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Modeling of a Thick Cylindrical Pneumatic Leg for a Soft Parallel
Robot

Zeinab Awada1, Hamza El Jjouaoui1, Marc Gouttefarde1, Yassine Haddab1

Abstract— Soft manipulators have experienced a significant
development over the past few years thanks to their versatility,
compliance, and safety. Soft manipulators made of hyperelastic
materials present a modeling challenge due to their combined
geometric and material nonlinearity, alongside their leveraged
compliance. This paper considers a thick cylindrical pneumatic
actuator in the context of a soft parallel robot. The input
pressure and the external axial force to which it is subjected
are modeled. The analytical solutions for these models are
then derived using the Yeoh strain energy density function.
The advantage of using the Yeoh material model is guaran-
teeing the existence of an analytical solution regardless of the
material used for the fabrication of the cylindrical actuator.
The accuracy of the models is evaluated using Finite Element
Analysis, and a sensitivity analysis is also carried out to test
their robustness. Finally, experimental results are provided and
the importance of the material characterization is highlighted.
The purpose of this work is to lay the foundation for future
studies in modeling a soft parallel robot with three soft thick
cylindrical “legs”.

I. INTRODUCTION

With the increasing demand for safe and lightweight ma-
nipulators, soft robotics have recently witnessed a remarkable
progress in various fields. For example, soft manipulators are
particularly promising in agriculture. For harvesting fragile
crops, soft grippers have been proposed [1]. Soft grippers
have also been used in underwater tasks, and bio-inspired soft
robotics have empowered ocean exploration and underwater
operations [2]. From the depths of the ocean to the human
body, soft manipulators have also been developed for medical
applications such as minimally invasive surgery [3].

The above mentioned applications share common design
specifications: Safety, compliance, and adaptability. Soft
robots meet these requirements thanks to their design struc-
ture, material composition, or both. For example, among
other material choices, some soft robots meet the above
design requirements by using hyperelastic or Green elastic
material. This leverages the compliance of the structure
thanks to the inherent microstructural-level adaptability of
the material used. Indeed, the nonlinear stress-strain relation
of hyperelastic materials allows them to exhibit strains as
high as 1000%. However, the nonlinearity of these materi-
als makes their modeling a challenging task. The lack of
analytical models notably complicates the design of soft
manipulators and leads to non-intuitive design choices.

Starting from here, this paper presents the modeling of
a thick cylindrical hyperelastic pneumatic actuator. This
actuator serves as a soft link for a 5 degree-of-freedom
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soft parallel robot (SPR) shown in Fig. 1 and is there-
fore modelled under the corresponding working conditions.
Asides to the internal pressure, each pneumatic actuator
might be subjected to an external pressure at its lateral sides,
especially during underwater operations. A preliminary study
with simplifying assumptions is considered where the weight
of the platform of the SPR along with external loads are
only considered as an external axial force acting on the
three thick cylindrical pneumatic actuators. Thick cylindrical
actuators are chosen over thin ones due to their ease of
fabrication. Simultaneously, the mathematical modeling of
thick actuators is more complex than that of thin actuators.

