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Some geometric perspectives related to the kappa-model

G.Pascoli1 and L.Pernas2

Université de Picardie Jules Verne, Faculté des Sciences, 33 rue Saint-Leu, Amiens, France

Abstract
Very recently, a straightforward way was proposed in order to understand the galaxy and
galactic cluster world without using the very elusive dark matter concept. This way was called
κ-model [1, 2, 3, 4]. The main idea is to save the form of the usual physical laws, especially the
Newton’s laws of motion when gravity is weak, but only by applying a local renormalization
procedure for the lengths, distances and velocities. This local renormalization appears as a
correspondance principle in the κ-model. In this model the fundamental physical constants
remain universal, i.e. are independent of the point and of time. The κ-model is Newtonian
in essence but a relativistic extension can easily be built. The aim of the present paper is to
detail the mathematical formalism supporting it.
Keywords : Galaxy, Galaxy cluster, dark matter, modified gravity, kappa-model.

1 Introduction

The classical laws of physics (for instance the Newtonian dynamics) have been defined at the
meter scale. This scale goes from the sub-micrometric dimension to the scale of the solar
system. However, we know that at the scale of the nanoscopic world these classical laws are no
longer valid and the quantum field theory has to be used. Let us note that the ratio between
the radius of an atom and the base unit length (meter) is 10−10. Despite this statement, when
we go now in the opposite direction, i.e. the macrocosmos world, the physicists use the same
physical laws than those valid at the meter scale, with no changes, whereas the ratio between
one meter and one parsec is 10−16. The κ-model relies on the very simple suggestion that
the matter does no longer behave on the same manner when the characteristic dimension of
the region under study is very large (of the order of one parsec or more). The perception
of an observer must then necessarily be changed [1, 2, 3, 4]. Our aim is also to reduce the
modification compared to the Newtonian law at the minimal level. The main idea is that
the environment of the observer modifies his perception, a bit like when this one or the
observed object are immersed in different media with various refractive indices (even though
the analogy can strongly be misleading). Furthermore the lengths and the velocities which
are measured by him are differently renormalized following the mean densities surrounding
him and the observed object. Let us note that it relates only to apparent effects, the unit of
length (for instance the radius of a hydrogen atom) is obviously the same everywhere in the
Universe. The renormalization coefficient, labelled κ, is linked to the local mean density ρ by
a simple relationship κ = 1/(1 + Ln(1/ρ))) assuming ρ < 1 with appropriate normalization
[2, 3]. In section 2 some basic mathematical concepts are recalled, section 3 develops the
framework of the κ-model, in section 4 the κ-structure for Minkowski space is presented,
Eventually in section 5 a few illustrative applications to astrophysics are supplied. A few
didactic figures have also been added.
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2 Some basic structures on Rn

2.1 Algebraic structures

2.1.1 Affine and vectorial structure

When endowed with its usual vector space structure the set Rn of the real n-tuples will be
noted RRRn and when endowed with its affine structure it will be denoted simply by Rn. The
affine structure being a 1-transitive action of the additive group (RRRn,+) on Rn :

∀x ∈ Rn, ∀uuu ∈ RRRn, (x,uuu) 7→ x+ uuu.

When x+ uuu = y we will sometimes write uuu = y − x.

2.1.2 Euclidean structures

The vector space RRRn is equipped with a Euclidean structure once a scalar product on RRRn has
been selected. A scalar product is a definite positive bilinear symmetric form, in other words
it is an application

⟨., .⟩ : RRRn ×RRRn → R

linear in each variable, symmetric and satisfying ∀hhh ∈ RRRn, ⟨hhh,hhh⟩ ≥ 0, the cancellation hapen-
ning only when hhh = 000.
This means that in some base B = (eee1, . . . , eeen) of RRRn the matrix representing the bilinear
form ⟨., .⟩ i.e. the matrix (gij)1≤i,j≤n where gij = ⟨eeei, eeej⟩ is Idn = diag(1, . . . , 1) which means
that gij = δij, the Kronecker symbol.
If hhh = hieeei and kkk = kieeei we have then

⟨hhh,kkk⟩ = hiδijk
j =

n∑
i=1

hiki (1)

Such a base of RRRn is an orthonormal base (with respect to the particular scalar product
considered).
The application

RRRn → R,hhh 7→ ∥hhh∥ =
√

⟨hhh,hhh⟩ (2)

is a norm on RRRn in other words it fullfills the conditions :
- Positivity (∀xxx ∈ RRRn, ∥xxx∥ ≥ 0)
- Separation (∀xxx ∈ RRRn, ∥xxx∥ = 0 ⇐⇒ xxx = 000)
- Homogeneity (∀xxx ∈ RRRn,∀λ ∈ R, ∥λxxx∥ = |λ|∥xxx∥)
- Subadditivity (∀xxx,yyy ∈ RRRn, ∥xxx+ yyy∥ ≤ ∥xxx∥+ ∥yyy∥)

To a scalar product is also associated a way to measure angles :

∀hhh,kkk ∈ RRRn, ⟨hhh,kkk⟩ = ∥hhh∥∥kkk∥cos(θ) (3)

The linear transformations f of RRRn respecting the scalar product ⟨., .⟩ in other words such
that

∀hhh,kkk ∈ RRRn, ⟨f(hhh), f(kkk)⟩ = ⟨hhh,kkk⟩ (4)
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are called (vectorial) isometries. The set of vectorial isometries is a sub-group of the linear
group (GL(n), ◦) called the orthogonal group and denoted O(n)3.
When the vectorial space RRRn is equipped with a Euclidean structure, the affine space Rn is
endowed with a distance defined by

∀x, y ∈ Rn, d(x, y) = ∥x− y∥ = ⟨x− y, x− y⟩. (5)

In other words we have
- Symmetry (∀x, y ∈ Rn, d(x, y) = d(y, x)),
- Separation (∀x, y ∈ Rn, d(x, y) = 0 ⇐⇒ x = y),
- Triangle inequality (∀x, y, z ∈ Rn, d(x, z) ≤ d(x, y) + d(y, z)).

Furthermore this distance will be compatible with the affine structure :
- Invariance by translation :

∀x, y∈Rn, ∀ttt∈RRRn, d(x+ ttt, y + ttt) = d(x, y),
- Homogeneity :

∀λ∈R,∀x∈Rn,∀ttt,uuu∈RRRn, d(x+ λttt, x+ λuuu) = |λ|d(x+ ttt, x+ uuu).
The affine transformations with linear part in O(n) are the (affine) isometries.

2.1.3 Minkowski structure

A structure of Minkowski space on RRR4 is the choice of some symmetric bilinear form, ⟨⟨., .⟩⟩
on RRR4 with signature (1, 3), that means that in some base B = (e0, e1, e2, e3) of RRR4 the matrix
associated to ⟨⟨., .⟩⟩ is J = diag(1,−1,−1,−1). In other words, if hhh = hieeei and kkk = kieeei we
have then

⟨⟨hhh,kkk⟩⟩ = h0k0 −
3∑
i=1

hiki. (6)

It is common to refer to vectors of a Minkowski space as ”quadrivectors” and to ⟨⟨., .⟩⟩ as a
Minkowki product.
According to the sign of ⟨⟨hhh,hhh⟩⟩, a quadrivector hhh is

time-like when ⟨⟨hhh,hhh⟩⟩ > 0.
light-like when ⟨⟨hhh,hhh⟩⟩ = 0, the isotropy cone of ⟨⟨, ., ⟩⟩.
space-like when ⟨⟨hhh,hhh⟩⟩ < 0.

x1

x2

x0

time−like
quadrivectors

space−like
quadrivectors

Fig 1 : Minkowski space

3It is not relevant to note the particular scalar product one considers because the orthogonal groups of
two different scalar products on RRRn are isomorphic.
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The linear transformations f of RRR4 respecting the Minkowski product M in other words such
that

∀hhh,kkk ∈ RRR4, ⟨⟨f(hhh), f(kkk)⟩⟩ = ⟨⟨hhh,kkk⟩⟩ (7)

are called Lorentz transformations. The Lorentz transformation is a sub-group of (GL(4), ◦)
called the Lorentz group and denoted L, it is straightforward to see that Lorentz transforma-
tion f respect quadrivector’s types.
When the space RRR4 is equipped with a Minkowski structure the affine space R4 points are
usually called events.
Two events e = (ε0, ε1, ε2, ε3) and e′ = (ε′0, ε

′
1, ε

′
2, ε

′
3) are time-oriented when the unique

quadrivector uuu such that E ′ = E + uuu is time-like.

2.2 Topological structure of Rn

A topology on a set E is a way to give a meaning to expressions like ”x and y are close”
without having a way to measure a distance between x and y.
A standard way to do so is to select for each point x of E a set of parts of E, Neigh(x),
called the set of the neighborhoods of x. The sets Neigh(x) fullfilling the conditions expected
for such a notion :

† The set E must contain whatever is ”close” to x : ∀x ∈ E,E ∈ Neigh(x).

† The point x is among what is close to x : ∀x ∈ E,∀V ∈Neigh(x), x ∈ V .

† If two sets contain whatever is close to x their intersection too :
∀x ∈ E,∀V,W ∈ Neigh(x), V ∩W ∈ Neigh(x).

† If V contains whatever is close to x and W contains V , W contains whatever is close to x :
∀x ∈ E,∀V ∈ Neigh(x), if V ⊂ W then W ∈ Neigh(x)

† If V contains whatever is close to x then there exists W , containing also whatever is close
to x, and such that V contain whatever is close to whatever points in W :
∀x ∈ E,∀V ∈ Neigh(x),∃W ∈ Neigh(x)/∀y ∈ W,V ∈ Neigh(y)
Once a topology on E has been chosen an open set of E is a part O of E such that ∀x ∈
O,O ∈ Neigh(x).

Different topologies can be defined on Rn, the usual one is defined using the distance d defined
in (5). The set B(x, r[= {y ∈ Rn/d(x, y) < r} is the open ball with center at x ∈ Rn and
radius r. A neighborhood of x is any subset of Rn containing an open ball centered at x.
We will also use this topology on R4 when equipped with its Minkowski affine structure even
though in that case there is no distance directly linked to the topologic stucture.

The notion of topology allows correct definition of some very usefull ”local” notions in par-
ticular the notion of continuity at a point for a function f : E → F between two topological
spaces and x ∈ E, f is continuous at x when ∀W ∈ Neigh(f(x)),∃V ∈ Neigh(x)/f(V ) ⊂ W.
The affine orthogonal transformations (and the affine Lorentz transformations) are continu-
ous on Rn (and on R4)
In the Minkowsi space the set of light-like quadrivectors has two path connected components4.

4A part C of a topological space E is said path connected when for any points a and b of C there is a
continuous application γ : [0, 1] → E such that γ(0) = a, γ(1) = b and ∀t ∈ [0, 1], γ(t) ∈ C in other words a
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A Lorentz transformation is orthochrone when the path connected components are respected,
and antichrone when the components are exchanged.

