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ABSTRACT
Molecular sequence variation at a locus informs about the evolutionary history of the sample and past
population size dynamics. The Kingman coalescent is used in a generative model of molecular sequence
variation to infer evolutionary parameters. However, it is well understood that inference under this model
does not scale well with sample size. Here, we build on recent work based on a lower resolution coalescent
process, the Tajima coalescent, to model longitudinal samples. While the Kingman coalescent models the
ancestry of labeled individuals, we model the ancestry of individuals labeled by their sampling time. We
propose a new inference scheme for the reconstruction of effective population size trajectories based on this
model and the infinite-sites mutation model. Modeling of longitudinal samples is necessary for applications
(e.g., ancient DNA and RNA from rapidly evolving pathogens like viruses) and statistically desirable (variance
reduction and parameter identifiability). We propose an efficient algorithm to calculate the likelihood and
employ a Bayesian nonparametric procedure to infer the population size trajectory. We provide a new MCMC
sampler to explore the space of heterochronous Tajima’s genealogies and model parameters. We compare
our procedure with state-of-the-art methodologies in simulations and an application to ancient bison DNA
sequences. Supplementary materials for this article are available online including a standardized description
of the materials available for reproducing the work.
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1. Introduction

Inference of population size dynamics and other evolutionary
parameters from molecular sequence data is an important prob-
lem in evolutionary biology and molecular epidemiology of
infectious diseases (Ho and Shapiro 2011; Volz, Koelle, and Bed-
ford 2013; Cappello et al. 2022). Phylogenetic models account
for the dependence among n DNA sequences Y and models
observed variation through two stochastic processes: an ances-
tral process of the sample represented by a genealogy g, and a
mutation process with a given set of parameters μ that, condi-
tionally on g, models the phenomena that have given rise to the
sequences.

A standard choice for modeling g is the Kingman n-
coalescent, (Kingman 1982a, 1982b), a model that depends on a
parameter called effective population size (Ne(t))t≥0 (henceforth
Ne = (Ne(t))t≥0), a measure of genetic diversity over time.
Inference of Ne has important applications in many fields, such
as genetics, anthropology, and public health. To give an example
of the applications that can be handled with our proposal, we
analyze ancient samples of bison in North America (Froese et al.
2017), revisiting the question of why the Beringian bison went
extinct (Shapiro et al. 2004). Reproducing Shapiro et al. (2004)
analysis with a new dataset is interesting in light of the growing
evidence of an arrival of humans in North America earlier
than previously estimated (Bourgeon, Burke, and Higham 2017;
Becerra-Valdivia and Higham 2020).

CONTACT Julia A. Palacios juliapr@stanford.edu Department of Statistics, Stanford University, Stanford, CA.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

In this article, we assume the infinite sites mutation (ISM)
model in which multiple mutations never occur at the same
nucleotide position (site). A mutation under this model par-
titions the sample into sequences carrying the mutation and
sequences not carrying the mutation. A consequence is that only
a subset of the genealogical space has positive likelihood, making
the ISM model computationally attractive. Recent work exploits
this advantage (Speidel et al. 2019).

Standard Bayesian phylogenetic approaches approximate
the augmented posterior π(Ne, g|Y, μ) through Markov chain
Monte Carlo (MCMC). Here, the genealogy is treated as an
auxiliary variable introduced to compute the likelihood in
π(Ne, g|Y, μ) ∝ P(Y | g, μ)π(g | Ne)π(Ne). Approximation
of the posterior requires the definition of Markov chains (MCs)
on genealogies, whose state space is the product spaceGn×R

n−1+
of tree topologies (g ∈ Gn) and coalescent times t ∈ R

n−1+
(times of coalescence events in the genealogy). Sampling from
these distributions is extremely challenging: the target distri-
bution is highly multi-modal, many different topologies have
the same likelihood (Sanderson et al. 2015), and mixing times
of tree-valued Markov chains are at best polynomial (Simper
and Palacios 2022). The issue is exacerbated as the sample
size increases because the cardinality of Gn grows superexpo-
nentially with n for the standard coalescent (|Gn| = n!(n −
1)!/2n−1). The result is that state-of-the-art methodologies are
not scalable to the amount of data available. To resolve this
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Figure 1. Coalescence and mutation. A genealogy of 10 individuals at a locus of
100 sites is depicted as a bifurcating tree. Six mutations (at different sites) along the
branches of the tree give rise to the 10 sequences. Black dots represent the 94 sites
that do not mutate in the ancestral sequence. The nucleotides at the polymorphic
sites are shown, and the colored arrows depict how ancestral sites are modified by
mutation.

computational bottleneck, much research has focused on algo-
rithms better suited for this setting, such as sequential Monte
Carlo (Bouchard-Côté, Sankararaman, and Jordan 2012; Wang,
Bouchard-Côté, and Doucet 2015; Fourment et al. 2017; Dinh,
Darling, and Matsen IV 2017), Hamiltonian Monte Carlo (Dinh
et al. 2017), and variational Bayes (Zhang and Matsen IV 2018).

