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Genetics Selection Evolution

Estimating genomic relationships 
of metafounders across and within breeds using 
maximum likelihood, pseudo-expectation–
maximization maximum likelihood and increase 
of relationships
Andres Legarra1*  , Matias Bermann2, Quanshun Mei3 and Ole F. Christensen4 

Abstract 

Background The theory of “metafounders” proposes a unified framework for relationships across base populations 
within breeds (e.g. unknown parent groups), and base populations across breeds (crosses) together with a sensible 
compatibility with genomic relationships. Considering metafounders might be advantageous in pedigree best linear 
unbiased prediction (BLUP) or single-step genomic BLUP. Existing methods to estimate relationships across meta-
founders Ŵ are not well adapted to highly unbalanced data, genotyped individuals far from base populations, or many 
unknown parent groups (within breed per year of birth).

Methods We derive likelihood methods to estimate Ŵ . For a single metafounder, summary statistics of pedigree 
and genomic relationships allow deriving a cubic equation with the real root being the maximum likelihood (ML) 
estimate of Ŵ . This equation is tested with Lacaune sheep data. For several metafounders, we split the first deriva-
tive of the complete likelihood in a term related to Ŵ , and a second term related to Mendelian sampling variances. 
Approximating the first derivative by its first term results in a pseudo-EM algorithm that iteratively updates the esti-
mate of Ŵ by the corresponding block of the H-matrix. The method extends to complex situations with groups 
defined by year of birth, modelling the increase of Ŵ using estimates of the rate of increase of inbreeding ( �F ), 
resulting in an expanded Ŵ and in a pseudo-EM+�F algorithm. We compare these methods with the generalized least 
squares (GLS) method using simulated data: complex crosses of two breeds in equal or unsymmetrical proportions; 
and in two breeds, with 10 groups per year of birth within breed. We simulate genotyping in all generations or in the 
last ones.

Results For a single metafounder, the ML estimates of the Lacaune data corresponded to the maximum. For simu-
lated data, when genotypes were spread across all generations, both GLS and pseudo-EM(+�F ) methods were accu-
rate. With genotypes only available in the most recent generations, the GLS method was biased, whereas the pseudo-
EM(+�F ) approach yielded more accurate and unbiased estimates.

Conclusions We derived ML, pseudo-EM and pseudo-EM+�F methods to estimate Ŵ in many realistic settings. Esti-
mates are accurate in real and simulated data and have a low computational cost.
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Background
The theory of “metafounders” (abbreviated MF in the 
following) [1, 2] proposes a unified framework for rela-
tionships across base populations within breeds (that 
are usually modelled using unknown parent groups for 
different pathways of selection and periods), and base 
populations across breeds e.g. in crossbred animals 
(that are also sometimes modelled with unknown par-
ent groups) together with a sensible compatibility with 
genomic relationships. Relationships across base popu-
lations are defined using an “absolute” reference point 
which is an ideal population with allele frequencies at 
biallelic markers of 0.5 [3, 4]. These relationships are con-
tained in a matrix called Ŵ . In essence, matrix  Ŵ contains 
average (unobserved) relationships across (unobserved) 
pools of founder gametes, and these are the so-called 
metafounders.

It is of interest to use metafounders in predictions that 
include pedigree, either in pedigree best linear unbiased 
prediction (BLUP) or (more commonly) in single-step 
genomic BLUP. The reasons are to obtain both more 
accurate, less biased, and more robust solutions of meta-
founders themselves, in particular in the presence of a 
genetic trend [5, 6], while at the same time ensuring com-
patibility of pedigree relationships with genomic rela-
tionships. This requires an estimate of matrix Ŵ , which 
is typically based on genotyped individuals that rarely 
belong to the base populations of interest.

Legarra et al. [1] suggested a series of methods, which 
were improved, first, by the discovery that Ŵ is actually 
a function of base allele frequencies [3] and, second, by 
modelling the increase of relationships within breed 
[6–9].

Still, there is no consensus and computational efficient 
methods are lacking. This is true in particular for pedi-
grees composed of several breeds, possibly with cross-
ings, and with MF defined within and across breeds. For 
instance, in their study, Kudinov et al. [6] considered in 
genetic evaluations of four dairy cattle breeds (Holstein, 
Nordic Red Dairy Cattle, Finncattle and “Other”), each 
of them, in turn, including 16 to 61 MF. Their method 
requires that the genotypes are well distributed in time 
to fit a covariance function across all unknown parent 
groups. Wicki et al. [10] considered two sub-populations 
of Lacaune dairy sheep, each with 22 MF; the method 
uses pedigree inbreeding to model the steady increase in 
Ŵ , but requires estimates of Ŵ at the earliest generation. 
All current methods have drawbacks: either they require 
that MF are within short genetic (time) distances of gen-
otyped individuals [3], or that genotypes are distributed 
in time to obtain Ŵ from a covariance function [6], or 
methods are adapted to particular cases [10]. Moreover, 
some methods can provide estimates that are outside of 

the admissible parametric space (matrix Ŵ must be posi-
tive semidefinite, and diagonal elements must be within 
the range from 0 to 2).

The companion paper [11] shows that a defini-
tion of Ŵ in a quantitative genetics context is such that 
Ŵi,j = 2

k (
2pi − 1)

(
2pj − 1

)′ , with pi and pj being the row 
vectors of allele frequencies of k markers in base popu-
lations i and j , i.e. Ŵ is a “genomic relationship” that is 
based on “genotypes” of their population, i.e. allele fre-
quencies. Using this result and new developments, here 
we present: (1) a Maximum Likelihood (ML) estimation 
for a single MF, (2) an estimation of Ŵ for several MF by 
pseudo-Expectation–Maximization (pseudo-EM) (actu-
ally, EM of part of the derivative of the complete log-like-
lihood), which involves repeated set-ups of part of matrix 
H-inverse, and (3) in the case of MF structured by year of 
birth, we couple the pseudo-EM with a heuristic method 
for within-breed estimation of Ŵ . We describe the the-
ory and examine the results obtained with a simulated 
dataset.

Theory
Likelihood
The likelihood of given markers is as follows [1, 4]. 
Let’s define, AŴ22 , the pedigree relationship matrix of 
genotyped individuals set up with the MF relationship 
matrix Ŵ . Thus, we estimate an unobserved quantity Ŵ 
using a statistical model that involves Ŵ as a parameter. 
We assume Gaussian distributions for convenience. 
The joint density of the observed genotypes in matrix 
Z = [z1, ..., zk ] with z coded as {−1, 0, 1} , assuming multi-
variate normality for markers, is, for k markers and given 
Ŵ and pedigree:

where a proportionality constant is ignored. Because the 
product of exponential terms is the exponential of the 
sum, and that 

∑
j z

′
j(0.5AŴ22)

−1zj/2 = Tr
(
(AŴ22)

−1ZZ′
)
 , 

the likelihood function is:

Taking the logarithm of the likelihood function and 
introducing the notation G = ZZ′

/(k/2) , we obtain the 
log-likelihood function:

f (M|Ŵ) ∝
k∏

j=1

det(0.5AŴ22)
−1/2exp

(
−z′j(0.5AŴ22)

−1zj/2
)
,

L(Ŵ) ∝ det(0.5AŴ22)
− k

2 exp
(
−Tr

(
(AŴ22)

−1ZZ′
))

.

logL(Ŵ) = constant−
(
k

2

)
log(det(AŴ22))−

(
k

2

)
Tr

(
A−1
Ŵ22G

)
.
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Note that the likelihood uses G , i.e. a direct crossprod-
uct of marker readings, and the inverse of G is not 
needed, so G does not need to be strictly positive definite. 
Some options to compute l(Ŵ) are presented in Appen-
dix. The constant in the log-likelihood function is invari-
ant to Ŵ and is ignored in the following.

Maximization of this likelihood function has proven 
difficult for the general case. The main difficulty 
compared to variance component estimation is, first, 
that it is not possible to factorize AŴ22 into a Kronecker 
product of a parameter-free relationship matrix and 
Ŵ , and second, that the elements of Ŵ are propagated 
through the Mendelian sampling variance of the 
animals. Furthermore, derivative-free and Markov chain 
Monte Carlo methods proved to be difficult to use with 
simulated data (not shown). Below, we show an exact 
solution for a single MF, an EM maximization using part 
of the derivative of the complete log-likelihood function, 
and a heuristic extension to within-breed across-time 
metafounders.

