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Abstract

Games with incomplete information model multi-agent interaction in which
players do not have common knowledge of the game they play. We propose a mini-
mal generalisation of combinatorial games to incorporate incomplete information,
called combinatorial games with incomplete information (CGII). The most impor-
tant feature of CGIIs is that all actions are public, which allows better visualisation
of each player’s knowledge and incomplete information. To further motivate the
study of this new formalism, we show that computing optimal strategies for CGIIs
has the same computational complexity as for general extensive-form games.

1 Introduction
Game theory is a mathematical framework for studying multi-agent interactions. We
focus on extensive-form games (EFG), in which the interaction between agents takes
place sequentially, i.e. every agent takes turns to make a move. Prominent examples of
such games are Chess and Go.

Of particular interest to us is the notion of games with incomplete information,
which are games in which agents do not have common knowledge of the game they
play. For instance, an agent does not know the number of participants in an auction,
or how much these participants value the object to be sold; a Poker player does not
see the cards in their opponent’s hidden hands, hence cannot know for sure the exact
consequence (i.e. payoff) of calling and raising bets; a Bridge or Hearts player does not
know the cards that their opponent can play during a trick since this depends on their
hidden hand; etc.

The notion of (in)complete information is frequently confused with the one of
(im)perfect information. Complete information describes situations in which the whole
structure of a game (the number of players, the game tree, the information sets of each
player, the owner of each node, the payoff for each player at each leaf node, etc.) is
common knowledge among all the players of the game. On the other hand, perfect
information is a more stringent requirement than complete information. Not only the
structure of the game is common knowledge, but all players have full observability and

∗This article is the long version with full proofs of the article published in the proceedings of the 33rd
International Joint Conference on Artificial Intelligence (ĲCAI 2024).
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perfect recall of the history (which is essentially a record of every decision made by
every player so far). In other words, players always know their exact position in the game
tree when asked to make the next decision. To summarise, incomplete information is
an example of imperfect information; see Faliszewski et al. (2016, Sec. 2.4.2).

We propose a new and minimal formalism for EFGs with incomplete information
that we call combinatorial games with incomplete information (CGIIs). In such a game,
Nature picks a world from a universe according to some common prior; each player
may have different observability of this world. Then, the game proceeds sequentially,
during which there is no chance factor and all moves by the players are publicly
observable. This formalism is designed to be a minimal generalisation of the notion
of combinatorial games (which are Boolean games of no chance and with perfect
information; see Siegel (2013)) and to closely capture the epistemic aspect of games
with incomplete information.

For such games, we are interested in knowing how much reward an agent or a team
of agents can guarantee for themselves; this corresponds to the notion of maxmin value,
well known in optimisation under uncertainty, in which we aim to ensure that the worst
possible outcome is not too bad.

By design, our new formalism seems particularly restrictive when compared to
general EFGs, where hidden actions and arbitrary chance nodes are allowed. However,
we show that the computational complexity of computing optimal strategies (with
respect to the maxmin value) for CGIIs is as hard as for EFGs, which allows concluding
that the difficulty of playing games comes from incomplete information/knowledge
alone, not from hidden actions or mid-game chance factors. This also justifies that
restricting algorithmic studies to CGIIs is without loss of generality. We also give a
construction to enforce coordination between players in CGIIs under the constraint of
public actions, which allows modelling situations similar to concurrent actions.

2 Related Work
Game theory The study of games with incomplete information was pioneered by
Harsanyi (1967, 1968a,b), who proposes a formalism to model games of incomplete
information as EFGs with imperfect information. This formalism, called the Harsanyi
model of incomplete information, introduces types of players, or equivalently, a uni-
verse of worlds for which each player has a potentially different partial observability
(also called the Aumann model of incomplete information). For detailed and formal
definitions, see textbooks on game theory, e.g. Maschler et al. (2020, Chapter 9).

Combinatorial games, the inspiration of our formalism of CGII, are studied in the
field of combinatorial game theory, established in the 70s by two books by Conway
(2000) and Berlekamp et al. (2001, 2003a,b, 2004). For recent advances in this field,
see Nowakowski (1996, 2002); Albert and Nowakowski (2009); Nowakowski (2015);
Larsson (2019).

Our formalism is also inspired by Frank and Basin (1998), who, in order to model
the card play phase of the card game Bridge, propose a game with public actions and
one-sided incomplete information in which the opponent has complete information.
Frank and Basin (2001) show that finding optimal pure strategies for these games is
NP-complete. Ginsberg (2001) proposes the first exact algorithm for these games, and
implements it for Bridge robots. Parallelly, Chu and Halpern (2001) study a model
of games with incomplete information with common payoffs, and only one round of
concurrent interaction after Nature picks the world; they show that it is NP-complete to
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play such games optimally.
Like us, Kovarík et al. (2022) highlight the distinction between public and private

actions. They also argue that this distinction, essential for recent search algorithms, is
partially lost when we model sequential multi-agent interaction with EFGs, which do
not explicitly tell whether an action is public or not. They propose an alternative model
for stochastic games that makes this distinction prominent, and show how to transform
such models to augmented EFGs and vice versa.

Complexity of games Most work in the literature on the computational complexity of
games concerns the complexity of finding Nash equilibria, especially for normal-form
games (Gilboa and Zemel, 1989; Daskalakis et al., 2009). For more references, see
Conitzer and Sandholm (2008), who also show that it is NP-complete to decide whether
Nash Equilibria with certain natural properties exist.

Koller and Megiddo (1992); Koller et al. (1996); von Stengel (1996) make seminal
contributions to understanding the complexity of two-player zero-sum EFGs. They also
give polynomial-time algorithms for computing behaviour maxmin strategies of EFGs
with perfect recall, based on linear programming.

Maxmin for a team of players with common payoffs is called team maxmin equilib-
rium (TME) in the literature, and was first proposed by von Stengel and Koller (1997).
Basilico et al. (2017); Celli and Gatti (2018) propose another notion called TMECor
(“Cor” stands for “correlation”), which allows agents in the same team to access a
correlation device in order to coordinate their mixed strategies. Building on these
works, Gimbert et al. (2020) and Zhang et al. (2023) study the complexity of TME and
TMECor, thereby yielding a relatively complete picture of the complexity of behaviour
and mixed maxmin for two-team EFGs.

The complexity of other models of decision making have also been extensively stud-
ied, e.g. Markov decision process (Mundhenk et al., 2000; Bernstein et al., 2002; Gold-
smith and Mundhenk, 2007), propositional planning (Rintanen, 2004), graph games
(Chatterjee and Henzinger, 2012; Chatterjee et al., 2013). Similar to these works, we
confirm the intuition that partial observability and multi-agent coordination increases
the difficulty of optimal decision making.

3 Combinatorial Games with Incomplete Information

3.1 Definitions
Combinatorial games are EFGs of no chance and with perfect information. To generalise
this formalism minimally to allow incomplete information, we propose the following
definition.

Definition 3.1 (CGII). A combinatorial game with incomplete information (CGII) is a
tuple of the following elements:

• An Aumann model ⟨𝑈, 𝐴, (R𝑖)𝑖∈𝐴, 𝜌⟩, where 𝑈 is a finite set of worlds called
universe, 𝐴 is a set of agents, R𝑖 is an equivalence relation over 𝑈 for each
agent 𝑖 ∈ 𝐴, and 𝜌 ∈ Δ(𝑈) is a probability distribution over the universe called
common prior;

• A tree 𝑇 called public tree, the nodes of which (N(𝑇)) are partitioned into
{N𝑖 (𝑇)}𝑖∈𝐴 ∪ L(𝑇), where L(𝑇) is the set of all leaves;
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• A reward function 𝑢𝑖 : L(𝑇) ×𝑈 → R for each 𝑖 ∈ 𝐴.

Note that the children of a node (available actions at that node) do not depend on
the real (and partially observable) world 𝜔; only the rewards depend on 𝜔.

A CGII is said to be Boolean if all its reward functions have values in B.1 The
Aumann model of a CGII defines each agent’s observability over the universe, which
characterises their incomplete information.

Pure strategies in a CGII A CGII as an EFG with incomplete information proceeds
as follows. First, Nature picks the real world 𝜔 ∈ 𝑈 according to 𝜌. Then the state
game in𝜔 proceeds from the root of the public tree𝑇 ; agents take turns to pick a child of
the current node, depending on their equivalence class of the real world. This continues
until a leaf 𝑙 is reached, and agent 𝑖 receives a payoff 𝑢𝑖 (𝑙, 𝜔).

Definition 3.2 (Pure strategy). A pure strategy of an agent 𝑖 ∈ 𝐴 is a mapping 𝑠𝑖 :
N𝑖 (𝑇) ×𝑈 → N(𝑇) such that for all 𝑣 ∈ N𝑖 (𝑇):

• For all 𝜔 ∈ 𝑈, 𝑠𝑖 (𝑣, 𝜔) is a child of 𝑣;

• ∀𝜔, 𝜔′ ∈ 𝑈, 𝜔R𝑖𝜔
′ =⇒ 𝑠𝑖 (𝑣, 𝜔) = 𝑠𝑖 (𝑣, 𝜔′).2

The set of all pure strategies of agent 𝑖 is denoted by ΣP
𝑖
.

From the definition of a strategy, one can see that the actions of every agent are
indeed public: when making a decision at a node, an agent knows perfectly where the
node is in the public tree, which in particular means they observe and remember the
actions picked by every agent in the past, starting from the root of the public tree. In
addition, compared to general games with incomplete information, the state games of a
CGII have the particularity that they share the same game tree 𝑇 , which does not have
chance nodes. These three features (public actions, unique game tree, and no chance)
are the defining features of our formalism CGII.