An alternative (or perhaps complementary) solution is to use
a lower resolution ancestral (genealogical) process, known as
the Tajima n-coalescent (Tajima 1983; Sainudiin, Stadler, and
Véber 2015; Palacios et al. 2019). While the tree topologies
under Kingman are labeled ranked tree shapes with n leaves, the
tree topologies under Tajima are unlabeled ranked tree shapes
with n-leaves (see, e.g., Figure 1), with a space of trees with a
drastically smaller cardinality than that of the space of King-
man trees (Disanto and Wiehe 2013). This amounts to taking
equivalence classes of Kingman trees, in which the timed ranked
tree shape is retained, but leaf labels are removed so that the
external tree branches are all considered equivalent. This in
turn, requires a new likelihood calculation in which individual
DNA sequences are grouped by patterns of shared mutations.
Intuitively, the likelihood of Tajima’s genealogies should be more
concentrated and lead to more efficient inference. We elaborate
on this argument through the following example.

We generated a genealogy with n = 6 tips and superimposed
three mutations along the branches of the tree at three different
sites (Figure 2). The resulting “unlabeled” data consist of one
sequence carrying two mutations and two sequences carrying
the same one mutation. This is the information used for cal-
culating the likelihood of a Tajima genealogy. The “labeled”
data used to compute the likelihood of a Kingman genealogy
consist of sequence a carrying two mutations and sequences e
and f carrying one mutation. We computed the likelihood of
all Kingman and Tajima genealogies with six leaves, all with the
same “true” coalescent times. There are 360 Kingman topologies
and 16 Tajima topologies with positive likelihood. Figure 2
depicts the distribution of the normalized likelihood values
along with their frequencies. Under Kingman’s coalescent, the
maximum likelihood value is about 823.2 times larger than

the minimum likelihood value. Under Tajima’s coalescent, this
ratio between the maximum and minimum likelihood value is
about 3.3. That is, the range of likelihood values is reduced.
Moreover, the profiles are remarkably different: under Kingman’s
coalescent, there are many trees with a negligible likelihood and
a few with higher values; under Tajima’s coalescent, the more
frequent likelihood values are closer to the center. Along with
the lower cardinality, Tajima’s likelihood profile should make
MCMC exploration of tree space more manageable. Indeed, one
of the challenges in sampling from multimodal distributions
is that MCs cannot fully explore the space because the chains
struggle to move between modes due to the proposals getting
rejected in low densities regions. The profile seen in Figure 2 will
lead to higher acceptance probabilities in Metropolis Hastings,
making it easier to move between modes. Importantly, the gains
are obtained at no loss of information about Ne. All we lose are
the sequence labels in the data and the mapping of mutations to a
labeled genealogy. Instead, we retain the unlabeled data and the
set of mappings of shared mutations to edges in the unlabeled
genealogy. We will be more precise on this aspect in Section 3.

The Tajima coalescent was first used to infer Ne by Palacios
et al. (2019), but despite the advances in that article, there are still
many challenges to be addressed for the Tajima n-coalescent to
be a viable alternative to the Kingman n-coalescent. First, the
algorithm for the likelihood calculation of Palacios et al. (2019)
can be prohibitively expensive; a loose upper bound of the cur-
rent algorithm’s complexity is O(n!). Second, the definition of
the likelihood relies on several restrictive modeling assumptions
such as no recombination, no population structure, and the fact
that all samples are obtained at a single point in time. In this
article, we address several of these issues. We introduce a new
algorithm for likelihood calculation whose upper bound com-
plexity is O(n2), and we extend the Tajima modeling framework
to sequences observed at different time points like those at the
tips of the genealogy in Figure 1, that is, heterochronous data.
Our proposed method infers Ne, mutation rate μ, and can deal
with data collected at multiple independent loci. For parsimony,
this general setting is studied in the supplementary material.