In [4], a thick cylindrical actuator is studied. The internal
pressure and the external axial force are expressed as a
function of complex integrals of the strain energy density
function (or material model) of the hyperelastic material
used. It is later pointed out in [5] that there are almost no
analytical solutions for the stress analysis of such a structure
mostly due to the mathematical complexity of material
models. Therefore, in [4] and [5], a stability analysis is
carried out on a thick cylindrical actuator using four material
models: Neo-Hookean, Varga, Mooney-Rivlin, and Ogden.
The first two are mathematically simple, but they are only
accurate for small strains [6, p. 242]. The Mooney-Rivlin
model is compatible with small to medium strains and is
too simple to characterize certain hyperelastic materials [6,
p. 243]. The Ogden model, renowned for its accuracy even
at high strains, incorporates exponential material constants.
Although the authors in [4], [5] have considered mathe-
matically simple material constants, this assumption does
not extend to hyperelastic materials commonly used in soft
robotics. Extensive literature reviews indicate that within the
domain of soft manipulators utilizing hyperelastic materials,
the exponential material constants of the Ogden model take
irrational values [7]–[9]. These irrational values lead to very
complex or non-existent analytical solutions for the pressure
and axial force models as demonstrated in Section III.
Therefore, the first contribution of this paper is to propose
analytical solutions for the pressure and the axial force
models regardless of the hyperelastic material used. These
models are derived in Section III from the Yeoh material
model which is accurate for large deformations [10] and is
one of the most common strain energy density functions to
characterize hyperelastic materials used in soft robotics [7]–
[9]. The pressure and axial force models are expressed as
a function of the axial and radial deformations of the thick
cylindrical actuator. Their detailed derivation and proof is
provided in Section II.
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Fig. 1. A soft parallel robot with 3 soft thick cylindrical pneumatic actuators
serving as links between the platform and the base in (a) rest configuration
and in (b) actuated configuration .

Several works have studied the bifurcation of thick cylin-
drical actuators [4], [5], [11]–[13] by plotting the pressure
model for a fixed axial deformation or a fixed axial force.
Moreover, the axial force is always calculated for a constant
axial deformation. First, this does not correspond to the work
conditions of an SPR where the axial deformation is either
unconstrained or dependent on the variable applied axial
force. Second, none of these works assess the accuracy and
robustness of the pressure and axial force models. Therefore,
the second contribution of this paper is to evaluate the
accuracy of these models using FEA and experimental results
and to assess their robustness by carrying out a sensitivity
analysis towards the deformations and the material constants
of the cylindrical actuator.
This paper is organized as follows: Section II presents the
models of the pressure and axial force of the cylindrical
actuator. In Section III, the analytical solutions to the pre-
vious models are obtained using Yeoh strain energy density
function which is compared to the Ogden material model.
The experimental setup used to validate the proposed models
along with the simulation and experimental results models
are presented in Section IV. The work is finally concluded
in Section V.

II. MODELING OF A THICK CYLINDRICAL
HYPERELASTIC PNEUMATIC ACTUATOR

In this section, a thick cylindrical hyperelastic actuator
of an SPR is modeled where the differential pressure and
the applied axial force are expressed as a function of the
radial and axial deformations of the actuator. The cylinder
is closed at both ends with only the lower end fixed. It is
characterized by an initially undeformed length L (cavity
length l), internal radius Rin, and external radius Rex as
shown in Fig. 2(a). It is actuated by an internal pressure,
pin, and subjected to an external pressure, pex, acting on its
lateral walls. The external pressure, pex, mirrors interactions
with the surrounding as when working underwater or in a
compact environment that exerts a lateral load on the external
walls of the actuator. Moreover, a simplifying assumption
is made where external loads are represented by an axial
force, fex. To model the actuator, a cylindrical coordinate
basis, {er, eθ, ez}, is associated to the reference undeformed

fex

(a) (b)

fixed end

Rin

R

Rex

Z = 0

Z = L

∆rmax

Z = Z1

Z = Z2

l

er

ez eθ

⊗: eθ, into the page

Fig. 2. (a) Initially undeformed thick cylinder, fixed at its lower end and
subjected to internal pressure pin, external pressure pex, and external axial
force fex. (b) Thick cylinder radially and axially deformed under the effect
of pin, pex, and fex.

configuration where each material point is described by a
set of 3 coordinates (R,Θ, Z). In what follows, uppercase
variables (R,Θ, Z), will be used to refer to material points
in the undeformed configuration and lowercase ones (r, θ, z)
to material points in the deformed configuration.