1
H T
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h t
2

h′ t′

N
𝜔0 𝜔1

1
H T

1
H T
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h0 t0
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2
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Figure 1: The public tree of a CGII and the game tree of its corresponding EFG, both
with rewards omitted.

Each CGII describes an EFG in which Nature picks the real world at the root, and
information sets are determined by the players’ observability of the world.

Example. Consider the following CGII: the public tree is shown in Figure 1 (on the
left); the universe reads {𝜔0, 𝜔1}; agent 2 can distinguish these two worlds while agent 1

1In Boolean games, the rewards 0 and 1 are interpreted as a loss and a win, respectively.
2This means agent 𝑖 must pick the same child for a node in any two worlds indistinguishable by them.
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cannot. This CGII models a variant of Matching Pennies with incomplete information.
The game tree of its corresponding EFG is also shown in Figure 1 (on the right).

On the right, since agent 1 cannot observe the real world, they must play H in both
state games, or T in both. This constraint is respected by the notion of strategies in a
CGII: on the left, agent 1 only has two pure strategies H and T since 𝜔0 and 𝜔1 are
indistinguishable by agent 1.

Similarly, on the right, agent 2 can pick between heads or tails, depending on the
choices of Nature and agent 1. On the left, agent 2 can again pick between heads or
tails, depending on agent 1’s choice and the real world, since agent 2 can distinguish
between 𝜔0 and 𝜔1; note that the latter point is not reflected by the public tree, but by
the Aumann model.

Teams and information in a CGII

Definition 3.3 (Team). In a CGII, agents 𝑖 and 𝑗 are said to be in the same team if
𝑢𝑖 = 𝑢 𝑗 . A team is an inclusion-wise maximal group of agents with the same reward
function.

We now define a team’s degree of incomplete information.

• Multi-agent incomplete information (MA-II): an arbitrary team.

• Single-agent incomplete information (SA-II): a team of agents with the same
equivalence relation (i.e. R𝑖 = R 𝑗 for all agents 𝑖 and 𝑗 in the team).

• Complete information (CI): a team whose agents all have the finest equivalence
relation (i.e. R𝑖 = {(𝜔, 𝜔) | 𝜔 ∈ 𝑈} for all agents 𝑖 in the team).

In particular, CI implies SA-II, which implies MA-II. Intuitively, a team is a group of
decentralised agents with shared interests working cooperatively. In a CGII, a team
with SA-II can be regarded as one single agent since every agent in this team has the
same information and all actions are public.

Example. In the CGII in Figure 1, if the two agents have the same reward function,
then they are in a team with MA-II; otherwise, each is a (single-agent) team with SA-II.3

Due to the public actions property, there is a close link between the degree of
incomplete information of a team in a CGII and the degree of imperfect information of
the corresponding team in the EFG defined by the CGII:

• a team with CI in the CGII is a player with perfect information in the EFG;

• a team with SA-II in the CGII can be seen as a single player with perfect recall
in the EFG;

• a team with MA-II in the CGII is a team of players who all have perfect recall in
the EFG.

This correspondence will allow us to establish upper bounds on the complexity of
solving CGIIs.

3The team of agent 2 even has CI.
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Team maxmin in a CGII Let (𝑠1, . . . , 𝑠𝑛) ∈ ΣP
1 × · · ·ΣP

𝑛, where 𝑛 = |𝐴|, be a pure
strategy profile. We write (𝑠1, . . . , 𝑠𝑛) (𝜔) for the unique leaf reached under this profile
when the real world is 𝜔.

Definition 3.4 (Expected utility). The expected utility for an agent 𝑖 ∈ 𝐴 under a pure
strategy profile (𝑠1, . . . , 𝑠𝑛) is defined to be:

U𝑖 (𝑠1, . . . , 𝑠𝑛) =
∑︁
𝜔∈𝑈

𝜌(𝜔)𝑢𝑖
(
(𝑠1, . . . , 𝑠𝑛) (𝜔), 𝜔

)
.

Let T ⊆ 𝐴 be a team. Notice that all agents in a team share the same expected utility
function, which we denote by UT . A pure strategy of the team is uniquely defined
by the pure strategy of each of its players. In particular, the set of pure strategies of a
team T , denoted by ΣP

T , is in bĳection with
∏

𝑖∈𝐴 Σ
P
𝑖
. In the following, we also write

ΣP
−T =

∏
𝑖∉T ΣP

𝑖
, the set of pure strategy profiles of the players not in T .

Definition 3.5 (Pure maxmin for a team). The pure maxmin value for a team T ⊆ 𝐴 is
defined to be

𝑣T ≔ max
𝑠T ∈ΣP

T

min
𝑠−T ∈ΣP

−T

UT (𝑠T , 𝑠−T).

Intuitively, this value is the largest expected reward that a team can guarantee to get
by playing a pure strategy.

The notion of behaviour/mixed strategy can be defined similarly to the one for
EFGs: a mixed strategy of an agent 𝑖 is a probability mixture of pure strategies of 𝑖;
a behaviour strategy of 𝑖 picks, at each node and for each equivalence class of R𝑖 , a
probability mixture of children (instead of just a child as for pure strategies). Hence,
expected utility with respect to behaviour/mixed strategy profiles and behaviour/mixed
maxmin for a team can be similarly defined.4

In the following, we focus on zero-sum two-team CGIIs. We call the two teams
player MAX and player MIN, and denote them by + and −, respectively.

3.2 Motivation for CGIIs
Our motivations for introducing CGII as a subclass of games with incomplete infor-
mation are multiple. First and foremost, the formalism of CGII aims to be a minimal
generalisation of combinatorial games to allow incomplete information. Indeed, it is
clear that a CGII with a singleton universe is a combinatorial game. This new formalism
allows modelling a number of card games, notably Bridge.5

But more importantly, the formalism of CGII also aims to minimally capture the
notion of knowledge and incomplete information. Due to the public actions property,
the only source of the imperfect (in particular, incomplete) information of every agent
comes from their partial observability of the real world, drawn at the beginning of a
game.

In contrast, we argue that the distinction between perfect and imperfect information
does not completely capture the essence of players’ knowledge. For example, in the
game Matching Pennies, MAX and MIN pick a side of a coin concurrently; this can be
modelled by two different EFGs, shown in Figure 2. In the EFG on the left, MAX has
perfect information while MIN has imperfect information but perfect recall; and in the

4Behaviour maxmin and mixed maxmin are commonly known as TME and TMECor in the literature
(Celli and Gatti, 2018).

5The card play of Bridge can be described as a CGII in which MAX has SA-II and MIN has MA-II.
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Figure 2: Two EFGs for Matching Pennies.

EFG on the right, the situation is reversed. However, the roles of MAX and MIN are
symmetric in Matching Pennies; MAX also has exactly the same information/knowledge
in both EFGs when they need to choose an action. Hence, considering CGIIs allows
one to focus on an unambiguous notion of knowledge of the players, as captured by the
Aumann model and the initial drawing of a world.

Expressiveness At first sight, the requirements of public actions and no chance seem
particularly restrictive: many popular tabletop games with incomplete information allow
private actions (e.g. concealed Kong in Mahjong, pass in Hearts) or have randomness
and chance factors besides the initial drawing (e.g. dice rolls during a game). One may
worry that, due to these restrictions, CGII is not expressive enough to be conceptually
or algorithmically interesting. However, we argue that this impression is not correct.

First, an initial drawing over the universe is actually quite expressive. For example,
for the dice rolls we evoke above, if their number and occasions are fixed in advance, then
their results can be encoded into the initial drawing of worlds.6 Another example is given
by video games, which typically use a random seed as the sole source of randomness for
all procedurally generated levels and random events during a playthrough. Similar ideas
have been investigated in automated planning (Palacios and Geffner, 2009, Sec. 10).

Second, even with only public actions, we show in Subsection 4.1 that we can still
design a game to force a team of players to coordinate their actions. This means that
we can essentially encode concurrent actions (as in standard Matching Pennies) using
only public actions (and no chance except the initial drawing).

All in all, we suggest that at least as far as computation of optimal strategies is
concerned, CGII, rather than EFG, be the right model for studying sequential multi-
agent interactions depending on each player’s knowledge. Moreover, as we will show,
CGIIs are as hard to solve as EFGs, which confirms our intuition that the difficulty of
a game actually comes from the incomplete information of a player, and not from their
inability to observe the moves made by the other players.

4 Complexity of Pure Maxmin for CGIIs
The decision problem Pure Maxmin is defined as follows.

Definition 4.1 (Pure Maxmin). Let G be a class of zero-sum CGIIs. Then Pure
Maxmin(G) is the following decision problem.

Input A CGII 𝐺 ∈ G and a rational number 𝑚.

6This will only enlarge the game tree by a polynomial factor.
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Output Decide whether 𝑣+ (ΣP
+, Σ

P
−) ≥ 𝑚 holds in 𝐺.

We study the complexity of Pure Maxmin for CGIIs depending on the degrees
of incomplete information for MAX and MIN: complete information (CI), single-
agent incomplete information (SA-II), multi-agent incomplete information (MA-II).
For complexity analyses, we consider the parameters |𝑇 | (number of nodes in the public
tree), |𝑈 | (number of worlds), and possibly the number of bits to encode the utilities,
the common prior, and the threshold 𝑚.

The complexity of Pure Maxmin is summarised in Table 1. By definition, the
complexity of each case is increasingly monotone in both MAX’s and MIN’s degree
of incomplete information (CI/SA-II/MA-II). Hence, only a few hardness results have
to be proved to establish the table. The results written in bold font are new from this
work; the others can be directly deduced from the literature.