Out of the many possible directions that may have been
pursued from Palacios et al. (2019), the extension to hete-
rochronous data was prioritized for several reasons: (i) data
are collected longitudinally in many applications (e.g., ancient
DNA and viral phylodynamics), (ii) employing longitudinal data
reduces the variance of the estimators of Ne (Rodrigo, Ewing,
and Drummond 2007) and (iii) the model becomes identifiable
for joint estimation of mutation rates and effective population
sizes (Drummond et al. 2002; Parag and Pybus 2019).

Modeling longitudinal data requires the definition of a con-
tinuous time Markov chain, which is a lumping of the hete-
rochronous n-coalescent introduced by Rodrigo and Felsenstein
(1999). We refer to the lower resolution of this process (the
lumped process) as the Tajima heterochronous n-coalescent. This
process differs from the Tajima n-coalescent (Sainudiin, Stadler,
and Véber 2015; Palacios et al. 2019) in that sequences sam-
pled at different time points are not exchangeable. The Tajima
heterochronous is a model on partially-labeled genealogies of
heterochronous samples.

The rest of the article proceeds as follows. In Section 2, we
define the Tajima heterochronous n-coalescent. In Section 3, we
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Figure 2. Distributions of the likelihood values under the Kingman and the Tajima n-coalescent for a given dataset. The first plot shows a realization of a genealogy of
n = 6 samples (tips) with three mutations superimposed (marked as X). The second plot shows the histogram of the likelihood values conditionally on all possible Tajima
tree topologies, and the third plot shows the histogram of the likelihood values conditionally on all possible Kingman trees with 6 leaves. We assumed the same coalescent
times across all trees.

Figure 3. Example of a Tajima heterochronous genealogy and its jump chain. A realization of a Tajima heterochronous n-coalescent with n = (7, 3) and s = (s1, s2),
represented as a ranked tree shape with coalescence and sampling times, denoted g. The column to the right displays the corresponding jump chain (see the text for
notation).

introduce the assumed mutation model, describe the data, define
the likelihood and the new algorithm to compute it. Section 4
describes the MCMC algorithm for posterior inference; in Sec-
tion 5 we discuss the gained efficiency of the proposed approach
and in Section 6, we present a comprehensive simulation study
outlining how the method works and compares with state-of-
the-art alternatives. In Section 7, we analyze modern and ancient
bison sequences described in Froese et al. (2017). Section 8
concludes.

2. The Tajima Heterochronous n-coalescent

The Tajima heterochronous n-coalescent is a lumping of the
heterochronous n-coalescent (Rodrigo and Felsenstein 1999)
that describes the ancestral relationships of a set of n individuals
sampled, possibly at different times, from a large population.
The set of ancestral relationships of the sample is represented
by a ranked and partially labeled genealogy, for example the
one depicted in Figure 3 in which internal nodes are ranked
bottom-up and tips are partially labeled by their sampling time.
We assume that every organism is dated and labeled according to
the time in which the organism lived (if ancient, by radiocarbon
date) or in which the living organism was sequenced. In this gen-
eralization of the Tajima coalescent, each pair of extant ancestral
lineages merges into a single lineage at an instantaneous rate
depending on the current effective population size Ne(t), and
new lineages are added when one of the prescribed sampling
times is reached. In this work, we do not model the stochasticity
of sampling times but we condition on them being fixed. The

main difference with the isochronous Tajima coalescent is that
in the isochronous case, the genealogy is unlabeled, that is, all
sequences are sampled at the same time.

