially-60

explicit latent representation, drawing inspiration from Eulerian Fokker-Planck representations of61

drift processes [Botvynko et al. (2023)]. From numerical simulation datasets, we demonstrate62

DriftNet to outperform state-of-the-art neural schemes for the simulation of Lagrangian trajec-63

tories, including when considering degraded sea surface velocities. The application to real sea64

surface drifters’ datasets further supports the relevance of DriftNet to improve the simulation of65

Lagragian drift on the sea surface compared with model-driven simulations. This last experiment66

also illustrates how DriftNet can exploit additional data sources, besides sea surface velocities,67

here satellite-derived sea surface height fields.68

This paper is organized as follows: section 2 focuses on the problem description; we introduce69

DriftNet in section 3 and the considered experimental setup in section 4; section 5 details our70

results and section 6 discusses key aspects of this study.71

2. Problem statement72

In the context of Lagrangian fluid dynamics1, one may describe a flow by following the mo-73

tion of an ensemble of individual particles [Davis (1991)]. In order to describe the flow in the74

1From now on, the Lagrangian notations are presented with →symbol, and the Eulerian notations are in bold.
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Lagrangian framework, an ordinary differential equation defines the particle’s trajectory :75

∂ r⃗(r⃗t0, t)
∂ t

= v⃗(r⃗t0, t) = u(⃗r(t), t) (1)

where r⃗(r⃗t0, t) and v⃗(r⃗t0 , t) are respectively the position and velocity at time t of the particle situated76

at r⃗t0 at t = 0, and u(⃗r(t), t) is the Eulerian velocity of the underlying flow given position r⃗(t) and77

time t. Classical model-driven approaches simulate Lagrangian drift dynamics through explicit78

time and space integration methods such as Runge-Kutta 4. Thus, the integration of eq.(1) leads79

to :80

r⃗(r⃗t0, t +∆t) = r⃗(r⃗t0, t)+
∫ t+∆t

t
v⃗(r⃗t0,τ)dτ (2)

The sequential nature of this equation introduces important propagation of errors when the under-81

lying velocities are not accurately known [Callies et al. (2021)].82

Interestingly, we can also derive an Eulerian formulation of Lagrangian dynamics. Through83

Fokker-Planck formalism [Visser (2008)], we can generalize eq.(2) to the time propagation of the84

Probability Density Function (PDF) of the moving particle as follows:85

∂

∂ t
p⃗r(x, t) =− ∂

∂x
[µ(x, t)p⃗r(x, t)] (3)

where x represents spatial position in the Eulerian framework, t the time, p⃗r(x, t) the PDF of the86

particle at position r⃗ and µ(x, t) a drift field. In our case, this drift term relates to the underlying87

Eulerian velocity field u(x, t). Solving eq.(3) relies on a time integration scheme from the initial88

PDF p⃗r(x, t = 0) = pr⃗t0
(x,0).89

Here, we rely on this Eulerian Fokker-Planck representation of Lagrangian dynamics to explore90

convolutional neural architectures for the simulation of individual drift trajectories.91

3. DriftNet for Lagrangian drift simulation92

This section introduces the mathematical framework and the architecture of the proposed neural93

network model, called DriftNet, along with the considered learning scheme.94
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FIG. 1: DriftNet architecture: The input geophysical fields over 9-day (here zonal U and merid-
ional V components of the velocity field) coupled to the initial spatio-temporal positional encoding
y0 are first passed to the encoding block E and output a spatio-temporal latent encoding. The sec-
ond block of DriftNet M maps this latent representation to a 1D trajectory, i.e. a time series of
positions on the sea surface.

a. Proposed neural scheme95

Given a spatial domain of interest D defined as a regularly-gridded domain of size I × J, we96

define the associated sequence of velocity fields u = {ut0,ut0+∆, . . . ,ut0+K∆} from time t0 to t0 +97

K∆, where ∆ is the time sampling and K the number of time steps, and the trajectory of a particle as98

a time series of locations r⃗ = {⃗rt0 ,⃗rt0+∆, . . . ,⃗rt0+K∆} in D from t0 to t0+K∆, where r⃗t0 corresponds99

to the initial position of the particle.100

Inspired by Fokker-Plank eq.(3), we consider the following latent representation for a simulated101

Lagrangian drift r⃗:102  y = E (u,y0)

r⃗ = M (y)
(4)

where y = {yt0,yt0+∆, . . . ,yt0+K∆} is a space-time-explicit latent embedding of r⃗, and y0 =103

{y0,t0 ,y0,t0+∆, . . . ,y0,t0+K∆} some initial encoding of the initial position r⃗t0 . In particular, we define104

y0,t0 by assigning to each spatial pixel of the grid a value corresponding to the normalized distance105
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to the initial position of the particle eq.(5).106

d =−
√

∑
x∈D

(r⃗t0 − x)2 (5)

y0,t0 =
d + |mind|

max(d + |mind|)
(6)

while the other time steps of y0 are initialized as all-ones matrix of the same dimension as D .107

The operator E computes a latent embedding y given velocity conditions u and initial repre-108

sentation y0, as introduced in eq.(3). And, the operator M maps latent representation y to the109

targeted Lagrangian drift r⃗. In other words, it maps a multi-dimensional tensor to a time series of110

locations in D . The analytical expression of the operator M for a given time step t grounds on the111

Hadamard product between the spatially-explicit encoding x of the space D and yt field:112

M = x ·yt (7)

where yt ∈ y, a sample of y at a time step t ∈ [t0, . . . , t0+K∆].113

Regarding the operator E , we consider the architecture sketched in Figure 1 and composed of:114

1) a 2D convolutional layer increasing the number of channels from 3 (zonal and meridional115

components of u coupled to y0) to 64, followed by a LeakyReLU activation function.116

2) 2D convolutional LSTM block [Shi et al. (2015)].117

3) 2D convolutional layer decreasing the number of channels from 64 to 2, followed by 2D118

Softmax function.119

Since our model is mainly based on 2D convolutional layers, we expect the resulting architecture120

to capture relevant information at different space-time scales, and not only in a point-wise manner,121

as it would be the case for the straightforward implementation of Fokker-Plank representation122

eq.(3). Thus, our network can leverage non-local physical information explaining the particle’s123

motion and processes it to propagate the latent representation of particle’s positions through time.124