MAX
MIN CI SA-II MA-II

CI P NP-c 𝚺P
2 -c

SA-II NP-c NP-c 𝚺P
2 -c

MA-II NP-c NP-c 𝚺P
2 -c

Table 1: Complexity of Pure Maxmin for CGIIs.

The membership results in Table 1 follow from results by Koller and Megiddo
(1992, Sec. 3.3); in particular, memberships in NP and in ΣP

2 follow from the fact that
given a strategy of MAX, computing MIN’s best response is a problem in coNP, and
even linear time when MIN has perfect recall.

Hence, we focus on hardness results. The following result is by Frank and Basin
(2001, Sec. 6).7

Proposition 4.2. Pure Maxmin is NP-hard for Boolean CGIIs in which MAX has
SA-II and MIN has CI.

The symmetric case does not trivially follow from this result (since the minimax
theorem does not hold for pure strategies) and necessitates a proof:

Proposition 4.3. Pure Maxmin is NP-hard for Boolean CGIIs in which MAX has CI
and MIN has SA-II.

Proof sketch. By a reduction from Vertex Cover. Given a graph (𝑉, 𝐸), consider the
universe𝑈 = {𝜔𝑒 | 𝑒 ∈ 𝐸}; the worlds are observable by MAX but not by MIN. During
the game, MAX picks a vertex 𝑣 ∈ 𝑉 , then MIN picks an edge 𝑒′ ∈ 𝐸 . In a world
𝜔𝑒 ∈ 𝑈, MAX gets a payoff of 1 if 𝑣 covers 𝑒 and MIN does not correctly guess this
edge (i.e. 𝑒′ ≠ 𝑒); otherwise, MAX gets 0. One can verify that the pure maxmin value
of this game is at least 1 − 𝑘/|𝐸 | if and only if the graph has a vertex cover of size at
most 𝑘 . □

4.1 Multi-Agent Coordination in CGIIs
Coordination game Now we turn our attention to CGIIs with multi-agent teams. We
first show how to construct CGIIs to impose a perfect coordination between agents from

7In their setting, there is no prior over the worlds; they are interested in the strategies that win in the
greatest number of worlds. This is equivalent to finding maxmin strategies with respect to the uniform prior
in our setting.
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the same team (à la Matching Pennies).
Consider the following Boolean CGII, which we call coordination game. This game

has two agents of MAX, referred to as MAX 1 and MAX 2, and no agent of MIN; its
universe has 4 worlds and reads𝑈 = {(𝑏1, 𝑏2) | 𝑏1, 𝑏2 ∈ B}; its Aumann model has the
uniform common prior and is such that for 𝑖 = 1, 2, MAX 𝑖 only observes 𝑏𝑖; its public
tree is shown in Figure 3; the reward for MAX is 1 if and only if 𝑎1 ⊕ 𝑏1 = 𝑎2 ⊕ 𝑏2,
where ⊕ is the exclusive or of two bits and 𝑎𝑖 is the action chosen by MAX 𝑖.

𝑟

0 1
𝑛0

0 1
𝑛1

0 1

Figure 3: The public tree of the coordination game.

We refer to 𝑏𝑖 as the hidden bit of MAX 𝑖 since it is only observable by MAX 𝑖. The
coordination game is designed in such a way that MAX 1 and MAX 2 must perfectly
coordinate their answer in order to win. Intuitively, MAX 1 and MAX 2 need to agree
on the same answer 𝐴 ∈ B, then stick to it during the game by playing 𝑎𝑖 = 𝐴 ⊕ 𝑏𝑖 .
Indeed, if they employ this strategy, then they guarantee a win since

𝑎1 ⊕ 𝑏1 = (𝐴 ⊕ 𝑏1) ⊕ 𝑏1 = 𝐴 = (𝐴 ⊕ 𝑏2) ⊕ 𝑏2 = 𝑎2 ⊕ 𝑏2.

Remark. Under these two winning strategies (one for each value of 𝐴), both MAX 1
and 2 pick the actions 0 and 1 with equal probability. Indeed, once the common answer
𝐴 is fixed, which action to play by MAX 𝑖 is dictated by their hidden bit 𝑏𝑖 . Hence, the
bits 𝑏1 and 𝑏2 act as the keys of a one-time pad to encrypt/mask the intended answer
(i.e. 𝐴) of MAX 1 and 2. This is the key element to ensure that MAX 1 and 2 must
cooperate without cheating.

Proposition 4.4. In a coordination game, the only winning pure strategies of team
MAX are of the following form: for some 𝐴 ∈ B, MAX 1 plays 𝐴 ⊕ 𝑏1 and MAX 2 plays
𝐴 ⊕ 𝑏2.

Proof. Notice that the pure strategies of MAX 1 can be written in the form (𝑎0
1, 𝑎

1
1),

which means they choose 𝑎0
1 if 𝑏1 = 0 and 𝑎1

1 if 𝑏1 = 1. As for MAX 2, they have
the right to pick 𝑎2 as a function of 𝑎1 and 𝑏2. If MAX 1 plays (𝐴, 𝐴) (i.e. they play
𝐴 regardless of 𝑏1) for some 𝐴 ∈ B, then MAX 2 has no winning strategy, since the
winning condition 𝐴 ⊕ 𝑏1 = 𝑎2 ⊕ 𝑏2 cannot be satisfied for both values of 𝑏1. Now if
MAX 1 plays (𝐴, 𝐴⊕ 1) for some 𝐴 ∈ B, then to satisfy the winning condition, MAX 2
is forced to play 𝑎2 = 𝐴 ⊕ 𝑏2; hence 𝑎𝑖 = 𝐴 ⊕ 𝑏𝑖 . □

The same reasoning also shows that these pure strategies are also the only winning
behaviour strategies, and that the winning mixed strategies are exactly the mixtures of
them.

Remark. From this proof, one can see that if MAX 1 cheats by using their hidden bit
𝑏1 incorrectly (i.e. does not use 𝑏1 to encrypt their intended answer and always picks
the same action), then MAX 2 cannot cooperate perfectly since they cannot observe the
value of 𝑏1.
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In addition, when MAX 1 plays correctly (i.e. chooses a strategy of the form (𝐴, 𝐴⊕
1)), then MAX 2 must also pick 𝐴 as their intended answer and mask it with their own
bit 𝑏2 in order to win. Notice that in this case, the action picked by these two agents
are uniformly and independently distributed. This is an important feature since agents
(of MAX or MIN) in the following part of the game tree cannot deduce any information
about the intended answer of these two agents by observing only their actions.

Interrogation game We now generalise the coordination game to the following sit-
uation: we have a finite set of questions 𝑄, and MAX has a Boolean answer for each
question {𝐴𝑞 ∈ B}𝑞∈𝑄, or equivalently a mapping from 𝑄 to B. We wish to verify
whether MAX’s mapping satisfies some given binary constraints {𝐶𝑞𝑞′ ⊆ B2 | 𝑞, 𝑞′ ∈
𝑄, 𝑞 ≠ 𝑞′}: MAX’s mapping is said to be valid if it satisfies all the constraints, that is,
(𝐴𝑞 , 𝐴

′
𝑞) ∈ 𝐶𝑞𝑞′ for all 𝐶𝑞𝑞′ .

Example. For cliques of a given graph, the questions are the vertices of this graph;
MAX’s mapping induces a subgraph (MAX’s answer to a vertex corresponds to whether
to include this vertex in their intended subgraph); the binary constraints impose the
requirement that all vertices in this subgraph be connected. Then MAX’s mapping is
valid if and only if it describes a clique of the graph.

To model this situation, consider the following Boolean CGII, which we call inter-
rogation game: two agents of MAX (MAX 1 and MAX 2), and no agent of MIN; the
universe reads 𝑈 = {(𝑞1, 𝑏1, 𝑞2, 𝑏2) | 𝑞1, 𝑞2 ∈ 𝑄, 𝑏1, 𝑏2 ∈ B}; the Aumann model is
such that for 𝑖 = 1, 2, MAX 𝑖 only observes 𝑞𝑖 and 𝑏𝑖; the common prior is uniform;
the public tree is the same one as for the coordination game (i.e. the one in Figure 3);
MAX loses if and only if either (1) 𝑞1 = 𝑞2 but 𝑎1 ⊕ 𝑏1 ≠ 𝑎2 ⊕ 𝑏2 or (2) 𝑞1 ≠ 𝑞2 but
(𝑎1 ⊕ 𝑏1, 𝑎2 ⊕ 𝑏2) ∉ 𝐶𝑞1𝑞2 .

This CGII has size O(|𝑄 |2): the universe has size O(|𝑄 |2), while the public tree has
size O(1). Notice that a coordination game is just an interrogation game with only one
question (hence no binary constraint). We refer to (𝑞𝑖 , 𝑏𝑖) as the hidden information of
MAX 𝑖. Inspired by the coordination game, we propose the following definition.

Definition 4.5 (Perfect coordination). In an interrogation game, a perfect coordination
of team MAX is a pure strategy of MAX of this form: there is a set {𝐴𝑞 ∈ B}𝑞∈𝑄 such
that for all 𝑖, MAX 𝑖 will play the action 𝑎𝑖 = 𝐴𝑞𝑖 ⊕ 𝑏𝑖 in all worlds in which their hidden
information is (𝑞𝑖 , 𝑏𝑖). For such a strategy, the set {𝐴𝑞}𝑞∈𝑄 is called the intended
mapping or intended answer of the perfect coordination.

By a similar argument to the one for the coordination game, the reward condition (1)
ensures that MAX 1 and 2 have an incentive to implement a perfect coordination, which
is a dominant strategy. In other words, (1) imposes non-adaptivity of MAX’s answers.
As for the reward condition (2), it ensures that all binary constraints are satisfied by the
intended mapping of a perfect coordination, since by (1) we have 𝑎𝑖 ⊕ 𝑏𝑖 = 𝐴𝑞𝑖 for all
𝑖. In summary, we have established the following result.