2.3 Differentiable structure of Rn

RRRn being equipped with a scalar product and the associated norm defined in (2) and Rn with
the distance defined in (5).

2.3.1 Differential of a function, tangent vectors at a point

An application f : Rn → Rp is differentiable at x ∈ Rn whenever

∀hhh ∈ RRRn, f(x+ hhh) = f(x) + df/x(hhh) + o(hhh) (8)

where df/x is continuous and linear from RRRn to RRRp 5and o(hhh) = ∥hhh∥ε(hhh) with ε : RRRn → RRRp

such that ε(000) = 000 and limhhh→000ε(hhh) = 000.
The linear application

df/x : RRRn →: RRRp

is the differential at x of f .
The application

df : Rn → L(RRRn,RRRp)

is the differential of f .
At first glance, the definition of the differentiability of f at a point x, suggests that the
vectors hhh are picked in the ”same” space RRRn independantly of the point x we are looking at,
but this point of view would be baren if we want to go further.
To each point x ∈ Rn is associated a copy of RRRn, called the tangent space to Rn at x and
denoted TxRn, its elements are called tangent vectors to Rn at x.
With those definitions in mind, the definition of differentiability becomes

∀hhh ∈ TxRn, f(x+ hhh) = f(x) + df/x(hhh) + o(hhh) (9)

where df/x : TxRn → Tf(x)Rp is linear and o(hhh) = ∥hhh∥ε(hhh) with
ε : TxRn → Tf(x)Rp satisfying ε(000) = 000 and limhhh→000ε(hhh) = 000.

We have to clarify the status of the differential application df : x 7→ df/x, for its arrival set
had became unclear.
Let

TRn =
⊔
x∈Rn

{x} ×TxRn.

and
p : TRn → Rn; (x,hhh) 7→ x

path in C with source a and goal b
5It is well-known linear applications between two finite dimensional normed vector spaces are always

continuous, so the condition of continuity of df/x can be omited in the definition.
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The set TRn is the tangent space of Rn, it identifies to Rn ×RRRn and then the projection p
becomes the first projection of Rn ×RRRn on Rn. The tangent space TRn identifies also with
the affine space R2n.
Now let f : Rn → Rp be an application differentiable at each point of Rn, the application

Tf : TRn → TRp; (x,hhh) 7→ (f(x), df/x(hhh))

is called the tangent application or differential application of f .
Furthermore the projection

p : TRn → Rn; (x,hhh) 7→ x

is a (trivial) ”fiber bundle”, in that very simple case it just means that p is differentiable on
TRn.
The bitangent space to Rn at (x,hhh), T(x,hhh)(TRn) identifies with the product vector space
TxRn ×ThhhRn then

p((x,hhh) + (HHH,KKK)) = x+HHH = p(x,HHH) +HHH
and dp(x,hhh)(HHH,KKK) =HHH.
The process of differentiation can be repeted indefinitelly, applications admitting differential
at all orders are said of class C∞, the set of functions from Rn to R of class C∞ is denoted
C∞(Rn).

2.3.2 Tangent vector fields on Rn

A vector field U on Rn is a section of the tangent fiber bundle i.e. an application

U : Rn → TRn such that ∀x ∈ Rn, U(x) = (x,UUU(x)) ∈ TxRn.

As the first factor of a tangent vector fields is always known, in the sequels, we will note the
tangent vector field U by its second factor UUU .
Let (eee1, . . . , eeen) the canonical base of RRRn the tangent vector field x 7→ (x,eeei) will be denoted
∂
∂xxxi

so that any tangent vector field on Rn has a unique expression

UUU = U i ∂

∂xxxi

with U1, . . . , Un some functions from Rn to R.
The set of tangent vector fields of class C∞ is

ΓΓΓ(Rn) = {U i ∂

∂xxxi
/∀i ∈ {1, . . . , n}, U i ∈ C∞(Rn)}

We clarify now the notation ∂
∂xxxi

:
The set C∞(Rn), is endowed with a structure of real algebra by

- Addition defined by
∀f, g ∈ C∞(Rn), ∀x ∈ Rn, (f + g)(x) = f(x) + g(x)

- Multiplication by a real scalar defined by
∀(f, λ) ∈ C∞(Rn)× R,∀x ∈ Rn, (λf)(x) = λf(x)

- Inner multiplication defined by
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∀f, g ∈ C∞(M),∀x ∈M, (f.g)(x) = f(x)g(x).

The set ΓΓΓ(Rn) is endowed with a structure of C∞(Rn)-modulus by
- Vector fields addition defined by

∀ UUU,VVV ∈ ΓΓΓ(Rn),∀x ∈ Rn, (UUU + VVV )(x) = UUU(x) + VVV (x)
- The multiplication by a real scalar defined by

∀ UUU ∈ ΓΓΓ(Rn),∀λ ∈ R,∀x ∈ Rn, (λUUU)(x) = λUUU(x)
- Multiplication by a function defined by

∀(f,UUU) ∈ C∞(Rn)×ΓΓΓ(Rn),∀x ∈ Rn, (fUUU)(x) = f(x)UUU(x)

A derivation on the real algebra C∞(Rn) is a linear application

D : C∞(Rn) → C∞(Rn)

satisfying
∀f, g ∈ C∞(Rn), D(fg) = D(f)g + fD(g)

To UUU ∈ Γ(Rn) correspond a derivation DUUU on C∞(Rn) where ∀f ∈C∞(Rn),
DUUU(f) : Rn → R;x 7→ df/x(UUU(x))
Indeed we have

∀f, g ∈ C∞(Rn), DUUU(fg) = DUUU(f).g + fDUUU(g) (10)

and

∀a, b ∈ R,∀f, g ∈ C∞(Rn), DUUU(af + bg) = aDUUU(f) + bDUUU(g) (11)

DUUU(f)(x) can be seen as the directional derivative of f in the direction of UUU at x.
The notations ∂

∂xxxi
introduced previously for a tangent vector field are now clear :

If the expression of a tangent vector field is UUU = U i(x) ∂
∂xxxi

and
f ∈ C∞(Rn) for x ∈ Rn :

DUUU(f)(x) = U i(x)
∂f

∂xxxi
(x) (12)

The Lie bracket of two tangent vector fields UUU = U i ∂
∂xxxi

and VVV = V i ∂
∂xxxi

is defined by

[UUU,VVV ] =
(
U j ∂V

i

∂xxxj
− V j ∂U

i

∂xxxj
) ∂

∂xxxi
(13)

we have
D[UUU,VVV ] = DUUU ◦DVVV −DVVV ◦DUUU (14)

Endowed with this bracket the vector space ΓΓΓ(Rn) is a Lie algebra.

2.3.3 Covariant derivation

A covariant derivation on Rn is an application

∇ : ΓΓΓ(Rn)×ΓΓΓ(Rn) → ΓΓΓ(Rn); (UUU,VVV ) 7→ ∇UUUVVV

satisfying

7



∀a, b ∈ R, ∀ UUU,VVV ,WWW ∈ ΓΓΓ(Rn),∀f ∈ C∞(Rn),

∇aUUU+bVVVWWW = a∇UUUWWW + b∇VVVWWW (15)

∇UUU(aVVV + bWWW ) = a∇UUUVVV + b∇UUUWWW (16)

∇fUUUVVV = f∇UUUVVV and ∇UUU(fVVV ) = DUUU(f)VVV + f∇UUUVVV . (17)

A covariant derivation, ∇, on Rn is entirely defined by the family of tangent vector fields(
∇ ∂

∂xxxi

∂

∂xxxj

)
i,j=1...n

. If

∇ ∂

∂xxxi

∂

∂xxxj
= Γki,j

∂

∂xxxk
(18)

the functions Γkij are called Christoffel symbols of ∇.

For UUU = U i ∂
∂xxxi

and VVV = V i ∂
∂xxxi

we have

∇UUUVVV = U i∂V
j

∂xxxi
∂

∂xxxj
+ U iV jΓkij

∂

∂xxxk
(19)

2.3.4 Flat covariant derivation

The flat covariant derivation ∇ is the covariant derivation whose Christoffel symbols are all
null, in that case we have

∇UUUVVV =
n∑

i,j=1

U i∂V
j

∂xxxi
∂

∂xxxj

∇UUUVVV can be seen as the derivative of VVV in the direction of UUU .

2.3.5 Covariant derivation along a curve, parallel transport

Let
γ : R → Rn; t 7→ γ(t) = (γ1(t), . . . , γn(t))

a class C∞ function.
A tangent vector field of Rn along γ is an application

U : R → TRn

such that
∀t ∈ R, U(t) = (γ(t),UUU(t)) ∈ Tγ(t)Rn.

The set of tangent vector fields of class C∞ along γ is denoted ΓΓΓ(γ), it is a C∞(R)-modulus.
The velocity γ̇̇γ̇γ is the tangent vector field along γ defined by

t 7→ γ̇̇γ̇γ(t) = (γ(t), γ̇i(t)
∂

∂xxxi
) (20)

Where γ̇i = dγi

dt
. Its value depends only on the differential structure of Rn and ∀t ∈

R,∀h ∈ R, dγ/t(h) = h.γ̇̇γ̇γ(t).
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Let ∇ be a covariant derivation on Rn. There is exactly one operator ∇ d
dt

6 on the vector

space of tangent vector fields along γ such that

∀f ∈ C∞(I),∀UUU ∈ ΓΓΓ(γ),∇ d
dt
(f.UUU)(t) = f ′(t).UUU(t) + f(t).∇ d

dt
UUU(t)

and if UUU is the restriction to γ of a tangent vector field VVV on Rn

∇ d
dt
UUU(t) = ∇γ̇̇γ̇γ(t)VVV (t)

For UUU(t) = U i(t) ∂
∂xxxi

we have

∇ d
dt
UUU(t) =

(
U̇k(t) + ΓkijU

i(t)U j(t)
) ∂

∂xxxk
(21)

When Rn is equipped with the flat covariant derivative 7, the covariant derivative of U with
U(t) = (γ(t), U i(t) ∂

∂xxxi
) along γ is the tangent vector field along γ defined by

∇ d
dt
UUU(t) = (γ(t), U̇ i(t)

∂

∂xxxi
) (22)

A tangent vector field UUU along γ is said parallel with respect to the covariant derivation ∇
whenever ∇ d

dt
UUU = 0. General results on differential equations insure that a parallel tangent

vector field along γ is determined by its value at one point of the trajectory of γ. For t0, t1 ∈ R
the application

//t1t0 : Tγ(t0)R
n → Tγ(t1)Rn; (γ(t0),UUU(γ(t0)) 7→ (γ(t1),UUU(γ(t1))

where UUU is parallel along γ is called the parallel transport along γ between time t0 and t1.
When ∇ is the flat covariant derivation for any class C∞ curve γ the parallel vector fields
along γ are simply the constant vector fields.