Maximum likelihood for a single metafounder
The theory for a single MF was presented in [12] and we 
reintroduce it here for completion and for later 
discussion. For the case of a single MF, there is an explicit 
solution that maximizes the log-likelihood function 
logL(Ŵ) = −

(
k
2

)
log(det(AŴ22))−

(
k
2

)
Tr

(
A−1
Ŵ22G

)
 . Let 

us call γ the (single) scalar value of Ŵ for the single MF 
case. In that case, Aγ 22 = A22

(
1− γ

2

)
+ 11′γ , where A22 

is the matrix of pedigree relationships across genotyped 
individuals. As detailed in Appendix, we used this to 
obtain, in short-hand notation, a = 1′A−1

22 1 , 
b = Tr

(
A−1
22 G

)
 and c = Tr

(
A
−1

22
11

′
A
−1

22
G

)
= 1

′
A
−1

22
GA

−1

22
1 , 

which are later used in the cubic equation ( n being the 
number of individuals with a genotype):

where e3 = −n(−1/2+ a)2/2 , e2 = n((−3/2+ a)+ a
−b(−1/2+ a)+ c)(−1/2+ a)  , e1 = (n− 1)(−3/2+ 2a)
− (−1+ 2a)(−3/2+ a+ b) and e0 = n− 2a− b+ 2c.

The real roots of this equation are the ML estimate 
of γ , in our simulated and real examples we have only 
found one real root. In addition, if the ML estimate 
of γ is outside the parametric space, the estimate is 
at the boundary. Some methods to compute b and 
c are presented in Appendix and their estimation is 
actually easy when matrices G and A−1

22  can be explicitly 
computed.

e3γ
3 + e2γ

2 + e1γ + eo = 0,

Maximum likelihood with multiple metafounders
Here we just sketch what could be done in principle. 
Using the same log-likelihood, it is conceptually possible 
to split the likelihood among breeds and pairs of breeds 
using partial relationship matrices [1, 13]:

with Ab being the breed b specific partial relationship 
matrix, Ab,b′ being the matrix of partial relationships 
due to segregation across breeds b and b′ [13], matrix 
Cb having entries Cb

i,i′ = f bi f
b
i′  , and matrix Cb,b′ having 

entries Cb,b′

i,i′ = f bi f
b′
i′ + f b

′
i f bi′  for f bi  being the fraction of 

breed “ b ” origin of individual i . From this expression, 
matrix derivatives with respect to MF parameters can be 
obtained. However, this has proven to be difficult because 
the expressions quickly get too complicated.

Derivatives of the “complete” likelihood
Following expectation–maximization ideas, we con-
sider the derivatives of a “complete” likelihood in which 
all animals (including MF) are genotyped. The particu-
lar block of genomic relationships for MF will be named 
GMF , and indeed by definition GMF = Ŵ as described in 
the companion paper [11]. From [11], we know the defi-
nition of elements of Ŵ , Ŵb,b′ = 2

k (
2pb − 1)(2pb′ − 1)′ for 

the pb and pb′ row vectors of allele frequencies, although 
these allele frequencies are typically unknown (if they 
are known, estimation is immediate). In other words, it 
is meaningful to assign genomic relationships to MF. 
Consider now the form of the “complete” log-likelihood 
where AŴ and G include all animals and the MF:

To maximize this “complete” log-likelihood function, 
we need to derive formulas of the derivatives of 
log(det(AŴ) and Tr

(
A−1
Ŵ

G
)
 with respect to elements in 

Ŵ . For convenience, we use γ ′s to represent each of the 
several parameters in Ŵ in the following.

Consider matrix AŴ = TDŴT
′ . This matrix 

includes relationship among individuals, among MF, 
and among both individuals and MF. Its inverse is 

AŴ =
∑

b

Ab
(
1−

γb

2

)
+

∑

b,b′,b′>b

Ab,b′
(
γ
′
b + γb

8
−

γb,b′

4

)

+
∑

b

Cb
γb +

∑

b,b′,b′>b

Cb,b′
γb,b′ ,

logL(Ŵ) = −
k

2
log(det(AŴ))−

k

2
Tr

(
A
−1

Ŵ
G

)

= −
k

2

[
log(det(AŴ))+ Tr

(
A
−1

Ŵ
G

)]
.
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(AŴ)
−1 =

(
T−1

)′
D−1

Ŵ
T−1 with T−1 = I− S linking indi-

viduals to ancestors and MF to themselves; for instance 
an individual with one parent known and the other a MF 
has a -0.5 in the (individual, MF) element of S [14] (where 
matrix S was called P ). The dependence of  

(
T−1

)′
D−1

Ŵ
T−1 

on Ŵ is only through matrix DŴ.
Matrix DŴ is a block diagonal matrix, consisting of the Ŵ 

matrix for MF and the usual diagonal matrix with Mende-
lian sampling terms for non-metafounders; T and T−1 are 
lower triangular matrices.

After some algebra that is shown in Appendix, we can 
show that:

The structure of B and DŴ is:

where W = T−1Z/
√
k/2 . Note that the block of T−1 cor-

responding to MF is simply an identity matrix, and thus 
the block of B corresponding to MF is simply GMF.

As for matrix GMF , it is the genomic relationships across 
MF: in order to derive the algorithm, we use the com-
plete likelihood, in which it is assumed that all individuals, 
including MF, have been genotyped.

The first term in the partial derivative involves GMF and 
is simple to manipulate. The last term in the partial deriva-
tive involves individual terms of Mendelian sampling vari-
ances DŴi,i and it is difficult to compute and derive 
algebraically in a recognizable form. Instead, we approxi-
mate ∂logL(Ŵ)

∂γ
 by the first term, i.e. as:

Pseudo‑EM algorithm
E‑step
The EM algorithm uses the expectation of the log-likeli-
hood over the distribution of unknown data, conditional to 
the actual value of the parameters ( Ŵ ). However, we know 
from the single step theory that (using the notation o for 
observed and n for not observed, in fact Go,o is G actually 
observed) [15]:

∂ logL(�)
∂γ

= −
k
2

[
Tr

[
�−1 ∂�

∂γ

(
I− �−1GMF

)]]

−
k
2

[
∑

i

[
∂D�i,i

∂γ

(
1

D�i,i
−

Bi,i

D2
�i,i

)]]
.

DŴ =
{
Ŵ, for metafounders
diagonal matrix, for non-metafounders

,

B = WW
′ =

{
GMF , for metafounders
WNMFWNMF

′, for non-metafounders
,

∂logL(Ŵ)
∂γ

≈ − k
2

[
Tr

[
Ŵ
−1 ∂Ŵ

∂γ

(
I− Ŵ

−1GMF

)]]
.

and in fact, Ho,o = Go,o Using this together with 
E(tr(A)) = tr(E(A)) we get:

This means that, in the following derivations, we can 
use H (computed at the actual value of Ŵ ) in the place of 
G.

M‑step
The approximate first derivative of the complete log-like-
lihood shown before is:

and because the previous E-step uses the conditional 
expectation of G , i.e. H , this becomes:

setting to 0, factorizing − k
2 and introducing γij to indicate 

which of the elements of Ŵ we work with, gives:

After some algebra that is shown in Appendix this 
yields:

where HMF is the block of H corresponding to the MF 
with themselves.

Remember that GMF is the (unobserved) genomic rela-
tionship matrix across MF, which at iteration t in the 
E-step is “augmented” by its conditional expectation, 
HMF , the corresponding submatrix of H . The previous 
expression simply says that the algorithm proceeds by 
updating H(t) from the previous estimate Ŵ̂(t−1) and then 
setting Ŵ̂(t) ← HMF(t) , the last being the block of H(t) 
corresponding to MF.