When subjected to an internal pressure pin, external
pressure pex, and external axial force fex, the actuator
deforms radially and axially. As shown in Fig. 2(b), the
radial deformation is non-uniform along ez . It is zero at
Z = 0 because the lower base of the cylinder is fixed and
then gradually increases to reach a maximum, ∆rmax, at
Z = Z1. It may then remain constant over a considerable
portion of the cylinder, Z1 ≤ Z ≤ Z2. However, since
the considered cylinder is closed at both ends, the radial
deformation decreases between Z2 ≤ Z ≤ L. Therefore, the
radial coordinate after deformation reads

r = f1(R,Z),
∂f1
∂Z

= 0 ∀Z ∈ [Z1, Z2] (1)

The axial deformation is considered constant in the radial
direction. This is because the cross-section of the actuator is
considered to remain planar due to the absence of axial shear.
It is further assumed that, for Z ≥ Z1, the axial deformation
is homogeneous along the axial direction. Therefore, the
axial coordinate after deformation reads

z = f2(Z), f2(Z) = λzZ ∀Z ∈ [Z1, Z2] (2)

Finally, in the absence of torsional effects, the azimuth is
constant, i.e.

θ = Θ (3)

Therefore, in cylindrical basis, the deformation matrix F
reads

F =


∂r
∂R

∂r
R∂Θ

∂r
∂Z

r∂θ
∂R

r∂θ
R∂Θ

r∂θ
∂Z

∂z
∂R

∂z
R∂Θ

∂z
∂Z

 =

∂f1
∂R 0 ∂f1

∂Z
0 r

R 0

0 0 ∂f2
∂Z

 (4)

Since the region Z1 ≤ Z ≤ Z2 dominates the deformation of
the cylinder, especially at large deformations, attention can



be limited to this region and hence ∂f2
∂Z = λz and F becomes

a diagonal matrix (since ∂f1
∂Z = 0). The diagonal terms are

called the principal stretches and read

λr =
∂f1
∂R

, λθ =
r

R
, λz =

z

Z
(5)

In addition, the Cauchy stress tensor, σ, over Z1 ≤ Z ≤ Z2

is

σ =

σr 0 0
0 σθ 0
0 0 σz

 (6)

where σr, σθ, and σz are the radial, hoop, and axial stresses,
respectively. Knowing that pin and pex act on the internal and
external lateral faces of the cylinder, respectively, a boundary
condition on σr is derived as

σr = −pin at r = rin

σr = −pex at r = rex
(7)

Moreover, an isochoric deformation, i.e. incompressible ma-
terial, is considered, which implies a conservation of volume
throughout deformation [6, p. 222]. For example, the volume
comprised between Rin and R and the axial coordinates 0
and Z is conserved after deformation, hence

z(r2 − r2in) = Z(R2 −R2
in) (8)

The ratio between the undeformed volume, V0, and the
current deformed volume, V , is equal to the determinant
of the deformation matrix F as demonstrated in [6, p. 74].
Therefore, the conservation of volume can be alternatively
expressed as

λrλθλz = 1 (9)

Applying Cauchy’s first law of motion, the divergence of
the stress tensor is zero ∇ · σ = 0, [6, pp. 141-145], hence

r
dσr

dr
+ σr − σθ = 0 (10)

For an incompressible isotropic hyperelastic material with
strain energy density function W (λr, λθ, λz), the principal
stresses read [6, pp. 222-225]

σi = −pin + λi
∂W

∂λi
∀i = r, θ, z (11)

Using Eq. (9) and introducing the notation Ŵ (λθ, λz) =
W ((λθλz)

−1
, λθ, λz), the partial derivatives of W are ex-

pressed as functions of the partial derivatives of Ŵ as follows

∂Ŵ

∂λθ
=

∂W

∂λr

∂λr

∂λθ
+

∂W

∂λθ

∂λθ

∂λθ
+

∂W

∂λz

∂λz

∂λθ

∂Ŵ

∂λθ
= −λz

−1λθ
−2 ∂W

∂λr
+

∂W

∂λθ

λr
∂W

∂λr
= λθ

∂W

∂λθ
− λθ

∂Ŵ

∂λθ

(12)

Using Eq. (12), σr − σθ and σr − σz are evaluated

σr − σθ = −λθ
∂Ŵ

∂λθ
(13)

σr − σz = −λz
∂Ŵ

∂λz
(14)

