

Emerging and Vector-borne viral diseases

Gaëlle Gonzalez

Deputy Director of the European Union Reference Laboratory for equine diseases

Joint Research Unit Virology Animal Health Laboratory ANSES, Maisons-Alfort, France

International symposium Association of Epidemiology & Animal Health University of Liège, Belgium / 17-19 April 2024

Major Emerging and Re-emerging Vector-Borne Infectious Diseases

Disease	Pathogen	Primary vector(s)	Primary non-human reservoir (competent) hosts
Malaria	Plasmodium parasite	Anopheles mosquito	Non-human hosts of minor concern
Dengue*	Flavivirus	Aedes aegypti and Aedes albopictus mosquitoes	Non-human hosts of minor concern
Yellow fever	Flavivirus	A. aegypti and A. albopictus mosquitoes	Non-human primates
Zika	Flavivirus	A. aegypti and A. albopictus mosquitoes	Non-human hosts of minor concern
Chikungunya*	Alphavirus	A. aegypti and A. albopictus mosquitoes	Non-human hosts of minor concern
Lymphatic filariasis*	Various filarial nematodes	A variety of mosquito genera	Non-human hosts of minor concern
Schistosomiasis*	Schistosoma trematode	Snail	Non-human hosts of minor concern
Onchocerciasis*	Onchocerca volvulus nematode	Simulium (black fly)	None
Chagas disease*	Trypanosoma cruzi parasite	Triatomine bug	Mammals
Leishmaniasis*	Leishmania parasite	Sand fly	Rodents, dogs, other mammals
Japanese encephalitis	Flavivirus	Culex mosquitoes	Pigs, birds
African trypanosomiasis*	Trypanosoma brucei parasite	Glossina (tsetse fly)	Wild and domestic animals
Lyme disease	Borrelia spirochete	Ixodes ticks	White-footed mouse and other small mammals, birds
Tick-borne encephalitis	Flavivirus	Ixodes ticks	Small rodents
West Nile fever	Flavivirus	Culex mosquitoes	Birds
Epizootic hemorrhagic disease	Orbivirus	Culicoïdes	Deers (white-tailed deers), cattle
African Horse sickness	Orbivirus	Culicoîdes	Equids (horses)
Bluetongue disease	Orbivirus	Culicoîdes	Cattle

Rocklöv et al., 2020

EMERGING ORBIVIRUSES IN FRANCE IN 2023

THE T

Resentoviricetes Phylum: Duplornaviricota	
Order: Reovirales Class: Resentoviricetes	G
- Family: Sedoreoviridae Order: Reovirales	∂ ≈(
+ Genus: Cardoreovirus Family: Sedoreoviridae	9 ≤
enus: Mimoreovirus Family: Sedoreoviridae	9 m
enus: Orbivirus Family: Sedoreoviridae	D 🛒
pecies: African horse sickness virus Genus: Orbivirus	D 🕅
pecies: Bluetongue virus Genus: Orbivirus	1
Species: Changuinola virus Genus: Orbivirus	₩ 6
Species: Chenuda virus Genus: Orbivirus	E C
Species: Chobar Gorge virus Genus: Orbivirus	D 🛛
Species: Corriparta virus Genus: Orbivirus	H G
Species: Epizootic hemorrhagic disease virus Genus: Orbivirus	×
Species: Equine encephalosis virus Genus: Orbivirus	×
Species: Eubenangee virus Genus: Orbivirus	H G
Species: Great Island virus Genus: Orbivirus	H G
Species: Ieri virus Genus: Orbivirus	H G
Species: Lebombo virus Genus: Orbivirus	H C
Species: Orungo virus Genus: Orbivirus	×
Species: Palyam virus Genus: Orbivirus	H C
Species: Peruvian horse sickness virus Genus: Orbivirus	×
Species: St Croix River virus Genus: Orbivirus	H C
Species: Umatilla virus Genus: Orbivirus	×
Species: Wad Medani virus Genus: Orbivirus	H C
Species: Wallal virus Genus: Orbivirus	H C
Species: Warrego virus Genus: Orbivirus	M
Operies Wangen sins Consert Children	
Species: Yunnan orbivirus Genus: Orbivirus	9 W
+ Genus: Phytoreovirus Family: Sedoreoviridae	1 C

Epizootic Hemorrhagic Disease Virus (EHDV) identity card

UNIONE EUROPEA REPUBBLICA ITALIANA

IDFRAPETE<<<<<<<<<<<<<<<<<<<<<<<952042 0509952018746NICOLAS<<PAUL<8206152M3

Grimes J.M., Burroughs J.N., Gouet P., Diprose J.M., Malby R., Zientara S., Mertens, P.P.C. & Stuart D.I. (1998). The atomic structure of the bluetongue virus core. *Nature*, 395, 470-478.