EG(G) = E

([
Gn,nGn,o

Go,nGo,o

]∣∣Go,o

)
=

(
Hn,nHn,o

Ho,nHo,o

)
= H,

EG
(
logL(Ŵ)

)
= EG

(
−
k

2

[
log(det(AŴ))+ Tr

(
A−1
Ŵ

G
)])

= −
k

2

[
log(det(AŴ))+ EG

(
Tr

(
A−1
Ŵ

G
))]

= −
k

2

[
log(det(AŴ))+ Tr

(
A−1
Ŵ

EG(G)
)]

= −
k

2

[
log(det(AŴ))+ Tr

(
A−1
Ŵ

H
)]

∂logL(Ŵ)
∂γ

≈ − k
2

[
Tr

[
Ŵ
−1 ∂Ŵ

∂γ

(
I− Ŵ

−1GMF

)]]
,

∂logL(Ŵ)
∂γ

≈ − k
2

[
Tr

[
Ŵ
−1 ∂Ŵ

∂γ

(
I− Ŵ

−1HMF

)]]
,

Tr

[
Ŵ
−1 ∂Ŵ

∂γij

]
= Tr

[
Ŵ
−1 ∂Ŵ

∂γij
Ŵ
−1HMF

]
.

Ŵ = HMF ,
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Algorithm

(1) Either Z where Z contains {−1, 0, 1} readings, or 
G = 2

k
ZZ′ may be used. Note that G does not 

change across iterations and does not need to be 
full rank depending on the algorithm.

(2) Use a starting value Ŵ̂(t=0) different from 0 , for 
instance Ŵ̂(t=0) = 0.1I.

(3) Do the following steps until convergence, at itera-
tion t:

(a) compute HMF(t) from Ŵ̂(t−1);
(b) update: Ŵ̂(t) ← HMF(t) using one of the options 

below;
(c) optionally, compute (exact) log-likelihood 

logL(Ŵ) = −
(
k
2

)
log(det(AŴ22))−

(
k
2

)
Tr

(
A
−1

Ŵ22
G

)
 

(just for checking);
(d) at convergence, Ŵ̂(t) is the estimate of Ŵ̂.

Convergence can be checked by comparing, for 
instance, the elements of the Cholesky decomposition 
U(t) , U(t−1) , respectively of Ŵ(t) and of Ŵ(t−1) and using 
∑

i

∑
j

(
(U(t)[i,j]−U(t−1)[i,j])

2
)

∑
i

∑
j

(
(U(t−1)[i,j])

2
)  . To update HMF(t) there are 

several options:
Option 1:

(1) Compute A−1
Ŵ(t) , A

−1
22Ŵ(t) from pedigree and Ŵ̂(t).

(2) Compute H−1
(t) = A−1

Ŵ(t) +
(
0 0

0 G−1 − A−1
Ŵ22(t)

)
 for 

all individuals including MF. Note that G does not 
change across iterations, but A−1

Ŵ(t) and A−1
Ŵ22(t) do, 

and so does H−1
(t) . In addition, this requires G to be 

full rank. Note that H−1
(t) includes a square block for 

MF.
(3) Extract the (MF, MF) block of HMF(t) from H(t) , 

which can be done:

(a) by repeated “solving” of H−1
(t) x = v , where v is 

a vector with 1 in the MF position and 0 else-
where;

(b) or by sparse inversion of H−1
(t).

Option 2:

(1) Use the expression �t+1 = �t + A�mf ,2(t)A−1
�22(t)(

G− A22�(t)
)
A−1
�22(t)A�2,mf (t) [16], i.e. using the 

subblocks (genotyped individuals, MF) of AŴ.

(2) Equivalently, use Ŵt+1 = Ŵt +
(
A
mf ,mf

Ŵ(t)

)−1

A
mf ,2

Ŵ(t)

(
G− AŴ22(t)

)
A
2,mf

Ŵ(t)

(
A
mf ,mf

Ŵ(t)

)−1

 , because 
(
A
mf ,mf
Ŵ(t)

)−1
A
mf ,2
Ŵ(t) = AŴmf ,2(t)A

−1
Ŵ22(t).

(3) Note that Amf ,2Ŵ(t) = Q2Ŵt for Q2 , which is a 
matrix with MF proportions in genotyped individu-
als.

Noting that AŴmf ,2(t)A
−1
Ŵ22(t)Z is a matrix which con-

tains two times the estimates of allele frequencies, minus 
one [3, 17], we can put results above as a function of esti-
mated allelic frequencies P̂ , where P has as many rows as 
markers ( k ) and as many columns as populations ( npop ), 
as follows:

This yields one extra option:
Option 3:

(1) Use �t+1 =
(
�t − Amf ,2�(t)A−1

22�(t)A2,mf �(t)

)

+

(
2
k

)(
2P̂�(t) − 1npop1′k

)(
2P̂�(t) − 1npop1′k

)′
 

where P̂Ŵ(t) contains the current estimate of all 
allele frequencies across populations using the cur-
rent value of AŴ (in this case G is not needed).

(2) Equivalently, use 

�t+1 =
(
Amf ,mf
�(t)

)−1
+

(
2
k

)(
2P̂�(t) − 1npop1′k

)

(
2P̂�(t) − 1npop1′k

)′
 , where Amf ,mf

Ŵ(t)  is the block of 

A−1
Ŵ(t) e.g. that is set up using Henderson’s rules cor-

responding to MF, which then has to be inverted. 

This is because 
(
A
mf ,mf

Ŵ(t)

)−1

=
(
Ŵt − Amf ,2Ŵ(t)

A
−1
22Ŵ(t)

A2,mf Ŵ(t)

)
.

Ŵt+1 = Ŵt + Amf ,2Ŵ(t)A
−1
22Ŵ(t)

(
G− A22Ŵ(t)

)
A
−1
22Ŵ(t)A2,mf Ŵ(t)

=
(
Ŵt − Amf ,2Ŵ(t)A

−1
22Ŵ(t)A2,mf Ŵ(t)

)

+ Amf ,2Ŵ(t)A
−1
22Ŵ(t)GA

−1
22Ŵ(t)A2,mf Ŵ(t)

=
(
Ŵt − Amf ,2Ŵ(t)A

−1
22Ŵ(t)A2,mf Ŵ(t)

)

+
(
2

k

)(
Amf ,2Ŵ(t)A

−1
22Ŵ(t)Z

)(
Z
′
A
−1

22Ŵ(t)A2,mf Ŵ(t)

)

=
(
Ŵt − Amf ,2Ŵ(t)A

−1
22Ŵ(t)A2,mf Ŵ(t)

)

+
(
2

k

)(
2P̂Ŵ(t) − 1npop1

′
k

)(
2P̂Ŵ(t) − 1npop1

′
k

)′
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Methods to estimate Ŵ across and within breeds using 
the increase in relationships
The previous methods do not apply well to populations, 
such as ruminant species with unknown parent groups 
defined by year of birth within breed and sometimes 
within sexes or selection paths. It is often the case that 

there are too many of these groups or they are too far 
away (in time, or to be more specific, in number of meio-
sis) from genotypes to be estimated accurately.

Here, we show how the previous method for estimating 
MF parameters for separate populations by pseudo-EM 
combines with previous work [8, 10] on how to estimate 
MF structured by year of birth, with the same objectives 
(although different methods) than Kudinov et  al. [6, 9]. 
First, we model the change in relationship across individu-
als with time. Then, we plug-in the methods from the pre-
vious sections.

For a closed population, the change of mean in time can 
be expressed as µt = µt−1 + ǫt , when Var(ǫ) is described 
by coancestry, this leads to the expression [18]:

and so on. This is simply the covariance structure of 
the process (similar but not identical to an autoregressive 
process):

Var





µo

µ1

µ2

µ3

. . .




=





A0 A0 A0 A0 . . .

A0 A1 A1 A1 . . .

A0 A1 A2 A2 . . .

A0 A1 A2 A3 . . .

. . . . . . . . . . . . . . .





=





A0 A0 A0 A0 . . .

A0 A0 +�A1 A0 +�A1 A0 +�A1 . . .

A0 A0 +�A1 A0 +�A1 +�A2 A0 +�A1 +�A2 . . .

A0 A0 +�A1 A0 +�A1 +�A2 A0 +�A1 +�A2 +�A3 . . .

. . . . . . . . . . . . . . .





