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1 Finite Element’s Shape functions

In this section, we recall the shape functions used for

the elements presented in this article, i.e. considering

P1, P2, P3 tetrahedra, hexahedron Q1, pyramid and

prism. These shape functions Ni are defined in their

reference element (for i ∈ {0, . . . n} with n the num-

ber of nodes of the considered element). Their partial

derivatives have then been calculated using Sympy.

Linear tetrahedra (P1)

N0(r) = 1− rx − ry − rz
N1(r) = rx N3(r) = ry N4(r) = rz

Quadratic tetrahedra (P2)

N0(r) = (1− rx − ry − rz)(2(1− rx − ry − rz)− 1)

N1(r) = rx(2rx − 1)

N2(r) = ry(2rz − 1)

N3(r) = rz(2rz − 1)

N4(r) = 4rx(1− rx − ry − rz)

N5(r) = 4rxry
N6(r) = 4ry(1− rx − ry − rz)

N7(r) = 4rz(1− rx − ry − rz)

N8(r) = 4rxrz
N9(r) = 4ryrz

Cubic tetrahedra (P3)

a = (1− rx − ry − rz)

N0(r) =
1
2 (3a− 1)(3a− 2)a

N1(r) =
1
2 (3rx − 1)(3rx − 2)rx

N2(r) =
1
2 (3ry − 1)(3ry − 2)ry

N3(r) =
1
2 (3rz − 1)(3rz − 2)rz
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N4(r) =
9
2 (arx)(3a− 1)

N5(r) =
9
2 (arx)(3rx − 1)

N6(r) =
9
2 (rxry)(3rx − 1)

N7(r) =
9
2 (rxry)(3ry − 1)

N8(r) =
9
2 (ary)(3ry − 1)

N9(r) =
9
2 (ary)(3a− 1)

N10(r) =
9
2 (arz)(3a− 1)

N11(r) =
9
2 (arz)(3rz − 1)

N12(r) =
9
2 (rxrz)(3rx − 1)

N13(r) =
9
2 (rxrz)(3rz − 1)

N14(r) =
9
2 (ryrz)(3ry − 1)

N15(r) =
9
2 (ryrz)(3rz − 1)

N16(r) = 27a(rxrz)

N17(r) = 27(rxryrz)

N18(r) = 27a(ryrz)

N19(r) = 27a(rxry)

Hexahedra (Q1)

N0(r) =
1
8 (1− rx)(1− ry)(1− rz)

N1(r) =
1
8 (1 + rx)(1− ry)(1− rz)

N2(r) =
1
8 (1 + rx)(1 + ry)(1− rz)

N3(r) =
1
8 (1− rx)(1 + ry)(1− rz)

N4(r) =
1
8 (1− rx)(1− ry)(1 + rz)

N5(r) =
1
8 (1 + rx)(1− ry)(1 + rz)

N6(r) =
1
8 (1 + rx)(1 + ry)(1 + rz)

N7(r) =
1
8 (1− rx)(1 + ry)(1 + rz)

Pyramid

N0(r) = (−rx+ry+rz−1)(−rx−ry+rz−1)(4−4rz)
−1

N1(r) = (−rx− ry+ rz −1)(rx− ry+ rz −1)(4−4rz)
−1

N2(r) = (rx + ry + rz − 1)(rx − ry + rz − 1)(4− 4rz)
−1

N3(r) = (rx+ ry+ rz −1)(−rx+ ry+ rz −1)(4−4rz)
−1

N4(r) = rz

Prism

N0(r) =
1
2 (1− rx − ry)(1− rz)

N1(r) =
1
2rx(1− rz)

https://www.sympy.org/en/index.html
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N2(r) =
1
2ry(1− rz)

N3(r) =
1
2rx(1 + rz)

N4(r) =
1
2ry(1 + rz)

2 Isoparametric linear tetrahedron

Lets’ now focus on the linear tetrahedron (P1) which is

composed of 4 nodes i ∈ {0, 1, 2, 3}. As see previously,

its shape functions Ni are defined in the reference ele-

ment by:

N0(r) = 1− rx − ry − rz.

N1(r) = rx, N2(r) = ry, N3(r) = rz.

The partial derivative with respect to the reference

position is thus defined by:

∂N(r)

∂r
=

(
∂N0(r)

∂r
∂N1(r)

∂r
∂N2(r)

∂r

)
=

−1 1 0 0

−1 0 1 0

−1 0 0 1

 .