Interestingly, the proposed architecture easily generalizes to multi-source input data. Gridded125

fields such as SSH fields with the same space-time resolution as the sea surface velocities convey126

relevant information on sea surface dynamics. Stacking SSH and sea surface velocities, we may127
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apply the same neural architecture, just increasing the number of channels of the input fields. The128

same applies for a prior on the diffusivity from the initial location of a particle in the field, that can129

be also included by stacking with the temporal evolution of the initial condition y0.130

b. Learning scheme131

We consider a supervised training of the proposed neural architecture according to the following132

two losses:133

1. the Mean Square Error (MSE) between the reference and simulated trajectories for the K-step134

simulation of NT particles135

LMSE =
1

NT K

NT

∑
i=0

K

∑
j=0

(⃗rR(⃗r0,i, j∆)− r⃗S(⃗r0,i, j∆))2 (8)

where r⃗R and r⃗S are the vector of positions of the reference and simulated trajectories respec-136

tively.137

2. Liu index between the reference and simulated trajectories [Liu and Weisberg (2011)]138

LLiu =
1

NT

NT

∑
i=1

∑
K
j=1 di j

∑
K
j=1 li j

(9)

where139

di j =
√
(⃗rR(⃗r0,i, j∆)− r⃗S(⃗r0,i, j∆))2 (10)

is the Euclidean distance between the reference and the simulated trajectories number i at140

time step j and li j is the length of reference trajectory i between the initial position and the141

position at time step j.142

Overall, the training loss L is a weighted sum: L =α ·LMSE +β ·LLiu. From cross-validaton143

experiments, we set α and β to 0.6 and 0.4. Using Pytorch2, our learning setup relies on Adam144

optimizer with a learning rate of 5e-4 over 750 epochs.145

8



150°W

150°W

120°W

120°W

90°W

90°W

60°W

60°W

30°W

30°W

0°

0°

0°

20°N

40°N

60°N

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

relative vorticity, s
1

×10 4

FIG. 2: Study cases delineation: Relative vorticity of North East Pacific and North Atlantic
oceans from E1 simulation of 01/10/2015. The two black boxes indicate the North East Pacific
and Gulf Stream case study regions for benchmarks B1 and B2. The green box defines the North
East Pacific region of study for benchmark B3.

4. Experimental workflow146

Section 4.a details the two case-study regions considered because of their contrasting turbulent147

activity: the Gulf Stream and the North-East Pacific region, see Figure 2. We describe the different148

datasets used in our experiments in section 4.b, see Table 1, and the metrics used to evaluate149

performance in section 4.c. In section 4.d we present the benchmarked deep learning models. We150

perform three different experiments: two relying on numerical simulation datasets such that the151

full sea surface velocity field is known, and a last experiment dealing with real drifters in the sea152

surface. These three benchmarks are explained in section 4.e.153

a. Case-study Regions154

The Gulf Stream is a Western boundary current system characterized by a fast flowing jet that155

originates in the Gulf of Mexico and flows into the North Atlantic [Gula et al. (2015); Dewar and156

Bane (1989)], becoming a part of it’s anticyclonic subptropical gyre [Talley (2011)]. Surface157

velocity can exceed 2 m · s−1 and the current is characterized by high eddy variability. Exhibiting158

strong velocities for hundreds of kilometers, the Gulf Stream transports warm saline water from159

lower latitudes north-eastward. The Gulf Stream plays a crucial role in redistributing heat and160

2DriftNet code is available at https://github.com/CIA-Oceanix/DriftNet
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FIG. 3: Examples of trajectories: Trajectories from dataset L1 and dataset L2 superimposed
respectively to the E1 and E2 relative vorticity fields of 2015/01/01.

influencing climate patterns and the surrounding marine ecosystem [Gula et al. (2015)], [Wills161

et al. (2016)].162

The North East Pacific is a vast oceanic region extending from the western coast of North163

America to the central Pacific. It is influenced by various ocean currents, including the California164

Current and North Pacific Current. The California Current System (CCS) is an eastern boundary165

of the slow (0.1 m · s−1) eastward North Pacific Current. It is a cold, nutrient-rich current that166

flows southward along the Western coast of North America [Checkley and Barth (2009); Auad167

et al. (2011)], impacting marine ecosystems and fisheries. The CCS is an upwelling region due to168

Ekman transport, spining up eddies westward offshore. It has a mean surface velocity of 0.4 - 0.8169

m · s−1. Due to the baroclinic instability of the coastal upwelling current, the CCS contains high170

mesoscale eddy activity, associated with the highly variable sea-surface height [Talley (2011)].171

b. Datasets172

Our study involves three different Eulerian datasets used as input data for the benchmarked173

models:174

10



TABLE 1: Summary description of the Eulerian and Lagrangian datasets used in the current
study: Source makes reference to the used numerical or satellite product, Variable indicates the
physical quantity of interest, Period the studied years. The spatial and temporal resolutions of
each product are also indicated. SSC - sea surface currents. SSH - sea surface height.

Name Source Variable Period Spatial resolution Temporal resolution

Eulerian

E1 Nature Run SSC and SSH 2015 1/12◦ 1 day

E2 OSSE-based assimilated free run SSC 2015 1/12◦ 1 day

E3 Operational assimilated reanalysis GLORYS12 SSC 1992 - 2020 1/12◦ 1 day

E3 DUACS SSH 1992 - 2020 1/4◦ 1 day

Lagrangian

L1 Ocean Parcels simulation on E1 SSC Position 2015 - 6 hours

L2 Ocean Parcels simulation on E2 SSC Position 2015 - 6 hours

L3 CMEMS drifters Position 1992 - 2020 - 6 hours

L4 Ocean Parcels simulation on E3 SSC Position 1992 - 2020 - 6 hours

• Eulerian dataset E1: This Eulerian dataset contains the sea surface current (SSC) velocity175

and sea surface height (SSH) fields. Both fields are obtained from a high-resolution free176

simulation of the NEMO ocean model without any data assimilation [Benkiran et al. (2021b)].177