µt = µt−1 + ǫt ,

Var(µ0) = A0,

Note that, because inbreeding is half the relationship 
between the parents (and assuming mating at random), 
�At = At − At−1 ≈ 2Ft+1 − 2Ft = 2�Ft+1.

Thus, we can describe Ŵ in the same manner:

Var(ǫt) = �At ,

Ŵ =





Γ0 Γ0 Γ0 Γ0 . . .

Γ0 Γ0 +∆Γ1 Γ0 +∆Γ1 Γ0 +∆Γ1 . . .

Γ0 Γ0 +∆Γ1 Γ0 +∆Γ1 +∆Γ2 Γ0 +∆Γ1 +∆Γ2 . . .

Γ0 Γ0 +∆Γ1 Γ0 +∆Γ1 +∆Γ2 Γ0 +∆Γ1 +∆Γ2 +∆Γ3 . . .

. . . . . . . . . . . . . . .




.

We will obtain those elements from pedigree-based 
inbreeding. We use the equivalence between inbreeding 
“with MF” �Fγ and inbreeding with “unrelated founders” 
�F , such that �Fγ = �F

(
1+ γ

2

)
 . Then, we consider the 

fact that two times average inbreeding is equal to average 
coancestry: �Ŵt = 2�Fγ ,t+1 and we assume that �Fγ is the 
same across all periods, and our MF are separated by the 
same time distances (this can easily be modified), leading 
to:

This covariance structure can be described in matrix 
terms as Ŵ = 11′γ0 + KK′

�F
(
1+ γ0

2

)
 , where γ0 (or Ŵ0) 

is the self-relationship of the very first metafounder and 

Ŵ =





Γ0 Γ0 Γ0 Γ0 . . .

Γ0 Γ0 + 2∆F(γ ) Γ0 + 2∆F(γ ) Γ0 + 2∆F(γ ) . . .

Γ0 Γ0 + 2∆F(γ ) Γ0 + 4∆F(γ ) Γ0 + 4∆F(γ ) . . .

Γ0 Γ0 + 2∆F(γ ) Γ0 + 4∆F(γ ) Γ0 + 6∆F(γ ) . . .

. . . . . . . . . . . . . . .




.
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K =





0 0 0 0 . . .

1 0 0 0 . . .

1 1 0 0 . . .

1 1 1 0 . . .

. . . . . . . . . . . . . . .




 . Therefore, we have a para-

metric structure for Ŵ in which we need only the ele-
ments �Ŵt . Note that other definitions of K are 
possible, e.g. with different or fractional time steps.

To consider two populations, we used the following 
structure:

The extension to more populations (e.g. breeds, coun-
tries, pathways of selection or combinations thereof ) is 

immediate i.e. Ŵ = XŴ0X
′ + K




I∆F

(1)
(γ )

I∆F
(2)
(γ )

. . .



K′ , 

with X and K defined appropriately. If there are n popu-
lations, the model needs n values of �F  and n(n+ 1)/2 

Ŵ =





Γ1,1 Γ1,1 Γ1,1 . . . Γ1,2 Γ1,2 Γ1,2 . . .

Γ1,1 Γ1,1 + 2�F
(1)

(1− Γ1,1) Γ1,1 + 2�F
(1)

(1− Γ1,1) . . . Γ1,2 Γ1,2 Γ1,2 . . .

Γ1,1 Γ1,1 + 2�F
(1)

(1− Γ1,1) Γ1,1 + 4�F
(1)

(1− Γ1,1) . . . Γ1,2 Γ1,2 Γ1,2 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Γ2,1 Γ2,1 Γ2,1 . . . Γ2,2 Γ2,2 Γ2,2 . . .

Γ2,1 Γ2,1 Γ2,1 . . . Γ2,2 Γ2,2 + 2�F
(2)

(1− Γ2,2) Γ2,2 + 2�F
(2)

(1− Γ2,2) . . .

Γ2,1 Γ2,1 Γ2,1 . . . Γ2,2 Γ2,2 + 2�F
(2)

(1− Γ2,2) Γ2,2 + 4�F
(2)

(1− Γ2,2) . . .

. . . . . . . . . . . . . . . . . . . . . . . .





.

values in Ŵ0 . It is even possible to consider crossbred 
cases, e.g. using �Ŵ1,2 elements. Finally, we fit this struc-
ture into the pseudo-EM described before. The algo-
rithm (which we call “pseudo-EM with �F  ”) is similar to 
the pseudo-EM above with the following modifications:

(1) Start with values of Ŵ of the oldest MF only (in the 
two breeds example above, Γ1,1 , Γ1,2 , Γ2,2 ). Expand 
them to full Ŵ using the function of �F .

(2) Obtain matrix HMF(t) as described in one of the 
three options before, as a function of AŴ(t) and 
observed G . Pick up the elements corresponding to 
the oldest MF, i.e., Γ1,1, Γ1,2, Γ2,2 . These are the new 
values. From them, expand to the whole matrix Ŵ as 
above.

Numerical example
This is an example of the pseudo-EM algorithm. We took 
the two metafounders and 12 animals in [1] with a simu-

lated matrix G =





1.16 0.16 0.96 0.36
0.16 1.18 0.69 0.96
0.96 0.69 1.80 0.87
0.36 0.96 0.87 0.96



 and starting 

value Ŵ = 0.1I . Pedigree is sorted so that MF precede real 
individuals. The first iteration yields:

from which the upper left 2 × 2 block, which corresponds 

to the two MF, is the new estimate Ŵ̂1 =
(
0.103 0.015
0.015 0.105

)
 . 

After 14 iterations, Ŵ̂ =
(
0.408 0.367
0.367 0.412

)
.

HMF(0) =





0.103 0.015 0.093 0.119 0.074 0.015 0.08 0.096 0.122 0.048 0.089 0.061 0.085 0.075
0.015 0.105 0.027 0.07 0.073 0.105 0.123 0.06 0.115 0.114 0.111 0.093 0.066 0.102
0.093 0.027 1.019 0.058 0.001 0.027 0.242 0.515 0.018 0.135 0.219 0.068 0.258 0.143
0.119 0.07 0.058 1.178 0.245 0.07 0.564 0.557 0.886 0.317 0.599 0.281 0.401 0.44
0.074 0.073 0.001 0.245 1.166 0.073 0.156 0.05 0.956 0.114 0.356 0.64 0.608 0.498
0.015 0.105 0.027 0.07 0.073 1.054 0.123 0.06 0.115 0.589 0.111 0.331 0.066 0.221
0.08 0.123 0.242 0.564 0.156 0.123 1.188 0.565 0.689 0.655 0.956 0.405 0.36 0.68
0.096 0.06 0.515 0.557 0.05 0.06 0.565 0.956 0.347 0.313 0.539 0.181 0.503 0.36
0.122 0.115 0.018 0.886 0.956 0.115 0.689 0.347 1.81 0.402 0.867 0.679 0.651 0.773
0.048 0.114 0.135 0.317 0.114 0.589 0.655 0.313 0.402 1.096 0.533 0.605 0.213 0.569
0.089 0.111 0.219 0.599 0.356 0.111 0.956 0.539 0.867 0.533 0.966 0.444 0.447 0.705
0.061 0.093 0.068 0.281 0.64 0.331 0.405 0.181 0.679 0.605 0.444 1.109 0.411 0.777
0.085 0.066 0.258 0.401 0.608 0.066 0.36 0.503 0.651 0.213 0.447 0.411 1.042 0.429
0.075 0.102 0.143 0.44 0.498 0.221 0.68 0.36 0.773 0.569 0.705 0.777 0.429 1.195





,
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Tests
Maximum likelihood with one metafounder
We used 29,138 genotyped animals of Lacaune 
dairy sheep [10]. For the sake of experimentation, 
we considered a single MF. Matrices G and A22 were 
constructed and written to disk. Then, a Julia program: 
(1) got ML estimates using the cubic equation described 
above and (2) did a one-dimensional grid search of the 
likelihood from functions of G and A22 as detailed in 
Appendix. The outcome of the program was estimates of 
γ and an exploration of the log-likelihood l(γ ) curve.