PORTUGAL PASSAPORTE

UNIÃO EUROPEIA

Union européenne République française

EHDV

Family Sedoreoviridae ; Genus Orbivirus \geq

conserved among serotypes

7 serotypes

Reference strains							
EHDV-1 USA1955/01	EHDV-2 CAN1962/01 EHDV-2 Ibaraki virus) JAP1959/01	EHDV- 3[M.Dom1] NIG1967/01	EHDV-4 <u>NIG1968/01</u>	EHDV-5 <u>AUS1977/01</u>	EHDV-6 <u>AUS1981/07</u>	EHDV-7 <u>AUS1981/06</u>	EHDV-8 <u>AUS1982/06</u>

Table 3: Commonly accepted reference strains in the ds RNA virus collection at Institute for Animal Health (IAH) Pirbright, UK and at the Arthropod-Borne Animal Diseases Research Laboratory (ABADRL), USA.

New serotypes?

EHDV-9?

I. M. 2013: Serological Wriaht. and Genetic Characterisation of Putative New Serotypes of Bluetongue Virus and Epizootic Haemorrhagic Disease Isolated North-West Virus From an Alpaca. University, South Africa

Research pape

Characterization of genome segments 2, 3 and 6 of epizootic hemorrhagic disease virus strains isolated in Japan in 1985-2013: Identification of their serotypes and geographical genetic types

Hiroaki Shirafuji ^{a,*}, Tomoko Kato ^a, Makoto Yamakawa ^b, Toru Tanaka ^c, Yutaka Minemori ^d, Tohru Yanase

EHDV-11?

> Emerg Infect Dis. 2020 Dec;26(12):3081-3083. doi: 10.3201/eid2612.191301.

Novel Serotype of Epizootic Hemorrhagic Disease Virus, China

Heng Yang, Zhuoran Li, Jinping Wang, Zhanhong Li, Zhenxing Yang, Defang Liao, Jianbo Zhu, Huachun Li

PMID: 33219797 PMCID: PMC7706924 DOI: 10.3201/eid2612.191301

EHDV transmission cycle

EHDV emergence

First description of EHD in New Jersey in 1955 after a severe outbreak of the disease in whitetailed deer (Odocoileus virgininianus)

Case reported in Ibaraki, Japan in 1959: EHDV2 strain isolated from a cattle

Shope R.E., Macnamara L.G. & Mangold R. (1960). – A virus-induced epizootic hemorrhagic disease of the Virginia white-tailed deer (Odocoileus virginianus). J. Experim. Med., 111, 155–170

Epizootic haemorrhagic disease N.J. Maclachlan, S. Zientara, G. Savini & P.W. Daniels ; Rev. Sci. Tech. Off. Int. Epiz., 2015, 34 (2), 341-351

Epizootic Haemorrhagic Disease of DEER?

90% mortality

Fever Weakness Inappetance Excessive salivation Facial oedema Hyperaemia of the conjunctiva Mucous membranes of the oral cavity Coronitis Stomatitis

Fulminant EHD characterised by excessive bleeding (haemorrhagic diathesis), dehydration, diarrhoea, and death.

EHDV serotypes 1, 2, 6, 7 and 8 induce clinical signs in cattle

"The ringing in your ears—I think I can help."

Bluetongue and Epizootic Hemorrhagic Disease in the United States of America at the Wildlife–Livestock Interface

Nelda A. Rivera ^{1,*}, Csaba Varga ², Mark G. Ruder ³, Sheena J. Dorak ¹, Alfred L. Roca ⁴, Jan E. Novakofski ^{1,5} and Nohra E. Mateus-Pinilla ^{1,2,5,*}

TABLE 1. Reported BTV and/or EHDV infection with or without clinical signs in wild and captive ruminant host species in the USA.

