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Genetics Selection Evolution

Equivalence of variance components 
between standard and recursive genetic models 
using LDL′ transformations
Luis Varona1*  , David López‑Carbonell1, Houssemeddine Srihi1, Carlos Hervás‑Rivero1, 
Óscar González‑Recio2 and Juan Altarriba1 

Abstract 

Background Recursive models are a category of structural equation models that propose a causal relationship 
between traits. These models are more parameterized than multiple trait models, and they require imposing restric‑
tions on the parameter space to ensure statistical identification. Nevertheless, in certain situations, the likelihood 
of recursive models and multiple trait models are equivalent. Consequently, the estimates of variance components 
derived from the multiple trait mixed model can be converted into estimates under several recursive models 
through LDL′ or block‑LDL′ transformations.

Results The procedure was employed on a dataset comprising five traits (birth weight—BW, weight at 90 days—
W90, weight at 210 days—W210, cold carcass weight—CCW and conformation—CON) from the Pirenaica beef cattle 
breed. These phenotypic records were unequally distributed among 149,029 individuals and had a high percentage 
of missing data. The pedigree used consisted of 343,753 individuals. A Bayesian approach involving a multiple‑trait 
mixed model was applied using a Gibbs sampler. The variance components obtained at each iteration of the Gibbs 
sampler were subsequently used to estimate the variance components within three distinct recursive models.

Conclusions The LDL′ or block‑LDL′ transformations applied to the variance component estimates achieved 
from a multiple trait mixed model enabled inference across multiple sets of recursive models, with the sole prerequi‑
site of being likelihood equivalent. Furthermore, the aforementioned transformations simplify the handling of missing 
data when conducting inference within the realm of recursive models.

Background
Recursive models are a type of structural equation model 
that propose a causal relationship between traits [1]. They 
were originally introduced to the field of animal breeding 

by Gianola and Sorensen [2]. Subsequently, they gained 
widespread usage in several applications [3–5].

It has been demonstrated that standard multiple trait 
models [6] and full recursive models yield equivalent 
likelihoods [7]. However, recursive models are more 
parameterized. Therefore, implementing recursive 
models requires imposing specific restrictions on the 
parameter space to ensure statistical identification [2]. 
Typically, two strategies have been used for this pur-
pose. The first strategy involves imposing restrictions 
on the (co)variance component matrices [7], while the 
second strategy involves imposing constraints on the 
linear combinations of the explanatory variables [2]. In 
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animal breeding, the most commonly used restriction 
in recursive models assumes that all nongenetic rela-
tionships arise solely from causality. This assumption 
leads to the imposition of a diagonal residual (co)vari-
ance matrix.

Although standard multiple trait models and fully 
recursive models exhibit equivalent likelihoods, the 
implementation of a recursive model typically requires 
either that all individuals have phenotypic informa-
tion for all recorded traits or that a model-specific data-
augmentation algorithm [8] is used to handle missing 
records. In contrast, multiple trait models do not require 
a complete dataset, and numerous software options for 
likelihood or Bayesian inference are available [9–11].

In this study, we adopted the approach suggested by 
Varona and González-Recio [12], which involves employ-
ing LDL′ and block-LDL′ transformations of the residual 
(co)variance matrices. These transformations, based on 
specific assumptions, enable conversion of the results 
of (co)variance component estimation within a multiple 
trait model into several recursive mixed models, provid-
ing alternative interpretations of the data. The objective 
was to demonstrate the implementation of this trans-
formation within a Gibbs sampler algorithm on growth 
traits from the Spanish Pirenaica beef cattle population.

Methods
Dataset
The phenotypic dataset used in this study consisted of 
five traits (birth weight—BW, 90-day weight—W90, 
210-day weight—W210, cold carcass weight—CCW 
and conformation—CONF), derived from the standard 
genetic evaluation of the Pirenaica beef cattle breed. The 
database included 149,029 birth weights (BW), 59,578 
weights within the interval between 60 and 120  days of 
age (W90), 46,550 weights within 170 and 250  days of 
age (W210), 52,110 cold carcass weights (CCW), and 
50,459 conformation ratings (CONF) on the SEUROP 
scale [13]. The SEUROP scale was transformed into a 
numerical scale ranging from 1 (P−) to 18 (S+). For a 
detailed description of the phenotypic data, please refer 
to Table 1.