Proposition 4.6. In an interrogation game, a pure strategy of team MAX is winning if
and only if it is a perfect coordination with a valid intended mapping.

It is straightforward to construct interrogation games involving team MIN such that
if MIN does not cooperate, MAX receives a large reward. Similarly, we can also extend
the construction above to allow 𝑘-ary constraints with 𝑘 ≥ 2. The interrogation game
will then involve 𝑘 agents of MAX, each with their hidden information (𝑞𝑖 , 𝑏𝑖), and has
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size O(2𝑘 |𝑄 |𝑘). Such an interrogation game can be used to encode problems such as
𝑘-SAT.8

4.2 Hardness for Two-Team CGIIs
With the gadgets of interrogation game, it is straightforward to show that Pure Maxmin
is ΣP

2 -hard for CGIIs in which both MAX and MIN are multi-agent teams, for instance
by a reduction from the canonical problem ∃∀3SAT. However, we provide a stronger
result: ΣP

2 -hardness holds even when MAX has complete information.

Proposition 4.7. Pure Maxmin is ΣP
2 -hard for CGIIs in which MAX has CI and MIN

has MA-II.

Proof sketch. By a reduction from the ΣP
2 -complete problem Succinct Set Cover

(Umans, 1999): given a collection of 3-DNF formulae and an integer 𝑘 , decide whether
there is a subset 𝑆 of size at most 𝑘 the disjunction of which is a tautology.

We design a game in which Nature draws a DNF formula from the collection, 3
variables, and 4 hidden bits, according to the uniform common prior. The DNF is
known to MAX, who plays 1 or 0 according to whether it should be in 𝑆. This answer
is masked (to MIN) by the hidden bit of MAX, as in a coordination game. Then MIN
chooses either to verify the size of 𝑆 or to verify that the disjunction of 𝑆 is a tautology.
The other 3 hidden bits are used in the latter verification: MIN plays an interrogation
game over the 3 variables, with the constraint to falsify the disjunction of 𝑆.

Finally, since MAX is designed to have CI, they know the variables and the hidden
bits of MIN. To ensure that MAX does not play a strategy that depends on MIN’s
information, we introduce one additional agent of MIN whose role is to punish MAX
whenever MAX plays such a strategy. □

Remark. The construction shows something stronger: ΣP
2 -hardness holds even when

MIN has joint complete information (i.e. if the agents of MIN could pool their informa-
tion, then they would have complete information).

5 Complexity of Behaviour Maxmin and Mixed Maxmin
The decision problems Behaviour Maxmin and Mixed Maxmin can be defined sim-
ilarly to Pure Maxmin, the only difference being that MAX can use behaviour/mixed
strategies instead of just pure strategies.9

The complexity of Behaviour Maxmin and Mixed Maxmin is summarised in
Table 2. Again, the complexity is increasingly monotone in both dimensions, and
results written in bold font are new. The only case where the complexity differs
between behaviour and mixed strategies is the case in which both MAX and MIN have
MA-II; in this case, Behaviour Maxmin and Mixed Maxmin are respectively ΣP

2 - and
ΔP

2 -complete.

8Contrastingly, we leave open the problem of constructing an interrogation game in which MAX’s answers
are not binary.

9In our definition for all these decision problems, MIN only uses pure strategies, which is without loss of
generality. Indeed, MIN is a team of agents with perfect recall, hence every MIN’s behaviour strategy has an
equivalent mixed strategy (Maschler et al., 2020, Theorem 6.11). In addition, the best responses in mixed
strategies are no better than the best responses in pure strategies due to the linearity of the expected utility
with respect to mixtures of strategies.
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MAX
MIN CI SA-II MA-II

CI P P coNP-c
SA-II P P coNP-c

MA-II NP-c NP-c 𝚺P
2 -c/𝚫P

2 -c

Table 2: Complexity of Behaviour Maxmin and of Mixed Maxmin for CGIIs.

The membership results follow from those for EFGs, which are superclasses of
CGIIs: the results for P are by Koller and Megiddo (1992, Sec. 3.5), and the others by
Zhang et al. (2023, Appx. C).

Therefore, we only have to establish the hardness results when MAX and/or MIN
have MA-II. We first adapt a reduction from 3-SAT by Chu and Halpern (2001).

Proposition 5.1. Both Behaviour Maxmin and Mixed Maxmin are NP-hard for
Boolean CGIIs in which MAX has MA-II and MIN has CI.

Proof. For a 3-CNF with 𝑁 clauses, consider the following CGII. The universe consists
of the clauses, which are observable by MAX 1 but not by MAX 2, and with the uniform
prior. During the game, MAX 1 picks a variable, then MAX 2 picks a truth value. They
win if and only if the variable picked by MAX 1 is in the clause picked by Nature, and
the truth value picked by MAX 2 for this variable renders this clause true.

Since there is no agent of MIN in this game, playing behaviour or mixed strategies
is no better than pure ones. It is also straightforward to verify that MAX can guarantee
an expected payoff of 1 if the 3-CNF is satisfiable; otherwise, the maxmin value for
MAX is at most 1 − 1/𝑁 . □

Now, coNP-hardness for the symmetric case (when MAX has CI and MIN has
MA-II) essentially follows from this result. For mixed strategies, the minimax theorem
ensures that when switching the roles of MIN and MAX, and negating the utilities in the
game from the proof of Proposition 5.1, the maxmin value for MAX is at least−(1−1/𝑁)
if the 3-CNF is unsatisfiable, and −1 otherwise. The hardness for Behaviour Maxmin
follows from the fact that mixed maxmin and behaviour maxmin have the same value
due to MAX’s perfect recall.

Proposition 5.2. Behaviour Maxmin is ΣP
2 -hard for CGIIs in which both MAX and

MIN have MA-II.

Proof sketch. By a reduction from ∃∀3SAT (for a 3-DNF formula 𝜑(𝑥, 𝑦), decides
whether ∃𝑥∀𝑦 𝜑(𝑥, 𝑦) holds) which is known to be ΣP

2 -hard (Schaefer and Umans,
2002). Given such a formula, we construct a CGII with 3 agents of MAX and 3 agents
of MIN. The worlds consist of one existential (resp. universal) variable and one hidden
bit for each agent of MAX (resp. of MIN); the common prior is uniform; each agent
only observes their variable and hidden bit. During the game, the agents of MAX take
turns to choose between 0 and 1, then so do the agents of MIN. The total payoff for
MAX is computed as follows: (1) an inconsistency among the agents of MAX (in the
sense of an interrogation game) yields −𝑁 for MAX, where 𝑁 is a large real number;
(2) an inconsistency among the agents of MIN yields +𝑁 for MAX; (3) if at least one
term in 𝜑(𝑥, 𝑦) is satisfied by the assignment picked by the agents of MAX and MIN,
then MAX receives +1.

By choosing 𝑁 large enough, agents of MAX have an incentive to perform a perfect
coordination, and the same goes for agents of MIN. In particular, MAX has no incentive
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to play non-pure behaviour strategies, which would cause inconsistency to happen with
a non-zero probability. It is then straightforward to verify that ∃𝑥∀𝑦 𝜑(𝑥, 𝑦) holds if
and only if MAX can guarantee an expected utility of at least +1/𝑛3, where 𝑛 is the
maximum between the number of existential variables and the number of universal
ones. □

Proposition 5.3. Mixed Maxmin is ΔP
2 -hard for CGIIs in which both MAX and MIN

have MA-II.

Proof sketch. By a reduction from Last SAT (for a 3-CNF, decide whether the lexico-
graphically maximum satisfying assignment has value 1 for the last variable), which is
ΔP

2 -hard (Krentel, 1988). The construction is very similar to the last proof. Given a
3-CNF, we write the variables as 𝑥1, . . . , 𝑥𝑛, and we construct a CGII with 3 agents of
MAX and 3 agents of MIN. The worlds consist of one variable and one hidden bit for
each agent of MAX or MIN; the common prior is uniform; each agent only observes
their variable and hidden bit. During the game, the agents of MAX take turns to choose
between 0 and 1, then so do the agents of MIN. The total payoff for MAX is computed
as follows: (1) an inconsistency among the agents of MAX or a clause violated by their
assignment yields −2𝑁 for MAX, where 𝑁 is a large real number; (2) an inconsistency
among the agents of MIN or a clause violated by their assignment yields +𝑁 for MAX;
(3) for the first agent of MAX (resp. of MIN), if their hidden variable and bit are 𝑥𝑘 and
𝑏, and they pick 1 ⊕ 𝑏, then MAX receives +2𝑛−𝑘 (resp. −2𝑛−𝑘); (4) MAX receives a
bonus +1 if the variable 𝑥𝑛 is assigned 1 ⊕ 𝑏+1 by the first agent of MAX.

By choosing 𝑁 large enough, both MAX and MIN have an incentive to perform a
perfect coordination (which can be pure or mixed for MAX) with a satisfying assign-
ment. Let 𝑥 = (𝑥1, . . . 𝑥𝑛) be the lexicographically maximum satisfying assignment
(if there is no such assignment, then MAX is bound to get a large negative expected
utility). If 𝑥𝑛 = 1, then MAX can guarantee an expected utility of +1/𝑛 by choosing
this assignment for their perfect coordination; the best MIN can do is to choose this
assignment. If 𝑥𝑛 = 0, MAX has an expected utility of at most 0 when MIN plays
this assignment: MAX gets 0 by playing the same assignment, and possibly less when
playing other satisfying (hence lexicographically smaller) assignments with a non-zero
probability. □

6 Conclusion
We have proposed a new formalism for extensive-form games with incomplete infor-
mation that we name combinatorial games with incomplete information. Compared to
EFGs, CGIIs only have public actions and one chance node at the beginning of the game,
thereby putting better emphasis on the aspect of incomplete information/knowledge of
the players.