Both the cubic equation and the one-dimensional grid 
search agreed on an ML estimate γ̂ = 0.37 , however 
this value does not need to be taken seriously because 
the pedigree is not complete and therefore more than 
one MF should be used. The cubic equation had only 
one real solution. The shape of the likelihood is shown 
in Fig.  1. The likelihood was reasonably peaked, and 
using a quadratic approximation of the information 
matrix gives an asymptotic standard error of 0.0755.

Simulation
We did three simulations. First, two “mixture” 
simulations (similar to, e.g. a synthetic breed or the 
introduction of US Holstein into European Friesian) 
with complete pedigree up to each parental breed. In 
the “mixture” simulations, we considered a symmetrical 
case (both breeds have the same genetic drift) and an 
asymmetrical case (breeds have different genetic drifts) 
(see details below).

Second, a more complex scenario of “two breeds with 
groups per year of birth”. This is similar to the current 
use of dairy cattle where most animals are purebreds 
but some are crossbreds, e.g. Jersey and Holstein, 
Nordic dairy cattle breeds, and it is similar to some 

sheep breeds where crossbreeding is frequent. This 
scenario includes two mildly related breeds.

In the “mixture, symmetrical” case, using the program 
macs [19], we simulated two “cattle” populations of 
Ne = 300 which split 50 generations ago, resulting in 
353,850 polymorphisms with a value of FST = 0.082 . We 
selected a subset of 40K loci that were polymorphic in 
both breeds (with a minor allele frequency (MAF) > 0.01 
in both breeds) to declare them “single nucleotide 
polymorphisms” (SNPs) with a value of FST = 0.079 (for 
the 40K SNPs). With these SNPs, we computed 

Ŵ =
(
0.75 0.64
0.64 0.75

)
 . The SNPs were aggregated into 30 

chromosomes of 1 Morgan each. Then, we gene dropped 
the 40K SNPs in a complex pedigree of 10 generations 
with 84,200 individuals (200 sires and 4000 dams 
founders, followed by 10 more generations, with a 
progeny size of 2), completed at the top with the two MF. 
Individuals in the first generation were assigned to a 
breed origin at random with equal probability. Then, 
matings proceed at random, e.g. the second generation 
had random proportions (25/50/25) of purebreds and F1 
individuals, the third generation has purebreds, F1 and 
F2 individuals and probably some backcrosses. For 
instance, looking at animals with “first breed” proportions 
of 0, 0.25, 0.50, 0.75, 1, each proportion had respectively 
an animal count of 445, 2092, 3021, 1974 and 468. 
Eventually, the population becomes a mixture of the two 
breeds; in the last generation, the proportions of breed 1 
oscillate between 0.46 and 0.56. This makes estimation of 
Ŵ more challenging as time advances. There were only 
two MF corresponding to the two breeds.

Then, the individuals in this complex pedigree were 
“genotyped” in two different ways that constitute two 
scenarios. The first scenario (“all generations”) consists 
in genotyping every 10th animal, i.e. all generations 
are represented with 8400 genotyped animals. The 
second scenario (“last generations”) considers the last 
2000 of these 8400 animals, i.e. it considers animals of 
generations 9 to 11.

In the “mixture, unsymmetrical case”, we simulated 
that, after the split of populations, the Ne of population 
1 was 450, whereas the Ne of population 2 was 45, lead-

ing to Ŵ =
(
0.58 0.25
0.25 0.65

)
 , with all other settings being 

identical. Again, there were only two MF.
In the “two breeds with groups per year of birth” sce-

nario, the coalescent simulation was as above, using 

program macs, with the initial Ŵ =
(
0.68 0.57
0.57 0.68

)
 . Then, 

we plugged the true complex pedigree of dairy sheep 
Latxa Cara Negra (LCN) and Manech Tête Noire 
(MTN) [20] with 220  K individuals spanning 30  years 

Fig. 1 Log-likelihood of genotypes as a function of γ
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and ~ 10 generations (e.g. periods of 3  years), which 
were mainly purebreds with a few sporadic crosses (474 
F1 animals, of which 58 rams with at least 10 daughters 
1/4 MTN and 3/4 LCN), with missing parentships in all 

generations (25% missing sires and 9% missing dams 
after the initial generation), as it happens in real rumi-
nant populations. There were 20 MF, 10 per breed dis-
tributed every three years (i.e. 1 to 10 for breed 1 and 11 
to 20 for breed 2). We “gene dropped” markers, in 25 
chromosomes of 1 Morgan each, through the pedigree. 
For animals in the two earliest MF (1 and 11, respec-
tively for each breed) alleles at markers were drawn at 
random from corresponding allele frequencies. How-
ever, for animals in subsequent generations with miss-
ing parents, each missing parent was sampled from 
contemporary animals. After the simulation, we com-
puted allele frequencies for each of the 10 generations 
within each of the two breeds, and we obtained true Ŵ of 
size 20 × 20 from the cross-product 
Ŵb,b′ = 2

k (
2pb − 1)(2pb′ − 1)′ with pb and pb′ being row 

vectors, as shown in Fig. 2. Again, the scenario “all gen-
erations” considered 10% genotyped animals across all 
generations, for a total of 22,433 animals, and we also 
considered a “last generations” scenario of 2000 animals 
corresponding (roughly) to the last three generations.

We applied the generalized least squares (GLS) 
algorithm [3] and the pseudo-EM algorithm (the 
stopping criterion was 10−6 ) to all these scenarios. The 
GLS algorithm was applied in its raw form, e.g. there 
was no correction for estimates of allele frequencies 
or of Ŵ that were outside the boundaries, and also, we 

True Gamma

metafounders

m
et
af
ou

nd
er
s

5

10

15

20

5 10 15 20
0.55

0.60

0.65

0.70

0.75

Fig. 2 Simulated gamma for the “two breeds with groups per year 
of birth” scenario. The lower left block is one breed and the upper 
left block is another breed. Metafounders are defined every 3 years 
within breed

Table 1 True (simulated) and estimates of gamma using GLS or pseudo-EM and using animals from all generations (“all”) or from the 
last two generations (“last”)

Symmetrical Asymmetrical

True All Last True All Last

GLS Pseudo‑EM GLS Pseudo‑EM GLS Pseudo‑EM GLS Pseudo‑EM

Ŵ1,1 0.75 0.75 0.74 1.07 0.76 0.58 0.58 0.58 0.96 0.58

Ŵ1,2 0.64 0.63 0.64 0.31 0.64 0.25 0.24 0.25 − 0.13 0.25

Ŵ2,2 0.75 0.75 0.74 1.09 0.72 0.65 0.65 0.65 1.06 0.64

Table 2 Statistics of true and estimated values of gamma for the “two breeds with groups per year of birth” scenario

Maxdiff is the maximum absolute difference, with sign

All Last

GLS Pseudo‑EM+�F GLS Pseudo‑EM+�F

Correlation, diagonal 0.967 0.783 − 0.448 0.897

Correlation, off-diagonal 0.998 0.990 0.914 0.996

Median (estimator-true), diagonal 0.000 0.007 0.045 0.009

Median (estimator-true), off-diagonal − 0.007 0.000 − 0.005 0.002

Maxdiff (estimator-true), diagonal 0.016 0.036 2.542 0.031

Maxdiff (estimator-true), off-diagonal − 0.022 0.033 − 0.278 0.029
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did not attempt a GLS+�F  method. In the “two breeds 
with groups per year of birth” case, we used the model 
pseudo-EM+�F  , using literature values of pedigree-
based �F  of 0.0021 and 0.0016 per year for MTN and 
LCN [21, 22], and a time interval of 3 years between each 
MF. Note that although we do not use genotypes from 
either of these breeds, we do use their real pedigrees and 
hence the literature estimates are adequate.

Results from simulation
Table 1 shows the results with the “mixture” case. When 
genotyped animals are present in all generations, both 
GLS and pseudo-EM estimate Ŵ correctly. However, 
when information is available only for the last gen-
erations, GLS tends to overestimate the diagonal of Ŵ , 
because errors in the estimate of allele frequencies, when 
squared, cumulate in the diagonal. Regarding the values 
of the off-diagonal elements of Ŵ , they tend to be under-
estimated because errors across two MF tend to cancel 
out, i.e. p̂bp̂b′ < pbpb′.