Only 8629 individuals had recorded data for all five 
traits. Among the recorded combinations of traits, the 
most common were BW–W90 (22,550 individuals), 
BW–CCW–CONF (20,528 individuals), BW–W90–
W210 (14,548 individuals), BW–W210 (14,188 individu-
als), BW–W90–CCW–CONF (12,859 individuals), and 
BW–W210–CCW–CONF (8443 individuals). A detailed 
description of the distribution of recorded phenotypes 
among the individuals is displayed in Fig. 1.

Model for analysis
Multiple trait model
The data were analysed using the standard multiple trait 
model (SM) within a Bayesian approach by using a Gibbs 
sampler [14]. The statistical model was:

In this model, the vector of fixed effects, denoted as b , 
incorporates various systematic effects, such as a covari-
ate with the age of recording for W90, W210, CCW, and 
CONF, sex, age of dam (6 levels), and herd-year-season 
(4824 levels). The variables yi , ui and ei are 5 × 1 vectors of 
the phenotypic records, additive genetic effects, and residu-
als, respectively, associated with the i th recorded individual 
for the five traits. It is important to note that the yi vector 
may be composed of observed ( yOi  ) and missing records 
( yMi  ). Missing records had to be augmented under a data-
augmentation step [8] within the Gibbs sampler. Xi is the 
corresponding incidence matrix. The vectors of breeding 
values 
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′
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  for the observed and miss-
ing records are assumed to follow a multivariate Gaussian 
distribution:

Here, n denotes the number of multivariate phenotypic 
records, s represents the number of individuals, including 
both those with ( n ) and without ( s− n ) recorded pheno-
types, and G and R are m×m ( m = 5 ) matrices, with G 
representing the genetic (co)variances and R represent-
ing the residual (co)variances. I is an identity matrix of 
the corresponding order, and A represents the numera-
tor relationship matrix, which was computed from a 
pedigree of 343,753 individual-sire-dam entries. This SM 
was implemented under a Bayesian approach through 
the gibbsf90+ software [9]. The Gibbs sampler involves 
sampling from the full conditional distributions of all 
the unknowns in the model. Specifically, the full condi-
tional distributions of the elements of yMi  , b and ui were 
Gaussian, whereas the full conditional distributions for R 

(1)yi = Xib+ ui + ei.

(2)u ∼ N(0,A ⊗G) and e ∼ N(0, I⊗ R).

Table 1 Number of data, mean and standard deviation for the 
analysed traits

N number of records, SD standard deviation, BW birth weight, W90 weight at 
90 days, W210 weight at 210 days, CCW  cold carcass weight, CONF conformation

Trait N Mean SD

BW 149,029 41.12 4.49

W90 59,578 134.46 41.70

W210 46,550 250.71 59.21

CCW 52,110 300.29 55.91

CONF 50,459 11.86 1.38
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and G followed an inverse Wishart distribution [15]. The 
Gibbs sampler [14] was used with 500,000 iterations after 
discarding the initial 100,000 iterations to ensure con-
vergence to the posterior distribution. Convergence was 
checked with the coda software [16] and the effective size 
for the additive genetic variances for BW, W90, W210, 
CCW and CONF were 2771.46, 1282.81, 853.35, 663.84 
and 859.53, respectively.

Recursive models
The SM can be transformed into a recursive mixed model 
(RM) by multiplying all the terms by the matrix � . This 
results in the following model:

Here, � is a 5 × 5 matrix representing the recursive 
parameters. It contains 1s on the diagonal and, in some 
or all the elements below the diagonal, minus the recur-
sive effects of the i th trait on the j th trait (− �i→j ). The 
terms u∗i = �ui and e∗i = �ei are the 5 × 1 vectors of 
additive genetic effects and residuals for the i th multivar-
iate record under the recursive model, with:

Furthermore, G∗
= �G�′ and R∗

= �R�′. It is worth 
noting that recursive models require certain restrictions, 
such as imposing constraints on the (co)variance matri-
ces [7] or incorporating instrumental auxiliary variables 

(3)�yi = �Xib+�ui +�ei = �Xib+ u∗i + e∗i .