Apart from the conceptual simplicity, the interests in this new formalism are also
justified by the complexity results. Indeed, all the upper bounds for CGIIs are provided
by membership results that also hold for EFGs, while all the lower bounds, proven by
hardness results, coincide with the upper bounds. In particular, for every degree of
observability, CGIIs have the same complexity as EFGs.

We have also shown how to model binary concurrent actions to enforce multi-
agent coordination in CGIIs. We leave to future work how to model other types of
hidden actions, in particular non-binary concurrent actions. Future work also includes
tightening the complexity results to show that hardness holds even for Boolean CGIIs
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with a minimum number of agents and distributed knowledge of the real world for each
team; designing a generic polynomial transformation from an arbitrary two-team EFG
into a CGII; and extending the study to general-sum multi-team CGIIs with respect to
solution concepts that generalise maxmin (e.g. strategies to commit to (Letchford and
Conitzer, 2010)). Algorithmic studies adapted to CGIIs will also be of interest, with
the long-term goal to implement better AIs for games such as Bridge.
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A Auxiliary constructions
Interrogation game with 𝑘-ary constraints For all fixed 𝑘 ≥ 2, the construction
of an interrogation game with 𝑘-ary constraints is straightforward. Concretely, we can
consider the following Boolean CGII with 𝑘 agents of MAX: the universe reads

𝑈 = {(𝑞1, 𝑏1, . . . , 𝑞𝑘 , 𝑏𝑘) | 𝑞1, . . . , 𝑞𝑘 ∈ 𝑄, 𝑏1, . . . , 𝑏𝑘 ∈ B};

the Aumann model is such that for all 1 ≤ 𝑖 ≤ 𝑘 , MAX 𝑖 only observes 𝑞𝑖 and
𝑏𝑖; the common prior is uniform; the public tree is such that each agent of MAX
sequentially choose between 0 and 1; the reward for MAX is 0 if either (1) 𝑞𝑖 = 𝑞 𝑗 but
𝑎𝑖 ⊕ 𝑏𝑖 ≠ 𝑎 𝑗 ⊕ 𝑏 𝑗 for some 𝑖 and 𝑗 , or (2) (𝑎1 ⊕ 𝑏2, . . . , 𝑎𝑘 ⊕ 𝑏𝑘) ∉ 𝐶𝑞1 · · ·𝑞𝑘 for some
𝑞1, . . . , 𝑞𝑘 ∈ 𝑄, and 1 otherwise.

Such an interrogation game has size O(2𝑘 |𝑄 |𝑘), which is still polynomial in |𝑄 | for
all fixed 𝑘 .

Interrogation game for MIN For all 𝑘 ≥ 2, one can also construct interrogation
games with 𝑘-ary constraints for MIN. The construction, which now involves 𝑘 agents
of MIN and no agent of MAX, is very similar to the one for MAX. It suffices to
modify the reward function such that the reward for MAX is 1 if either (1) 𝑞𝑖 = 𝑞 𝑗 but
𝑎𝑖 ⊕ 𝑏𝑖 ≠ 𝑎 𝑗 ⊕ 𝑏 𝑗 for some 𝑖 and 𝑗 , or (2) (𝑎1 ⊕ 𝑏1, . . . , 𝑎𝑘 ⊕ 𝑏𝑘) ∉ 𝐶𝑞1 · · ·𝑞𝑘 for some
𝑞1, . . . , 𝑞𝑘 ∈ 𝑄, and 0 otherwise.

In such a game, if MIN does not implement a perfect coordination, then they are
caught with a probability of at least 1/(2|𝑄 |)2; while if MIN implements a perfect
coordination, but their intended mapping is not valid, they are caught with a probability
of at least 1/|𝑄 |𝑘 . Hence, if there is no valid mapping for an interrogation, MAX has
a guarantee payoff of at least min(1/(2|𝑄 |)2, 1/|𝑄 |𝑘) > 0; if there is a valid mapping,
then MIN can guarantee a payoff of 0 for MAX by implementing a perfect coordination
with a valid mapping.

B Proofs

B.1 Pure, CI MAX, SA-II MIN
Proposition B.1. Pure Maxmin is NP-hard for CGIIs in which MAX has CI and MIN
has SA-II. The result holds even under the restriction to Boolean games.

Proof. We give a reduction from Vertex Cover, which is defined as follows:

Input A non-directed graph (𝑉, 𝐸), a natural number 𝑘 .

Output Decide whether the graph has a vertex cover of size at most 𝑘 .10

Let
(
(𝑉, 𝐸), 𝑘

)
be an instance of Vertex Cover. Without loss of generality, we

assume that 𝑘 ≤ |𝐸 |, otherwise, the problem is trivial. Construct the following instance
of Pure Maxmin:

Players MAX with CI; MIN with SA-II.

10A vertex cover of a graph is a subset of vertices that contains at least one endpoint of every edge of the
graph.
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Aumann model The universe reads 𝑈 = {𝜔𝑒 | 𝑒 ∈ 𝐸}; the common prior is uniform;
MAX observes the real world while MIN does not.

Public game tree The game proceeds as follows: MAX chooses a vertex 𝑣 ∈ 𝑉 , then
MIN chooses an edge 𝑒′ ∈ 𝐸 .

Payoffs for MAX In world 𝜔𝑒, MAX gets a payoff of 1 if 𝑣 is an endpoint of 𝑒 and
𝑒 ≠ 𝑒′; otherwise, MAX gets 0.

Maxmin The threshold for the pure maxmin value is 1 − 𝑘
|𝐸 | .

This polynomial-time construction yields a Boolean CGII in which MAX has CI
and MIN has SA-II. We now show that the graph (𝑉, 𝐸) has a vertex cover of size at
most 𝑘 if and only if the maxmin value of this CGII is at least 1 − 𝑘

|𝐸 | .

=⇒ Suppose first that (𝑉, 𝐸) has a vertex cover of size at most 𝑘 . Let 𝑉 ′ be such
a vertex cover. Notice that MAX can choose a vertex according to the edge 𝑒 since
MAX can observe the real world. Now consider MAX’s pure strategies that consist
in choosing 𝑣 to be in the intersection of 𝑉 ′ and the endpoints of 𝑒, which is always
non-empty because 𝑉 ′ is a vertex cover. Now we need to show that these strategies
guarantee a payoff of at least 1 − 𝑘

|𝐸 | .
Notice that under these strategies, only vertices in 𝑉 ′ will ever be chosen by MAX;

in other words, in no world will MIN observe that MAX picks a vertex not in 𝑉 ′.11
Since MIN does not observe 𝑒, they can only base their choice of 𝑒′ on 𝑣, the

vertex chosen by MAX. Intuitively, MIN needs to guess the edge chosen by the initial
drawing, based on the vertex picked by MAX, to yield a reward of 0 for MAX. However,
regardless of what MIN’s pure strategy is, they can only guess correctly in at most one
world in which MAX picks 𝑣; in other such worlds in which MIN makes a wrong guess,
MAX gets 1. Since this holds for each 𝑣 chosen by MAX in at least one world, which
is necessarily in 𝑉 ′, we deduce that among all |𝐸 | worlds, MAX gets 0 in at most
|𝑉 ′ | ≤ 𝑘 ≤ |𝐸 | worlds. This means the reward for such strategies is at least 1 − 𝑘

|𝐸 | ,
therefore the maxmin value is also at least 1 − 𝑘

|𝐸 | .

⇐= Conversely, suppose that (𝑉, 𝐸) has no vertex cover of size at most 𝑘 , i.e. all
vertex covers of the graph have size at least 𝑘 + 1. It is clear that |𝐸 | ≥ 𝑘 + 1; otherwise,
the graph must have a vertex cover of smaller size.

Notice that it is a dominating strategy for MAX to always choose a vertex 𝑣 that is
an endpoint of the edge 𝑒. Indeed, if MAX does not choose an endpoint of 𝑒, they get
0; if they do, they get 1 or 0, depending on MIN’s choice 𝑒′. Hence, we only need to
show that for all such strategies, MAX cannot guarantee a reward of at least 1 − 𝑘

|𝐸 | .
Consider one such strategy, and let𝑉 ′ be the set of vertices that are picked by MAX

in at least one world. Then by definition of this strategy, 𝑉 ′ is a vertex cover of the
graph, hence has a size of at least 𝑘 + 1. Now, for each 𝑣 ∈ 𝑉 ′, let MIN play an edge
𝑒𝑣 which is such that MAX picks 𝑣 in world 𝜔𝑒𝑣 . Then for each 𝑣 ∈ 𝑉 ′, MAX gets 0
in world 𝜔𝑒𝑣 . Since 𝑒𝑣 ≠ 𝑒𝑣′ for 𝑣 ≠ 𝑣′ (by definition MAX picks 𝑣 in world 𝜔𝑒𝑣 but
𝑣′ in world 𝜔𝑒′𝑣 ), this means MAX gets 0 in at least |𝑉 ′ | ≥ 𝑘 + 1 worlds; hence MAX
has an expected reward of at most 1 − 𝑘+1

|𝐸 | against this strategy of MIN. This being true
for all dominant strategies of MAX, the maxmin value for MAX is strictly less than
1 − 𝑘

|𝐸 | . □

11On the other hand, it is not necessarily the case that every vertex in 𝑉 ′ is picked by MAX in at least one
world; this is only true if 𝑉 ′ is a minimal (by inclusion) vertex cover of the graph.
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B.2 Pure, CI MAX, MA-II MIN
Our proof will be based on a reduction from the ΣP

2 -complete problem Succinct Set
Cover defined as follows (Umans, 1999):

Input A collection12 𝑆 = {𝜑1, . . . , 𝜑𝑚} of 3-DNF formulae on 𝑛 variables, and an
integer 𝑘 .