Those are regularly-gridded products with a horizontal spatial resolution of 1/12◦ and a daily178

time resolution. This study involves the entire year of 2015.179

• Eulerian dataset E2 This dataset contains the SSC fields from a data assimilated run, which180

dynamically reconstructs the ocean state using pseudo observations from E1 which mimic181

the current observational network (satellite altimetry tracks). Those fields are at the same182

1/12◦ and daily space-time resolution as the E1 dataset. As in the previous E1 dataset, we183

equivalently use the complete 2015 year.184

• Eulerian Real-world dataset E3: this real-world dataset combines the SSC from the opera-185

tional ocean reanalysis GLORYS12 [Lellouche et al. (2021)] and the optimally-interpolated186

altimetry-derived SSH product DUACS [Pujol et al. (2016)]. The GLORYS12 velocity fields187

are provided on the regular grid with spatial resolution of 1/12◦ and temporal resolution of188

1 day. We re-interpolate the SSH fields on the same 1/12◦ regular grid at daily temporal189

resolution.190
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For each individual trajectory, the considered spatial domain of the Eulerian conditional fields is191

equal to, 4◦×4◦ window for the North East Pacific and 10◦×10◦ for the Gulf Stream. The size of192

the domains corresponds to the furthest displacement from a given particle’s deployment location193

in each case study region.194

Our benchmarks involve four different Lagrangian datasets:195

• Lagrangian Dataset L1: this dataset is composed of 9-day trajectories of virtual particles196

advected by the sea surface velocities from dataset E1 using Ocean Parcels, a state-of-the-art197

tool for model-based Lagrangian drift simulation [Lange and van Sebille (2017)]. Around 20198

particles were randomly seeded every day across the domain and the studied period, amount-199

ing to a total of 7900 particles.200

• Lagrangian Dataset L2: this dataset contains 9-day trajectories of virtual particles advected201

by the SSC of the E2 dataset with Ocean Parcels. It contains 7900 particles deployed at the202

exact same locations and times as in the Lagrangian Dataset L1 described above, see Figure 3.203

• Lagrangian Dataset L3 This dataset contains trajectories from CMEMS drifters [Etienne204

et al. (2023)] in the North East Pacific region, from 1992 to 2020. Those drifters are a part205

of the Surface Velocity Program (SVP) and are built of 1-m long floating buoy attached to206

a “drogue” deployed at 15 meters depth in order to reduce the windage slip [Lumpkin et al.207

(2017)]. Drifters positions are subject to a quality control and editing procedures before208

being operational. Subsequently, trajectory positions undergo regular reinterpolation using209

the Kriging technique at 6-hour intervals [Etienne et al. (2023)]. For this study, we refer210

to drogued-only drifters which are representative of the ocean currents at 15 meters depth211

and are widely used in various application domains [Lumpkin et al. (2012); Koszalka et al.212

(2011); Lumpkin and Flament (2013); Kaplan et al. (2005); Lumpkin and Garzoli (2011)].213

This dataset contains 12.785 9-day trajectories in the North East Pacific case-study region,214

green box in Figure 2. These trajectories are obtained by dividing the whole drifter trajectories215

of the region in 9-day long non-overlapping segments.216

• Lagrangian Dataset L4: this dataset contains 9-day trajectories of virtual particles advected217

by the velocity fields from E3 with Ocean Parcels. We use the same initial deployment posi-218

tion and time of the trajectories as in dataset L3.219
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c. Performance metrics220

As evaluation metrics, we consider221

• the mean Euclidean distance at the last time step (9-th day) in kilometers, that we denote D:222

D =
1

NT
·

NT

∑
i=0

di9 (11)

with NT the number of trajectories and di9 defined in eq.(10) with j = 9 days.223

• the mean Liu index LLiu without units, see eq.(9).224

• the mean error between autocorrelation functions, Ru⃗(τ) and R⃗v(τ) respectively for zonal225

and meridional components of trajectories’ velocities [Krauß and Böning (1987); Kang et al.226

(2005); Wunsch (1999)]:227

∆Ru⃗ = ⟨|Ru⃗R(τ)−Ru⃗S(τ)|⟩ (12)

where ⟨⟩ is the average across temporal dimension, Ru⃗R(τ) and Ru⃗S(τ) are respectively the228

ensemble mean of the reference and simulated normalized autocorrelation functions of the229

Lagrangian velocity, defined as: Ru⃗(τ) =
1

9·∆ ·∑
9
t=0 u⃗(t∆+ τ )⃗u(t∆). The same definition is230

used for the meridional velocity.231

The mean euclidean distance and the mean Liu index are computed between the reference and232

generated trajectories and averaged over the whole ensemble of studied trajectories.233

d. Benchmarked deep learning models234

To evaluate the performance of DriftNet, we compare it to the following CNN and LSTM base-235

lines inspired by [Zheng et al. (2022); Ma et al. (2019)]:236

• Convolutional Neural Network (CNN): a 2D convolutional block varying the number of chan-237

nels from 27 (u and y0 concatenated along the time dimension) to 8 → 16 → 32 → 35. Each238

convolution layer has a kernel of size 5 and is followed by a LeakyReLU activation function239

with a slope of 0.2 for negative inputs. The output of this convolutional block is introduced240
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by a reshape, where the two spatial dimensions of initial 3d matrix are flattened together,241

and the output is passed to a fully connected layer with 256 and 128 neurons decreasing the242

mentioned spatial dimension to 2.243

• Long Short-Term Memory (LSTM): a 5-layer LSTM block with hidden size 96, followed by244

a ReLU activation function, then two fully connected layers with a ReLU in between. Each245

dense layer contains 864, and 128 neurons respectively, reducing the latent space to 2·35.246

This output is then reshaped so to contain the spatial dimension 2 and temporal one 35.247

We also explore different configurations of DriftNet. In order to investigate the impact of each248

component of the model on the evaluation metrics, we modify its inner architecture, see section249

3. a and Figure 1, and assess the performance of the following three architectures:250

• DriftNet without the ConvLSTM block in the encoding operator E ;251

• DriftNet without the CNN block in the encoding operator E ;252

• a DriftNet-U-Net architecture, referred to as DriftNetU : in this architecture, we replace the253