Ruminant Species			Detected (✓)		
Family	Common Name	Latin Name	BTV	EHDV	Keterences
Cervidae	White-tailed deer	Odocoileus virginianus	1	1	[9,10,20,41,51]
	Mule deer	Odocoileus hemionus	1	1	[10]
	Black-tailed deer	Odocoileus hemionus columbianus	1	1	[20,52]
	Elk (wapıtı)	Cervus canadensis	1	1	[10,41]
	Rocky Mountain Elk	Cervus elaphus nelsoni	1	1	[53-55]
	Axis deer	Axis axis	1	1	[10,51]
	Fallow deer	Dama dama	1	1	[10,41,51,56]
	Sika deer	Cervus nippon	1	1	[10]
	Yaks	Bos grunniens		1	[57]
	Père David's deer	Elaphurus davidianus		1	[41]
	Moose	Alces alces		1	[58]
Bovidae	Cattle	Bos taurus	1	1	[9,56,59]
	Mountain goat	Oreamnos americanus	1		[9,10]
	Bison	Bison bison	1	1	[10,59,60]
	Blackbuck antelope	Antilope cervicapra	1	1	[10]
	Gerenuk	Litocranius walleri	1		[61]
	Bighorn sheep	Ovis canadensis	1	1	[9,10,59]
	Dall sheep	Ovis dalli		1	[58]
	Bongo antelope	Tragelaphus eurycerus		1	[41]
	Roan antelope	Hippotragus equinus		1	[41]
	Lesser kudu	Tragelaphus imberbis		1	[41]
	Dama gazelle	Nanger dama		1	[41]
Antilocapridae	Pronghorn	Antilocapra americana	1	1	[10,62]
Camelidae	Alpaca	Vicugna pacos	1		[63]

Epizootic haemorrhagic disease virus (EHDV) mainly infects deer, but sheep and cattle can also be infected.

EHDV added to the WOAH list in May 2008.

- Loss of appetite
- Fear of humans lost
- Extensive haemorrhages
- Weakness
- Excessive salivation
- Rapid pulse and respiratory rate
- Fever
- Blue tongue from lack of oxygenated blood
- Breaking of hooves caused by growth interruptions
- Diarrhoea
- Unconciousness
- Death

Dr Vivien Philis, Lannemezan Dr Mylène Lemaire-Meyer (LVD09)

Dr Vivien Philis, Lannemezan Dr Mylène Lemaire-Meyer (LVD09)

Dr Alberto Jorda Blanco (Aude) Dr Mylène Lemaire-Meyer (LVD09)

Dr André Desbiaux, Eycheil Dr Mylène Lemaire-Meyer (LVD09)

Dr Vivien Philis, Lannemezan Dr Mylène Lemaire-Meyer (LVD09)

Dr Vivien Philis, Lannemezan Dr Mylène Lemaire-Meyer (LVD09)

EHDV epidemiology

Reported in :

- Africa
- Asia
- North America
- South America
- Oceania

EHDV-6 and EHDV-7 Countries bordering Mediterranean Basin

Reunion / Mayotte

Tunisia (EHDV-8, 200 cases)

USA – Italy (Sardegna – Sicilia) and Spain (Andalusia (cattle and deers)) (EHDV-8)

Acta Tropica Volume 191, March 2019, Pages 24-28 ELSEVIER

Evidence of bluetongue and Epizootic Haemorrhagic disease circulation on the island of Mayotte

Laure Dommergues * 😤 🖾, Cyril Viarouge ^b, Raphaëlle Métras ^{c, d}, Chouanibou Youssouffi * , Corinne Sailleau ^b, Stephan Zientara ^b, Eric Cardinale ^{d, e}, Catherine Cêtre-Sossah ^{d, e}

viruses

Epizootic Haemorrhagic Disease Virus Serotype 8 in Tunisia, 2021

Soufien Sghaier¹, Corinne Sailleau², Maurilia Marcacci³, Sarah Thabet¹, Valentina Curini³, Thameur Ben Hassine⁴, Liana Teodori³, Ottavio Portanti³, Salah Hammami⁵, Lucija Jurisic^{3,6}, Massimo Spedicato ³, Lydie Postic ², Ines Gazani ⁷, Raja Ben Osman ⁸, Stephan Zientara ², Emmanuel Bréard ², Paolo Calistri ³, Jürgen A. Richt ⁹, Edward C. Holmes ¹⁰, Giovanni Savini ³, Francesca Di Giallonardo ¹¹ and Alessio Lorusso ^{3,*}