To express pin in terms of λθ, λz , and pex, Eq. (8) is used
to derive dr

r as a function of λθ and λz . Thus, the following
relation holds

R =
(
λz(r

2 − r2in) +R2
in

) 1
2

R

r
=

(
λz(r

2 − r2in) +R2
in

r2

) 1
2

λθ =

(
r2

λz(r2 − r2in) +R2
in

) 1
2

(15)

Finally, the following relation between dλθ and dr is derived
from Eq. (15)

r
dλθ

dr
= λθ − λzλθ

3 (16)

Using Eq. (7), denoting ∆p = pin − pex, and substituting
Eq. (13) and Eq. (16) in Eq. (10), the relation between ∆p,
λθ, and λz is obtained

r
dσr

dr
+ σr − σθ = 0

dσr =
dr(σθ − σr)

r

∆p =

∫ rex

rin

λθ

r

∂Ŵ

∂λθ
dr

∆p =

∫ λin

λex

(λθ
2λz − 1)−1 ∂Ŵ

∂λθ
dλθ

(17)

where λin = rin
Rin

and λex = rex
Rex

.
As shown in Fig. 3, the force equilibrium in the axial
direction reads

fiz = pinπr
2
in + fex (18)

where fiz is the internal force generated at the cross-section
of the cylinder and is defined by fiz = 2π

∫ rex
rin

σzrdr. Along
with Eq. (18), the expression of fiz can be used to derive
that of fex. Using Eq. (16), fiz is expressed in terms of λθ

and λz as follows

fiz = 2π

∫ λex

λin

σz
r2

λθ − λzλθ
3 dλθ

= 2π

∫ λin

λex

σz
λθr

2

λ2
θ(λzλ2

θ − 1)
dλθ

(19)

From the conservation of volume Eq. (8), the following
property is deduced

R2(λ2
θλz − 1) = R2

in(λ
2
inλz − 1) = R2

ex(λ
2
exλz − 1) (20)

Substituting r2

λ2
θ
= R2 in Eq. (19), and using the property in

Eq.(20), fiz is obtained

fiz = πR2
in(λ

2
inλz − 1)

∫ λin

λex

2σzλθ

(λzλ2
θ − 1)2

dλθ (21)
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Fig. 3. Section of a closed cylinder with external axial force fex acting
on its upper surface, actuated by pin, and having an induced internal axial
force fiz .

Using Eq. (14) and Eq. (10), σz is expressed as follows

σz = −pex + λz
∂Ŵ

∂λz
−
∫ λθ

λex

∂Ŵ
∂λθ

(λzλ2
θ − 1)

dλθ (22)

Substituting σz in Eq. (21) leads to

fiz

πR2
in(λ

2
inλz − 1)

=

∫ λin

λex

2λz
∂Ŵ
∂λz

λθ

(λzλ2
θ − 1)2

dλ−
∫ λin

λex

2pexλθ

(λzλ2
θ − 1)2

dλθ

−
∫ λin

λex

2λθ

(λzλ2
θ − 1)2

(

∫ λθ

λex

∂Ŵ
∂λθ

(λzλ2
θ − 1)

dλθ)dλθ

(23)

Using integration by parts to evaluate the last term of the
above integral,

∫
u′v = uv −

∫
uv′, where u =

λ2
θ

(λzλ2
θ−1)

and v =
∫ λθ

λex

∂Ŵ
∂λθ

(λzλ2
θ−1)

dλθ, the expression of fiz is

fiz
πR2

in

= (λ2
inλz − 1)

∫ λin

λex

2λz
∂Ŵ
∂λz

− λθ
∂Ŵ
∂λθ

(λzλ2 − 1)2
λθdλθ

+ pinλ
2
in − pexλ

2
ex

R2
ex

R2
in

(24)

Referring to Eq. (18), the expression of the external axial
fex is given by

fex = πR2
in(λ

2
inλz − 1)

∫ λin

λex

2λz
∂Ŵ
∂λz

− λθ
∂Ŵ
∂λθ

(λzλ2
θ − 1)2

λθdλθ

− pexπλ
2
exR

2
ex

(25)

Eq. (25) shows that an increase in the axial deformation
and its corresponding impact on the strain energy density
function contributes to the axial force and vice versa for the
radial deformation.