CNN block in the encoding operator E by a U-Net block. The latter is composed of three254

2D Conv-MaxPool-ReLU layers with kernel size 3 and channels evolving from 27 to 256 and255

three 2D ConvTranspose-Upsample-ReLU layers with kernel size 3 and channels evolving256

from 256 to 27.257

e. Benchmarks258

This section presents the experimental setups that we employ to assess the performance of Drift-259

Net in both virtual and real-case scenarios.260

Benchmark B1 This benchmark B1 aims to assess the reliability and accuracy of learning-261

based schemes in reproducing Lagrangian drift trajectories given fully-known underlying dynam-262

ics. This benchmark uses the Eulerian velocity field extracted from the dataset E1 and the trajec-263

tories from the Lagrangian Dataset L1. The resulting dataset is randomly splitted into train (80%),264

validation (10%) and test (10%) datasets. DriftNet is fed with E1 velocity fields and trained to265

reproduce reference trajectories from the L1 dataset. For benchmarking purposes, we consider the266

CNN and LSTM baselines trained following the same strategy as DriftNet.267
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Benchmark B2 This benchmark aims to assess from simulation data the ability to predict accu-268

rately Lagrangian drift trajectories when the sea surface velocities are imperfectly known. We use269

E2 velocity fields and L1 trajectories as reference. Similarly to Benchmark B1, we randomly split270

the resulting dataset into train (80%), validation (10%) and test (10%) datasets. For benchmarking271

purposes, we consider the state-of-the-art model-based method corresponding to trajectory dataset272

L2 as well as the CNN and LSTM baselines trained following the same strategy as DriftNet.273

Benchmark B2 also assesses the ability of DriftNet to exploit multi-source geophysical data.274

Here, we complement the data with the Sea Surface Height (SSH) from Dataset E1. In this con-275

figuration, DriftNet is fed with E2 velocity fields and E1 SSH fields to reproduce L1 trajectories.276

Benchmark B3 This benchmark addresses a real-case scenario with real drifters’ trajectories277

and operational ocean reanalyses. We use E3 velocity and SSH fields and real trajectories from278

L3 dataset as reference. Similarly to Benchmark B1, we randomly split the resulting dataset into279

train (70%), validation (10%) and test (20%) datasets.280

For benchmarking purposes, we consider the state-of-the-art model-based method correspond-281

ing to trajectory dataset L4 as well as the CNN and LSTM baselines trained following the same282

strategy as DriftNet. This benchmark assesses a DriftNet using solely E3 velocity fields and a283

DriftNet using jointly E3 velocity and SSH fields.284

5. Results285

This section reports our numerical experiments for the three benchmarks introduced in the pre-286

vious section, namely benchmark B1 (section 5.a), benchmark B2 (section 5.b) and benchmark287

B3 (section 5.c).288

a. Results for Benchmark B1289

DriftNet presents the best performance for all metrics and significantly outperforms the CNN290

and LSTM baselines, see Table 2. For the North East Pacific, the separation distance of 5.3km291

after 9 days is about one order of magnitude smaller than the baseline CNN and LSTM models.292

Similar performances are noted for Liu index, 0.06, and for the autocorrelation functions errors293

in both zonal and meridional components, 0.0103 and 0.0145. For the Gulf Stream, the overall294

accuracy is lower (separation distance after 9 days of 91.1km, Liu index 0.26 and autocorrelation295
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TABLE 2: Performance of DriftNet for Benchmark B1: we report the performance metrics
for DriftNet and classical learning-based approaches for benchmark B1 in the two study regions:
North East Pacific and Gulf Stream. The evaluation metrics are the last time step mean separation
distance (D), mean Liu index (LLiu) and error between autocorrelation functions (∆Ru⃗ and ∆R⃗v).
Bold indicates the best performance. We refer the reader to section 4.d for the details of the
benchmarked architectures.

North East Pacific Gulf Stream

Method D, km LLiu ∆Ru⃗ ∆R⃗v D, km LLiu ∆Ru⃗ ∆R⃗v

DriftNet 5.3 0.06 0.0103 0.0145 91.1 0.26 0.0405 0.0348

CNN 43 0.5 0.1076 0.1379 151.85 0.63 0.229 0.2173

LSTM 30.6 0.4 0.2136 0.2283 188 0.77 0.2244 0.2123

errors 0.0405 and 0.0348), outperforming the baselines. These experiments support the proposed296

Eulerian Fokker-Plank-inspired architecture.297

DriftNet simulation error is larger for the Gulf Stream region. This is consistent with the reso-298

lution error in encoding initial positions, as evidenced in [Callies et al. (2021)]. Here, Lagrangian299

trajectories simulated with an error corresponding to the resolution of the grid (i.e., 1/12◦) leads300

to a separation distance after 9 days of 20km (resp. 94km) for the North East Pacific region (resp.301

the Gulf Stream region). The larger sea surface velocities and sharper associated spatial gradients302

in the Gulf Stream region explains the larger separation distance after 9 days.303

Impact of DriftNet components We compare DriftNet in its original configuration to three304

variations presented in section 4.d namely a configuration combining two commonly used U-Net305

models separated by one ConvLSTM block, a second one containing the ConvLSTM block only,306

and finally one composed of 2D convolutional layers only.307

Removing the CNN or ConvLSTM blocks from the DriftNet architecture impacts the simulation308

performance, see Table 3. The separation distance increases from 5.3km to 36.2km (resp. 57.1km)309

for the North East Pacific region when we remove the CNN (resp. ConvLSTM) block. Similarly,310

the U-Net version of the DriftNet does not lead to a better simulation performance. This likely311

relates to some overfitting in our training schemes due to the greater complexity of this U-Net312

configuration. Same qualitative results are found in the Gulf Stream region.313

Impact of the resolution of the conditioning velocity fields. Coarsening the resolution of the314

conditioning fields leads to degrading the performance, see Table 4. For both regions, the impact315

is significant in the mean separation distance and the Liu index. Interestingly, the error between316
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TABLE 3: Ablation study of DriftNet: we compare the metrics of different configurations of
DriftNet for benchmark B1: namely, the reference DriftNet, DriftNetU with a U-net block instead
of CNN, a DriftNet without the CNN block and DriftNet without ConvLSTM. The evaluation
metrics are the last time step mean separation distance (D), mean Liu index (LLiu) and error
between autocorrelation functions (∆Ru⃗ and ∆R⃗v). Bold indicates best performance.