Considering initial position X and deformed posi-

tion x, the Jacobian is defined by:

J(X, r) =

n=3∑
i=0

Xi
∂Ni(r)

∂r

T

=
(
X1 −X0, X2 −X0, X3 −X0

)

J(x, r) =

n=3∑
i=0

xi
∂Ni(r)

∂r

T

=
(
x1 − x0, x2 − x0, x3 − x0

)
In the fem formulation proposed by Bender &Mack-

lin [1,2] these Jacobians are called Dm and Ds. Note

that the partial derivative of the shape function gives a

constant matrix. Consequently, we don’t need to define

the coordinates of the quadrature point, and we only

need a single evaluation for complete quadrature. In

this case, the weight of the quadrature is equal to the

volume of the tetrahedron at rest (denoted V0), with

V0 = w0 det(J(X, r0)), w0 = 1/6, where w0 corresponds

to the weight of the quadrature point. This gives us the

following energy gradient:

∇U =

n=3∑
i=0

Vi P(x, ri) J(X, ri)
−T ∂N(ri)

∂r

= V0 P(x) J(X, r0)
−T ∂N(r0)

∂r
,

where P corresponds to the First Piola-Kirchhof stress

tensor, Vi are quadrature’s volume terms. Then, using

the properties of the shape functions according to which

the sum of their weights is always equal to one, we can

deduce that a force is the negative sum of the others.

This allows us to delete one row (the first in this case)

from the partial derivative matrix, giving us the identity

matrix. This is simplified as follows:(
∂∇U

∂x1
,
∂∇U

∂x2
,
∂∇U

∂x3

)
= V0 P(x) J(X, r0)

−T ,

∂∇U

∂x0
= −∂∇U

∂x1
− ∂∇U

∂x2
− ∂∇U

∂x3
.

We finally obtain the energy gradient presented by

Bender [1].

3 Comparison with PolyFEM

Some of our experiments have been reproduced that

shows some of the failure cases of linear element but

compared this time with a reference generated using

Polyfem. This open source library provides a state-of-

the-art pipeline for finite element simulation. Our ref-

erence meshes are the same as the one used in our pa-

per. The experiments were carried out for linear (P1),

quadratic (P2) and cubic (P3) tetrahedra. We use a

Saint-Venant material which defined in our paper and

Polyfem. We reproduced the tension (Fig. 1), torsion

(Fig. 2) and bending test (Fig. 3 and Table 3). All ex-

periment have the same poisson coefficient (ν = 0.35),

density (ρ = 1000). We do 1 iteration and 50 sub-step

with the XPBD solver. The young modulus is E =

1MPa for torsion and strech tests, and E = 3MPa

for the bending test.

Overall,the difference between elements is less strik-

ing. In particular, in the tension and rotation tests, it is

difficult to see a difference between the element types as

they all match the reference solution closely. However,

in the bending experiment we observe that high order

elements still give an accurate result with a coarse mesh

where linear elements require a dense mesh to achieve

the same accuracy.

Beam #vertices #elements time (ms) e (m)

425 1,280 43.6 1.5e−1

P1 2,417 10,240 363 5.1e−2

16,625 81,920 3,116 9.4e−3

P2 393 160 20.9 3.1e−3

P3 573 80 28.1 1.2e−2

Table 1: Bending test. Displacement error of the middle

point at the end of each beam compared to the reference

solution obtained for a beam composed of Q1 elements.
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Fig. 1: Tension test performed on P1, P2 and P3 biased

beams having 637 vertices using a Poisson ratio ν set

to 0.35. With a low Poisson ratio, elements acheive a

similar result than the reference.

Fig. 2: Torsion test. Visualization of the cross-section

of biased and unbiased beams colored according to the

displacement. P1 slightly deviate from the silhouette of

the reference (in red). In both cas, they are a rough ap-

proximation of the reference. High-order meshes closely

matched the reference for biased or unbiased meshes.
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Fig. 3: Top view of the beams considered in the unre-

formed state colored by the displacement induced by

the bending test. A good solution must have all colors

aligned with the reference obtained for a beam hav-

ing 16,384 Q1 elements. The greatest offset was for the

beam composed of 1,280 P1 elements. With 64 times

more element, linear tetrahedron reach the same accu-

racy that cubic element.
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