III. ANALYTICAL SOLUTIONS USING YEOH STRAIN
ENERGY DENSITY FUNCTION

The pressure and axial force models in Eq. (17) and
Eq. (25) respectively, are expressed as a function of an
integral of the strain energy density function. According to
[4], [5], the Ogden material model is the most accurate
in representing stability compared to the Neo-Hookean,

Varga, and Mooney-Rivlin models. In terms of the principal
stretches, λr, λθ, and λz , the Ogden model reads

W =

N∑
i=1

µi

αi
(λαi

r + λαi

θ + λαi
z − 3) (26)

where N is the polynomial order and µi and αi are material
constants. As shown in [7]–[9], the exponential material
constants of the Ogden models of the hyperelastic materials
frequently used in soft robotics are irrational numbers. This
leads to the non-integrability of Eq. (17) and Eq. (25). For
example, the Ogden model of Ecoflex™ 0050- Smooth-
on Inc. is µ1 = 0.7363, α1 = 2.858, µ2 = 0.8074, α2 =
2.604, µ3 = −1.526, and α3 = 2.740 [8]. In this case, the
software Maple gives a complex analytical solution for the
pressure model with more than 800 terms. As for the axial
force, Maple issues an error indicating the excessive length
of the analytical solution. Primarily, the complexity of the
expressions is due to the irrational exponential material con-
stants, αi, present in the Ogden model. We therefore adopt
the Yeoh model which is abundantly used to characterize
hyperelastic materials [7]–[9] and is known to be accurate
especially for large deformations of rubber [10].

The strain energy density function reads [14]

W =

N∑
i=1

Ci

(
λ2
r + λ2

θ + λ2
z − 3

)i
(27)

where N is the polynomial order and Ci are the material
constants. For a third-order Yeoh model (i = 3), the pressure
and axial force analytical solutions are computed using
Maple software as a function of C1, C2, and C3. They read
respectively

∆p = p̃(λin, λz)− p̃(λex, λz) (28)

fex = f̃(λin, λz)− f̃(λex, λz) (29)

where the expressions of p̃(λθ, λz) and f̃(λθ, λz) are given
in [15].

IV. EXPERIMENTAL SETUP AND RESULTS

A. Materials and experimental setup

For the FEA simulations and the experiments, Ecoflex™
0050- Smooth-on Inc. is used. Several Yeoh models exist to
describe its strain energy density function [8], [16]–[19]. As
shown in Fig. 4, the uniaxial stress-strain curves of the five
models are distinct. The variation of the material behavior
depends on its storing conditions, mixing composition, and
fabrication process. For the FEA simulation, the first model
(blue curve) is used and is referred to as the reference model
hereafter: C1r = 15.8, C2r = -0.48, and C3r = 0.113 kPa.
To evaluate the performance and the accuracy of the model,
the deformations of the cylindrical pneumatic actuators are
measured when it is pressurized (cf. Fig. 5). A laser sensor
(Keyence LK-H152, range = 80 mm, resolution = 0.25 µm)
measures the axial deformation at the top end and another
laser sensor (Acuity AR100, range = 50 mm, resolution =
5 µm) measures the radial deformation at the middle of the
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Fig. 4. Stress-strain curves of Ecoflex-0050 for uniaxial tests fitted to 2nd
and 3rd order Yeoh models gathered from literature.

cylinder. Moreover, an axial force is applied and measured
using a force sensor (Sauter, resolution = 0.02 N).