North East Pacific Gulf Stream

Method D, km LLiu ∆Ru⃗ ∆R⃗v D, km LLiu ∆Ru⃗ ∆R⃗v

DriftNet 5.3 0.06 0.0103 0.0145 91.1 0.26 0.0405 0.0348

DriftNetU 16.1 0.21 0.1552 0.1694 96.4 0.32 0.0573 0.0432

DriftNet without CNN 36.2 0.39 0.0299 0.0379 163 0.68 0.0834 0.1035

DriftNet without ConvLSTM 57.1 0.72 0.0846 0.1093 177 0.73 0.1568 0.1592

TABLE 4: Impact of spatial resolution on DriftNet performance Performance of DrifNet in
function of the spatial resolution of the input Eulerian velocity field for benchmark B1 in both
study regions: North East Pacific and Gulf Stream. Each line corresponds to a different spatial
resolution of the input E1 field. The evaluation metrics are the last time step mean separation
distance (D), mean Liu index (LLiu) and error between autocorrelation functions (∆Ru⃗ and ∆R⃗v).
Bold indicates best performance.

North East Pacific Gulf Stream

Resolution D, km LLiu ∆Ru⃗ ∆R⃗v D, km LLiu ∆Ru⃗ ∆R⃗v

1/12◦×1/12◦ 5.3 0.06 0.0103 0.0145 91.1 0.26 0.0405 0.0348

1/6◦×1/6◦ 8.7 0.15 0.0162 0.0152 102.3 0.35 0.0377 0.0255

1/3◦×1/3◦ 17.9 0.27 0.0272 0.034 109.4 0.47 0.0376 0.0313

1/2◦×1/2◦ 28.2 0.40 0.0768 0.0995 115.9 0.46 0.048 0.0448

the autocorrelation functions in the Pacific region increases when the input resolution is coarsen,317

while in the Gulf Stream a lower input resolution allows to slightly improve the estimation of the318

zonal component for 1/3◦× 1/3◦ and the meridional component for 1/6◦× 1/6◦. Resolution is319

thus an important characteristic of the input fields.320

b. Results for Benchmark B2321

Table 5 illustrates the performance of the simulation of Lagrangian trajectories using degraded322

velocity fields instead of the true velocity fields. Similarly to Benchmark B1, we compare DriftNet323

to CNN and LSTM baselines. Here we also benchmark DriftNet with respect to the Lagragian324

simulations with Ocean Parcels [Lange and van Sebille (2017)].325
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TABLE 5: Performance metrics for Benchmark B2 experimental framework. We report the
performance metrics for DriftNet and baseline models, all supplied with velocity fields from E2
and trained to generate trajectories from reference Dataset L1 in the two study regions: North East
Pacific and Gulf Stream. The evaluation metrics are the last time step mean separation distance
(D), mean Liu index (LLiu) and error between autocorrelation functions(∆Ru⃗ and ∆R⃗v). Bold
indicates the best performance.

North East Pacific Gulf Stream

Method D, km LLiu ∆Ru⃗ ∆R⃗v D, km LLiu ∆Ru⃗ ∆R⃗v

Ocean Parcels 53.6 0.87 0.0086 0.016 168.3 0.75 0.0084 0.0212

DriftNet 45.4 0.7 0.1212 0.1202 154.6 0.63 0.1623 0.135

CNN 51.7 0.72 0.1492 0.1807 184.1 0.67 0.1603 0.1574

LSTM 47.9 0.69 0.2281 0.237 163.2 0.67 0.1742 0.157

DriftNet presents smaller D 45.4 km (154.6 km), ∆Ru⃗ and ∆R⃗v than the other learning-based326

models, and smaller D, LLiu than Ocean Parcels, thus consistently outperforming the baseline ap-327

proaches. The LLiu for the North East Pacific region is of 0.7 and is smaller than the most baseline328

approaches, except the LSTM model (0.69) slightly outperforming the proposed method. While in329

the Gulf Stream the LLiu (0.63) is smaller than all the other approaches. The autocorrelation errors330

is smaller for the proposed method that the other learning-based approaches in the North East Pa-331

cific region. In the Gulf Stream, the autocorrelation error in the meridional component is smaller332

than the other learning-based methods. For both regions, the proposed method’s autocorrelation333

errors are larger than for the Ocean Parcels.334

Impact of auxiliary variables Table 6 assesses how the availability of the SSH fields could335

improve the simulation of Lagrangian drift trajectories. Whereas Lagrangian model eq.(1) solely336

depends on the sea surface velocities, deep learning schemes can easily extend to multiple condi-337

tioning fields. Among the observed satellite-derived tracers on the sea surface, the SSH explicitly338

seems appealing as it informs the geostrophic component of sea surface currents [Taqi et al. (2019);339

Ballarotta et al. (2022)]. In an idealized setting, we evaluate the potential added value of the true340

SSH fields provided as inputs to DrifNet either in place of E2 velocity fields or to complement341

them, see Table 6.342

These results emphasize the synergistic potential of SSH observations and E2 velocity fields343

compared with using only one of these two input data. In the North East Pacific region, D is344

reduced by over 55%, LLiu by over 60%, ∆Ru⃗ and ∆R⃗v by over 60% and 50%. Similarly in345
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FIG. 4: Trajectories for Benchmark B2 in the Gulf Stream Lagrangian trajectories from Dataset
L2 are depicted in magenta, trajectories simulated with DriftNet conditioned with SSC from E2
and SSH from E1 in blue, and trajectories from Dataset L1 in black. For better visual appreciation
panel a) shows 16 randomly picked trajectories for the whole region while b) shows 8 random
trajectories zoomed. All superimposed to the mean relative vorticity field of E1.

the Gulf Stream, we report a relative gain greater than 25% for D, 30% for LLiu. The ∆Ru⃗ and346