2.3.6 Acceleration

Let γ : R → Rn a class C∞ function.
The covariant derivative of the vector field γ̇γγ along γ is the covariant acceleration of γ it is
denoted γ̈̈γ̈γ, note that unlike the velocity γ̈̈γ̈γ depends on the choice of a covariant derivation on
Rn.
When a curve γ satisfies ∇ d

dt
γ̇̇γ̇γ = 0 it is called a geodesic curve of the covariant derivation ∇,

for the flat covariant derivation the geodesics are the parametrizations with constant velocity
of straight lines.

6The usual notation can be somehow tricky because the dependance on the curve γ is not noted.
7The application U ◦ γ : R → TRn can be seen as a section of the trivial vector bundle over R with fibers

Tγ(t)Rn the covariant derivation along γ is then the flat covariant derivative of U ◦ γ relative to the tangent

field d
dttt over R.
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2.4 Riemannian structures on Rn

A Riemannian metric on Rn is an application G associating to each point x ∈ Rn a scalar
product Gx on TxRn with the condition that

∀ UUU,VVV ∈ ΓΓΓ(Rn), f : Rn → R;x 7→ f(x) = Gx(UUU(x),VVV (x))

is differentiable of class C∞.
The general expression of a Riemannian metric on Rn is

Gx = gij(x)dx
idxj (23)

Where the coefficients gij(x) ∈ C∞(Rn) are such that ∀x ∈ Rn, the matrix (gi,j(x))1≤i,j≤n is
symmetric definite positive and dxi is defined on Γ(Rn) by dxi(U j ∂

∂xj
) = U i.

For a Riemannian metric G and γ : I → Rn a class C∞ application, the real

∥γ̇̇γ̇γ(t)∥G =
√
Gγ(t)(γ̇̇γ̇γ(t), γ̇̇γ̇γ(t)) (24)

is the speed of γ at instant t with respect to the Riemannian metric G or G-speed, the
application

t 7→ (γ(t), ∥γ̇̇γ̇γ(t)∥G)
is a scalar field along γ.
The G-length of γ is

LG(γ) =

∫ b

a

∥γ̇̇γ̇γ(t)∥Gdt. (25)

The G-kinetic energy of γ is

EG(γ) =
1

2

∫ b

a

∥γ̇̇γ̇γ(t)∥2Gdt. (26)

The G-length does not depend on the parametrization γ but the G-kinetic energy does.
We obtain a distance on Rn setting for x, y ∈ Rn

dG(x, y) = Inf{LG(γ), γ differentiable with γ(a) = x, γ(b) = y}.

Though dG is in general not associated to any norm on RRRn, the topology of Rn induced by
dG is always the usual topology of Rn.
For uuu,vvv ∈ TxRn the G-angle, θG(uuu,vvv)), of uuu and vvv is defined by

G(uuu,vvv) = ∥uuu∥G∥vvv∥Gcos(θG(uuu,vvv)). (27)

2.4.1 Levi-Civita connection

Let G be a Riemannian metric on Rn, a covariant derivation ∇ on Rn is compatible with G
when

∀ UUU,VVV ,WWW ∈ Γ(Rn), DUUU(G(VVV ,WWW )) = G(∇UUUVVV ,WWW ) +G(VVV ,∇UUUWWW ) (28)

For any Riemannian metric G on Rn there is exactly one torsion-free 8 covariant derivation
compatible with G called the Levi-Civita connection of G.

8∀UUU,VVV ∈ Γ(Rn),∇UUUVVV −∇VVVUUU = [UUU,VVV ].
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The Christoffel symbols of the Levi-Civita connection have expressions

Γkij =
1

2
gkℓ

(∂giℓ
∂xxxj

+
∂gjℓ
∂xxxi

− ∂gij
∂xxxℓ

)
(29)

where (gij)1≤i,j≤n is the inverse matrix of (gij)1≤i,j≤n.

2.4.2 Some Riemannian metrics

1) The usual affine Euclidean structure of Rn can be seen as a Riemannian structure on Rn:

GEuc = δijdx
idxj (30)

When Rn is equipped with the metric GEuc the Levi-Civita connection is the flat covariant
derivation ∇ defined previously. The distance dGEuc is the usual Euclidean distance and the
angle measurement is the usual angle measurement. The geodesics are parametrizations of
straightlines with constant velocities.

2) For λ ∈ R∗
+ we put

GEuc
λ = λ2GEuc = λ2δijdx

idxj (31)

The Levi-Civita connection of GEuc
λ is also the flat covariant derivation.

The distance associated is
dGEuc

λ
= λdGEuc . (32)

The angles measurement associated satisfies

∀x ∈ Rn,∀uuu,vvv ∈ TxRn, θGEuc
λ

(uuu,vvv) = θGEuc(uuu,vvv). (33)

The application IdRn from (Rn, GEuc) to (Rn, GEuc
λ ) is a scaling.

The geodesics are straightlines parametrized with constant velocities.
For GEuc as well as for GEuc

λ the parallel transport is trivial, the parallel tangent vector fields
are of the form UUU =

∑n
i=1 u

i ∂
∂xxxi

where ui are constants.

3) For µ ∈ C∞(Rn) such that ∀x ∈ Rn, µ(x) ∈]m,M [, (m > 0) we put

Gµ = µ2δijdx
idxj (34)

The Levi-Civita connection is not anymore the flat covariant derivation, a straightforward
computation gives the expressions of the Christoffel symbols

Γkij =
1

µ
δkl

(
δil
∂µ

∂xj
+ δlj

∂µ

∂xi
− δij

∂µ

∂xm

)
(35)

The geodesics are not anymore straightlines. The application IdRn from (Rn, GEuc) to
(Rn, Gµ) is conformal.
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2.5 Pseudo-Riemannian structure on R4

A pseudo-Riemannian metric on R4 is an application G associating to each point x ∈ R4 a
Minkowski product Gx on TxR4 with the condition that

∀UUU,VVV ∈ Γ(R4), F : R4 → R;x 7→ Gx(UUU(x),VVV (x))

is differentiable of class C∞.
The general expression of a pseudo-Riemannian metric on R4 is

Gx = gij(x)dx
idxj (36)

where the coefficients gij ∈ C∞(Rn) are such that ∀x ∈ R4, the matrix (gij(x)) is symmetric
with signature (1, 3).
Let ηij be the coefficient of the matrix diag(1,−1,−1,−1). The usual affine Minkowski
structure of R4 is a pseudo-Riemannian structure :

GMink = ηijdx
i.dxj (37)

It will be practical to limit the summation to i ∈ {1, 2, 3}. With this convention we have

GMink = dx0dx0 − δijdx
i.dxj (38)

As in the Riemannian case, for any pseudo-Riemannian structure on R4 the Levi-Civita
connection is the unique torsion-free covariant derivation satisfying

∀ UUU,VVV ,WWW ∈ Γ(R4), DUUU(G(VVV ,WWW )) = G(∇UUUVVV ,WWW ) +G(VVV ,∇UUUWWW ) (39)

The Levi-Civita connection of GMink is once again the flat covariant derivation.
For λ > 0 we will consider later the pseudo-Riemannian metric defined by

GMink
λ = dx0dx0 − λ2δijdx

idxj (40)

For this pseudo-Riemannian metric the Levi-Civita connection is still the flat covariant deriva-
tion.

3 Framework for the κ-model

3.1 κ-structure on a Riemannian metric

A κ-structure on R3 or a Riemannian metric affected with a κ-effect is a couple (G, κ) where

† G = gijdx
idxj is a fixed Riemannian metric on R3.

† κ is an application of class C∞ from R3 to ]m,M [ with m > 0.

Then, when (G, κ) is a κ-structure on R3 we have :
1) On one hand two Riemannian metrics on R3 :

(R3, G) and (R3, Gκ)

12



where Gκ = κ2gijdx
idxj is a metric conformal to G

2) On the other hand to each point a ∈ R3 is associated the Riemannian metric (R3, Gκ(a))
which is a rescaling of G.
A point in R3 endowed with a κ-structure will be called a sitting-observer.

We can think of this situation as the trivial bundle R3×]m,M [→ R3 where each constant
section R3 × {λ} is equipped with the Riemannian metric Gλ, the function κ associating to
each point a of R3 the constant section R3 × {κ(a)}.

3.2 κ-structure on the Euclidean metric

Let us equip R3 with a κ-structure (GEuc, κ), and choose once and for all a global system of
coordinates (σ1, σ2, σ3) such that GEuc = δijdσidσj. The distance associated is the Euclidean
distance, dEuc.
Each sitting-observer a ∈ R3 is equipped via κ with the flat Riemannian metric GEuc

κ(a) defined
by

∀a ∈ R3,∀σ ∈ R3,∀uuu,vvv ∈ TσR3, Gκ(a)(uuu,vvv) = κ2(a)⟨uuu,vvv⟩ (41)

from which a distance on R3 is deduced :

da(x, y) = κ(a)de(x, y). (42)

However there should be no confusion between the collection of flat Riemannian metrics
GEuc
κ(a) = κ2(a)

∑
(dσi)2 which are rescalings of (R3, GEuc) and the non-flat Riemannian metric

Gκ = κ2
∑

(dσi)2.

R3
λ

R3
µ

R3
ν

.c

.c

.c

ρ

ρ

ρ

Fig 2 : Circles with same radii and centers

in R3
µ,R3

ν and R3
λ with λ > µ > ν

Any information retrieved using the flat Riemannian metric GEuc
κ(a) on R3 will be called an

observation made by a sitting-observer at a.
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The application Id : (R3, da) → (R3, db) is not an isometry but it is nevertheless a scaling.
Observations made by two sitting observers are linked, for example

∀a, b ∈ R3,∀σ, σ′ ∈ R3, da(σ, σ
′) =

κ(a)

κ(b)
db(σ, σ

′). (43)

while
∀a, b ∈ R3,∀σ ∈ R3, ∀uuu,vvv ∈ TσR3, θa(uuu,vvv) = θb(uuu,vvv). (44)

This means that two sitting-observers will agree on angles measurements but not on length
measurements. If they exchange their measurements two sitting-observers would desagree.

3.2.1 Speed fields

Let γ : R → R3 a smooth curve, t 7→ γ̇̇γ̇γ(t) its velocity, its Euclidean-speed is the scalar field
along γ

vEuc(t) = ∥γ̇̇γ̇γ(t)∥GEuc . (45)

The speed measured by a sitting-observer at a, the a-speed of γ, is the scalar field along γ
defined by

va(t) = ∥γ̇̇γ̇γ(t)∥GEuc
κ(a)

=
√
κ2(a)⟨γ̇̇γ̇γ(t), γ̇̇γ̇γ(t)⟩ = κ(a)vEuc(t) (46)

The a-velocity of γ is the tangent vector field along γ defined by

vvva(t) = κ(a)γ̇̇γ̇γ(t) (47)

so that the a-speed at time t is ∥vvva(t)∥GEuc .