B. FEA simulation results

A thick cylinder of internal radius Rin = 4 mm, external
radius Rex = 6 mm, and cavity length l = 30 mm is
considered. Using ANSYS and following [20], the cylinder
is simulated using Static Structural Analysis. The following
settings are used: The actuator is meshed by 1 mm tetrahedral
elements of quadratic order and nonlinear mechanics prefer-
ence. Large deflections and auto-time stepping are enabled
with 10 ms minimum time step and 50 ms maximum time
step. The results of two simulations are presented in this
section: First, the actuation pressure is increased from 0 kPa
to 45 kPa over 100 steps and in the absence of an external
force. Then, for the same actuation pressure, a ramp external
force fex of slope fmax = 0.35 N/step is applied.

1) Accuracy: As shown in Fig. 6(a)-(b), in the absence
of fex, the pressure model presented in Eq. (17) aligns with
the FEA results with a maximum error of 7.3%. However, in
the presence of fex two phases are identified: (1) The first is
defined at the state of deformation (λex < λ∗

ex, λz < λ∗
z) or

∆p < 6.4 kPa where the model tends to underestimate the
pressure. (2) The second is defined at (λex ≥ λ∗

ex, λz ≥ λ∗
z)

or ∆p ≥ 6.4 kPa where the model converges back to the
FEA results. In the first phase, the tensile force dominates the
deformation of the actuator. Therefore, for the same actuation
pressure, the axial stretch increases more than the radial
stretch. Hence, the model in Eq. (17) tends to underestimate
the required actuation pressure to reach this state of deforma-
tion. Multiple simulations are conducted with progressively
higher values of fmax, revealing a corresponding increase
in the value of the pair (λ∗

ex, λ
∗
z), thereby supporting the

earlier explanation. For ∆p > 6.4 kPa, the actuation pressure
becomes more dominant than fex and the error between the
pressure model and the FEA results decreases to 6.4%.
Even though it predominantly governs the actuator deforma-
tion, the force model described in Eq. (25) underestimates
fex for (λex < λ∗

ex, λz < λ∗
z) as shown in Fig. 6(d)-(e).

Power supply

Pressure Sensor

Syringe

Laser Sensor 1

Laser Sensor 2

Fig. 5. Experimental set-up used to characterize a cylindrical pneumatic
actuator.

This discrepancy can be elucidated by closely examining
the force model, which comprises two dominant terms: One
as an integral of +λz

∂Ŵ
dλz

and the other as an integral of
−λz

∂Ŵ
dλz

. In essence, axial deformation and its impact on the
strain energy function increase the mathematical value of
the axial force, while an increase in radial stretch decreases
it. However, upon examining the values of the integrals
calculated by these two components, it becomes apparent that
the second term contributes more significantly to the value
of fex. Consequently, even though the axial force surpasses
the pressure, the positive value produced by the first integral
fails to compensate for that produced by the second one. For
(λex ≥ λ∗

ex, λz ≥ λ∗
z), the pressure becomes more dominant

and hence the second integral term becomes positive and
the force model converges towards the FEA results but with
an increasing error that reaches a maximum of 10.6% at
∆p = 45 kPa and fex = 35 N.

Therefore, the FEA suggest that in the absence of fex the
model presented in Eq. (17) is accurate with a maximum er-
ror of 6.4%. In the presence of an axial force and beyond the
deformation state (λ∗

ex, λ
∗
z), the pressure and force models

are accurate up to an error of 6.4% and 10.4% respectively.
Before this state of deformation, the models underestimate
the values of ∆p and fex. This calls for integrating a coupling
factor in Eq. (17) and Eq. (25) to represent the influence of
the axial force and the pressure on each other.

2) Robustness and sensitivity analysis: The robustness of
the two models, Eq. (17) and Eq. (25), to the axial stretch λz ,
and the radial stretch at the external wall λex, is evaluated
in Fig. 6(c)-(f). To measure the impact of λex on ∆p, λz is
held constant while λex is varied and vice versa.
Fig. 6(c) suggests that λex has a more significant impact on
the pressure model than λz . The sensitivity of the pressure
model to variations in λex is described by the relationship
∂∆p
∂λex

= αeβλex , where α > 0 and β > 0, derived through
data fitting. On the contrary, as indicated by Fig. 6(e), the
force model is more responsive to variations in the axial
stretch λz . This sensitivity is described by a second degree
polynomial ∂fex