Let us introduce some notation and terminology. Let m be the
number of sampling time points and n be the total number of
samples. Let n = (n1, . . . , nm) denote the number of sequences
collected at times s = (s1, . . . , sm), with s1 = 0 denoting the
present time, and sj > sj−1 for j = 2, . . . , m (time goes from
present toward the past). We refer to sampling group as the set
sequences sampled at a given time; there are m of such groups.
The sampling group corresponding to sequences sampled at si is
labeled by si. Let t = (tn+1, . . . , t2) be the vector of coalescent
times with tn+1 = 0 < tn < · · · < t2; these are the times
when two lineages have a common ancestor. By convention, we
include tn+1 = 0 (the present, or the time of the latest sample)
despite not being a coalescent time. Such a convention is useful
when defining the density of t. Note that the subscript in tk does
not indicate the current number of lineages, as it is often done in
the coalescent literature, but it indicates the number of lineages
that have yet to coalesce (some sequences may not have been
sampled yet). We use the rank order of the coalescent events
(bottom-up) to label the internal nodes of the genealogy. That
is, the node corresponding to the coalescent event occurring at
time tn is labeled 1 (see t10 in Figure 3), the node corresponding
to the coalescence event occurring at time tn−1 is labeled 2, etc.
We refer to the internal node labels as vintages (i.e., rankings),
and to lineages that subtend a vintage as vintaged lineages to
highlight the fact that they are labeled by a given vintage, and
thus, distinguishable from all other lineages.
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The Tajima heterochronous n-coalescent is an inhomoge-
neous continuous-time Markov chain (a(t), b(t))t≥0 that keeps
track of a(t), a vector of length m whose jth position indicates
the number of singletons from sampling group sj at time t, and
b(t) is the set of vintaged lineages at time t. The process starts at
t = 0 in state (a(0) = (n1, 0, . . . , 0), b(0) = ∅), jumps determin-
istically at every sampling time and jumps stochastically at every
random coalescent time until it reaches the unique absorbing
state (a(t2) = (0, . . . , 0), b(t2) = {n − 1}) at time t2, when
all n samples have a single most recent common ancestor at the
root (Figure 3). At each sampling time si, the state of the Tajima
coalescent jumps deterministically as follows:

(a(si), b(si)) = (a(si−) + niei, b(si−)),

where f (si−) denotes the left limit of the function f at si and ei
is the ith unit vector.

Let us now turn to the embedded jump chain at coalescent
times. At time ti, a random pair of extant lineages coalesce to
create a new lineage with vintage n + 1 − i. All extant lineages
coalesce at rate 1 but the transition probability depends on which
pair coalesces. Singleton lineages of the same sampling group
are indistinguishable and distinguishable from those of other
sampling groups and vintaged lineages. All vintaged lineages are
uniquely labeled and distinguishable from all the others. Four
types of coalescence transitions are possible depending on which
lineages are involved: (a) two singletons from the same sampling
group coalesce (up to m possible moves for the chain), (b) two
singletons from different sampling groups coalesce (up to m(m−
1)/2 possible moves), (c) one singleton lineage and one vintaged
lineage coalesce (up to m possible moves), or (d) two vintaged
lineages coalesce (only one possibility because for vintages, the
sampling information is irrelevant). Each pair coalesces with the
same probability and the transition probabilities at coalescent
times are thus given by

P
[
(a(ti), b(ti))

∣∣∣(a(ti−), b(ti−))
]

(1)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∏m
j=1

(
aj(ti−)

aj(ti−) − aj(ti)

)
(∑m

j=1 aj(ti−) + |b(ti−)|
2

) if (a(ti), b(ti)) ≺ (a(ti−), b(ti−))

0 otherwise

where (a(ti), b(ti)) ≺ (a(ti−), b(ti−)) means that (a(ti), b(ti))
can be obtained by merging two lineages of (a(ti−), b(ti−)), and
|b| denotes the cardinality of the set b.

Observe that the quantity
∑m

j=1 aj(ti−) + |b(ti−)| appearing
in (1) corresponds to the total number of extant lineages just
before the event at ti. Furthermore, since only two lineages
coalesce at time ti, at most two terms in the product appearing
in the numerator of (1) are not equal to one. Finally, if m = 1, at
any time t ≥ 0 the vector a(t) is made of a single integer and
(1) degenerates into the transition probabilities of the Tajima
isochronous n-coalescent (Sainudiin, Stadler, and Véber 2015;
Palacios et al. 2019); on the other hand, if m = n, the pro-
cess degenerates into the Kingman heterochronous n-coalescent
since all singletons are uniquely labeled by their sampling
times. Figure 3 shows a possible realization from the Tajima
heterochronous n-coalescent. Notice that in applications, the

number of observations collected at any given time instance is
generally larger than one, and hence, the heterochronous Tajima
model would have a smaller state space than the Kingman
model on heterochronous data. We investigate this assertion in
supplementary material (SM) section 6, where we developed
a sequential importance sampling to tackle this combinatorial
question.