(4)u∗ ∼ N
(

0,A ⊗G∗
)

and e∗ ∼ N
(

0, I⊗ R∗
)

.

that exclusively affect the dependent traits through the 
independent traits [2]. The most common of these 
restrictions involves setting the residual covariance 
between traits linked by a recursive parameter to zero. 
In other words, this restriction assumes that traits can be 
interconnected either through a causal dependency or via 
residual covariance between them.

In this study, as a post-computational step, we applied 
LDL′ and block-LDL′ transformations to the R (co)vari-
ance matrices obtained at each iteration of the Gibbs 
sampler iteration. These matrices were computed using 
residuals for both observed and augmented phenotypes. 
This led to the emergence of three distinct scenarios, 
each portraying varying causal relationships between the 
traits.

First scenario: In the first scenario, traits were organ-
ized in the recursive model depending on their record-
ing time (BW → W90 → W210 → CCW → CONF), with 
the assumption that each preceding trait exerted a causal 
influence on all subsequent traits (i.e. � does not con-
tain any zero elements below the diagonal). In the recur-
sive model, the R∗ matrix is commonly assumed to be 
diagonal. Consequently, R can be factorized using LDL′ 
decomposition ( R = LDL′ ), where D corresponds to the 
R∗ matrix and L represents �−1 . Moreover, the G∗ matrix 
is obtained as G∗

= �G�′
= L−1GL−1′.

Second scenario: In this scenario, the traits were 
categorized into two groups. The first group consisted 
of traits recorded on the farm (BW, W90, and W210), 

Fig. 1 Distribution of recorded phenotyped across individuals. BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold carcass 
weight, CONF conformation
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while the second group encompassed traits recorded at 
the slaughterhouse (CCW and CONF). We used a block 
LDL′ transformation of the R matrix, as follows:

where

and, as before, G∗
= �G�′ . Note that σe(X−Y ) represents 

the residual covariance between traits X and Y, and σ 2
e(X) 

is the residual variance of trait X, with X = Y = {BW, W90, 
W210, CCW, CONF}.

Third scenario: In this scenario, we defined three 
time points: BW → (W90–W210) → (CCW–CONF). 
To achieve this, we can use sequential block-LDL′ 
decompositions:

First LDL′ decomposition:

In this step, the traits were divided in two groups. The 
first group included only BW, while the second com-
prised W90, W210, CCW and CONF. Therefore, E1 was 
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a 1 × 1 matrix, B1 was a 4 × 1 matrix and C1 was a 4 × 4 
matrix. The output of this step was an auxiliary matrix 
( R2 ) that was further LDL′ decomposed in the next step.

Second LDL′ decomposition:

Here, the first group was composed of BW, W90 and 
W210 and the second group of CCW and CONF, respec-
tively. Therefore, E2 was a 3 × 3 matrix, B2 was a 2 × 3 
matrix and C2 was a 2 × 2 matrix.

Finally, R = �
−1
1 �

−1

2 R∗
�

−1
2

′
�

−1
1

′
= �

−1R∗
�

−1′ and 
G∗

= �G�′.

Results
Multiple trait model (SM)
The posterior mean estimates (and their standard devia-
tions) of additive genetic variances, covariances, and 
correlations derived from the multiple trait model are in 
Table 2, while the corresponding values for residual vari-
ances, covariances, and correlations are in Table 3.

The posterior mean estimates (and their standard 
deviations) of the heritabilities were: 0.352 (0.006) for 
BW, 0.397 (0.009) for W90, 0.332 (0.011) for W210, 0.406 
(0.015) for CCW, and 0.569 (0.015) for CONF. These 
results align closely with those obtained in a previous 
study conducted on the same population [13] and fall 
within the range of values observed in other beef cattle 
populations [17].

First scenario
The first scenario assumes a fully recursive 
model in which traits are recorded sequentially 
(BW → W90 → W210 → CCW → CONF), positing that 
all traits influence those that are recorded later. Follow-
ing the implementation of the LDL′ decomposition on 
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Table 2 Posterior mean (and posterior deviation) of the additive genetic variances (diagonal), additive genetic covariances (upper 
diagonal) and additive genetic correlations (lower diagonal) from the standard multivariate model

BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold carcass weight, CONF conformation

BW W90 W210 CCW CONF

BW 4.85 (0.10) 9.85 (0.67) 16.50 (1.10) 20.70 (1.24) − 0.01 (0.05)