The κ-speed of γ at time t is the speed measured by the sitting-observers coincident with
γ(t).

vκ(t) = ∥γ̇̇γ̇γ(t)∥GEuc
κ(γ(t))

=
√
κ2(γ(t))⟨γ̇̇γ̇γ(t), γ̇̇γ̇γ(t)⟩ = κ(γ(t))vEuc(t) (48)

The κ-velocity of γ is the tangent vector field along γ defined by

vvvκ(t) = κ(γ(t))γ̇̇γ̇γ(t). (49)

so that the κ-speed at time t is ∥v̇̇v̇vκ(t)∥GEuc .

The relations between the different speeds is

∀a, b ∈ R3, va(t) =
κ(a)

κ(b)
vb(t) (50)

and

∀a ∈ R3, vκ(t) =
κ(γ(t))

κ(a)
va(t) (51)

A smooth curve γ : R → R3 is κ-uniform when its κ-speed is constant, in other words when

dκ/γ(t)(γ̇̇γ̇γ(t))∥γ̇̇γ̇γ(t)∥+ κ(γ(t))
< γ̈̈γ̈γ(t), γ̇̇γ̇γ(t) >

∥γ̇̇γ̇γ(t)∥
= 0 (52)

or

⟨GGGradγ(t)κ, γ̇̇γ̇γ(t)⟩vEuc(t) + κ(γ(t))
< γ̈̈γ̈γ(t), γ̇̇γ̇γ(t) >

vEuc(t)
= 0 (53)
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3.2.2 κ-uniform straight lines

Let σ and σ′ two distinct points of R3. For any sitting-observer a the parametrization

γ : R → R3, t 7→ σ + t(σ′ − σ) (54)

is the geodesic passing through σ at time 0 and σ′ at time 1 with constant a-speed
va = da(σ, σ

′).
Since ∀t ∈ R, vκ(t) = ∥σ′ − σ∥κ(γ(t)) is not a constant function, the smooth curve γ is not
κ-uniform (unless κ is constant along it).
Nevertheless we can reparametrize the support of γ in a κ-uniform way.
Let c : R → R3 defined by

c(t) = σ + ϕ(t)uuu (55)

where
† ϕ : R → R is some class C∞ function with ϕ(0) = 0.
† uuu = 1

∥σ′−σ∥(σ
′ − σ) ∈ RRR3.

The κ-speed of c is vκ(t) = κ(σ + ϕ(t)uuu)|ϕ′(t)|.
The parametrization c is κ-uniform with constant κ-speed V if and only if

∀t ∈ R, |ϕ′(t)| = V

κ(σ + ϕ(t)uuu)
(56)

Then ∀t ∈ R, V
M

≤ |ϕ′(t)| ≤ V
m

so the derivative ϕ′(t) never cancels. If c is to reach σ′ at
some positive time we have ∀t ∈ R, ϕ′(t) > 0.

Let K : R → R the function defined by

K(θ) =

∫ θ

0

κ(σ + suuu)ds (57)

as κ is a strictly positive function, K is a strictly increasing bijective function from R to
itself, let χ be its reciprocal.
The curve defined by

c(t) = σ + χ(tV )uuu

is κ-uniform with κ-speed V .
Indeed its κ-speed

vκ(t) = κ(σ + χ(tV )uuu)χ′(tV ) = κ(σ + χ(tV )uuu)
1

K ′(χ(tV ))
V = V (58)

3.2.3 Velocity fields and covariant accelerations

Let γ : R → R3 a smooth curve.
For a given sitting-observer a, R3 is equipped with GEuc

κ(a), the Levi-Civita connection is flat
and the solutions of the equation of cancellation of covariant derivation of the a-velocity

∇ d
dt
v̇̇v̇va = 0 (59)

15



are the parametrizations with constant a-speed of straight lines, those are the a-geodesics.
Another sitting-observer b will agree with a on saying that a curve is a geodesic but b will
measure a different speed.
A straightforward computation gives the equation of cancellation of the flat covariant deriva-
tion of the κ-velocity

∇ d
dt
v̇̇v̇vκ = κ(γ(t))γ̈̈γ̈γ(t) + ⟨GGGradγ(t)κ, γ̇̇γ̇γ(t)⟩.γ̇̇γ̇γ(t) = 0 (60)

The flat covariant derivation is not the Levi-Civita of the metric GEuc
κ so the equation (60)

is not the equation of geodesics of GEuc
κ . The solution curves are the parametrizations of

straightlines with constant κ-speed.
This can be checked easily : (60) admits one unique solution with given initial conditions
γ(0), γ̇̇γ̇γ(0). Using an adapted frame we can assume that γ(0) = O and γ̇̇γ̇γ(0) is colinear to ∂

∂σσσ1 .
We have seen that the κ-uniform parametrization of the straight line γ such that γ(0) = O
and κ-speed 1 is

γ(t) = (χ(t), 0, 0)

where χ is the reciprocal of the function K defined by

K(θ) =

∫ θ

0

κ(O + s
∂

∂x1
)ds.

The velocity of γ writes

γ̇̇γ̇γ(t) = χ′(t)
∂

∂xxx1
=

1

κ(γ(t))

∂

∂xxx1
,

then

γ̈γγ(t) = ∇ d
dt
γ̇̇γ̇γ(t) =

− ∂κ
∂x1 (γ(t))χ

′(t)

κ2(γ(t))

∂

∂xxx1
= − 1

κ(γ(t))3
∂κ

∂x1
(γ(t))

∂

∂xxx1

From where we find again relation (60).

3.2.4 Laser distance

Let σ, σ′ ∈ R3, let uuu = 1
dEuc(σ,σ′)

(σ′ − σ). Let

γ : R → R3; t 7→ σ + tuuu (61)

we have
γ(0) = σ, γ(dEuc(σ, σ

′)) = σ′.

and as ∀t ∈ R, γ̇̇γ̇γ(t) is the Euclidean-unit tangent vector uuu the κ-speed vκ(t) = κ(γ(t)).
The laser distance dlas(σ, σ

′) is defined by GEuc
κ -length of γ between σ and σ′ is

dlas(σ, σ
′) = LGEuc

κ
([σ, σ′]) =

∫ dEuc(σ,σ
′)

0

κ(σ + tuuu)dt. (62)

This laser-distance can also be obtained with the κ-uniform parametrization of [σ, σ′] with
κ-speed equal to 1.

γ̃ : R → R3; t 7→ x = σ + χ(t)uuu
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where χ = K−1 with K(θ) =
∫ θ
0
κ(x+ suuu)ds.

Llas(σ, σ
′) is the ”distance” obtained by compiling the measurement of speed made by sitting-

observers along the straightline segment [σ, σ′] which is not a GEuc
κ geodesic.

The application (σ, σ′) 7→ dlas(σ, σ
′) is not in general a distance for it fails to satisfy the

triangle inequality, but nevertheless
The positivity ∀σ, σ′ ∈ R3, dlas(σ, σ

′) ≥ 0.
The separation ∀σ, σ′ ∈ R3, dlas(σ, σ

′) = 0 ⇐⇒ σ′ = σ.
The symmetry ∀σ, σ′ ∈ R3, dlas(σ, σ

′) = dlas(σ
′, σ).

are satisfied.

3.2.5 Circular motions

Let γ : R → R3 a parametrization of class C∞ of some Euclidean circle C of R3, in a well
chosen orthonormal coordinates system (σ1, σ2, σ3) we have

γ(t) = R
(
cos θ(t), sin θ(t), 0)

)
(63)

with R > 0 and θ some C∞ function.
For θ ∈ R, let us define the tangent vector fields

uuu(θ) = cos(θ)
∂

∂σσσ1
+ sin(θ)

∂

∂σσσ2
and vvv(θ) = −sin(θ) ∂

∂σσσ1
+ cos(θ)

∂

∂σσσ2
. (64)

For a sitting-observer a, the apparent radius is κ(a)R, the a-velocity at time t is

vvva(t) = κ(a)Rθ′(t)vvv(θ(t)) (65)

While the κ-velocity at time t is given by

vvvκ(t) = κ(γ(t))Rθ′(t)vvv(θ(t) (66)

The (covariant) a-acceleration of γ is

∇ d
dt
v̇̇v̇va(t) = κ(a)R

[
θ′′(t)vvv(θ(t))− θ′(t)2uuu(θ(t))

]
(67)

The (covariant) κ-acceleration of γ writes

∇d
dt
v̇̇v̇vκ(t) = ∇d

dt

(
(κ ◦ γ)γ̇̇γ̇γ

)
(t) =

d(κ ◦ γ)
dt

(t)γ̇̇γ̇γ(t) + κ ◦ γ(t)∇d
dt
γ̇̇γ̇γ (68)

3.2.6 a-uniform and κ-uniform circular motions

When a circular motion γ is a-uniform, in other words when for a sitting observer a the
a-speed is a constant, the expression of θ has the form θ(t) = φ + ωt with φ and ω some
constants. Changing the origin of time we may assume that φ = 0, and changing the
orientation we may assume that ω ≥ 0.
Then

γ(t) = R(cos(ωt), sin(ωt), 0)

(in polar coordinates γ(t) = (R,ωt))
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For any sitting-observer a ∈ R3 the motion will also be circular a-uniform with angular speed
ω but with apparant radius of the trajectory Ra = κ(a)R.
The a-speed and the κ-speed writes

va(t) = Rκ(a)ω and vκ(t) = Rκ(γ(t))ω (69)

The derivative of the κ-speed is

dvκ
dt

(t) = R2ω2⟨GGGradσ(t)κ,vvv(ωt)⟩ = Rω2∂g

∂θ
(σ, ωt) (70)

where g is defined by
g(r, θ) = κ(rcos(θ), rsin(θ), 0).

Of course if κ happens to have radial symmetry, in other words if ∂g
∂θ

= 0 the motion is also
κ-uniform.

3.3 κ-structure on a Minkowski metric

Let us equip R4 with the Minkowski metric GMink. We choose once and for all a global
system of coordinates (σ0, σ1, σ2, σ3) such that the expression of the pseudo-metric is

GMink = dσ0dσ0 − δijdσ
idσj

Then ∀e ∈ R4,∀u = ui
∂

∂σσσi
,v = vi

∂

∂σσσi
∈ TeR4,

GMink
e (u,v) = ⟨⟨u,v⟩⟩ = u0v0 − (u1v1 + u2v2 + u3v3) (71)

The choice of the global coordinates system provides a trivial foliation of R4 which leaves are
the equivalence classes of the relation (σ0, σ1, σ2, σ3) ≃ (σ′0, σ′1, σ′2, σ′3) when (σ1, σ2, σ3) =
(σ′1, σ′2, σ′3). Each leaves of that foliation will be called a sitting-observer relative to the
chosen global coordinate system. To each point a in R3 is associated a unique sitting-observer
ā.
Changing the coordinate system will of course change the sitting-observers.
A Minkowski metric affected with a κ-effect is a couple
((σ0, σ1, σ2, σ3), κ) where

† (σ0, σ1, σ2, σ3) is a global coordinates system such as GMink has expression dσ0dσ0 −
δijdσ

idσj.
† κ : R3 →]m,M [ with m > 0 is a class C∞ function.