To define the distribution of the holding times, we introduce
the following notation. We denote the intervals that end with
a coalescent event at tk by I0,k and the intervals that end with
a sampling time within the interval (tk+1, tk) as Ii,k where i ≥
1 is an index tracking the sampling events in (tk+1, tk). More
specifically, for every k ∈ {2, . . . , n}, we define

I0,k = [max{tk+1, sj}, tk), (2)

where the maximum is taken over all sj < tk, and for every i ≥ 1
we set

Ii,k = [max{tk+1, sj−i}, sj−i+1), (3)

where the maximum taken over all sj−i+1 > tk+1 and sj < tk.
We also let ni,k denote the number of extant lineages during the
time interval Ii,k. For example, in Figure 3, in (t9, t8) we have
I0,8 = [s2, t8), I1,8 = [t9, s2) and no Ii,8 for i ≥ 2. The vector of
coalescent times t is a random vector whose density with respect
to Lebesgue measure on R

n−1+ can be factorized as the product
of the conditional densities of tk−1 knowing tk, which reads: for
k = 3, . . ., n + 1,

p(tk−1 | tk, s, n, Ne)

= C0,k−1
Ne(tk−1)

exp

{
−

∫
I0,k−1

C0,k−1
Ne(t)

dt +
m∑

i=1

∫
Ii,k−1

Ci,k−1
Ne(t)

dt

}
,

(4)

where Ci,k := (ni,k
2

)
, and the integral over Ii,k−1 is zero if

there are less than i sampling times between tk and tk−1. The
distribution of the holding times defined above corresponds to
the same distribution of holding times in the heterochronous
Kingman coalescent (Rodrigo and Felsenstein 1999). Although
the heterochronous Tajima coalescent takes values on a different
state space, it remains true that every pair of extant lineages
coalesces at equal rate.

Finally, given n, s and t, a complete realization of the Tajima
heterochronous n-coalescent chain can be uniquely identi-
fied with an unlabeled binary ranked tree shape g of n =
(n1, . . . , nm) samples at (s1, . . . , sm) with its n − 1 coalescent
transitions, so that

P(g | t, s, n) =
n∏

i=2
P
[
(a(ti), b(ti))

∣∣∣ (a(ti−), b(ti−))
]

. (5)

Equation (5) gives the prior probability of the tree topology g
under the Tajima heterochronous n-coalescent. Putting together
(4) and (5), we obtain a prior distribution on the space of
genealogies g = (g, t), which are ranked (unlabeled) topologies
equipped with branch lengths

π(g | s, n, Ne) = P(g | t, s, n)

n+1∏
k=3

p(tk−1 | tk, s, n, Ne). (6)
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3. Data and Likelihood

3.1. Infinite Sites Model and the Perfect Phylogeny

We assume that the observed data Y consists of n unla-
beled sequences at z polymorphic (mutating) sites at a non-
recombining contiguous segment of DNA of organisms with a
low mutation rate. Under these assumptions, a widely studied
mutation model is the infinite sites model (ISM) (Kimura 1969;
Watterson 1975) with Poissonian mutation, which corresponds
to a Poisson point process with rate μ on the branches of g such
that every mutation occurs at a different site and no mutations
are hidden by a second mutation affecting the same site.

An important consequence of the ISM is that Y can be repre-
sented as an incidence matrix Y1 and a frequency counts matrix
Y2. Y1 is a k × z matrix with 0–1 entries, where 0 indicates the
ancestral type and 1 indicates the mutant type; k is the number
of unique sequences (or haplotypes) observed in the sample, and
the columns correspond to polymorphic sites. Y2 is a k×m count
matrix where the (i, j)th entry denotes how many haplotype i
sequences belonging to group sj are sampled. For example, the
n = 10 sequences defined by the realizations of the ancestral
and mutation processes depicted in Figure 1 can be summarized
into Y1 and Y2 displayed in Figure 4(A). Note that we make the
implicit assumption that we know which state is ancestral at each
segregating site. However, this assumption can be relaxed, see
(Griffiths and Tavaré 1995), although the computational cost will
substantially increase.

Y1 and Y2 can alternatively be represented graphically as
an augmented perfect phylogeny T. Our likelihood algorithm
exploits this graphical representation of the data. The aug-
mented perfect phylogeny representation is an extension of
the gene tree or perfect phylogeny (Gusfield 1991; Griffiths and
Tavare 1994) to the heterochronous case. The standard perfect
phylogeny definition leaves out the information carried by Y2.
In the augmented perfect phylogeny T = (V, E), V is the set of
nodes of T, and E is the set of weighted edges. For parsimony, the
edge that connects node Vi to its parent node is denoted by Ei.
Palacios et al. (2019) also employ a generalization of Gusfield’s
perfect phylogeny but their construction differs in that there

is no bookkeeping of sampling information. We define T as
follows:

1. Each haplotype labels at least one leaf in T. If a haplotype is
observed at k different sampling times, then k leaves in T will
be labeled by the same haplotype. The pair (haplotype label,
sampling group) uniquely labels each leaf node.