∆R⃗v however are reduced by over 56% and 57% for the case of SSH fields input only. These347
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FIG. 5: Trajectories for Benchmark B2 in the North East Pacific Lagrangian trajectories from
Dataset L2 are depicted in magenta, trajectories simulated with DriftNet conditioned with SSC
from E2 and SSH from E1 in blue, and trajectories from Dataset L1 in black. a) shows 128
randomly picked trajectories for the whole region while b) shows 8 random trajectories zoomed.
All superimposed to the mean relative vorticity field of E1.

results are in agreement with the ability of observation-based SSH products to capture geostrophic348

dynamics [Ballarotta et al. (2022)], while data-assimilation-based velocity fields can reveal the349

ageostrophic sea surface dynamics. The latter are expected to be significant for horizontal scales350

below a few hundreds of kilometers, especially in Western Boundary currents such as the Gulf351

Stream [Gula et al. (2015)].352
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TABLE 6: Synergistic use of SSH observations and data-assimilation-based velocity fields
in Benchmark B2. We becnhmark DriftNet schemes using as inputs data-assimilation-based
velocity fields from dataset E2 and idealized perfectly-observed Sea Surface Height (SSH) fields
(i.e., SSH fields from dataset E1). We illustrate performance in the two study regions: North East
Pacific and Gulf Stream. The evaluation metrics are the last time step mean separation distance
(D), mean Liu index (LLiu) and error between autocorrelation functions (∆Ru⃗ and ∆R⃗v). Bold
indicates the best performance.

North East Pacific Gulf Stream

Method(Variable) D, km LLiu ∆Ru⃗ ∆R⃗v D, km LLiu ∆Ru⃗ ∆R⃗v

DriftNet 45.4 0.7 0.1212 0.1202 154.6 0.63 0.1623 0.135

DriftNet (SSH) 31.2 0.32 0.059 0.0672 160.3 0.7 0.0709 0.057

DriftNet (U, V, SSH) 22.2 0.29 0.0456 0.0579 127 0.52 0.0833 0.0616

TABLE 7: Performance metrics for Benchmark B3. Performance of different Lagrangian simu-
lation schemes for Benchmark B3 which involves real data. For each scheme, we detail the con-
sidered input data: namely the velocity fields U and V from the GLORYS12 reanalysis [Lellouche
et al. (2018)] possibly complemented by satellite-derived optimally-interpolated SSH fields [Pujol
et al. (2016)]. We report the performance metrics in the two study regions: North East Pacific and
Gulf Stream. The evaluation metrics are the last time step mean separation distance (D), mean
Liu index (LLiu) and mean absolute error between autocorrelation functions (∆Ru⃗ and ∆R⃗v). Bold
indicates the best performance.

North East Pacific

Method(Variable) D, km LLiu ∆Ru⃗ ∆R⃗v

Ocean Parcels (U, V) 73.77 0.65 0.1374 0.1471

DriftNet (U, V) 62.4 0.55 0.0522 0.0315

CNN (U, V) 68.64 0.57 0.0466 0.0621

LSTM (U, V) 64.3 0.55 0.0982 0.0893

DriftNet (U, V, SSH) 60.2 0.52 0.0296 0.034

For both regions the trajectories are visualised at the Figure 4 and Figure 5 which show that353

DriftNet generates trajectories closer to the ground truth from L1 than the baseline L2.354

c. Results for Benchmark B3355

In this real case situation, DriftNet outperforms the classical advection method, see Table 7 and356

Figure 6. Compared to the model-based baseline, the mean separation distance is reduced by357

around 15% to 62.4km, the Liu index by 15% to 0.55. Unlike previous B2 experiment, the auto-358

correlation errors are significantly reduced to 0.0522 and 0.0315 compared to Ocean Parcels. As359
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in benchmark B2, we observe a significant impact of the observed SSH fields in the quality of the360

simulation of the Lagrangian trajectories. The combination of GLORYS12 velocities and satellite-361

derived SSH fields leads to a reduction of the mean separation distance by almost 4% compared to362

the baseline DriftNet and by over 18% compared to the baseline model-based advection method.363

The Liu index is also reduced by more than 5% compared to the DriftNet baseline and by over364

20% compared to the baseline advection method. The autocorrelation error in the zonal compo-365

nent is reduced by more than 43% compared to the DriftNet baseline and by over 78% compared366

to the baseline model-based approach.367

6. Conclusions and Discussion368

In this study, we presented a novel deep learning framework, called DriftNet, for the condi-369

tional simulation of Lagrangian drift trajectories on the sea surface. We drew inspiration from the370

Fokker-Planck equation to explore a spatially-explicit Eulerian latent representation of the trajec-371

tories in the proposed neural architecture. We evaluate DriftNet on three different benchmarks372

using synthetic and real-world datasets. Our experiments support the relevance of DriftNet to ad-373

vance Lagrangian drift simulations on the sea surface and better exploit available reanalysis and374

observation datasets.375

DriftNet consistently demonstrated a better performance than state-of-the-art model-based and376

learning- based approaches, with respect to the following Lagrangian metrics: mean separation377

distance, Liu index and autocorrelation error between the ground-truth trajectories and the simu-378

lated ones. When DriftNet is provided with fully known velocity fields from Nature Run simula-379

tion (Benchmark B1), it reduces the overall error by more than 80% compared to the state-of-the-380

art learning-based approaches. Moreover, when DriftNet is provided with degraded velocity fields381

from OSSE-based assimilated simulation (Benchmark B2), it reduces the overall error by over382