When ((σ0, σ1, σ2, σ3), κ) is a Minkowski metric affected with a κ-effect we have
On one hand two pseudo-metrics on R4 :

· The Minkowski metric GMink = dσ0dσ0 − δijdσ
idσj

defined at (71).
· The non-flat pseudo-metric Gκ = dσ0dσ0 − κ2δijdσ

idσj defined by

∀e ∈ R4,∀u = ui
∂

∂σσσi
,v = vi

∂

∂σσσi
∈ TeR4,

GMink
κ,e (u,v) = ⟨⟨u,v⟩⟩κ(ē) = u0v0 − κ2(ē)(u1v1 + u2v2 + u3v3) (72)
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On the other hand a collection of Minkowski metrics on R4, ∀a ∈ R3

GMink
κ(ā) = dσ0dσ0 − κ2(ā)δijdσ

idσj,

defined by

∀e ∈ R4,∀u = ui
∂

∂σσσi
,v = vi

∂

∂σσσi
∈ TeR4,

GMink
κ(ā) (u,v) = ⟨⟨u,v⟩⟩ā = u0v0 − κ2(ā)(u1v1 + u2v2 + u3v3) (73)

Any information retrieved using the pseudo-metric GMink
κ(ā) on R4 is an observation made by

a sitting-observer ā. For example, let e and e′ two events, if u is the unique quadrivector
such that e′ = e + u the sitting observer ā will interpret e and e′ separated by a time-like
gap when GMink

κ(ā) (u,u) > 0. Another sitting-observer may interpret e and e′ separated by a
space-like gap.

GMink
κ(ā)

GMink
κ(b̄)

GMink
κ(c̄)

•
e

•
e

•
e

σs

σ0

σs

σ0

σs

σ0

Fig 5 : Deformation of the ”future-cone” at e with κ(ā)<κ(b̄)<κ(c̄)

the ”space component”, σs, represented in dimension 1

3.3.1 Quadrivelocities

Let
Γ : R → R4, τ 7→ (Γ0(τ),Γ1(τ),Γ2(τ),Γ3(τ))

be a smooth worldline expressed in the coordinates system (σ0, σ1, σ2, σ3), the triplet (Γ1(τ),Γ2(τ),Γ3(τ))
will be denoted Γs(τ) and Γ̄(s)(τ) the sitting-observer associated.
The quadrivelocity is

Γ̇̇Γ̇Γ(τ) = Γ̇0(τ)
∂

∂σσσ0
+ Γ̇i(τ)

∂

∂σσσi
(74)

where the dot is the derivation with respect to the proper time τ , and the summation is on
indexes i ∈ {1, 2, 3}.
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For a sitting observer ā we define the ā-quadrivelocity by

Γ̇̇Γ̇Γā(τ) = Γ̇0(τ)
∂

∂σσσ0
+ κ(ā)Γ̇i(τ)

∂

∂σσσi
(75)

so that
⟨⟨Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟩⟩ā = ⟨⟨Γ̇̇Γ̇Γā(τ), Γ̇̇Γ̇Γā(τ)⟩⟩ (76)

The quadrivelocity that would be measured by the sitting-observer Γ̄s(τ) is the κ-quadrivelocity

Γ̇̇Γ̇Γκ(τ) = Γ̇0(τ)
∂

∂σσσ0
+ κ(Γ̄s(τ))Γ̇i(τ)

∂

∂σσσi
(77)

so that
⟨⟨Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟩⟩Γ̄s(τ) = ⟨⟨Γ̇̇Γ̇Γκ(τ), Γ̇̇Γ̇Γκ(τ)⟩⟩ (78)

We have

Γ̇̇Γ̇Γ(τ) = Γ̇0(τ)
( ∂

∂σσσ0
+

Γ̇i(τ)

Γ̇0(τ)

∂

∂σσσi

)
(79)

If we put

vvvΓ(τ) =
Γ̇i(τ)

Γ̇0(τ)

∂

∂σσσi
(80)

we get the equivalence

⟨⟨Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟩⟩ > 0 ⇐⇒ ⟨vvvΓ(τ), vvvΓ(τ)⟩ < 1 (81)

When condition (81) is fullfilled for all τ ∈ R, we say that Γ is a Minkowski-particle worldline.
Similarly

Γ̇̇Γ̇Γā(τ) = Γ̇0(τ)
( ∂

∂σσσ0
+ κ(ā)

Γ̇i(τ)

Γ̇0(τ)

∂

∂σσσi

)
= Γ̇0(τ)

( ∂

∂σσσ0
+ κ(ā)vvvΓ(τ)

)
(82)

we get the equivalence

⟨⟨Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟩⟩ā > 0 ⇐⇒ ⟨vvvΓ(τ), vvvΓ(τ)⟩ <
1

κ2(ā)
(83)

When (83) is fullfilled for all τ ∈ R we say that Γ is a ā-worldline. and

Γ̇̇Γ̇Γκ(τ) = Γ̇0(τ)
( ∂

∂σσσ0
+ κ(Γ̄s(τ))

Γ̇i(τ)

Γ̇0(τ)

∂

∂σσσi

)
= Γ̇0(τ)

( ∂

∂σσσ0
+ κ(Γ̄s(τ))vvvΓ(τ)

)
(84)

we get the equivalence

⟨⟨Γ̇̇Γ̇Γ(τ), Γ̇̇Γ̇Γ(τ)⟩⟩κ > 0 ⇐⇒ ⟨vvvΓ(τ), vvvΓ(τ)⟩ <
1

κ2(Γ̄s(τ))
(85)

When condition (85) is fullfilled for all τ ∈ R we say that Γ is a κ-worldline.
Let us put
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vvvā,Γ(τ) = κ(ā)vvvΓ(τ) and vvvκ,Γ(τ) = κ(Γ̄s(τ))vvvΓ(τ) (86)

for two sitting-observers ā and b̄ we have

vvvā,Γ(τ) =
κ(ā)

κ(b̄)
vvvb̄,Γ(τ) (87)

and

vvvκ,Γ(τ) =
κ(Γ̄s(τ))

κ(ā)
vvvā,Γ(τ) (88)

The Levi-Civita connections of the Minkowskian metrics GMink
κ(ā) are all equal to the trivial

covariant derivative. This means that

∇ d
dτ
Γ̇̇Γ̇Γ = 0 ⇐⇒ Γ̈i(τ) = 0 for i = 0, 1, 2, 3 (89)

Such a worldline is seen as a geodesic by any sitting-observer and its general form is σ : R →
R4, τ 7→ (σ0(τ), σ1(τ), σ2(τ), σ3(τ)) with affine coordinate functions.

3.3.2 Changing coordinate systems

Without κ-effect :
The choice of a ”reference frame” F = (O,B) where O = (x0, x1, x2, x3) is an event and
B = (∂∂∂0, ∂∂∂1, ∂∂∂2, ∂∂∂3) is a base of TTTOR4 such that for u = ui∂∂∂i and v = vi∂∂∂i two tangent
vectors at O, we have

⟨⟨u,v⟩⟩ = u0v0 − (u1v1 + u2v2 + u3v3).

determines a global system of coordinates (σ0, σ1, σ2, σ3) on R4. For example we can choose
∂∂∂i =

∂
∂σσσi for i = 0, 1, 2, 3.

Let O′ : R → R4, T 7→ (a0T, a1T, 0, 0), with a0, a1 ∈ R, be a geodesic worldline. If we adjust
a base B′ = (∂∂∂′0, ∂∂∂

′
1, ∂∂∂

′
2, ∂∂∂

′
3) of TO′(0)R4 so that the global coordinate system (σ′0, σ′1, σ′2, σ′3)

generated by the frame F ′ = (O′(0),B′) fullfills the conditions
(1) The coordinates functions of a geodesic worldline R → R4 are
affine functions
(2) If e ∈ R4 has coordinates (σ0, σ1, σ2, σ3) satisfying

(σ0)2 − ((σ1)2 + (σ2)2 + (σ3)2) = 0

its coordinates (σ′0, σ′1, σ′2, σ′3) satisfy

(σ′0)2 − ((σ′1)2 + (σ′2)2 + (σ′3)2) = 0

We obtain

∂∂∂′0 = γ(∂∂∂0 + v∂∂∂1), ∂∂∂
′
1 = γ(v∂∂∂0 + ∂∂∂1), ∂∂∂

′
2 = ∂∂∂2, ∂∂∂

′
3 = ∂∂∂3 (90)

where
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v =
a1
a0

and γ =
1√

1− v2
(91)

Then if e has coordinates (σ0, σ1, σ2, σ3) in F , its coordinates in F ′ are

σ′0 = γ(σ0 − vσ1), σ′1 = γ(−vσ0 + σ1), σ′2 = σ2, σ′3 = σ3.

This is the σ1-boost.
With the κ-effect :
Let (σ0, σ1, σ2, σ3) an event and Ō the sitting-observer associated. We can choose a base
BŌ = (∂∂∂0, ∂∂∂1, ∂∂∂2, ∂∂∂3) of TOR4 such that for u and v two tangent vectors we have

⟨⟨u,v⟩⟩Ō = u0v0 − (u1v1 + u2v2 + u3v3)

Such a base is for example given by ∂∂∂0 =
∂
∂σσσ0 and ∂∂∂i =

1
κ(Ō)

∂
∂σσσi . Let FŌ be the frame (O,BŌ)

As previously if we consider an inertial observer O′ passing at T = 0 by a point of Ō adjusting
the coordinates system will give

∂∂∂′0 = γŌ(∂∂∂0 + vŌ∂∂∂1), ∂∂∂
′
1 = γŌ(vŌ∂∂∂0 + ∂∂∂1), ∂∂∂

′
2 = ∂∂∂2, ∂∂∂

′
3 = ∂∂∂3 (92)

where

vŌ = κ(Ō)
a1
a0

and γŌ =
1√

1− v2
Ō

(93)

We get the Ō-σ1-boost.