2. Each of the z polymorphic sites labels exactly one edge. When
multiple sites label the same edge, the order of the labels along
the edge is arbitrary. Some external edges (edges subtending
leaves) may not be labeled, indicating that they do not carry
additional mutations to their parent node.

3. For any pair (haplotype hk, sampling group), the labels of
the edges along the unique path from the root to the leaf hk
specify all the sites where hk has the mutant type.

Figure 4(B) plots T corresponding to Y1 and Y2 displayed in
Figure 4(A). Observe that T includes sampling information in
the leaf labels. In the example, hC labels two leaves because it is
observed at times s1 and s2. The corresponding edges E3 and E4
are unlabeled, that is, no mutations are allocated to those edges
because the underlying nodes carry identical sequences (same
haplotype). We “augment” Gusfield’s perfect phylogeny because
the sampling information is crucial in the likelihood calculation.

T implicitly carries some quantitative information that can
be quickly summarized. We denote the number of observed
sequences subtended by an internal node V by |V|. If V is a leaf
node, |V| denotes the frequency of the haplotype h observed
at the corresponding sampling time s. Similarly, we denote the
number of mutation labels assigned to an edge E by |E|. If no
mutations are assigned to E, then |E| = 0. See Figure 4(C) for an
example.

Gusfield (1991) gives an algorithm to construct the per-
fect phylogeny T’ in linear time. Constructing T from T’ is
straightforward since all we need is to incorporate the sampling
information and add leaf nodes if a haplotype is observed at
multiple sampling times. If we drew T’ from the data in Figure 4,
it would not have node V4, but only a single node V3 labeled by
haplotype hC. A description of the algorithm can be found in the
SM section 2.

Figure 4. Incidence matrix, frequency matrix and perfect phylogeny representation. Panel (A): data is summarized as an incidence matrix Y1 (h denotes the haplotypes, l
the segregating sites, the colors correspond to those depicted in Figure 1) and a matrix of frequencies Y2 (s denotes the sampling group). Panel (B): T denotes the perfect
phylogeny corresponding to Y1 and Y2; each of the 6 polymorphic sites labels exactly one edge. When an edge has multiple labels, the order of the labels is irrelevant.
Each leaf node is labeled by a pair (haplotype, sampling time), with each haplotype possibly labeling more than one leaf nodes. Panel (C): |Ei| corresponds to the number
of mutations along the edge subtending node Vi in (B) and |Vi| corresponds to the number of sequences descending from Vi in (B), see the text for details.
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3.2. Likelihood

The crucial step needed to compute the likelihood of a het-
erochronous Tajima genealogy g is to sum over all possible
allocations of mutations to its branches with the correspond-
ing sampling group. This can be efficiently done by exploiting
the augmented perfect phylogeny representation of the data T
and by first mapping nodes of T to subtrees of g. We note
that with Kingman’s coalescent, tree leaves are labeled by the
sequences so there is a unique possible allocation of mutations to
branches. With isochronous Tajima coalescent, leaves are unla-
beled and there are potentially multiple allocations of mutations
to branches. In Palacios et al. (2019), the authors employ a back-
tracking algorithm that traverses bottom-up the isochronous
perfect phylogeny. Here, we reverse the point of view with a
two-steps approach: first, we define a top-down algorithm that
uses T to identify all possible allocations (Section 3.2.1), then
the output of the first step is fed into a sum-product algorithm
that uses the set of possible allocations to compute the likelihood
efficiently (Section 3.2.2).