Results of “two breeds with groups per year of birth” 
scenario are in Table 2 and Figs. 2 and 3. Figure 2 shows 

that the true, simulated relationships in Ŵ are struc-
tured within- and across-populations, and there is a 
slow increase in Ŵ due to increased coancestry within 
breed. Values go from 0.69 to 0.74 (MTN) or 0.70 (LCN) 
within breed, and are ~ 0.57 across breeds. The simu-
lated Ŵ increases with time as expected due to increased 
coancestry within the breed.

Table 2 and Fig. 3 (note that in Fig. 3 the scales differ 
for each panel) show the performance of the estimates. 
In the “all generations genotyped” scenario, both GLS 
and pseudo-EM+�F  are very accurate. GLS under-
estimates off-diagonal relationships in the first breed, 
because (again) estimated allele frequencies are not per-
fect, whereas pseudo-EM+�F  overestimates them in the 
second breed, probably because the literature estimates 
of �F  that we used do not consider correctly missing 
pedigrees, which is shown by the bias being larger for 
the block that would correspond to LCN (upper right) 
that has more missing pedigree. In any case, both GLS 
and pseudo-EM+�F  estimates of Ŵ should perform ade-
quately for genetic evaluations because the differences 
with the true Ŵ are very small.
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Fig. 3 Difference between estimated and true gamma when genotyped animals are distributed in “all” generations or in the three “last” generations. 
Simulation “two breeds with groups per year of birth”
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When only “last” generations have individuals with 
genotypes, GLS does not provide a good estimate 
because, although it does capture the block structure 
of the two populations, it has values that are too high 
in the diagonal, exceeding the biological limits of 2. On 
the contrary, pseudo-EM+�F  obtains values that are 
quite close to true values, even if there are always small 
biases towards the ends. It is also worth mentioning that 
pseudo-EM errors are of the same (small) magnitude in 
the “all” and “last” scenarios, which is not true for GLS, 
that has a performance that is strongly affected by dis-
tance of the estimated MF to genotyped individuals.

Convergence to the required value was fast, about ~ 7 
iterations for all simulations, except for the “asymmetri-
cal, last generations genotyped” scenario, which took 59 
iterations.

In all three simulations, we genotyped every 10th indi-
vidual within each genotyped generation, which ensures 
a homogeneous genotyping. This is not true in real life 
where elite animals and lines are over-represented in the 
genotypes, which might lead to biases in the estimation 
of Ŵ.

Discussion
The lack of a general method to estimate Ŵ is a real prob-
lem for use of MF in genetic evaluations. Indeed, several 
studies used ad hoc techniques to estimate Ŵ , e.g. [6, 8] 
and the lack of a general method is a frequent complaint. 
In our experience, the simple GLS method yields some 
parts of Ŵ that are well estimated (i.e. for large breeds) 
whereas other parts are not (e.g. for small breeds).

Our method of ML for one population is rather simple 
and not more expensive computationally than the GLS 
method. Although a bit more complex to implement, 
the ML method provides estimates that are guaranteed 
to be in the parametric space and more robust than 
the GLS method estimates. For the cases where there 
are no genetic groups or MF, Garcia-Baccino et  al. [3] 
proved that using a single MF was better than the cur-
rent methods of “tuning” the G matrix [23], and that the 
ML method or the GLS method provided good estimates. 
Another option is, of course, to use base allele frequen-
cies to build G.

Our methods of pseudo-EM and pseudo-EM+�F  do a 
good job, in particular when information is “asymmetri-
cal” or genotypes exist only in the last generations. Our 
method uses already available �F  based on pedigree. It 
may be argued that �F  changes with time, but past �F  
does not change, and the method can easily accom-
modate different �F  along time by changing K , �F  , or 
both. Estimation of �F  is challenging in itself [7, 24] and 
underestimation of �F  will result in values of Ŵ too close 

to each other. In our sheep-based example, we have not 
applied any particular technique for correction of miss-
ing pedigree and the results are reasonable, which seems 
to imply that the method is robust to a small number of 
missing pedigree records.

An alternative method by Kudinov et al. [6, 9] models 
Ŵ using covariance functions in a rather general man-
ner, i.e. it would be of the form Ŵ = �Ŵ0�

′ where � is 
a matrix that is similar to our K matrices and Ŵ0 can be 
estimated from data. This method is expected to properly 
describe the increase in coancestry in closed populations, 
provided enough information (genotypes) across time is 
given, which may not be true in all cases, for instance, for 
beef or sheep. It is possibly of interest to dig into the sim-
ilarities of the two methods and combine them.

Another alternative method in the literature is GLS to 
obtain allele frequencies [3, 17, 25], followed by the equa-
tion Ŵ̂b,b′ = 8Cov

(
p̂b, p̂b′

)
 [3]. We have improved this 

method in two manners. First, we use a better definition 
of Ŵb,b′ =

(
2
k

)
(2pb − 1)(2pb′ − 1)′ , where pb and pb′ are 

row vectors of allele frequencies, which does not rely on 
random coding of alleles. Second, the equation 
Ŵ̂b,b′ = 8Cov

(
p̂b, p̂b′

)
 uses estimated p̂ in place of true p 

and this leads to cumulation of errors within MF (upward 
bias in the diagonal) or negative covariance of errors 
across MF (downward bias off-diagonal) globally leading 
to biased estimates of Ŵ for extreme cases (i.e. our simula-
tions with “last” individual genotyped). On the one hand, 
the GLS method can be refined and made into a sort of 
GLS+�F  method [10] although we have not attempted to 
do this. On the other hand, the pseudo-EM strategy is 
not more expensive computationally and has better theo-
retical properties.

Compared to GLS, pseudo-EM should be a more 
robust method because it is an (approximation of ) EM 
algorithm, i.e., it should yield estimates within the para-
metric space, as far as the approximation is a good one. 
Pseudo-EM+�F  yielded estimates within the param-
eter space in the case “two breeds with groups per year 
of birth”, whereas GLS did not. Computing times of GLS 
and pseudo-EM (with or without �F  ) are similar if effi-
ciently programmed because both require some form of 
either A−1

Ŵ
 or A−1 and manipulation of G or Z depending 

on the actual form of the algorithms. A difference is that 
pseudo-EM is an iterative algorithm that requires some 
iterations, which in our case were mostly a small number 
( ≤ 7 ) but not always (59 for one case).

It is also of interest to present pseudo-EM compared 
to previous algorithms and true ML. Consider the 

update Ŵt+1 =
(
A
mf ,mf
Ŵ(t)

)−1

+
(
2

k

)(
2P̂Ŵ(t) − 1npop1

′
k

)
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(
2P̂Ŵ(t) − 1npop1

′
k

)′
 . The second part of the update, 

(
2
k

)(
2P̂Ŵ(t) − 1npop1

′
k

)(
2P̂Ŵ(t) − 1npop1

′
k

)′
 , corre-

sponds to the GLS estimator of [3], the differences 
being that the latter: (1) used A (not AŴ ), (2) was not 
iterated and (3) used the covariance across allele fre-
quencies instead of the cross-product. In addition, the 

first part of the update 
(
A
mf ,mf
Ŵ(t)

)−1
 considers the pre-

diction error variance in the prediction of allele fre-
quencies in P , i.e. the more the genotyped animals are 
far from MF, the less the EM algorithm relies on esti-
mates of allele frequencies. The prediction error vari-
ance will be different for MF that have less information 
in genotyped animals.

This expression also allows us to see that, the left part 
of the update 

(
Ŵt − Amf ,2Ŵ(t)A

−1
22Ŵ(t)A2,mf Ŵ(t)

)
 is the pre-

diction error covariance matrix of genotypes for MF 
given the observed G [15], and this prediction error 
covariance which was included in the approximate ML 
estimator suggested (but not actually used) by Garcia-
Baccino et al. [3].

Matrix A2,mf Ŵ(t) in Ŵ̂t+1 = Ŵ̂t + Amf ,2Ŵ(t)A
−1
22Ŵ(t)

(G

−A22Ŵ(t)

)
A
−1
22Ŵ(t)

A2,mf Ŵ(t) is actually a matrix of 
breed proportions A2,mf Ŵ(t) = Q2Ŵ̂t , which gives 
Ŵ̂t+1 = Ŵ̂t + Ŵ̂tQ

′
2A

−1
22Ŵ(t)

(
G− A22Ŵ(t)

)
A−1
22Ŵ(t)Q2Ŵ̂t  . 