∂λz
= αλ2

z + βλz + γ, where α > 0 and
γ > 0, derived through data fitting. Moreover, fex exhibits
little variation when λex ≤ 2, suggesting a minor impact of
λex on fex. However, as λex surpasses 2, its influence on fex
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Fig. 6. FEA-based validation of (a)-(b) the pressure and (d)-(e) the external axial force models plotted as a function of (a)-(d) the radial stretch at the
external wall λex and (b)-(c) the axial stretch λz . The pressure model is evaluated in (a)-(b) in the absence (solid line) and presence (dotted line) of an
external axial force fex. (c)-(f) Pressure and force model sensitivity to λex(blue) and λz (green).
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Fig. 7. Maximum variations εmax for ∆p and fex when the three Yeoh
material constants C1, C2, and C3 are altered by ± 30% with respect to
the reference values: C1r = 15.8, C2r = 0.48, and C3r = 0.113 kPa. εmax

is calculated with respect to a reference ∆p and fex corresponding to the
reference values C1r , C2r , and C3r .

becomes more pronounced. Therefore, the robustness of the
pressure model drastically decreases with high variations of
the radial stretch whereas the robustness of the force model

is subject to variations of the axial stretch.
Moreover, as reported in our work [15], the Yeoh material
constants, C1, C2, and C3, dominate the pressure and force
models. According to the literature reviews and Fig. 4, the
two material models of Ecoflex™ 0050 having the closest
stress-strain behavior have a percentage difference of: 20%,
280%, and 100% on C1, C2, and C3 respectively. The in-
consistency in the material characterization calls for studying
the effect of the three material constants on the pressure and
force models. Therefore, in an optimistic outlook, the three
material constants are only varied by ± 30% with respect
to the reference model: C1r = 15.8, C2r = −0.48, C3r

= 0.113 kPa. The corresponding detailed variations of the
pressure and force models are reported in [15] but for the
sake of brevity, only the maximum variations of the models
are reported in Fig. 7. The following points are concluded
from this study: (1) The maximum variations of the pressure
and force models εmax exhibits a linear relation with the
variations of C1, C2, and C3. This relation is symmetric with
respect to the y-axis. For example, a -10% decrease and a
+10% increase in any of the material constants yields the
same εmax. (2) The pressure model ∆p is the most sensitive
to variations in C1. A 30% increase in C1 leads to a 30%
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Fig. 8. (a)-(b) Experimental results (red curve) and pressure model computed using the reference material model (blue curve) for a pressurized cylindrical
actuator in the absence of an axial force. (c)-(d) Experimental results (red in the absence of fex and magenta in the presence of fex) along with the
pressure model when a new Yeoh model is considered C1 = 19, C2 = 0.9, and C3 = -0.00475 kPa (blue curve in the absence of fex and solid black
curve in the presence of fex). The pressure model in the presence of an axial force is re-evaluated using Yeoh constants computed using an optimization
algorithm, referred to as OYCM in the legend (dotted black line). (e)-(f) Experimental results for the external axial force (magenta) and the force model
computed using C1 = 19, C2 = 0.9, and C3 = -0.00475 kPa (solid black line) and the optimized Yeoh constants (dotted black line).

and 21.6% increase on ∆p and fex respectively. (3) On the
other hand, fex is mostly impacted by C3. A 30% increase
in C3 leads to a 24% increase in both the pressure and the
axial force model. (4) Both models are equally and lightly
impacted by C2. A 30% increase in C2 leads to a 5% increase
in the force and pressure model.