3.2.1. Allocations
Let a be a vector of length n−1 that encodes a possible mapping
of nodes of T to subtrees of g. The ith entry of a gives the node
in T which is mapped to the subtree with vintage i, gi (including
the branch that subtends vintage i). Our algorithm first maps
all non-singleton nodes V of T to subtrees of g, that is, only
nodes such that |V| > 1 are entries of a. Singleton nodes in
T (V ∈ V such that |V| = 1) are treated separately and are
initially excluded from the allocation step. For example, Figure 5
shows a possible vector a whose entries are the non-singleton
nodes V0, V1, V2, and V5 of T of Figure 4. We note that nodes can
appear more than once in a, meaning that they can be mapped
to more than one subtrees. On the other hand, a single node Vi
is not necessarily mapped to all the vintages, leaves and internal

Figure 5. A possible allocation of non-singleton nodes of V to subtrees of g. For
a given allocation a (bottom figure), we display how subtrees in g (identified by
the vintage tag at their root—black number in the top figure) are allocated to the
nodes of T. Each color depicts an allocation of a subtree to a node: V5 (red), V0 (blue),
V1(green), and V2 (yellow).

branches of gj; different nodes may be mapped to some subtrees
of gj (including external branches), leading to a situation where
Vi is mapped to only a subset of the vintages and branches
constituting gj. For example, in Figure 5, V1 is mapped to g6 and
g3, but V2 is mapped to g1, a subtree of both g6 and g3; hence,
V1 is only mapped to the green part of g6 and g3 as depicted in
Figure 5.

The precise mapping of nodes in T to subtrees of g is needed
to allocate mutations in T to branches of g. The algorithm,
described in the SM section 3, outputs all possible allocations.
We denote by #a, the number of possible allocations and a given
allocation as ai, for i = · · · , #a.

3.2.2. Likelihood Calculations
To calculate the likelihood, we assume the ISM of mutations
and that mutations occur according to a Poisson point process
with rate μ on the branches of g, where μ is the total mutation
rate. To compute the likelihood we need to map mutations in T
to branches of g and this is done for each mapping ai of non-
singleton nodes of T to subtrees of g . For every V in T such
that |V| > 1, we define EV as the set formed by the edges in T
that subtend singleton children of V and, with the exception of
V = V0, EV in addition includes the edge that subtends V . For
the example in Figure 4(B), EV1 = {E1, E3, E4}. Let V∗ be the set
of all V ∈ V such that |V| > 1, then the likelihood function is
defined as

P(Y | g, Ne, μ) =
#a∑

i=1
P(Y, ai | g, Ne, μ)

=
#a∑

i=1

∏
V∈V∗

P(V , EV , ai | g, Ne, μ), (7)

where P(V , EV , ai | g, Ne, μ) is the probability of observing the
mutations of the EV edges along the corresponding branches of
g defined by the mapping ai as follows.

If V has no singleton child nodes, then EV = {E} and

P(V , {E}, ai | g, Ne, μ) ∝ (μl)|E|e−μT , (8)

where l is the length of the branch in g that subtends gj, j is the
largest index such that ai,j = V , and T denotes the length of
the subtree in g to which V is mapped in ai (as described in
Section 3.2.1). For example, considering V2 in Figure 5, we have
T2 = 2tn + (tn−2 − tn) and l = (tn−2 − tn) is the length of the
branch connecting vintage 1 to vintage 3.

If node V has singleton child nodes,

P(V , {E, Ech1 , . . . , Echk}, ai | g, Ne, μ)

∝ (μl)|E|e−μT ∑
R∈�(EV )

k∏
j=1

(μlRj)
|Echj |, (9)

where the first term on the r.h.s is defined exactly as the
quantity on the r.h.s. of (8), while the second term corre-
sponds to the probability of all possible different matchings
between R1, . . . , Rk, the first k indexes such that ai,Rj = V , and
|Ech1 |, |Ech2 |, . . . , |Echk |, the k numbers of mutations observed on
the edges Ech1 , . . . , Echk leading to the child nodes of V . In this
expression, �(EV) is the set of all possible such matchings R.
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Before defining �(EV) more precisely, we make two obser-
vations. First, not all matchings are possible since not all leaf
branches terminate at the same time (heterochronous sampling).
Second, it is enough to consider the allocations that contribute
to distinct likelihood values, that is, allocations for which the
underlying samples are “distinguishable” in the sense that they
have a different number of mutations.

We define �(EV) as the set of all possible “distinct match-
ings of number of observed singleton mutations to singleton
branches”, that is, allocations which lead to a distinct likelihood
values. To construct �(EV), we first partition the singleton
edges Ech1 , . . . , Echk according to the sampling times of the
corresponding nodes Vch1 , . . . , Vchk . Let ki be the number of
nodes in {Vch1 , . . . , Vchk} with sampling time si, that is, the
size of each subset of the partition. We then further partition
these subsets by grouping together the edges carrying the same
number of mutations (defined as |Ech1 |, . . . , |Echk |). For each
given sampling time sj, let k(1)

j , . . . , k(mj)
j denote the cardinalities

of the mj sub-subsets obtained by this procedure, so that kj =∑mj
h=1 k(h)

j . The cardinality of �(EV) is then

|�(EV)| =
m∏

j=1

kj!
k(1)

j ! . . . k(mj)
j !