W90 0.26 (0.02) 297.46 (11.33) 288.29 (10.68) 171.06 (10.69) 1.69 (0.37)

W210 0.30 (0.02) 0.67 (0.02) 629.70 (23.47) 347.78 (17.54) − 0.76 (0.63)

CCW 0.40 (0.02) 0.43 (0.02) 0.60 (0.02) 540.36 (22.87) 6.10 (0.56)

CONF − 0.00 (0.02) 0.11 (0.02) − 0.03 (0.03) 0.28 (0.02) 0.86 (0.03)
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the residual covariance matrix ( R ) obtained from each 
iteration of the Gibbs sampler, the posterior mean (and 
standard deviation) for the residual variances under the 
recursive model are 8.93 (0.07) for BW, 436.48 (5.67) for 
W90, 814.82 (13.08) for W210, 591.56 (13, 12) for CCW 
and 0.50 (0.02) for CONF. As expected, the residual vari-
ance of the dependent traits (W90, W210, CCW and 
CONF) was smaller than that in the SM analysis, as a 
portion of the residual variability was explained by the 
recursive parameters. Furthermore, the posterior distri-
bution statistics of the additive genetic variances, covari-
ances and correlations from the recursive model assumed 
under the first scenario are in Table 4.

The additive genetic variances were smaller compared 
to those in the SM scenario, as they now solely repre-
sent the additive genetic variance resulting from genes 
that directly influence the dependent traits [18]. In addi-
tion, the posterior estimates of the genetic correlations 
approached zero more closely than in the SM scenario. 
This observation suggests that the majority of the addi-
tive genetic correlation between traits arises from the 
recursive relationships among them. Finally, Fig.  2 dis-
plays the posterior mean estimates (along with standard 

deviations) for heritabilities and recursive parameters in 
� within the recursive model in the first scenarios.

It is noteworthy that all the recursive parameters exhib-
ited positive values, which means that an enhancement in 
the traits recorded earlier corresponded to a phenotypic 
improvement in the traits recorded later in life. Further-
more, while the range of heritabilities appeared similar 
to that in the SM scenario, their interpretation differed. 
In this context, heritabilities represent the proportion of 
additive genetic variance associated with each trait while 
taking into account the influence of previously recorded 
traits [18, 19].

Second scenario
In this second scenario, the traits were divided into two 
distinct groups: one group consisted of traits that were 
recorded on the farm (BW, W90, and W210), while the 
other group included the traits recorded at the slaughter-
house (CCW and CONF). It posited a phenotypic influ-
ence of the traits in the first group on the traits in the 
second group. Table 5 presents the posterior mean esti-
mates (along with the posterior standard deviations) for 
the additive genetic variances, covariances, and correla-
tions within the recursive model in the second scenario.

In addition, the results for the residual variances, 
covariances and correlations within the recursive model 
in the second scenario are in Table 6.

In this context, the additive and residual variances 
for the traits recorded on the farm (BW, W90, W210) 
remained identical to those in the SM model, with reduc-
tions observed only for the two dependent traits (CCW 
and CONF). In this scenario, the residual covariances 
(and correlations) between the first three traits (BW, 
W90, and W210) and CCW or CONF were set to zero. 
Furthermore, it is important to note that the variance 
components of CCW and CONF should be interpreted 
in the context of the traits recorded on the farm. The pos-
terior mean estimates (with their standard deviations) 
for heritabilities and recursive parameters within the 

Table 3 Posterior mean (and posterior deviation) of the residual 
variances (diagonal), residual covariances (upper diagonal) 
and residual correlations (lower diagonal) from the standard 
multivariate model

BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold 
carcass weight, CONF conformation

BW W90 W210 CCW CONF

BW 8.93 (0.07) 11.85 (0.49) 14.91 (0.84) 13.64 (0.91) 0.37 (0.03)

W90 0.19 (0.01) 452.24 
(5.86)

452.16 
(8.54)

228.91 
(8.03)

1.16 (0.28)

W210 0.14 (0.01) 0.60 (0.01) 1268.18 
(17.31)

482.62 
(13.31)

5.06 (0.47)

CCW 0.16 (0.01) 0.38 (0.01) 0.48 (0.01) 791.88 
(15.62)

10.33 (0.38)

CONF 0.15 (0.01) 0.07 (0.02) 0.18 (0.01) 0.46 (0.01) 0.65 (0.02)