At convergence Ŵ̂ = Ŵ̂t+1 = Ŵ̂t which implies that Ŵ̂ is 
the solution to the (non-linear) equation 0 = Q

′
2
A
−1

22Ŵ(t)(
G− A22Ŵ(t)

)
A
−1
22Ŵ(t)

Q2.
As for the comparison with true ML, consider this 

last non-linear equation 0 = Q
′
2
A
−1
22Ŵ(t)

(
G− A22Ŵ(t)

)

A
−1

22Ŵ(t)
Q2 in the case of single MF: 

0 = 1′A−1
22Ŵ(t)

(
G− A22Ŵ(t)

)
A−1
22Ŵ(t)1 . After applying the 

identities to Aγ 22 = A22

(
1− γ

2

)
 and some algebra, the 

preceding non-linear equation yields the linear equa-
tion on γ:

The solution of this equation is an estimate γ̂  . How-
ever, we note that compared to ML, the term Tr

(
A−1
22 G

)
 

does not appear here. Therefore, the solution to this 
equation is not the ML estimate. We also note that for n 
unrelated individuals A22 = In , and we obtain 
γ ≈ 1

n2
1′G1 = mean(G) as expected.

Last, it has to be recalled that the Mendelian sam-
pling variances Di,i contain likelihood information about 
Ŵ , which is used in true ML but the maximization of 
which is unclear in pseudo-EM. For instance, F1 and F2 

1−
γ

2
+ γ1′A−1

22 1 =
1′A−1

22 GA
−1
22 1

1′A−1
22 1

.

individuals A×B or (A×B)×(A×B), in spite of having the 
same breed proportions will have different Mendelian 
sampling variances of their respective gametes [13].

Conclusions
The theory of MF allows a general method that accom-
modates pedigree and genomic relationships correctly. 
However, its use demands estimation of relationships 
across base populations ( Ŵ ) which is complex, in particu-
lar in the complex pedigrees used in livestock genetics. 
Using Gaussian likelihoods, we derived ML, pseudo-EM 
and pseudo-EM+�F  methods to estimate Ŵ in many 
realistic settings. These methods require either set up 
and comparison of genomic and pedigree relationships, 
or use of allele frequency estimates based on observed 
markers and pedigree, sometimes completed with addi-
tional information (evolution of inbreeding) from pedi-
grees. Computational cost is therefore low. Estimates are 
accurate in real and simulated data. These methods will 
help testing and using MF for genetic evaluations in live-
stock species.

Appendix
Computational tricks to obtain the likelihood and parts 
of the maximization algorithm
Likelihood
The likelihood is composed of two parts, log(det(AŴ22)) 
and Tr

(
(AŴ22)

−1G
)
 . The value of log(det(AŴ22)) can be 

computed as follows:
(option 1) get log-determinant of AŴ22 using:

(1) Compute AŴ22

(2) L = cholesky(AŴ22) i.e., the lower triangular factor 
of its Cholesky decomposition.

(3) ln|AŴ22| = 2
∑

logLii where Lii are the diagonals of 
the L Cholesky factor.

(option 2) ln|AŴ22| can be obtained from sparse matri-
ces A−1

Ŵ
 and A11

Ŵ
 (the (sparse) block of the (sparse) A−1

Ŵ
 

corresponding to non-genotyped individuals and meta-
founders) using partitioned matrix theory as:

where log
∣∣A11

Ŵ

∣∣ is computed e.g. using sparse inversion. 
The log

∣∣∣A−1
Ŵ

∣∣∣ is computed as follows. A−1
Ŵ

= T−1D−1T′−1 

and therefore 
∣∣∣A−1

Ŵ

∣∣∣ =
∣∣T−1

∣∣∣∣D−1
∣∣∣∣T′−1

∣∣ =
∣∣D−1

∣∣ 
because T−1 is a triangular matrix with a diagonal of 1 s.

log|AŴ22| = log
∣∣∣A11

Ŵ

∣∣∣− log
∣∣∣A−1

Ŵ

∣∣∣,
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Matrix 
∣∣D−1

∣∣ contains two parts, the part linked to MF 
and the part linked to “animals”:

where 1/dii are the contributions summed in Henderson’s 
algorithm for the A-inverse, but here depends on Ŵ . Thus:

where the summation extends to all animals in the 
pedigree.

The value of Tr
(
A−1
Ŵ22G

)
 can be obtained in at least two 

different ways.

in other words, as the sum of elements of the direct prod-
uct A−1

Ŵ22 ⊙G , which is very easy if they have already 
been computed.

Alternatively, for instance if A−1
Ŵ22 is not directly com-

puted but products A−1
Ŵ22z can be computed [26]:

where the summation includes j = 1, . . . , k loci.

Parts of the single‑metafounder exact ML equation
The value of a = 1′A−1

22 1 can be computed as the sum of 
the elements of A−1

22  (if explicitly computed) or using an 
indirect method to yield products A−1

Ŵ221.

∣∣∣D−1
∣∣∣ =

∣∣∣Ŵ−1
∣∣∣×�i

1

dii
,

log
∣∣∣A−1

Ŵ

∣∣∣ = log
∣∣∣Ŵ−1

∣∣∣+
∑

log

(
1

dii

)
,

b = Tr
(
A−1
Ŵ22G

)
=

∑
i

∑
j

((
A−1
Ŵ22

)

ij
Gij

)
,

b = Tr(A−1
Ŵ22G) = Tr

(
A−1
Ŵ22ZZ

′ 2

k

)
=

2

k

∑
z′jA

−1
Ŵ22zj ,

For the value of b , see above.
The value of c = 1′A−1

Ŵ22GA
−1
Ŵ221 can be obtained explic-

itly if matrices are available or indirectly, noting that 
c = 1′A−1

Ŵ22GA
−1
Ŵ221 = 1′A−1

Ŵ22

(
2
k
ZZ′

)
A−1
Ŵ221 = 2

k
t′t = 

where t is a vector of size k number of markers, 
t′ = 1′A−1

Ŵ22Z . Elements of t can be computed by pre-com-
puting the vector q = 1′A−1

Ŵ22 and then looping through 
markers as tj = q′zj or directly, in a loop similar as above, 
as:

Exact ML for one metafounder
Consider logL(Ŵ) = −(k/2)log(det(AŴ22))− (k/2)Tr(
(AŴ22)

−1
G

)
 . Using formulas from [27], we obtain:

Inserting those into the log-likelihood function, and 
using short-hand notation a = 1′A−1

22 1 , b = Tr
(
A−1
22 G

)
 

and c = Tr
(
A−1
22 11

′A−1
22 G

)
= 1′A−1

22 GA
−1
22 1 , i.e. the sum 

of all elements of A−1
22 GA

−1
22  , we obtain:

The ML estimate is obtained by differentiating l(γ ) and 
setting equal to zero, where we note that the k/2 in front of 
each term in the expression can be ignored,

c =
2

k

∑

j

(
q′zj

)2
.

(
Aγ 22

)−1 = A−1
22 (1− γ /2)−

A−1
22 11

′
γ((

1− γ

2

)(
1− γ

2 + γ1′A−1
22 1

)) ,

det
(
Aγ 22

)
= det

(
A−1
22

)
(1− γ /2)n

(
1+ 1′A−1

22 1/(1− γ /2)
)

= det
(
A−1
22

)
(1− γ /2)n−1

(
1+ 1′A−1

22 1
) .

logL(γ ) = −

(
k
2

)
log(det(A22))−

(
k
2

)
(n− 1)log

(
1−

γ

2

)
−

(
k
2

)
log

(
1−

γ

2
+ γ a

)

−

(
k
2

)
b(

1− γ
2
) +

(
k
2

)
c

γ(
1− γ

2
)(
1− γ

2 + γ a
) .