The first infected animal

18 July 2023

18 September 2023

2 October 2023

Carlène Trevennec *Veille Sanitaire Internationale* Plateforme ESA – INRAe - CIRAD

hémorragique épizootique (MHE) dans un élevage bovin

Bovins et ovins sont atteints d'une nouvelle maladie transmise par les cerfs et le chevreuils, via les pucerons. / DDM - CEDRIC MERAVILLES

Pyrénées Atlantiques (2), Hautes Pyrénées (1)

9 Janvier 2024

> 4 002 outbreaks

20 EHDV-infected departments: 09, 11, 19, 24, 31, 32, 33, 40, 46, 44, 47, 56, 64, 65, 66, 81, 82, 85, 86, 87

1 izard 2 deer 1 roe deer

AFRICAN HORSE SICKNESS VIRUS

African Horse Sickness

African Horse Sickness

AHSV: transmission cycle

Vitour D, Zientara S et al., Virologie, 2022

AHSV clinical symptoms

Vitour D, Zientara S et al., Virologie, 2022

Photo S Zientara

African Horse Sickness: oedematous form

Symptômes : signes généraux et congestion des muqueuses

Febrile general condition

Congestion of the mucous membranes

AHS: pulmonary form

Pulmonary oedema

« the horse drowns in his serum »

Emerg Infect Dis. 2021 Aug; 27(8): 2208–2211. doi: 10.3201/eid2708.210004 PMCID: PMC8314833 PMID: <u>34287126</u>

African Horse Sickness Virus Serotype 1 on Horse Farm, Thailand, 2020

Napawan Bunpapong, Kamonpan Charoenkul, Chanakarn Nasamran, Ekkapat Chamsai, Kitikhun Udom, Supanat Boonyapisitsopa, Rachod Tantilertcharoen, Sawang Kesdangsakonwut, Navapon Techakriengkrai, Sanipa Suradhat, Roongroje Thanawongnuwech, and Alongkorn Amonsin^Ø

How does African Horse Sickness spread?

12% (semaine véto, 28 août 2009, n° 1369)

Vaccins against AHS

mais...

Powell (1991), MacLachlan (2007), Von Teichman (2010), Verwoerd (2012), Zientara (2015), Robin (2016), Carpenter (2017), Dennis (2019)

Treatments against AHS

AHS: terrorist threat?

..... highly unlikely hypothesis

- Arthropod-borne virus
- non-contagious infectious borne disease
- Segmented genome
- No virulence factor identified (revese genetic)

Emergence of AHS in Europe

• EU : very high risk The question is not « if » but « when »

•Need for

- Epidemiovigilance
- •Epidemiosurveillance

European Project

 Call Horizon Europe -SPIDVAC (coordination FLI-Anses) – AHSV-FMDV

Safe Priority Infectious Diseases VACcines

Improved control of priority animal diseases: Novel vaccines and companion diagnostic tests for African horse sickness, peste des petits ruminants and foot-and-mouth disease

ZOONOTIC Arthropod Born flavivirus

Tick Borne Encephalitis Virus (TBEV) and West Nile Virus (WNV)

Flaviviridae family, genus Orthoflavivirus

Tick-borne Encephalitis viruses

- Arbovirus, Tick-borne virus
- Flaviviridae family, Flavivirus genus (// Yellow fever, West Nile, Dengue)
- Enveloped Virus, positive single stranded RNA virus
- 1st description 1931 Germany, 1st isolation 1937 Russia

Cofeeding : Labuda et al, 1993 Vertical transmission : Dobler et al, 2011

Geographic Distribution of TBEV

The geographical distribution of *lxodes* spp, with the western distribution for *l ricinus* and the eastern distribution for *l persulcatus* (Adapted from Lindquist and Vapalahti Lancet 2008)

Main vectors = *I. ricinus*, *I. persulcatus*

Secondary vectors $? \ge 14$ species found positives for TBEV in nature : *D. reticulatus* (prevalence of 10.8% in Poland) ; *Haemaphysalis longicornis*, *H. flava* and *I. nipponensis* (prevalence 0.06%, 0.17%, 2.38% in Korea)

Geographic Distribution of TBEV in Europe

Genetic subtypes

-TBEV-Eu (European) -TBEV-FE (Far Eastern) -TBEV-Si (Siberian)

In France → TBEV-Eu (European)