Table 4 Posterior mean (and posterior deviation) of the additive genetic variances (diagonal), additive genetic covariances (upper 
diagonal) and additive genetic correlations (lower diagonal) within the recursive model in the first scenario

BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold carcass weight, CONF conformation

BW W90 W210 CCW CONF

BW 4.85 (0.10) 3.42 (0.86) 5.02 (1.26) 10.10 (1.58) − 0.37 (0.06)

W90 0.09 (0.02) 279.91 (8.23) − 16.55 (12.81) 8.20 (13.42) 1.09 (0.49)

W210 0.12 (0.03) − 0.05 (0.04) 346.68 (16.94) 64.63 (15.86) − 5.12 (0.66)

CCW 0.25 (0.04) 0.03 (0.03) 0.19 (0.04) 348.21 (18.69) 0.63 (0.46)

CONF − 0.19 (0.03) 0.07 (0.03) − 0.30 (0.04) 0.03 (0.04) 0.81 (0.03)
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recursive model in the second scenario are illustrated in 
Fig. 3.

The estimates of the heritabilities for BW, W90, and 
W210 remain equal to those of the SM model, and the 
model only introduces recursive parameters between 
traits within the first group (BW, W90, and W210) on the 
traits recorded at the slaughterhouse (CONF and CCW).

Third scenario
In this last scenario, the traits were divided into three 
distinct groups: the first group consisted solely of BW, 
the second group comprised W90 and W210, and the 
third group was composed of CCW and CONF. The 
model posits that BW exerts a phenotypic influence 
on the traits in the second and third groups, while the 

Fig. 2 Posterior mean (and standard deviation) of the heritabilities (within the squares) and the recursive parameters (at the arrows) 
within the recursive model in the first scenario. BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold carcass weight, CONF 
conformation
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traits in the second group influence those in the third 
group. In this scenario, the procedure involves resolv-
ing a sequential block LDL′ for the output of the vari-
ance components in each iteration of the Gibbs sampler 
with the SM model. The posterior mean estimates (and 
respective posterior standard deviations) for the addi-
tive genetic variances, covariances, and correlations 
within the recursive model in the third scenario are in 
Table 7.

The results for the residual variances, covariances and 
correlations are in Table 8.

Finally, the posterior mean (and standard deviations) 
of the heritabilities and recursive parameters within the 
recursive model in the third scenario are displayed in 
Fig. 4.

It is important to emphasize that the heritabilities, as 
well as the covariances and correlations between CCW 
and CONF, remain unchanged from those obtained in 
the second scenario. This consistency arises because 
these estimates are conditioned on BW, W90, and W210, 
in spite of the inclusion of an additional recursive rela-
tionship between BW and W90, as well as W210.

Discussion
We adopted the strategy proposed by Varona and Gon-
zalez-Recio [12] to obtained estimated variance compo-
nents for recursive models, which suggests the use of the 
LDL′ or block-LDL′ transformations based on the esti-
mates from a standard multiple trait model (SM). This 
approach allowed us to derive insights from up to three 
recursive models, all stemming from the output of a sin-
gle SM model. Importantly, we conducted our analysis on 
a database with an uneven amount of information across 
the analysed traits.

The feasibility of this procedure hinges on the funda-
mental equivalence between the likelihood of the SM 
model and the recursive mixed model (RM). The only 
prerequisite for implementing the LDL′ or block-LDL′ 
transformations is that the likelihood remains identical. 
This condition is met when all pairs of traits are linked 
through either a recursive parameter or a residual covari-
ance. If additional constraints beyond those necessary 
for identifiability are imposed in a RM (for instance, set-
ting the recursive parameter and the residual covariance 
between a pair of traits to zero), the likelihoods of the 
SM and RM models diverge. They can then be compared 
using various goodness-of-fit tests.

In summary, the LDL′ or block-LDL′ transforma-
tions obviate the need to reanalyze data for each recur-
sive model. Consequently, this approach enables multiple 
interpretations or breeding strategies to be derived from 
a single inference process. Moreover, handling missing 
data in recursive models, particularly when the inde-
pendent traits are missing, presents challenges that can 
be avoided, as inference under several recursive models 
can be achieved through the SM. In this example, we 
have implemented a Bayesian analysis through a Gibbs 
sampler, but the same methodology can be used from 
the restricted maximum likelihood (REML) estimates 
obtained from any standard software. The primary 
advantage of using Markov chain Monte Carlo (McMC) 
is the ability to make inferences about the posterior dis-
tribution of recursive model parameters.