15% compared to conventional point-wise schemes. These results are consistent for the two case-383

study regions, even if they are characterized by notably different dynamical regimes. Interestingly,384

we draw similar conclusions between synthetic and real datasets.385

The performance of DriftNet exhibits variabilities across the two different regions. It likely un-386

derscores the importance of region-specific adaptations in trajectory simulation models. As such,387

the deployment of DriftNet on a global scale may require retraining the model to accommodate388
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FIG. 6: Examples of simulated trajectories for Benchmark B3: we depict real drifters trajecto-
ries in black (L3), trajectories simulated with Ocean Parcels using GLORYS12 velocity fields in
magenta (L4) and trajectories simulated with DriftNet using both GLORYS12 velocity fields and
satellite-derived optimally-interpolated SSH fields in blue. Panel (a) illustrates trajectories from
the whole region. Panel (b) zoom on a subset of randomly-selected trajectories. All superimposed
to the mean relative vorticity of the GLORYS12 velocity fields.
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the diverse dynamics in various oceanic regions [Miao et al. (2023)]. While we expect the pro-389

posed neural architecture to be generic, fine-tuning its parameters to align with the characteristics390

of a given region seems crucial for the relevance of the simulations. This approach allows for the391

incorporation of region-specific features, thereby enhancing the model’s predictive capabilities392

across diverse geographical regions. Furthermore, leveraging transfer learning techniques to capi-393

talize on the knowledge gained from training in one region to inform model adjustments in others394

holds promising avenue. By iteratively refining DriftNet through region-specific training and fine-395

tuning iterations, we hope to develop a robust trajectory simulation tool capable of capturing the396

intricacies of oceanic dynamics on a global scale.397

Our benchmarks highlight the relevance of the SSH fields to improve the prediction of La-398

grangian drifts on the sea surface both in synthetic and real case-studies, i.e. Benchmarks B2 and399

B3. We report a significant improvement for all the considered metrics when we complement400

reanalysis velocity fields with SSH fields. The SSH informs the geostrophic component of the401

sea surface currents, which is important for the two case-study regions for horizontal scales above402

100km [Checkley and Barth (2009); Thomas and Joyce (2010); Johns et al. (1989)]. As ocean403

reanalysis datasets can usually retrieve sea surface currents for horizontal scales above a few hun-404

dred of kilometers [Benkiran et al. (2021a); Lellouche et al. (2021)], the learning schemes likely405

benefit from the SSH fields to recover a more robust representation of the sea surface dynamics406

and improve the simulation of Lagrangian drift on the sea surface. The advent of wide-swath satel-407

lite altimeters [Benkiran et al. (2021b); Tchonang et al. (2021)], possibly combined with neural408

mapping schemes [Martin et al. (2023); Beauchamp et al. (2022); Fablet et al. (2023)], will lead409

to a better reconstruction of satellite-derived SSH fields, which could in turn result in improved410

learning-based Lagrangian simulations for real drifters on the sea surface.411

Beyond the exploraton of satellite-derived SSH fields, the use of additional geophysical variables412

to enhance trajectory generation offers another interesting approach to improve the simulation413

performance. Future studies could investigate other variables such as Sea Surface Temperature414

[Ciani et al. (2020)], Ocean Color [Yang et al. (2015); Liu et al. (2017)], Winds [Cucco et al.415

(2016); Solanlki et al. (2001)] or Waves Tang et al. (2007) to refine trajectory simulations and gain416

deeper insights into oceanic processes. By leveraging these variables, the proposed method could417
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not only improve trajectory accuracy but also facilitate comprehensive analysis of the underlying418

ocean dynamics.419

Inspired by established initiatives such as WeatherBench [Rasp et al. (2020)] and OceanBench420

[Johnson et al. (2024)], we propose a new benchmark for a standardized assessing and compar-421

ing Lagrangian trajectory simulation models https://github.com/CIA-Oceanix/DriftNet. Through422

proposed datasets and evaluation metrics, this framework seeks to foster collaborative frameworks423

involving ocean scientists and ML practitioners. In this context, future work could explore new424

evaluation metrics and extend the proposed benchmarks to a broader array of oceanic regions.425

From a methodological point of view, it seems appealing to extend the DriftNet to a proba-426

bilistic framework with a view to sampling ensembles of realistic drift trajectories. Conditional427

Generative Adversarial Networks (GAN) [Roy et al. (2022)] naturally arise among the promising428

solutions. Other generative models such as diffusion models [Tashiro et al. (2021)] could also be429

explored. Regarding real-time operational applications, such as search and rescue operations, or430

iceberg drifts, such generative schemes would also naturally apply to the short-term forecasting of431

Lagrangian trajectories on the sea surface using sea surface conditions issued from short-term fore-432

casts. This research direction would likely benefit from the development of neural ocean forecasts433

[Wang et al. (2024); Xiong et al. (2023)] to advance model-based operational forecasts [Drévillon434

et al. (2008); Benkiran et al. (2024)].435
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Benkiran, M., P.-Y. Le Traon, E. Rémy, and Y. Drillet, 2024: Impact of two high resolution al-465

timetry mission concepts for ocean forecasting. EGUsphere, 2024, 1–19.466

Benkiran, M., and Coauthors, 2021b: Assessing the impact of the assimilation of swot observa-467

tions in a global high-resolution analysis and forecasting system part 1: Methods. Frontiers in468

Marine Science, 8, 691 955.469

Botvynko, D., C. Granero-Belinchon, S. van Gennip, A. Benzinou, and R. Fablet, 2023: Deep470

learning for lagrangian drift simulation at the sea surface. ICASSP 2023 - 2023 IEEE Interna-471

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5.472

Breivik, O., A. A. Allen, C. Maisondieu, and M. Olagnon, 2013: Advances in search and rescue473

at sea. Ocean Dynamics, 63, 83–88.474

Callies, U., M. Kreus, W. Petersen, and Y. G. Voynova, 2021: On using lagrangian drift simulations475

to aid interpretation of in situ monitoring data. Frontiers in Marine Science, 8, 666 653.476

Checkley, D. M., and J. A. Barth, 2009: Patterns and processes in the california current system.477

Progress in Oceanography, 83 (1-4), 49–64.478

Ciani, D., M.-H. Rio, B. B. Nardelli, H. Etienne, and R. Santoleri, 2020: Improving the altimeter-479

derived surface currents using sea surface temperature (SST) data: A sensitivity study to SST480

products. Remote Sensing, 12 (10), 1601.481

Cucco, A., G. Quattrocchi, A. Satta, F. Antognarelli, F. De Biasio, E. Cadau, G. Umgiesser, and482

S. Zecchetto, 2016: Predictability of wind-induced sea surface transport in coastal areas. Jour-483

nal of Geophysical Research: Oceans, 121 (8), 5847–5871.484

Davis, R. E., 1991: Lagrangian ocean studies. Annual Review of Fluid Mechanics, 23 (1), 43–64.485

Dewar, W. K., and J. M. Bane, 1989: Gulf stream dynamics. pad II: Eddy energetics at 73 w.486