Output Decide whether there exists a subcollection 𝑆′ ⊆ 𝑆 of size at most 𝑘 and the
disjunction of which is a tautology: ∨𝜑∈𝑆′𝜑 ≡ 1.

Remark. We can duplicate the elements in the initial collection 𝑆 to form a new
collection S that contains each 3-DNF three times. It is clear that for all 1 ≤ 𝑘 ≤ |𝑆 |, 𝑆
has a tautological disjunction of at most 𝑘 of its DNFs if and only if the new collection
S has a tautological disjunction of at most 𝑘 of its DNFs. As a result, every instance
(𝑆, 𝑘) of Succinct Set Cover can be reduced to another instance (S, 𝑘) such that
𝑘/|S| ≤ |𝑆 |/|S| = 1/3. Therefore, without loss of generality, we may suppose that all
instances (𝑆, 𝑘) of Succinct Set Cover satisfy 1 ≤ 𝑘 ≤ |𝑆 |/3.

Proposition B.2. Pure Maxmin is ΣP
2 -hard for CGIIs in which MAX has CI and MIN

has MA-II.

Proof. Let (𝑆, 𝑘) be an instance of Succinct Set Cover, where 𝑆 is a collection of
3-DNF formulae on a set 𝑋 of 𝑛 variables. Without loss of generality, we assume that
1 ≤ 𝑘 ≤ |𝑆 |/3. Construct the following instance of Pure Maxmin:

Players MAX with CI; MIN with MA-II consisting of 5 agents, referred to as MIN 1,
2, 3, and Controller 1, 2.

Aumann model The universe is 𝑈 = 𝑆 × B × 𝑀 , where 𝑀 = (𝑋 × B)3, i.e.

𝑈 = {(𝜑, 𝑏+, 𝑥1, 𝑏1, 𝑥2, 𝑏2, 𝑥3, 𝑏3) |
𝜑 ∈ 𝑆, 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋, 𝑏+, 𝑏1, 𝑏2, 𝑏3 ∈ B};

MAX observes everything; for 𝑖 ∈ {1, 2, 3}, MIN 𝑖 only observes 𝑥𝑖 and 𝑏𝑖;
Controller 1 only observes 𝜑 and 𝑏+; Controller 2 observes nothing; the common
prior is uniform.

Public game tree Shown in Figure 4. MAX chooses 𝑎+ ∈ B; then Controller 1 does
nothing (i.e. Pass), or plays CheckM and picks a 𝑚∗ ∈ 𝑀; in the former case,
Controller 2 does nothing (i.e. Pass), or plays Size, or plays CheckPhi and picks
a 𝜑∗ ∈ 𝑆; finally, if Controller 2 does nothing, then MIN 1, 2, and 3 participate
in an interrogation game with 3 agents, and they play sequentially 𝑎1, 𝑎2, and 𝑎3.

Payoffs for MAX We write 𝑙
𝑗

𝑖
, where 𝑖 ∈ {1, 2, 3} and 𝑗 ∈ B, for the leaf 𝑙𝑖 in the

subtree 𝐺 𝑗 . Let (𝜑, 𝑏+, 𝑚) = (𝜑, 𝑏+, 𝑥1, 𝑏1, 𝑥2, 𝑏2, 𝑥3, 𝑏3) denote the real world,
and let 𝑁 = |𝑈 |. Then for all 𝑗 ∈ B:

• At 𝑙 𝑗1 , MAX receives +𝑁2 if 𝑚∗ = 𝑚, and −𝑁 otherwise.

• At 𝑙 𝑗2 , MAX receives +𝑁2 if 𝜑∗ = 𝜑, and −𝑁 otherwise.

12A collection can contain two identical elements.

19



• At 𝑙 𝑗3 , MAX receives 1 − (𝑎+ ⊕ 𝑏+).13
• At each leaf of the interrogation game 𝐼 𝑗 :

– If 𝑥𝑖 = 𝑥 𝑗 for some 𝑖 ≠ 𝑗 but 𝑎𝑖 ⊕ 𝑏𝑖 ≠ 𝑎 𝑗 ⊕ 𝑏 𝑗 ,14 MAX receives +𝑁;
– Otherwise, if MAX has chosen 1 ⊕ 𝑏+ and a term in the 3-DNF 𝜑 is

satisfied by the assignments chosen by the 3 agents of MIN to 𝑥1, 𝑥2,
and 𝑥3, MAX receives +𝑁 .

– Otherwise, MAX receives 0.

Maxmin The threshold for the pure maxmin value is 1 − 𝑘/|𝑆 |.

+

𝐺0

0

𝐺1

1

C1
Pass

𝑙1

CheckM, 𝑚∗ ∈ 𝑀

C2

𝐼

Pass

𝑙3

Size

𝑙2

CheckPhi, 𝜑∗ ∈ S

Figure 4: The public tree for playing Succinct Set Cover. On the right, the figure
shows the subtree that repeats as 𝐺0 and 𝐺1 in the figure on the left. 𝑙1, 𝑙2, and 𝑙3 are
leaves; 𝐼 is an interrogation game with three agents of MIN.

The construction above is polynomial in the size of the Succinct Set Cover
instance (𝑆, 𝑘). Indeed, the CGII has a size O(|𝑆 |𝑛3). In addition, MAX has CI, and
MIN has MA-II. For the following, it will be helpful to notice that in a world (𝜑, 𝑏+, 𝑚):

• MAX picks 𝑎+ as a function of 𝜑, 𝑏+, and 𝑚;

• Controller 1 picks 𝑚∗ for CheckM, or plays Pass, as a function of 𝜑, 𝑏+, and 𝑎+;

• Controller 2 picks 𝜑∗ for CheckPhi, or plays Pass, as a function of 𝑎+.

Intuition behind this construction We first motivate the construction by illustrating
the intuition behind it; its correctness will be shown in the next paragraph.

Let us write an arbitrary pure strategy of MAX as a mapping of the form 𝑎+ :
(𝜑, 𝑏+, 𝑚) ∈ 𝑈 ↦→ 𝑎+ (𝜑, 𝑏+, 𝑚) ∈ B. We would like MAX’s dominant pure strategies
to be in bĳection with the subcollections of 𝑆. To this end, we introduce the two
controllers of MIN to punish MAX if one of the following two conditions are violated:

1. 𝑎+ (𝜑, 𝑏+, 𝑚) depends solely on 𝜑 and 𝑏+, not 𝑚.

2. For all 𝜑 ∈ 𝑆 and 𝑚 ∈ 𝑀 , 𝑎+ (𝜑, 0, 𝑚) ≠ 𝑎+ (𝜑, 1, 𝑚).

These conditions ensure that MAX does not pick their answer based on their knowl-
edge of 𝑚 (condition 1), and MAX always encrypts their answer using their hidden
bit 𝑏+ (condition 2). Furthermore, MAX’s pure strategies satisfying both conditions

13 (𝑎+ ⊕ 𝑏+ ) represents the intended answer of MAX; an intended answer of 1 means that MAX includes
this DNF in the subcollection.

14This means MIN 𝑖 and 𝑗 intend to choose a different assignment for this same variable.
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are in bĳection with the subcollections of 𝑆; each such strategy corresponds to the
subcollection

{𝜑 | MAX plays 1 in every world (𝜑, 0, 𝑚) with 𝑚 ∈ 𝑀}.

Whenever one of these conditions is violated, a controller of MIN can gain infor-
mation about something that they cannot observe, which they can exploit to punish
MAX:

• If condition 1 is violated, Controller 1 can deduce information about 𝑚 by
observing 𝜑, 𝑏+, and 𝑎+; they can find a 𝑚∗ ∈ 𝑀 that cannot be part of the real
world.

• If condition 1 is satisfied but not condition 2, Controller 2 can deduce information
about 𝜑 from 𝑎+; they can find a 𝜙∗ ∈ 𝑆 that cannot be part of the real world.

When both conditions are satisfied, Controller 2 can play Size to end the game with an
expected utility of 1−|𝑆′ |/|𝑆 | for MAX, where 𝑆′ ⊆ 𝑆 is the subcollection corresponding
to the pure strategy employed by MAX.

Correctness of the construction We now show that there exists a subcollection
𝑆′ ⊆ 𝑆 of size at most 𝑘 ≤ |𝑆 |/3 such that its disjunction is a tautology if and only if
this game has a maxmin value of at least 1 − 𝑘/|𝑆 | ≥ 2/3.

=⇒ Suppose there is a subcollection 𝑆′ ⊆ 𝑆 of size at most 𝑘 ≤ |𝑆 |/3 and the
disjunction of which is a tautology. Let us consider MAX’s pure strategy corresponding
to 𝑆′, which means in (𝜑, 𝑏+, 𝑚) ∈ 𝑈, MAX plays 1 ⊕ 𝑏+ if 𝜑 ∈ 𝑆′, 𝑏+ otherwise.

We first show that MIN’s dominant strategy is playing Pass by Controller 1 then
Size by Controller 2 in both 𝐺0 and 𝐺1. This strategy of MIN yields for MAX an
expected reward of 1 − |𝑆′ |/|𝑆 |, which is at least 1 − 𝑘/|𝑆 | but strictly smaller than 1.