3.3.3 Observation of a far away geodesic worldline

Let Γ : R → R4, τ 7→ Γ(τ) = (Γ0(τ),Γ1(τ),Γ2(τ),Γ3(τ)) a geodesic worldline.
This means that each sitting-observer ā interpret Γ as a geodesic worldline, so the quadrive-
locity Γ̇̇Γ̇Γ(τ) is a constant vector field Γ̇̇Γ̇Γ along Γ. Let ψ : R → R4 a reparametrization of this
geodesic worldline in such a way that there exists a strictly positive constant Λ such that

∀τ ∈ R, ⟨⟨ψ̇̇ψ̇ψ(τ), ψ̇̇ψ̇ψ(τ)⟩⟩ψ(τ) = Λ (94)

This means that for a sitting-observer located at some point of the trajectory, ψ is locally a
geodesic worldline.
As ψ is a reparametrization of the geodesic worldline Γ, there exists a function f : R → R∗

+,
such that we have

ψ̇̇ψ̇ψ(τ) = f(τ)Γ̇̇Γ̇Γ (95)

so we have

⟨⟨ψ̇̇ψ̇ψ(τ), ψ̇̇ψ̇ψ(τ)⟩⟩ψ̄s(τ) = f 2(τ)⟨⟨Γ̇̇Γ̇Γ, Γ̇̇Γ̇Γ⟩⟩ψ̄s(τ) (96)

so the condition (94) reformulate into
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∀τ ∈ R, f 2(τ) =
Λ

⟨⟨Γ̇̇Γ̇Γ, Γ̇̇Γ̇Γ⟩⟩ψ̄s(τ)

(97)

which can be fullfilled only when

∀τ ∈ R, ⟨⟨Γ̇̇Γ̇Γ, Γ̇̇Γ̇Γ⟩⟩ψ̄s(τ) > 0 (98)

We also get for the worldline ψ

⟨vvvκ(τ), vvvκ(τ)⟩ =
1

κ2(ψs(τ))
(1− Λ

ψ̇0(τ)
) (99)

Let us remark that

vvvā,ψκ(τ) =
κ(ā)

κ(ψκ,s(τ)
vvvκ,σκ(τ) (100)

The worldline ψ appears also rectilinear to a distant sitting-observer ā, even though it is not a
a-geodesic worldline. For example, this means that if along a geodesic worldline Γ the function
κ is decreasing we may get a reparametrization of Γ such that it stays a geodesic worldline. In
other word the quadri-velocities measured by local observers are quadri-velocities yet. On the
other hand a remote sitting-observer would observe a quadrivector evolving from time-like
to space-like.

4 Applications

Let us specify that these applications are just given here for illustrative purposes. Concrete
and much more complex situations in the case of spiral galaxies and galactic clusters have
been discussed elsewhere [2, 3, 4].
We need to clarify ”where” the objects we will be considering and ”where” the observers
actually are. A κ-structure is conceived as the trivial bundle R3×]m,M [→ R3 where each
constant section R3

λ = R3 × {λ} is equipped with the metric GEuc
λ and the base space is

equipped with the metric GEuc. Each leaf R3
λ of the bundle is accessible to the sitting-

observers a such that λ = κ(a), those sitting-observers are subject to an illusion (associated
to the surrounding density). The real space is the base space where the objets are, but
no real observer can see the geometry of that space per se. Rather these observers see the
base through the magnifying glass provided by both their own environment and that of the
perceived object. Any potential observer in the base space accessing to GEuc would be a
”shadow-observer”.

4.1 What a sitting-observer sees, size measurement

Let a and b two sitting-observers, as the Levi-Civita connections of GEuc
κ(a) and G

Euc
κ(b) are both

equal to the trivial covariant derivation, a and b will agree on which tangent vector fields
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along a smooth curve γ joining them are parallel : the constant vector fields. Assume that
κ(a) ̸= κ(b) and let U and V two constant tangent vector fields along γ such that

da(a, a+U(a)) = κ(a)∥U∥GEuc = κ(b)∥V∥GEuc = db(b, b+V(b))

we have
da(a, a+V(a)) = κ(a)∥V∥GEuc ̸= κ(b)∥U∥GEuc = db(a, a+U(a))

a

b
a+U

U

a+V

V

b+U

U

b+V

V

Fig 3 : Discrepancy in size measurement a hold a stick (a, a+U) and b a stick (b, b+V ).
exchanging their measurement of length a and b may find da(a, a+U) = db(b, b+ V ) while a
alone finds da(a, a+ U) ̸= da(b, b+ V )
Practically, this means that two different sitting-observers, each one holding a stick, could
agree on saying that the two sticks have the same length when they exchange the measure-
ments of their own stick but if one of them use his own measurement system to measure the
stick hold by the other one he would say that the two sticks have different lengths.
This can be illustrated on the following figure, two sitting-observers compare the radii of
their own unit ball, a sees the unit ball hold by b bigger than his own.

Fig 4 : Discrepancy in size measurement for a disk

Another illustrative point of view appears very interesting. We assume here that there
is no gravity. The base is equipped with an Euclidean metric. Let a free particle emitted
at some instant from the point a (Fig. 5). Arrived at b the particle emitted a photon in
the direction of the observer A. Then the observer A sees the particle at the position b’. He
measures the spectroscopic velocity κB∥σ̇σσ∥ (shown in orange). Likewise the observer B sees
the particle starting from a at the position a’ and he measures the spectroscopic velocity
κA∥σ̇σσ∥.
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Fig 5 : Two observers A and B separated by a very large distance ≫ 1 pc. Very close to
each of them an universal ”atom” of small size ∼ 10 AU is represented. The dashed straight
line ab’ (resp. a’b ) is a geodesic of the sheet of the observer A (resp. B) equipped with
κA (resp. κB). Let us note that the norm of the vector σ̇σσ is a constant in the base, but this
norm varies as 1

κ
in the respective sheets of the observers. On the other hand the curve ab"

displayed in blue is a geodesic of the bundle equipped of a variable κ9.

κ-aberrationκ-aberrationκ-aberration
In Figure 5 a linear variation of κ as a function of σσσ is assumed. Then the image of the
straight line ab taken in the base (the real trajectory of the particle P ) is represented by
a multiplet of parallel straight lines ab’, a’b, ..., each of these lines being attached to a
real observer. Let us note that the real trajectory of the particle P in the base space does
not seem to be parallel to the corresponding multiplet of its images in the bundle. In fact
there is no reason why this should be so. The base space is linked to the bundle by a
projection which can diversely tilt any small portion of a trajectory, even though this tilt
is fictitious (see also Fig.15, where the fictitious trajectory is shown as composed of a series
of infinitesimal segments, each one of these segments being parallel to the real trajectory).
Moreover the base space is not accessible to the real observers present in the bundle. Then an
unreflected comparison of a vector in the base to the ”same” vector in the bundle makes no
sense regarding its apparent direction. In the base the vector σ̇σσ (denoted by σ̇bσbσb) is constant
for a free particle, while in the bundle it is κσ̇σσ that is a constant vector. In the sheet of
the observer A, we have, respectively for the radial (spectroscopic) and (apparent) tangential
components of the velocity, as seen by this observer (dA = 10 AU)

9Let the action for a free particle

S =

∫
κ(σ)

√(
dσ

ds

)2

ds

Applying the Hamilton’s Principle we find the geodesic equation (curve displayed in blue in Fig 5)

d

ds

(
κ
dσ

ds

)
−∇κ = 0
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vspec = κ∥σ̇σσ∥ vt = κA
κ̇

κ2
dA
2

(101)

the dot over κ denotes the Lagrangian time derivative of κ. We can verify that if κ̇ = 0, then
the tangential velocity cancels out.

Overlapping images.
Let a be a sitting-observer, ∆ be a straight line passing through a, S and P be two planes
orthogonal to ∆, B a disk and C is a small concentric flattened annulus both in P and
centered at ∆ ∩ P . Assume that dEuc(a,P) ≫ RB = RC ≫ dEuc(a,S), where RB is the
radius of B and RC the thickness of C, for example dEuc(a, P ) ≫ 1pc, RB = RC = 10 AU
and dEuc(a,S) = a few meters.
The points of B are all affected with a κ coefficient κb and the points of C are all affected
with a coefficient κc.
We have ∀x ∈ B ∪ C, d(a, x) ≃ d(a,P). Let b ∈ B and c ∈ C, we have db(a, b) =

κb
κa
da(a, b)

and dc(a, c) =
κc
κa
da(a, c). The photons are emitted by b and c in direction of a, but of course

each emitter estimates the direction of a with their own tools, the ratio κb/κc induces a
magnification of the image received by a on a screen in the plane S, as shown in figure 5.
To illustrate this phenomenon let consider three cases, in the first case (Fig 6.a) κb

κc
= 1, in

the second case (Fig 5.b) we assume that κb
κc
> 1 (3 in the figure 6.b), in the third case (Fig

6.c) we assume the κb
κc
< 1 (1/3 in figure 6.c)

If κb = κc there is no κ-effect, the observer a perceives an image with no magnification as
shown on figure 6.a. The second case is represented in figure 5.b. it shows the modification
of the image received by a, the image of the flattened annulus is stretched. The third case
is represented in figure 5.c, the image of the central disk is stretched and overlaps the image
of the flattened annulus10.

•a
s s

Fig 6.a : Images obtained without κ-effect, the annulus is represented in yellow,; the
central disk is represented in red

•a
s

•
a′

s′ s

Fig 6.b : Images obtained with kappa-effect, the emitter in the annulus sees the observer
a, three time closer. The gap in the image is a consequence of κ discontinuity at, the border
between the annulus and the central disk

10We have consider a non-continuous function κ for a better visualisation of the overlapping, but if we had
considered a continuous function κ we would have found a ”smooth” overlapping with three layers.
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•a
s

•
a′

s′ s

Fig 6.c : Images obtained with kappa-effect, emiter in the central disk see a three time
closer, The image of the central disk overlaps the image of the annulus, the overlapping,
region is colored in orange

4.2 The circular motion of a test mass m = 1 around a motionless
massM

4.2.1 Without κ-effect

Without κ-effect, in other words for any observer considering R3 endowed with the Euclidean
metric GEuc, the motion is the usual Newtonian motion.
Let us consider the elementary situation of a very massive point of mass M , located at the
origin O of coordinates and surrounded by a spherical gas cloud of very weak density ρ with
radial symmetry. Limiting us to the examination of a circular motion t 7→ σ(t) of a test
mass m = 1 around this point, the dynamic equation is (assuming the gravitational constant
G = 1)

d

dt
(σ̇) = −M(R)

R2
uuu(t) (102)

where uuu = σ(t)−O
∥σ(t)−O∥ is the radial GEuc-unit vector at σ(t) and R is the constant GEuc-distance

from σ(t) to O and M(R) =M + 4π
∫ R
0
ρ(r)r2dr.