Journal of Physical Oceanography, 19 (10), 1574–1587.487

27



Drévillon, M., and Coauthors, 2008: The godae/mercator-ocean global ocean forecasting system:488

results, applications and prospects. Journal of Operational Oceanography, 1 (1), 51–57.489

Etienne, H., and Coauthors, 2023: Quality information document: Global ocean-delayed mode490

in-situ observations of surface (drifters and hfr) and sub-surface (vessel-mounted adcps) water491

velocity.492

Fablet, R., Q. Febvre, and B. Chapron, 2023: Multimodal 4dvarnets for the reconstruction of493

sea surface dynamics from SST-SSH synergies. IEEE Transactions on Geoscience and Remote494

Sensing.495

Fine, S., Y. Singer, and N. Tishby, 1998: The hierarchical hidden markov model: Analysis and496

applications. Machine Learning, 32, 41–62.497

Gan, J., P. Liu, and R. K. Chakrabarty, 2020: Deep learning enabled lagrangian particle trajectory498

simulation. Journal of Aerosol Science, 139, 105 468.499

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and500

Y. Bengio, 2020: Generative adversarial networks. Communications of the ACM, 63 (11), 139–501

144.502

Gula, J., M. J. Molemaker, and J. C. McWilliams, 2015: Gulf stream dynamics along the south-503

eastern US seaboard. Journal of Physical Oceanography, 45 (3), 690–715.504

Jenkins, J., A. Paiement, Y. Ourmières, J. Le Sommer, J. Verron, C. Ubelmann, and H. Glotin,505

2023: A DNN framework for learning lagrangian drift with uncertainty. Applied Intelligence,506

53 (20), 23 729–23 739.507

Jiang, H., L. Chang, Q. Li, and D. Chen, 2019: Trajectory prediction of vehicles based on deep508

learning. 2019 4th International Conference on Intelligent Transportation Engineering(ICITE),509

IEEE, 190–195.510

Johns, E., D. R. Watts, and H. T. Rossby, 1989: A test of geostrophy in the gulf stream. Journal of511

Geophysical Research: Oceans, 94 (C3), 3211–3222.512

28



Johnson, J. E., Q. Febvre, A. Gorbunova, S. Metref, M. Ballarotta, and J. e. a. Le Sommer, 2024:513

Oceanbench: The sea surface height edition. Advances in Neural Information Processing Sys-514

tems, 36.515

Julka, S., V. Sowrirajan, J. Schloetterer, and M. Granitzer, 2021: Conditional generative adversar-516

ial networks for speed control in trajectory simulation. International Conference on Machine517

Learning, Optimization, and Data Science, Springer, 436–450.518

Kang, Y., K. Morooka, and H. Nagahashi, 2005: Scale invariant texture analysis using multi-scale519

local autocorrelation features. Scale Space and PDE Methods in Computer Vision: 5th Inter-520

national Conference, Scale-Space 2005, Hofgeismar, Germany, April 7-9, 2005. Proceedings 5,521

Springer, 363–373.522

Kaplan, D. M., J. Largier, and L. W. Botsford, 2005: HF radar observations of surface circulation523

off bodega bay (northern california, USA). Journal of Geophysical Research: Oceans, 110.524

Korbmacher, R., and A. Tordeux, 2022: Review of pedestrian trajectory prediction methods: Com-525

paring deep learning and knowledge-based approaches. IEEE Transactions on Intelligent Trans-526

portation Systems, 23 (12), 24 126–24 144.527

Koszalka, I., J. H. LaCasce, M. Andersson, K. A. Orvik, and C. Mauritzen, 2011: Surface cir-528

culation in the nordic seas from clustered drifters. Deep Sea Research Part I: Oceanographic529

Research Papers, 58 (4), 468–485.530
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Lumpkin, R., T. Özgökmen, and L. Centurioni, 2017: Advances in the application of surface555

drifters. Annual Review of Marine Science, 9 (1), 59–81.556

Ma, Y., X. Zhu, S. Zhang, R. Yang, W. Wang, and D. Manocha, 2019: Trafficpredict: Trajectory557

prediction for heterogeneous traffic-agents. Proceedings of the AAAI conference on artificial558

intelligence, Vol. 33, 6120–6127.559

Martin, S. A., G. E. Manucharyan, and P. Klein, 2023: Synthesizing sea surface temperature and560

satellite altimetry observations using deep learning improves the accuracy and resolution of561

gridded sea surface height anomalies. Journal of Advances in Modeling Earth Systems, 15 (5),562

e2022MS003 589.563

Maximenko, N., J. Hafner, and P. Niiler, 2012: Pathways of marine debris derived from trajectories564

of lagrangian drifters. Marine pollution bulletin, 65 (1-3), 51–62.565

30



Miao, Y., X. Zhang, Y. Li, L. Zhang, and D. Zhang, 2023: Monthly extended ocean predictions566

based on a convolutional neural network via the transfer learning method. Frontiers in Marine567

Science, 9, 1073 377.568

Nguyen, D., and R. Fablet, 2024: A transformer network with sparse augmented data representa-569

tion and cross entropy loss for AIS-based vessel trajectory prediction. IEEE Access.570

Paz, D., H. Zhang, and H. I. Christensen, 2021: Tridentnet: A conditional generative model for571

dynamic trajectory generation. International Conference on Intelligent Autonomous Systems,572

Springer, 403–416.573

Prants, S. V., M. Y. Uleysky, and M. V. Budyansky, 2017: Lagrangian oceanography: large-scale574

transport and mixing in the ocean. Springer.575

Pujol, M.-I., Y. Faugère, G. Taburet, S. Dupuy, C. Pelloquin, M. Ablain, and N. Picot, 2016:576

DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years. Ocean577

Science, 12 (5), 1067–1090.578

Rasp, S., P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey, 2020: Weatherbench:579

a benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling580

Earth Systems, 12 (11), e2020MS002 203.581

Roy, A., R. Fablet, and S. L. Bertrand, 2022: Using generative adversarial networks (GAN) to582

simulate central-place foraging trajectories. Methods in Ecology and Evolution, 13 (6), 1275–583

1287.584
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