CheckM in 𝐺0 or 𝐺1 Let 𝜑 ∈ 𝑆 and 𝑏+ ∈ B, and let 𝑎+ be MAX’s action in all the
worlds (𝜑, 𝑏+, 𝑚) with 𝑚 ∈ 𝑀 , which is well-defined since 𝑎+ depends solely on
𝜑 and 𝑏+. If Controller 1 plays CheckM and picks 𝑚∗ ∈ 𝑀 after observing 𝜑, 𝑏+,
and 𝑎+, then MAX receives −𝑁 in all worlds (𝜑, 𝑏+, 𝑚) with 𝑚 ≠ 𝑚∗, but +𝑁2 in
the world (𝜑, 𝑏+, 𝑚∗). Hence, the expected payoff for MAX is at least 1, which
means in neither 𝐺0 nor 𝐺1 does Controller 1 have an incentive to play CheckM.

CheckPhi in 𝐺0 or 𝐺1 The argument is similar to the last one: for all 𝜑 ∈ 𝑆, there is
at least one world in which MAX plays 0, and one in which MAX plays 1, so
there is never a safe 𝜑∗ for Controller 2 to pick. If Controller 2 plays CheckPhi,
the expected payoff of MAX is at least 1. Thus, in neither 𝐺0 nor 𝐺1 does
Controller 2 have an incentive to play CheckPhi.

𝐼0 or 𝐼1 In the interrogation games 𝐼0 or 𝐼1, the agents of MIN has an incentive to
implement a perfect coordination since otherwise the discrepancy between the
response of two agents of MIN will be discovered in at least one world, yielding
+𝑁 for MAX hence an expected reward of at least 1.15 However, since MAX
picks a subcollection 𝑆′ such that the disjunction is tautological, in at least one
world it will be discovered that one term from the 3-DNFs of 𝑆′ is satisfied by

15Note that there is no negative reward for MAX at any leaf of 𝐼 .
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the assignment of the agents of MIN to their variables. This again means MAX
gets +𝑁 in at least one world, hence an expected reward of at least 1 for the whole
game. Therefore, in neither 𝐺0 nor 𝐺1 does Controller 2 have an incentive to
choose Pass and let the game continue into an interrogation game.

In conclusion, MIN’s dominant strategy is playing Pass by Controller 1 then Size
by Controller 2 in both 𝐺0 and 𝐺1. Therefore, MAX’s strategy guarantees an expected
payoff of at least 1 − |𝑆′ |/|𝑆 |, which means the maxmin value is at least 1 − 𝑘/|𝑆 |.

⇐= Suppose there is no subcollection of 𝑆 of size at most 𝑘 ≤ |𝑆 |/3 such that its
disjunction is a tautology. We will show that no strategy of MAX can guarantee a payoff
of at least 1 − 𝑘/|𝑆 | ≥ 2/3.

Notice that by playing Pass then Size in both𝐺0 and𝐺1, MIN limits MAX’s reward
to be at most 1 in all worlds. We first consider the case in which MAX implements a
strategy that violates one of conditions 1 and 2.

Condition 1 If MAX’s strategy violates condition 1, then there are 𝜑 ∈ 𝑆, 𝑏+ ∈ B, and
𝑚′, 𝑚′′ ∈ 𝑀 , such that MAX plays 1 in world (𝜑, 𝑏+, 𝑚′) and 0 in (𝜑, 𝑏+, 𝑚′′).
Then in the worlds (𝜑, 𝑏+, 𝑚) with 𝑚 ∈ 𝑀 , Controller 1 can play CheckM with
𝑚∗ = 𝑚′′ if they observe that MAX plays 1 (i.e. in 𝐺1), and 𝑚∗ = 𝑚′ if MAX
plays 0 (i.e. in 𝐺0). In the other worlds, Controller 1 plays Pass and Controller 2
plays Size in both 𝐺0 and 𝐺1. Then in no world MAX gets a reward of +𝑁2,
but they get −𝑁 for all worlds of the form (𝜑, 𝑏+, 𝑚) and at most 1 in the other
worlds. Hence, the expected world for MAX is at most 0 < 1 − 𝑘/|𝑆 |.

Condition 2 Now suppose MAX’s strategy respects condition 1 but not condition 2,
then there is 𝜑′ ∈ 𝑆 such that MAX plays 1 (or 0) in world (𝜑′, 𝑏+, 𝑚) for all
𝑏+ ∈ B and 𝑚 ∈ 𝑀 (the latter being true by condition 1). Without loss of
generality, suppose that MAX plays 1 in all these worlds.

• If MAX actually plays 1 in all the worlds of the universe, then Controller 1
plays Pass and Controller 2 plays Size in both 𝐺0 and 𝐺1 so that MAX’s
expected payoff is restricted to be 1/2 < 1− 𝑘/|𝑆 |. Indeed, with probability
1/2, 𝑏+ = 0 is drawn, yielding 𝑎+ ⊕ 𝑏+ = 1 ⊕ 𝑏+ = 1, hence a payoff of 0
when Controller 2 plays Size.

• Otherwise, MAX plays 0 in at least one world in which the DNF is not 𝜑′.
Then Controller 1 plays Pass in both 𝐺0 and 𝐺1, Controller 2 plays Size in
𝐺1, and CheckPhi with 𝜑∗ = 𝜑′ in 𝐺0. Then in the worlds in which MAX
plays 1, they get at most 1 as reward; in all worlds (there is at least one) in
which MAX plays 0, they always get −𝑁 as reward since the DNF in these
worlds is never 𝜑′. Hence, the expected reward for MAX is again at most
0 < 1 − 𝑘/|𝑆 |.

Suppose now that MAX plays a strategy that respects both conditions 1 and 2.
Recall that such strategies are in bĳection with the subcollections of 𝑆.

• If MAX chooses a subcollection 𝑆′ such that the disjunction is a tautology, then
the size of this subcollection is at least 𝑘 + 1. Then Controller 1 plays Pass and
Controller 2 plays Size in both 𝐺0 and 𝐺1 to give MAX an expected payoff of
1 − |𝑆′ |/|𝑆 | < 1 − 𝑘/|𝑆 |.
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• Otherwise, the disjunction of 𝑆′ is not a tautology, then Controller 1 and 2 play
Pass in both 𝐺0 and 𝐺1, and MIN 1, 2, and 3 implement a perfect coordination
of an assignment that does not satisfy this disjunction in both of the interrogation
games 𝐼1 and 𝐼2. As a result, MAX has an expected payoff of 0 < 1 − 𝑘/|𝑆 |.

In conclusion, no strategy of MAX can assure a payoff of at least 1 − 𝑘/|𝑆 |, which
means the maxmin value is strictly less than 1 − 𝑘/|𝑆 |. □

B.3 Behaviour, MA-II MAX, MA-II MIN
Proposition B.3. Behaviour Maxmin is ΣP

2 -hard for CGIIs in which both MAX and
MIN have MA-II.

Proof. We give a reduction from ∃∀3SAT (for a 3-DNF formula 𝜑(𝑥, 𝑦) over a set of
existential variables 𝑋 and a set of universal variables 𝑌 , decide whether ∃𝑥∀𝑦 𝜑(𝑥, 𝑦)
holds). Let 𝜑(𝑥, 𝑦) be an instance of ∃∀3SAT. Construct the following instance of
Behaviour Maxmin:

Players MAX with MA-II consisting of 3 agents, referred to as MAX 1, 2, 3; MIN
with MA-II consisting of 3 agents, referred to as MIN 1, 2, 3.

Aumann model The universe is (𝑋 × B)3 × (𝑌 × 𝐵)3:

{(𝑥1, 𝑏
+
1 , 𝑥2, 𝑏

+
2 , 𝑥3, 𝑏

+
3 , 𝑦1, 𝑏

−
1 , 𝑦2, 𝑏

−
2 , 𝑦3, 𝑏

−
3 ) |

∀𝑖 ∈ {1, 2, 3},∀ 𝑗 ∈ {+,−}, 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌, 𝑏
𝑗

𝑖
∈ B};

for all 𝑖 ∈ {1, 2, 3}, MAX 𝑖 only observes 𝑥𝑖 and 𝑏+
𝑖

while MIN 𝑖 only observes
𝑦𝑖 and 𝑏−

𝑖
; the common prior is uniform.

Public game tree The six agents (MAX 1, 2, 3, MIN 1, 2, 3) take turns to pick
between 0 and 1; their action will be denoted by 𝑎

𝑗

𝑖
, where 𝑖 ∈ {1, 2, 3} and

𝑗 ∈ {+,−}.

Payoffs for MAX MAX’s payoff is defined to be the sum of three terms of payoff,
defined as follows.

• If there is an inconsistency among the agents of MAX, i.e. for some 𝑖 ≠ 𝑖′,
𝑎+
𝑖
⊕ 𝑏+

𝑖
≠ 𝑎+

𝑖′ ⊕ 𝑏+
𝑖′ but 𝑥𝑖 = 𝑥𝑖′ , then MAX receives −𝑁 , where 𝑁 is a large

natural number.
• If there is an inconsistency among the agents of MIN, i.e. for some 𝑖 ≠ 𝑖′,
𝑎−
𝑖
⊕ 𝑏−

𝑖
≠ 𝑎−

𝑖′ ⊕ 𝑏−
𝑖′ but 𝑦𝑖 = 𝑦𝑖′ , then MAX receives +𝑁 .

• MAX receives +1 if at least one term in 𝜑(𝑥, 𝑦) is satisfied by the assignment
picked by the agents of MAX and MIN (i.e. for 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3).

Maxmin The threshold for the behaviour maxmin value is+1/𝑛3, where 𝑛 = max( |𝑋 |, |𝑌 |).

This CGII is basically an interrogation game for MAX, followed by an interrogation
game for MIN. The construction is polynomial in the size of the ∃∀3SAT instance
𝜑(𝑥, 𝑦). Indeed, the CGII has size O(|𝜑 |6). We now show that ∃𝑥∀𝑦 𝜑(𝑥, 𝑦) holds if
and only if the behaviour maxmin value is at least +1/𝑛3.