•

•

O
R

σ(t)
σ̇̇σ̇σ(t)

uuu(t)

Fig 7 : Circular Newtonian motion

It is a very simple affair to show that the Newtonian speed vNewt,0 is that which would be
measured by a fictive observer using the metric GEuc. We find the trivial result

vNew,0 =
(M + 4π

∫ R
0
ρr2dr

R

) 1
2
=

√
M(R)

R
(103)

The index 0 indicating that this is what is measured by the fictive observer. In the κ-
model framework the Newtonian velocity vNew,0 as defined above (102) is fictive, it cannot
be measured by any real sitting-observer.
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4.2.2 With κ-effect

Let a local sitting-observer aloc, situated on the trajectory of the test mass. He sees the
whole space endowed with the metric GEuc

κ(a), but of course this observer has no acces neither

to κ(a) nor to GEuc. As the κ-effect affects the distances but does not affect the masses, the
apparent radius of the trajectory is κlocR, while the mass M remains unchanged. Applying
the Newtonian dynamics with this modified metric, the sitting-observer ameasures the speed

vNew,loc =

√
M(R)

κlocR
=

√
κE
κloc

vNewt,E (104)

where vNew,E is the Newtonian velocity calculated (but not measured) by a terrestrial observer
aE.
We are aware that in astrophysics the radial velocity (the velocity component directed along
the line of sight) is measured by spectroscopy while the component of the velocity projected
on the sky plane is deduced from the measurement of the proper motions. Thus within the
κ-model framework, a clear distinction must be made between these two components. We
will call spectroscopic velocity the (radial) velocity measured by any observer. This velocity
is universal and is defined by

vspec = vNew,loccos(θ) =

√
κE
κloc

vNew,Ecos(θ) (105)

where θ is the projection angle along the line of sight.
It is very commonly observed in the outskirts of the spiral galaxies that the density ρ(r) ∼
exp(−r) where r is the distance to the center of a galaxy, measured by a terrestrial observer,

i.e. κER. If we assume that κ(r)
κE

= 1
1+Ln( 1

ρ(r)
)
11, we get κ(r)

κE
≃ 1

r
for r ≫ 1. In this case we can

conclude that vNewt,loc becomes constant and by consequence vspec becomes constant too. In
other words, the observed flatness of the rotational curves of the spiral galaxies is correlated
to the variation of the density in the disk as a decreasing exponential function of the radius
r. A few concrete examples are given in Fig 8.
A contrario the tangential velocity measured by a terrestrial observer aE is

vtan =
κE
κloc

vNewt,locsin(θ) =
κE
κloc

√
1

κloc
vNewt,0sin(θ). (106)

11The detailed relationship is κ(r)
κM

= 1
1+Ln(

ρM
ρ(r)

)
where ρM denotes the maximal density in the galaxy

(galaxy center). Here we assume that ρM ∼ ρE and the density ρ is normalized to this value.
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Fig 8 : Galaxy rotation velocity profiles: a. The Milky Way in the vicinity of the Sun, b.
M33, c. NGC 1560, d. NGC6946. For the details see [2].

4.3 An analysis of the spiral substructure

The spiral galaxies are dominant in the Universe. It is therefore most interesting to under-
stand the link existing between the observation of a tight spiral substructure as it would be
seen by a fictive Newtonian observer (i.e. located in the Euclidean space without κ-effect),
compared to the point of view of a sitting-observer, affected by the κ-effect. If the κ-effect
is now taken into account (each real observer lives in the bundle and not in the base which
is for them an unreachable place). In a spiral galaxy the density varies as ρ(σ) ≃ e−σ and
1

κ(σ)
≃ 1 + σ.

Without the κ-effect the equation supporting the spiral substructure is that of a tight loga-
rithmic spiral of maximal extension equal to the unit

σ = eθ (θ < 0) (107)
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With the κ-effect the equation becomes

σ

1 + σ
= eθ (108)

or

σ =
eθ

1− eθ
(109)

For any siting-observer a

r = κ(a)
eθ

1− eθ
θ < 0 (110)

While a hypothetical Newtonian observer would see a tightly coiled spiral, any real sitting-
observer sees a grand design spiral. Two distinct real sitting-observers a and b see the same
grand design spiral, but differing by a homothety ratio κ(a)

κ(b)
.

Fig 9 : A toy example : A well-developed conservative spiral substructure seen in the bundle
as opposed to its counterpart living in the base (a tightly coiled spiral)
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Fig 10 : A conservative grand design spiral produced by a numerical simulation in the κ-
model framework (for the details see [2]). The elapsed time is given in the unit of 100 Myr.
The Newtonian equivalent would be a much tighter spiral with a larger number of turns.

A side-on galaxy
If we assume for simplicity that a terrestrial observer measures a constant thickness for a
disk galaxy, then

δE (σ) = δ0

In addition we have

κ

κE
=

1

1 + κEσ

Then the local thickness is

δL (σ) =
κ

κE
δE (σ) =

δ0
1 + κEσ

Without κ-effect a side-on galaxy, seen as a very extended flat disk of constant thickness by
a terrestrial observer, would appear as a much more compact object (for κEσ = 10, δL (σ) =
δ0
11
).
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a 
a 

b b 

Fig 11 : A side-on galaxy seen by a terrestrial observer (a) as opposed to its compact coun-
terpart living in the base (b). On this illustrative example the terrestrial observer measures
the density ρ(r, z) = exp(−r − (5 + r)|z|).

4.4 Translation of an extended object and κ-effect

We have assumed that the coefficient κ is linked to the average mass density, ρ, by the
relationship

κ

κE
=

1

1 + ln1
ρ

(111)

The way we carry out this averaging operation at a given point, may depend on what we are
observing. If we observe the inner motion of a little part of a galaxy, the observed zone must
be affected with a coefficient κi deduced from an averaging of ρ on a ”small” ball Ui with
radius δi ≃ 1pc; now if we observe a galaxy as a whole, taken in a galaxy cluster, we need to
affect this galaxy with a coefficient κe, deduced from an average of ρ on a ball Ue, containing
the whole galaxy with radius δe ≃ 1 Mpc.
Let us consider a unit gaussian distribution, wδ, centered on r (fig 12)

wδ (r
′ − r) = (

δ

π
)
3
2 e

−
[
r′−r
δ

]2
(112)
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The convolution with any quantity gives the mean value of this quantity. For instance for
the mean mass density

ρ̄δ (r) =

∫
Uδ

wδ (r
′ − r) ρ(r′)dV (113)

Fig 12 : Averaging over a ball surrounding a star or a galaxy

Fig 13 : Stacking of balls covering a galaxy or a galaxy cluster

The simultaneous consideration of both inner motions in a galaxy and global motion of the
galaxy, as a whole in a galaxy cluster, will necessitate the consideration of two values of κ.
A sitting-observer in the observed galaxy correspond to the selection of two sheets in the bun-
dle R3×]m,M [→ R3 or two different ways of measuring distances : (R3, GEuc

κe ) and (R3, GEuc
κi

).
As previously the spectroscopic velocities, whether they are associated with internal motions
in the galaxy or with global movement of the galaxy, are universally accessible, that means
that spectroscopic velocities can therefore slide along a fiber without change.
Let us consider a galaxy moving in a cluster, and two small regions I and J of that galaxy
moving into that galaxy.
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Fig 14 : Point of view of different observers

With no κ-effect
The velocities of I and J decompose in sums

İ̇İI = σ̇̇σ̇σt + σ̇̇σ̇σint and J̇̇J̇J = σ̇̇σ̇σt + σ̇̇σ̇σ′
int

With κ-effect inside the galaxy
At I the coefficients κ are κext for translational movement and κi(I) for internal movements.
An observer O′

i travelling with the galaxy coinciding with I only perceives the internal
movements, i.e. at I that observer measures κi(I)σ̇σσint. The fixed observer Oi measures the
speed of the observer O′

i which is κeσ̇̇σ̇σt. Finally, the observer O
′
i transmits to Oi the internal

velocity of I. The observer Oi makes then the sum to get the speed

κeσ̇̇σ̇σt + κi(I)σ̇̇σ̇σint

At J the coefficients κ are κe for the translation motion and κi(J) for the inner motions.
The fixed observer Oj measures the speed

κeσ̇̇σ̇σt + κi(J)σ̇
′σ̇′σ̇′
int

With κ-effect outside the galaxy
For a sitting observer a out of the galaxy the coefficient κ is locally computed κ(a). Cancelling
the translation velocity of the galaxy, this observer only perceives the internal motions, resp.
κiσ̇σσint at I and κjσ̇σσ′

int at J . The fixed observer Oe measures the speed of the observer O′
e
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which is obviously unique, i.e. κeσ̇σσt. On the other hand the observer O′
e transmits to Oe the

values of the internal velocities of I and J . The observer Oe then makes the respective sums
:

at I
κeσ̇̇σ̇σt + κi(I)σ̇̇σ̇σint

at J
κeσ̇̇σ̇σt + κi(J)σ̇

′σ̇′σ̇′
int

4.5 The relativistic extension

In the world of galaxies and galaxy clusters, as both gravity and velocities are weak, a
relativistic extension may not appear very useful. However this extension is needed at the
cosmological level.

In general relativity, the background, i.e. R4, is equipped with a pseudo-Riemannian metric.
In some local coordinate system (σ0, σ1, σ2, σ3), the expression of the metric at point φ has
the form

ds2φ = g00(φ)
(
dσ0

)2
+ g11(φ)

(
dσ1

)2
+ g22(φ)

(
dσ2

)2
+ g33(φ)

(
dσ3

)2
where gii are some functions of φ with g00 > 0 and gii < 0 for i ∈ {1, 2, 3}.
Hence the background is equipped with a pseudo-distance. An ideal observer having access to
this pseudo-metric would use this metric for measurement of the space-time interval between
two events, φ1 and φ2, in other words, the pseudo-length of the ds2-geodesic segment joining
φ1 to φ2.
For i, j ∈ {1, 2, 3} distinct, the Christoffel symbols are

Γ0
00 =

g00

2

∂g00
∂σσσ0

, Γ0
i0 = Γ0

0i =
g00

2

∂g00
∂σσσi

, Γ0
ii = −g

00

2

∂gii
∂σσσ0

, Γ0
ij = 0

For i ∈ {1, 2, 3} and j, k ∈ {0, 1, 2, 3} \ {i} distinct (with no summation over i)

Γiii =
gii

2

∂gii
∂σσσi

, Γiji = Γiij =
gii

2

∂gii
∂σσσj

, Γijj = −g
ii

2

∂gjj
∂σσσi

, Γijk = 0

In the κ-model each sitting-observer a associates to the background a modified pseudo-metric.
The modification is a rescaling of the spatial coordinates of tangent quadrivectors with no
change of time coordinate. Then the general form of modified pseudo-metric is

ds2λ,φ = g00(φ)(dσ
0)2 + λ2

(
g11(φ)

(
dσ1

)2
+ g22(φ)

(
dσ2

)2
+ g33(φ)(dσ

3)
2
)

Each current sitting-observer a is provided with a value for λ = κ(a).
The modification of the pseudo-metric induces a modification of the Christoffel symbols. If

we note
λ
gij the coefficients of the modified metric ds2λ we have

λ
g00 = g00, and for i ∈ {1, 2, 3}, λgii = λ2gii,
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then
λ
g00 = g00 and