(Estrada-Pena and de la Fuente, Antiviral Research 2014)

Tick-borne Encephalitis viruses

Disease (Notifiable disease in France – since september 2020)
→ Symptoms of the first phase
Fever, fatigue, muscle pain, headache, nausea and vomiting
→ Symptomatic in 30 % of cases
Flu like disease, encephalitis, meningoencephalitis, cause long-term neurological sequelae

Incubation period* TBEV infection through tick bite: 7-14 days Alimentary transmitted TBE incubation: 3-4 days (*Paulsen et al., 2018)

Vaccination:

5 different vaccines produce with : European subtypes (2 produce by Europe) ; Far-Eastern subtypes (2 produce by Russia, 1 by China) Protection estimated between 96 and 99% for European subtypes

Tick-borne Encephalitis autochtonous cases in Europe (2012 – 2020)

Highest notification rate found in **Baltic countries Estonia, Latvia, and Lithuania, Czechia, Slovenia and Finland**

Administrative boundaries: @ EuroGeographics @ UN-FAO @ Turkstat. The boundaries and names shown on this map do not imply official endorsement or acceptance by the European Union. Map produced on: 28 Jun 2022

Epidemiological cycle of TBEV

Vertical transmission : Dobler et al, 2011

Foodborne zoonotic transmission

Animals can excrete TBEV into milk for 3-14 days, beginning as early as the second or third day post infection *

Milk and milk products contamination

*Van Tangeren et al., 1955; Gresikova et al., 1958, 1959; Lecollinet et al 2020 French cluster under investigation

Milk outbreaks of TBEV in Europe

Slovaquie	2012-2016 (avril à juin en majorité)	110/714/13	Lait ou fromage de chèvre (7/53,8%), lait ou fromage de brebis (5/38,5%), lait ou fromage de vache (1/7,7%)	Dorko et al. 2018
Rép. Tchèque	1997-2008	64/nc/nc	Lait ou fromage de chèvre (56,3%), lait ou fromage de brebis (32,8%), lait ou fromage de vache (10,9%)	Kriz et al. 2009
Hongrie	2007 / août 2011 / septembre - octobre	25/154/1 30/nc/nc	Lait de chèvre Lait de vache	Balogh et al. 2010 Caini et al. 2012
Slovénie	2012 / mai	3/5/1	Lait de chèvre	Hudopisk et al. 2009
Croatie	2015 / mai-juin 2019 / juin	7/10/1 5/nc/1	Lait ou fromage de chèvre Lait de chèvre	Markonovovic et al. 2016 Ilic et al. 2020
Autriche	2008	6/nc/1	Fabrication maison à base de lait de chèvre et de vache	Holzmann et al. 2009
Allemagne	2016 / mai-juin	2/32/1	Lait et fromage de chèvre	Brockmann et al. 2019
Pologne	2017 / juin	4/nc/1	Lait de chèvre	Krol et al. 2019
Estonie	2005 / mai-juin	27/nc/nc	Lait de chèvre	Kerbo et al. 2004
France	2020 / avril - mai	43/nc/1	Fromage de chèvre	Gonzalez et al. 2022
France	2021	nc/nc/nc	Fromage de chèvre	SPF
Autriche	2022 / juin	3/3/1	Lait de chèvre	Mylonaki et al. 2022
France	2022 / septembre	1/1/1	Fromage de brebis	SPF

Buczek et al., 2022

Cluster of Human TBEV cases in Ain department, France

April to June 2020

French department of Ain

44 human suspect TBEV cases

Investigators : National center for arboviruses (Isabelle Leparc-Goffart), ARS

 33 positive human samples confirmed
→ (ELISA + VNT test)

41 cases reporting consumption of unpasteurized goat cheese from the same goat farm → RT-qPCR

TBEV have been detected in cheese (CNR)

Food contamination was confirmed

Gonzalez et al., 2022

Animal and animal products survey (Anses)

Sera and EDTA blood from the TBEV-infected goat farm (serial samplings of 56 goats)

→ Detection of TBEV antibodies in sera (ELISA + VNT)
→ Absence of viremia (real-time PCR, Gondard et al 2018)

Milk from the TBEV-infected goat farm (serial samplings of 56 goats)

→ Detection of TBEV virus in raw milk samples (real-time PCR, Gondard et al 2018)

→ Investigation of TBEV in cheese samples under progress (real-time PCR, Gondard et al 2018)