0 =
(n− 1)/2

(1− γ /2)
−

−1/2+ a

1− γ /2+ γ a
−

b/2

(1− γ /2)2

+ c

(
1− γ

2

)(
1− γ

2 + γ a
)
− γ

((
1− γ

2

)(
− 1

2 + a
)
− (1− γ

2+γ a)
2

)

(1− γ /2)2(1− γ /2+ γ a)2
.
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Multiplying by 
(
(1− γ /2)2

)
(1− γ /2+ γ a)2 on both 

sides of the equation followed by some algebraic manipula-
tions, we obtain a cubic equation:

where e3 = −n(−1/2+ a)2/2 , e2 = n((−3/2+ a)+ a

−b(−1/2+ a)+ c)(−1/2+ a) , e1 = (n− 1)(−3/2+ 2a)

−(−1+ 2a)(−3/2+ a+ b) and e0 = n− 2a− b+ 2c.
Solving a cubic equation, first requires the computa-

tion of the discriminant ∆ = 18e3e2e1e0 − 4e
3

2
e0 + e

2
2
e
2
1

−4e3e
3

1
+ 27e

2
3
e
2
0
 . If ∆ > 0 , then there are three distinct 

real roots, and if ∆ < 0 , then there is only one real root, 
which is the ML estimate of γ (if in the parametric space), 
and two complex roots.

Derivatives of the likelihood
The first derivative of Tr

(
A
−1

Ŵ
G

)

Based on the definition of trace, and using rules for differ-
entiation of a trace [28]:

where W = T−1Z/
√
0.5k ,B = WW′ . Note that the block 

of T−1 corresponding to MF is simply an identity matrix, 
and thus the block of B corresponding to MF is simply 
GMF . Thus,

The first derivative of log
(
det(AŴ)

)

Based on the definition of Jacobi formula (see for instance 
chap. 15, 8.5 in [28]):

e3γ
3 + e2γ

2 + e1γ + eo = 0,

Tr

(
A
−1

Ŵ
G

)
= Tr

(
T
−1′

D
−1

Ŵ
T
−1

G

)

= Tr

(
D

−1

Ŵ
T
−1

GT
−1′

)

= Tr

(
D

−1

Ŵ
T
−1

ZZ
′

k

2

T
−1′

)

= Tr

(
D

−1

Ŵ
WW

′
)

= Tr

(
D

−1

Ŵ
B

)
,

∂Tr
(
A−1
Ŵ

G
)

∂γ
=

∂Tr
(
D−1

Ŵ
B
)

∂γ
= Tr

(
∂D−1

Ŵ

∂γ
B

)
.

where we note that ∂DΓ /∂γ depends on which parameter 
the function is differentiated with respect to, but it does 
not depend on the actual values of any of the parameters. 
Therefore,

The first derivative of logL(Ŵ)
Based on the preceding equations, the first derivative of 
log-likelihood function would be:

The structure of B and DŴ is:

Thus, ∂logL(Ŵ)
∂γ

 can be expressed as follows:

where sum over i is for non-metafounders and 
∂Ŵ

−1

∂γ
= −Ŵ

−1 ∂Ŵ
∂γ

Ŵ
−1 and ∂D−1

Γ ii
∂γ

= − ∂DΓ ii
∂γ

/
(
DΓ i,i

)2 . 
Inserting this, we obtain:

∂det(AŴ)

∂γ
= det(AŴ)Tr

(
A−1
Ŵ

∂AŴ

∂γ

)

= det(AŴ)Tr

(
T−1′D−1

Ŵ
T−1 ∂AŴ

∂γ

)

= det(AŴ)Tr

(
T−1′D−1

Ŵ
T−1T

∂DŴ

∂γ
T′
)
,

= det(AŴ)Tr

(
T′T−1′D−1

Ŵ
T−1T

∂DŴ

∂γ

)

= det(AŴ)Tr

(
D−1

Ŵ

∂DŴ

∂γ

)

∂log(det(AŴ))

∂γ
=

1

det(AŴ)

∂det(AŴ)

∂γ
= Tr

(
D−1

Ŵ

∂DŴ

∂γ

)
.

∂logL(Ŵ)

∂γ
= −

k

2



∂log(det(AŴ))

∂γ
+

∂Tr
�
A−1
Ŵ

G
�

∂γ





= −
k

2

�
Tr

�
D−1

Ŵ

∂DŴ

∂γ

�
+ Tr

�
∂D−1

Ŵ

∂γ
B

��
.

= −
k

2

�
Tr

�
∂D−1

Ŵ

∂γ
(B−DŴ)

��

DŴ =
{
Ŵ, for metafounders
diagonal matrix, for non-metafounders

,

B =
{
GMF , for metafounders
WNMFWNMF

′, for non-metafounders
.

∂ log
L
(Ŵ)

∂γ
= −

k

2

[
Tr

[
∂Ŵ

−1

∂γ
(GMF − Ŵ)

]]

−
k

2

[
∑

i

[
∂D

−1
Γi,i

∂γ

(
Bi,i − DΓi,i

)
]]

,
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The first term involves GMF and is simple to manipu-
late. The last term implies individual terms of Mendelian 
sampling variances DŴi,i and it is difficult to compute and 
derive algebraically in a recognizable form. Instead, we 
approximate ∂logL(Ŵ)

∂γ
 by its first term as:

Derivation of the pseudo‑EM algorithm
Consider the approximation above:

setting to 0 and factorizing − k
2 and introducing γij to indi-

cate which of the points of Ŵ we work with gives:

Now we focus on Tr
[
Ŵ
−1 ∂Ŵ

∂γij

]
 . In fact, ∂Ŵ

∂γij
 is a matrix 

E
(
i, j
)
 that contains 1 in the 

(
i, j
)
 position and 0 other-

wise. The direct product Ŵ−1 ⊙ E
(
i, j
)
 produces a matrix 

with 0 s and picking up elements (i,j) of the matrix Ŵ−1 . 
Then we use the fact that:

to observe that in fact Tr
[
Ŵ
−1 ∂Ŵ

∂γij

]
= Tr

[
Ŵ
−1E

(
i, j
)]

 as 
follows:

for i = j (diagonal elements) then we obtain the diago-
nal element γ ij (the element 

(
i, j
)
 of Ŵ−1 , not of Ŵ);

for i  = j (off-diagonal elements) then we obtain 2γ ij 
(because there are two 1 s then in E

(
i, j
)
).

Now we focus on the expression  Tr
[
Ŵ
−1 ∂Ŵ

∂γij
Ŵ
−1

GMF

]

= Tr

[
∂Ŵ

∂γij
Ŵ
−1

GMFŴ
−1

]
 . By the same reasoning, when we 

consider γij we obtain:
for i = j (diagonal elements) we get the element 

(
i, j
)
 of 

Ŵ
−1GMFŴ

−1 , i.e. Ŵ−1GMFŴ
−1[i, j];

for i  = j (diagonal elements) then we get twice the ele-
ment 

(
i, j
)
  of Ŵ−1GMFŴ

−1 , i.e. 2Ŵ−1GMFŴ
−1[i, j].

Thus, for each 
(
i, j
)
 combination we have one (for i = j 

in the position (i, i) ) or two (for i  = j , in the positions 
(
i, j
)
 

and 
(
j, i
)
 ) scalar equations of the form:

∂ log
L
(Ŵ)

∂γ
= −

k

2

[
Tr

[
Ŵ
−1 ∂Ŵ

∂γ

(
I− Ŵ

−1
GMF

)]]

−
k

2

[
∑

i

[
∂DΓi,i

∂γ

(
1

DΓi,i

−
Bi,i

D
2
Γi,i

)]]
.

∂logL(Ŵ)
∂γ

≈ − k
2

[
Tr

[
Ŵ
−1 ∂Ŵ

∂γ

(
I− Ŵ

−1GMF

)]]
.

∂logL(Ŵ)
∂γ

≈ − k
2

[
Tr

[
Ŵ
−1 ∂Ŵ

∂γ

(
I− Ŵ

−1GMF

)]]
,

Tr

[
Ŵ
−1 ∂Ŵ

∂γij

]
=

[
Tr

[
Ŵ
−1 ∂Ŵ

∂γij
Ŵ
−1GMF

]]
.

Tr(AB) =
∑∑

aijbij =
∑

all elements

(A ⊙ B),

(note that for i  = j the factor of 2 cancels out). Putting 
all these equations together we obtain:

which after pre- and post-multiplication by Ŵ results in:
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