Table 5 Posterior mean (and posterior deviation) of the additive genetic variances (diagonal), additive genetic covariances (upper 
diagonal) and additive genetic correlations (lower diagonal) within the recursive model in the second scenario

BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold carcass weight, CONF conformation

BW W90 W210 CCW CONF

BW 4.85 (0.10) 9.85 (0.67) 16.50 (1.10) 10.09 (1.58) − 0.23 (0.06)

W90 0.26 (0.02) 297.46 (11.33) 288.29 (10.68) 21.69 (13.79) 0.89 (0.54)

W210 0.30 (0.02) 0.67 (0.02) 629.70 (23.47) 89.72 (20.22) − 3.42 (0.82)

CCW 0.25 (0.04) 0.07 (0.04) 0.19 (0.04) 348.21 (18.69) 5.32 (0.53)

CONF − 0.11 (0.03) 0.05 (0.03) − 0.14 (0.03) 0.30 (0.03) 0.89 (0.03)

Table 6 Posterior mean (and posterior deviation) of the 
residual variances (diagonal), covariances (upper diagonal) and 
correlations (lower diagonal) within the recursive model in the 
second scenario

BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold 
carcass weight, CONF conformation

BW W90 W210 CCW CONF

BW 8.93 (0.07) 11.85 (0.49) 14.91 (0.84) – –

W90 0.19 (0.01) 452.24 
(5.86)

452.16 (8.54) – –

W210 0.14 (0.01) 0.60 (0.01) 1268.18 
(17.31)

– –

CCW – – – 591.56 
(13.12)

8.27 (0.36)

CONF – – – 0.43 (0.01) 0.61 (0.02)
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Fig. 3 Posterior mean (and standard deviation) of the heritabilities (within the squares) and the recursive parameters (at the arrows) 
within the recursive model in the second scenario. BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold carcass weight, 
CONF conformation

Table 7 Posterior mean (and posterior deviation) of the additive genetic variances (diagonal), additive genetic covariances (upper 
diagonal) and additive genetic correlations (lower diagonal) within the recursive model in the third scenario

BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold carcass weight, CONF conformation

BW W90 W210 CCW CONF

BW 4.85 (0.10) 3.42 (0.86) 8.40 (1.42) 10.10 (1.58) − 0.23 (0.06)

W90 0.09 (0.02) 279.91 (8.23) 260.74 (11.02) 8.29 (13.42) 1.20 (0.53)

W210 0.16 (0.03) 0.64 (0.02) 588.31 (22.98) 72.86 (19.91) − 3.03 (0.81)

CCW 0.25 (0.04) 0.03 (0.03) 0.16 (0.04) 348.21 (18.69) 5.32 (0.53)

CONF − 0.11 (0.03) 0.08 (0.03) − 0.13 (0.03) 0.30 (0.03) 0.89 (0.03)
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Conclusions
The results of this study show that the LDL′ or block-
LDL′ transformations, when applied to variance com-
ponent estimates derived from a multiple-trait mixed 
model, enable making inferences across various sets of 
recursive models, with the only requirement being like-
lihood equivalence. Moreover, these transformations 
simplify the treatment of missing data when performing 
inference in the context of recursive models.

Table 8 Posterior mean (and posterior deviation) of the 
residual variances (diagonal), covariances (upper diagonal) and 
correlations (lower diagonal) within the recursive model in the 
third scenario

BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold 
carcass weight, CONF conformation

BW W90 W210 CCW CONF

BW 8.93 (0.07) – – – –

W90 – 436.48 
(5.67)

432.36 (8.33) – –

W210 – 0.59 (0.01) 814.82 
(13.08)

– –

CCW – – – 591.56 
(13.12)

8.27 (0.36)

CONF – – – 0.43 (0.01) 0.61 (0.02)

Fig. 4 Posterior mean (and standard deviation) of the heritabilities (within the squares) and the recursive parameters (at the arrows) 
within the recursive model in the third scenario. BW birth weight, W90 weight at 90 days, W210 weight at 210 days, CCW  cold carcass weight, CONF 
conformation
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