To simplify the discussion, we first argue that when 𝑁 is large enough, perfect
coordinations are dominant strategies for both MIN and MAX.
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• For MIN, we only have to consider their pure strategies.16 Hence, it is clear that
perfect coordinations are dominant strategies.

• For MAX, notice first that under a behaviour strategy, every probability mixture
is local. Intuitively, every such mixture with probability 0 ≤ 𝑝 ≤ 1 at some
reachable node leads to an inconsistency among the agents of MAX to be detected
with a probability 𝑐𝑝, where 𝑐 is a constant independent of 𝑝, which causes an
expected penalty of −𝑐𝑝𝑁 in the first term of payoff. By linearity, such a mixture
cannot gain more than +𝑐′ from the last term of payoff, where 𝑐′ is another
constant independent of 𝑝. Hence for 𝑁 large enough, reducing 𝑝 to 0 is a
dominant strategy. A rigorous proof can be given by showing (sequentially)
that no agent has a unilateral incentive to deviate from a perfect coordination; a
sufficient lower bound for 𝑁 can be expressed as a polynomial function of 𝑛.

Therefore, in the following, we may assume that MAX and MIN only consider strategies
that are perfect coordinations.

=⇒ Suppose ∃𝑥∀𝑦 𝜑(𝑥, 𝑦) holds. Then MAX can perform a perfect coordination
with a mapping corresponding to an assignment to the variables in 𝑋 that satisfies
this formula. Then for every assignment to 𝑌 , there is at least one term in 𝜑 that is
satisfied. In particular, for every perfect coordination of MIN, there is a term satisfied
and detected with a probability of at least 1/𝑛3 (whenever Nature picks the variables
in this term to interrogate MAX and/or MIN). This means MAX gets 0 from the first
term of payoff, at least 0 from the second term, and at least +1/𝑛3 from the last term;
the expected payoff is therefore at least +1/𝑛3, which is therefore a lower bound for the
behaviour maxmin value.

Also, notice that the ability to observe the actions picked by the agents of MAX does
not help MIN. Indeed, since MAX implements a perfect coordination, it is straight-
forward to see that P(𝑥1, 𝑥2, 𝑥3) = P(𝑥1, 𝑥2, 𝑥3 | 𝑎+1 , 𝑎

+
2 , 𝑎

+
3). Therefore, MIN may

well perform a perfect coordination with different mappings after observing different
sequences of actions by MAX, but it does not change the fact that the satisfied term is
detected with a probability of at least 1/𝑛3 after each sequence of actions by MAX.

⇐= Now suppose ∃𝑥∀𝑦 𝜑(𝑥, 𝑦) does not hold. Consider an arbitrary perfect coordi-
nation of MAX. Then it corresponds to some assignment to 𝑋 , for which there exists an
assignment to𝑌 such that no term in 𝜑 is satisfied. By performing a perfect coordination
with a mapping corresponding to this assignment to 𝑌 , MIN restricts MAX’s expected
payoff to be 0. Hence, the behaviour maxmin value is at most 0. □

B.4 Mixed, MA-II MAX, MA-II MIN
Proposition B.4. Mixed Maxmin is ΔP

2 -hard for CGIIs in which both MAX and MIN
have MA-II.

Proof. We give a reduction from Last SAT (for a 3-CNF, decide whether the lexico-
graphically maximum satisfying assignment has value 1 for the last variable), which is
ΔP

2 -hard (Krentel, 1988). Consider an instance of Last SAT 𝜑, a 3-CNF over the set of
variables 𝑋 = {𝑥1, . . . , 𝑥𝑛}. Construct the following instance of Mixed Maxmin:

16Recall that without loss of generality, we define the maxmin value with respect to MIN’s pure strategies.
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Players MAX with MA-II consisting of 3 agents, referred to as MAX 1, 2, 3; MIN
with MA-II consisting of 3 agents, referred to as MIN 1, 2, 3.

Aumann model The universe is (𝑋 × B)6:

{(𝑥+1 , 𝑏
+
1 , 𝑥

+
2 , 𝑏

+
2 , 𝑥

+
3 , 𝑏

+
3 , 𝑥

−
1 , 𝑏

−
1 , 𝑥

−
2 , 𝑏

−
2 , 𝑥

−
3 , 𝑏

−
3 ) |

∀𝑖 ∈ {1, 2, 3},∀ 𝑗 ∈ {+,−}, 𝑥 𝑗

𝑖
∈ 𝑋, 𝑏

𝑗

𝑖
∈ B};

for all 𝑖 ∈ {1, 2, 3}, MAX 𝑖 only observes 𝑥𝑖 and 𝑏+
𝑖

while MIN 𝑖 only observes
𝑥−
𝑖

and 𝑏−
𝑖

; the common prior is uniform.

Public game tree The six agents (MAX 1, 2, 3, MIN 1, 2, 3) take turns to pick
between 0 and 1; their action will be denoted by 𝑎

𝑗

𝑖
, where 𝑖 ∈ {1, 2, 3} and

𝑗 ∈ {+,−}.

Payoffs for MAX MAX’s payoff is defined to be the sum of five terms of payoff,
defined as follows.

• If there is an inconsistency among the agents of MAX, i.e. for some 𝑖 ≠ 𝑖′,
𝑎+
𝑖
⊕ 𝑏+

𝑖
≠ 𝑎+

𝑖′ ⊕ 𝑏+
𝑖′ but 𝑥+

𝑖
= 𝑥+

𝑖′ , or the assignments 𝑎+
𝑖
⊕ 𝑏+

𝑖
to 𝑥+

𝑖
for

𝑖 ∈ {1, 2, 3} render a clause in 𝜑 false, then MAX receives −2𝑁 , where 𝑁

is a large natural number.
• If there is an inconsistency among the agents of MIN, i.e. for some 𝑖 ≠ 𝑖′,
𝑎−
𝑖
⊕ 𝑏−

𝑖
≠ 𝑎−

𝑖′ ⊕ 𝑏−
𝑖′ but 𝑥−

𝑖
= 𝑥−

𝑖′ , or the assignments 𝑎−
𝑖
⊕ 𝑏−

𝑖
to 𝑥−

𝑖
for

𝑖 ∈ {1, 2, 3} render a clause in 𝜑 false, then MAX receives +𝑁 .
• If 𝑥+1 = 𝑥𝑘 ∈ 𝑋 and 𝑎+1 ⊕ 𝑏+1 = 1, MAX receives +2𝑛−𝑘 .

• If 𝑥−1 = 𝑥𝑘 ∈ 𝑋 and 𝑎−1 ⊕ 𝑏−1 = 1, MAX receives −2𝑛−𝑘 .
• If 𝑥+1 = 𝑥𝑛 and 𝑎+1 ⊕ 𝑏+1 = 1, MAX receives a bonus +1.

Maxmin The threshold for the mixed maxmin value is +1/𝑛.

This CGII is basically an interrogation game for MAX, followed by an interrogation
game for MIN. The construction is polynomial in the size of the Last SAT instance 𝜑.
Indeed, the CGII has a size O(|𝜑|6).

Notice that MAX’s payoff is the sum of two parts, the first part (the first, third, and
fifth terms above) depends solely on MAX’s strategy, while the second part (the second
and fourth terms above) depends solely on MIN’s strategy. Hence, the reasoning for
MAX’s best strategies is similar to MIN’s. In the following, we will show that if 𝑁

is large enough, the mixed maxmin value is +1/𝑛 if and only if 𝜑 is a yes-instance of
Last SAT.

⇐= If 𝜑 is a yes-instance of Last SAT, then by implementing a perfect coordination
with the last satisfying assignment, MAX receives a payoff of at least +1/𝑛. Indeed,
MIN’s best strategy is to do the same:

• If MIN does not implement a perfect coordination or implements a perfect coor-
dination with an invalid assignment, then the second term of payoff is non-zero
for a probability of at least 1/8𝑛3, yielding an expected payoff of at least +𝑁/8𝑛3

to MAX. Such a strategy cannot gain more than 2𝑛 from the fourth term, hence
if 𝑁 > 8𝑛32𝑛, it is dominant for MIN to implement a perfect coordination with a
satisfying assignment.
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• Among perfect coordinations with a satisfying assignment, the one with the last
satisfying assignment is dominant due to the fourth term of payoff.

The conclusion then follows from the fact that when both MAX and MIN play this
strategy, the first and second terms yield zero, the third and fourth terms cancel out, and
the fifth term yields an expected payoff of +1/𝑛.

=⇒ Assume now that the mixed maxmin value is +1/𝑛. By a similar argument
to the one above, in the MAXMIN strategy, MAX must play a perfect coordination
with a satisfying assignment with nonzero probability. Indeed, otherwise it suffers a
penalty of −2𝑁 with probability at least 1/8𝑛3 because of the first term of payoff, and
if MIN plays a pure strategy, then MAX cannot gain more than 𝑁/8𝑛3 + 2𝑛 + 1 with
the other terms, hence has a negative expected payoff for 𝑁 large enough. Now if
MAX plays a satisfying assignment which is not the lexicographically last one with
probability 𝑝, then by playing the last satisfying assignment with probability 1, MIN
limits its payoff to at most (1 − 𝑝) × 1/𝑛: indeed, the third plus fourth terms of payoff
yield payoff −1 for MAX with probability (1 − 𝑝), and the fifth term yields at most 1
with probability 1/𝑛. In the end, the only way for MAX to guarantee 1/𝑛 is to play the
last satisfying assignment with probability 1, and that this assignment has value 1 for
the last variable. □
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