Environmental survey (Anses)

June 2020 _ Ticks and Rodents collection in the pasture used by the goat farm

→ Detection of TBEV virus in tick samples (RT-qPCR, Gondard et al 2018)
→ No detection of TBEV in rodents but too few samples analyzed

Investigators : Laure Bournez & Franck Boué (Anses, Nancy), Sandrine Lacour, Sara Moutailler (LSAn, Anses, Maisons-Alfort)

Drivers of increased incidence of TBE in humans

- Changing of behavior/activities: more contacts with the pathogen in high-risk areas (forest and recreational activities, etc)
- > Changing of eating habits : consumption of minimally processed and locally produced foods
- > Changing of landscape in the context of global change (modification of humidity, temperature, etc)
- Information on vectors (their control, competency, etc) and animal reservoirs (wild species inventory, etc)

Conclusion : TBEV in Europe

> Important disease affecting travellers, forest professionals, general public

- Expansion of TBE accros Europe: increase of TBE-reported cases by EU Member States especially in Western Europe
- Underestimation of TBEV-infected cases (transmission cycle, training of professionals, diagnostic methods, etc)

"One health" approach for WNV surveillance in the EU

West Nile virus (WNV) infection is notifiable in humans and equids in the European Union

WNV Transmission cycle

Geographical distribution

Originating from Africa

Discovered in 1937 in Uganda

Circulating on the 5 continents (except Antartica)

Avifauna: key role in long distance transport of the virus and local amplification

Viruses regularly introduced from the African cradle

In Europe: rare and isolated mortalities (corvids, other passerines, diurnal raptors)

Disease in birds

- Weakness, lethargy
- Emaciation
- Sedentary lifestyle
- Difficulty balancing, shaking
- Difficulty walking, perching or flying
- Inadequate response to danger

More than 250 species infected in the USA but some are resistant to the infection (Galliformes (chicken, turkey), Pigeons, Cranes)

72
Disease in Horses

Incubation period: 3 – 15 days

Neurological symptoms (WNND) : 1-10% Lethality rate: 20-57% (horse), 10% (humans) Ataxia, Paralysis, etc.

Mild illness: < 20% Flu-like symptoms (West-Nile Fever)

Subclinical infection: 70-79%

Dr P. Garcia, 2015

73 Kramer et al, Lancet, 2007 Vaccins and treatments

No antiviral treatment available

Symptomatic and comfort treatment (infusion, anti-inflammatory, protection and care against selfharm...)

3 inactivated vaccins available in Europe

Disease in Horses

Short viremia (3 to 7 days post-infection)

Schematic representation of the typical kinetics of flaviviral infections (adapted from Goncalves A. et al., 2017)

Diagnostic of WNV infection

(adapted from Goncalves A. et al., 2017)

Diagnostic of WNV infection

(adapted from Goncalves A. et al., 2017)

Diagnostic of WNV infection

(adapted from Goncalves A. et al., 2017)

Monitoring system implemented in the EU

Active surveillance

WNV in Europe

> 1996 et 1998: Emergence of WNV lineage 1 in Romania et Italy

> 2004: Emergence de WNV lineage 2 in Hungury

Rapid expansion of the geographical distribution of WNV-lineage 2 in Greece (2010), Italy, Romania, Spain

WNV in Europe

Since 2010, increase of equine and human outbreaks incidence

- 2018, geographical extansion to Northern and central Europe
 - First equine and bird cases detected in Germany in 2018
 - First cases dtected in wild avifauna in The Netherlands in 2020
 - First case detected in the UK in 2022

⁸¹ Farooq Z. et al, 2022, The Lancet

Extension of WNV circulation in Europe

(source : Commission Européenne ADIS, eCDC)

Identification of environmental factors involved in WNV increased incidence

Correlation between WNV epidemics and climatic conditions: temperature, rainfall and vegetation

2018 and 2022: Abnormal climatic conditions

- Warm long springs
- Dryness
- flow

Conclusions: need to move towards more integrated One Health-type surveillance

Evolution of WNV epidemiology in Europe due to climate change

Consider a longer transmission season?

Convergent action of operational research alongside surveillance, involving all stakeholders: anticipation and preparation for future emergencies

Anticipating emerging infectious disease epidemics: an informal consultation 1-2 December 2015, Geneva

Acknowledgments

Commission européenne