C. Experimental results

Using the set-up in Fig. 5, the thick cylindrical actuator
is pressurized, initially without an external axial force, and
the resulting pressure is plotted versus the deformations
λex and λz in Fig. 8. As seen in Fig. 8(a)-(b), using the
reference Yeoh model chosen in Section IV (C1r = 15.8,
C2r = −0.48, and C3r = 0.113 kPa), the pressure model
diverges from the experimental results starting at the point
(λex = 2.1, λz = 1.35). Beyond this state of deformation, the
model overestimates the required pressure. For the highest
recorded deformation, the pressure calculated with the model
is 8 times greater than the experimentally measured pressure.
For this reason, the Yeoh model close to the initially chosen
one is now considered (red curve in Fig. 4 with C1 = 19,

C2 = 0.9, and C3 = -0.00475 kPa). The new computed
pressure values with the new Yeoh constants are shown in
Fig. 8(c)-(f) (solid blue and solid black curves in Fig. 8(c)-(d)
and solid black curves in Fig. 8(e)-(f)). Fig. 8(c)-(d) shows
that the new pressure model computed in the absence of an
external axial force (solid blue curve) converges towards the
experimental results. The curves from the pressure model and
the experiments exhibit a similar pattern, albeit with an av-
erage deviation of 13.3%. Another experiment is conducted
where the cylindrical actuator is simultaneously pressurized
and subjected to an external axial load. The results of the
pressure and force models are reported in Fig. 8(c)-(f). The
pressure and force models (solid black curves in Fig. 8(c)-
(f)) grossly overestimate the experimental values (magenta
curves in Fig. 8(c)-(f)). Both models yield values at least
2 times the experimental ones with errors over 100% along
the range of deformation of the actuator. This significant
error suggests that the new chosen Yeoh model might not
be the most suitable to describe the material composing the
actuator. Therefore, an optimized Yeoh model is computed
using a basic optimization function (lsqnonlin in Matlab).



The function takes as input the pressure recorded when an
axial force is applied, the corresponding deformations, and
the computed model. The optimized Yeoh constants are: C1

= 14.503, C2 = -0.235, and C3 = 0.003 kPa. Obviously,
the pressure model computed using the optimized Yeoh
constants (dotted black curves in Fig. 8(c)-(d)) gives values
very similar to the experimental results (average error of
9%). However, the force model (which is not used in the
optimization algorithm) calculated with the optimized Yeoh
constants (dotted black curves in Fig. 8(d)-(f)) approaches
the experimental results more than the previous one (solid
black curve in Fig. 8(d)-(f)) with an average error of 23.6%.
In what have preceded, we assumed that the mismatch
between the Ecoflex™ 0050 used in the experiments and the
material models provided in the literature reviews is the main
reason for the significant errors that the pressure and force
models. To verify this assumption, we carried out in [15]
a preliminary comparative study on the behavior of four
geometrically-identical cylindrical actuators fabricated from
two different boxes of Ecoflex™ 0050, each of which has
been subjected to different storing conditions. All actuators
were pressurized and the plots of ∆p versus λex and λz

are given. Although the four curves had a similar shape,
there was a constant shift between them. For example, the
pressure required for actuator 1 is almost always 5 kPa more
than that of actuator 2 to reach the same deformation. This
result demonstrates the impact of the state of the material
used on the experimental results. The comparative study done
in [15], the inconsistent and diverse material models found in
literature reviews, and their impact on the pressure and axial
force models suggest that the material used for the fabrication
of the actuators should be characterized beforehand for an
informative experimental evaluation.

V. CONCLUSION

In this paper, the pressure and axial force models of
a thick cylindrical pneumatic actuator are presented along
with their detailed proofs. The analytical solutions for these
models are derived using the Yeoh strain energy density
function. Moreover, an accuracy assessment is done using
FEA revealing that the pressure model is accurate up to 7.3%
in the absence of an axial force. However, in the presence of
an axial force, both the pressure and axial force models tend
to underestimate the computed values with FEA for small
deformations. For higher levels of deformations, a 6.4% and
10.6% errors are obtained for the pressure and axial force
models, respectively. In addition, a sensitivity analysis proves
that both models are highly sensitive to the constants of the
Yeoh material model. The pressure model is also affected by
the radial deformation while the axial force model is sensitive
to the axial deformation. Finally, an experimental evaluation
demonstrates the importance of the accurate characterization
of the material on the experimental and the analytical results.
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