λ
gii =

1

λ2
gii

the Christoffel symbols of the modified metric and the initial metric are linked

λ

Γ0
00 = Γ0

00,
λ

Γ0
i0 = Γ0

i0,
λ

Γ0
ii = λ2Γ0

ii,
λ

Γ0
ij = Γ0

ij = 0

λ

Γiii = Γiii,
λ

Γiji = Γiji,
λ

Γijj = Γijj,
λ

Γi00 =
1

λ2

λ

Γi00,
λ

Γijk = Γijk = 0

This means that the supports of geodesic curves may differ from one observer to another.
The full background is also equipped with a modified pseudo-metric.

ds2κ,φ = g00(φ)(dσ
0)2 + κ2(φ)

(
g11(φ)

(
dσ1

)2
+ g22(φ)

(
dσ2

)2
+ g33(φ)(dσ

3)
2
)

If we note
κ
gij the coefficients of the modified metric ds2κ we have

κ
g00 = g00, and for i ∈ {1, 2, 3}, κgii = κ2gii,

then
κ
g00 = g00 and

κ
gii =

1

λ2
gii

the Christoffel symbols of this modified metric and the initial metric are linked (with no
summation over i)

κ

Γ0
00 = Γ0

00,
κ

Γ0
i0 = Γ0

i0,
κ

Γ0
ii = κ2Γ0

ii −
1

κ

∂κ

∂σσσ0
,

κ

Γ0
ij = Γ0

ij = 0

κ

Γiii = Γiii +
1

κ

∂κ

∂σσσi
,

κ

Γiji = Γiji +
1

κ

∂κ

∂σσσj
,

κ

Γijj = Γijj −
giigjj
κ

∂κ

∂σσσi
,

κ

Γi00 =
1

κ2
Γi00,

κ

Γijk = Γijk = 0

The geodesics of this pseudo-metric are not geodesics for any metric used by sitting-observers

4.5.1 Without gravity

Without gravity the metric ds2 is Minkowskian, we have

g00 = η00 = 1, g11 = g22 = g33 = η11 = η22 = η33 = −1.

In this special case the κ-effect does not affect the Christoffel symbols, and then the geodesic
equation has been considered in paragraph 3.3.3.
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4.5.2 With weak gravity

Without κ-effect

In the case of weak gravitational fields, the metric coefficients are slightly modified

For i ∈ {0, 1, 2, 3}, gii = ηii becomes g̃ii = ηii + hii

With hii functions of the position and |hii| ≪ 1, then we have g̃ii ≃ ηii − hii.
Furthermore if we assume that the weak gravitation field is stationary, we have

for i ∈ {0, 1, 2, 3}, ∂hii
∂σσσ0

≃ 0

In this situation, for i, j ∈ {1, 2, 3} distinct, the Christoffel symbols are

Γ0
00 ≃ 0, Γ0

i0 = Γ0
0i ≃

η00

2

∂h00
∂σσσi

, Γ0
ii ≃ 0, Γ0

ij = 0

For i ∈ {1, 2, 3} and j, k ∈ {0, 1, 2, 3} \ {i} distinct (with no summation over i)

Γiii ≃
ηii

2

∂hii
∂σσσi

, if j ̸= 0,Γiji = Γiij ≃
ηii

2

∂hii
∂σσσj

, and Γi0i = Γii0 ≃ 0

Γiji = Γiij ≃ 0, Γijj ≃ −η
ii

2

∂hjj
∂σσσi

, Γijk = 0

If τ 7→ γ(τ) = (γ0(τ), γ1(τ), γ2(τ), γ3(τ)) is a geodesic we have

(
d

dτ
γ̇k + Γkij γ̇

iγ̇j)
∂

∂σσσk
= 0 (114)

where γ̇i = dγi
dτ
.

For the first component we get
d

dτ
(γ̇0) ≃ 0 (115)

In the case of low velocities, i.e. γ̇1, γ̇2, γ̇3 ≪ γ̇0, the spatial components of the geodesic
equation reduces to

d

dτ
(γ̇i) + Γi00(γ̇

0)2 ≃ 0 (116)

For i ∈ {1, 2, 3}.

With κ-effect

The metric coefficients are changed : ηii+ hii → κ2(ηii+ hii) for i ∈ {1, 2, 3}. With the same
hypothesis of weak stationary gravity and low speed, the geodesic equation simplifies (for eq.
117, see eq. 60)

d

dτ
(γ̇0) ≃ 0 (117)

d

dτ
(κ[γ(τ)]γ̇i) +

κ

Γi00(γ̇
0)2 ≃ 0 (118)
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for i ∈ {1, 2, 3} with
κ

Γi00 ∼ 1
2κ2

∂h00
∂σσσi . Using the variable γ0(τ), for i ∈ {1, 2, 3},

dγi

dτ
= γ̇0

dγi

dγ0

and

d

dτ

[
κ[γ(τ)]

dγi

dτ

]
+

κ

Γi00(γ̇
0)2 =

d

dτ

[
γ̇0κ[γ(τ)]

dγi

dγ0

]
+

κ

Γi00
(
γ̇0
)2

=
d

dτ
[γ̇0].κ[γ(γ0)]

dγi

dγ0
+ γ̇0κ[γ(γ0)]

d

dτ

[ dγi
dγ0

]
+

κ

Γi00
(
γ̇0
)2

= (γ̇0)2
d

dγ0

[
κ[(γ0)]

dγi

dγ0

]
+

κ

Γi00
(
γ̇0
)2

Eventually (118) becomes

d

dγ0

[
κ[γ(γ0)]

dγi

dγ0

]
= −

κ

Γi00 = − 1

2κ[γ(γ0)]2
∂h00
∂σσσi

. (119)

Let the Schwarzschild metric (with the attractive mass M situated at the origin of the
coordinates and very far from the singularity). We have then h00 = −2M

σ
.

For any sitting-observer a, equipped with his own coordinates and located along the trajectory
of the test mass, the motion equation is (γ0 ≡ t with the speed of light c = 1)

d

dt

[
κ[γ(t)]

κ(a)

drarara
dt

]
= −

(
κ(a)

κ[γ(t)]

)2

M
rarara
r3a

(120)

where the right side of this equation can be compared to eq. (60). Especially for a terrestrial
observer equipped with his usual coordinates (rrr(x, y, z))

d

dt

[
κ[γ(t)]

κE

drrr

dt

]
= −

(
κE

κ[γ(t)]

)2

M
rrr

r3
(121)

The motions perceived by two sitting-observers are homothetic to each other. All observers
are equivalent and there is no priviliged observer.

Gravitational Tide

Let two particles A and A′ submitted to the gravitational action of a massive particle of mass
M and located at the origin of coordinates. The two particles are assumed to be very close
to each other. Let rrr and rrr′ their respective position vectors. Putting δrrr = rrr′−rrr, the relative
motion is given by the equation

d

dt

[
κ[γ(t)]

κE

d

dt
δrrr

]
= −

(
κE

κ[γ(t)]

)2

M
[r2δrrr − 3(δrrr.rrr)rrr]

r5
(122)

Let us note that when κ[γ(t)] < κE, the self-interaction is strengthened.
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Two ”paradoxes” that emerge from the motion of free particles

For a free motion the equation is

d

dt

[
κ[γ(t)]

κE

drrr

dt

]
= 000 (123)

or

d

dt

[
drrr

dt

]
= − d

dt

[
κ[γ(t)]

κE

]
drrr

dt
(124)

i. A free particle (not submitted to any force) may exhibit an (apparent) auto-accelerated (or
auto-decelerated) motion for a terrestrial observer. This result seems to be inconsistent with
the first law of Newton. In fact the motion perceived by a terrestrial observer is fictitious.
This motion is the image of a real motion taking place in the base. In the base the first law
of Newton is obviously respected.

ii. Let two free particles A and A′, sufficiently close to each other to share the same κ, moving
along parallel straight lines in the base. Paradoxically enough, for a terrestrial observer these
particles can now appear to move toward and away from each other (Fig.15), following the
sign of κ̇.

Fig 15 : Apparent variation of a disk of constant size seen from the point of view of a
terrestrial observer. The real size is the disk shown in gray.
In other words the trajectories of these particles no longer appear as two absolutely continuous
parallel lines. Each of these lines rather appears as a kind of Devil’s Staircase. The relative
motion of these two particles reflects the apparent variation of the size of any astronomical
object (a planetary system in a galaxy or a galaxy in a galaxy cluster), represented by a
gray disk on figure 15. The variation represented on the latter figure has been artificially
magnified. In reality such a variation is very slow and it cannot be detected on the scale of
a few hundred of millennia. In the base the velocity σ̇σσ (denoted σ̇σσb on Fig. 15), measured by
a fictitious observer, obeys to the equation (free particle)

dσ̇σσ

dt
= 000 (125)

and σ̇σσ = const, whereas in the bundle the velocity κσ̇σσ (measured by a local observer), obeys
to the equation

d

dt
[κσ̇σσ] = 000 (126)

and in this case σ̇σσ ∝ κ−1. If figure 15 displays the projection of a moving disk on the sky
plane, for instance as seen by a terrestrial observer E, then the measured velocity is κEσ̇σσ.
For him the size of the disk (shown in orange) increases in a first phase and then decreases
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in a second phase. Likewise the velocity of the disk varies as κE
κ

(increasing in a first phase
and decreasing in a second phase). In fact the motion perceived by the terrestrial observer
is fictitious, the real velocity is constant (free particle).

5 Conclusion

We have presented in this paper the formalism of the κ-model. Astonishingly this formalism
is fairly straightforward when compared to other formalisms which try to modify the standard
general relativity [5, 6, 7]. The κ-model is thus characterized by its relative simplicity. Fur-
thermore any type of modified gravity necessarily leads to the introduction of new fields and
surreptitiously to new particles. Thus all the various versions of modified gravity, with their
lot of new unknown particles, even seems much more complex compared to the dark matter
paradigm (Newtonian in essence), apparently for a very limited gain in the understanding.
However the number of parameters in the modified gravity models is generally restricted to
two or three. It is a very good point, also regardless of the type of modified gravity model, it
can be considered as a predictive one whereas dark matter, with also two or three parameters
but different for each galaxy, is not at all predictive, but merely postdictive. By contrast, it is
indisputable that the MOND model [8, 9], at least in its original form, and characterized by
an unique universal parameter, a0, still constitutes even today the better way to predictively
generate the rotational curves of individual galaxies. Unfortunately some issues persist for
MOND at the scale of the galactic clusters, even though some solutions have been proposed
to circumvent the problem [10]. The κ-model has the same level of efficiency as MOND to
fairly predict the profiles of the rotational curves of individual spiral galaxies [4], but more-
over can also help to understand the physics of galactic clusters [3]. Other interesting ways
have also been suggested to circumvent the dark matter conundrum [11, 12, 13, 14,15]. We
have already noticed that the latter theories share some common points with the κ-model [4].
Eventually we can report that, in parallel, a study focusing on the cosmological implications
of the κ-model is in progress.
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