, (10)

where the product in (10) is the number of permutations with
repetition of the different edges that are compatible with the
data in terms of sampling times and numbers of mutations
carried. Note that (10) is not the same as eq. (6) in Palacios
et al. (2019) because here we account for the different sampling
groups. It degenerates into eq. (6) in Palacios et al. (2019) in the
isochronous case.

Last, we note that knowing a priori the full matrix A of all
possible allocations, allows to compute efficiently the likelihood
(7) via a sum-product algorithm. The set of all possible a is an
#a × (n − 1) matrix A, where each row is a possible a (n − 1
columns) and the number of rows #a is equal to the number of
possible allocations. Now, for each V ∈ V∗ there may be several
rows a of A such that P(V , EV , a | g, Ne, μ) is the same, due to the
fact that V is mapped to the same subtree in all these allocations.
For such a V , one could compute the likelihood corresponding
to these r distinct allocations, which we denote by a′

1, . . . , a′
r , in

the following way:

r∑
i=1

∏
V∈V∗

P(V , EV , a′
i | g, Ne, μ) = P(V , EV , a′

1 | g, Ne, μ)

r∑
i=1

∏
V ′∈V∗\{V}

P(V ′, EV ′ , a′
i | g, Ne, μ). (11)

The exact sum-product formulation of (7) is specific to the
observed Y and A.

4. Bayesian Model and MCMC Inference

To complete our Bayesian model we now need to specify a
prior distribution on log Ne (the logarithm is used to ensure that
Ne(t) > 0 for t ≥ 0). We follow Palacios and Minin (2013), and

place a Brownian motion process as prior on log Ne. We thus
have:

Y | g, μ, Ne, n, s ∼ Poisson process
g | Ne, s, n ∼ Tajima heterochronous n-coalescent (12)
log Ne | τ ∼ BM(0, C(τ ))

τ ∼ Gamma(α, β)

where C(τ ) is the covariance function of a Brownian process
with mean 0 and precision τ . The novelty in (12) is to model
the genealogy with the Tajima heterochronous n-coalescent.
In terms of modeling Ne, our framework allows for any prior
on a piece-wise constant trajectory log Ne. For example, if one
expects sudden changes in Ne, the recently proposed prior of
Faulkner et al. (2020) could be a good alternative that has shown
good empirical results. The posterior distribution

π(log Ne, τ , g|Y, μ) ∝ P(Y|g, log Ne, μ)

π(g| log Ne)π(log Ne|τ)π(τ), (13)

is approximated via MCMC with Metropolis-within-Gibbs
updates. At each MCMC iteration, we jointly update (log Ne, τ)

via a Split Hamiltonian Monte Carlo (HMC) (Shahbaba et al.
2014) suitably adapted to phylodynamics inference by Lan et al.
(2015); then we update the topology g and t. We propose two
Metropolis steps to update g and t. The latter may also be
combined in a single step. The transitions for g and t are tai-
lored to the Tajima n-coalescent genealogies. To update g, we
employ the scheme in Palacios et al. (2019) suitably adjusted for
the heterochronous case, with two local proposals that either
swap two consecutive coalescent events or swap two offspring,
each descending from two different and consecutive coalescent
events (Palacios et al. 2019, Figure 4). To update t, we propose a
new sampler (SM, Section S5.2) that accounts for the observed
sampling times constraints, an issue specific to heterochronous
samples under the ISM assumption (SM, Section S5.1).

Model (12) can be generalized in various ways. We can infer
model parameters from data observed at multiple independent
loci (without recombination); see SM S11 for details and a simu-
lation study. When the mutation rate is unknown but sequences
sampled at different times have accumulated mutations, the
model parameters Ne and μ become jointly identifiable (Drum-
mond et al. 2002). In this case, we can add an additional prior
distribution to model (12) and an extra MCMC step; see SM S12.
Lastly, to incorporate the case of unknown ancestral state, one
needs to sum over all possible ancestral states compatible with
the data (Griffiths and Tavaré 1995). Other extensions will be
mentioned in the discussion.

5. Increased Efficiency with No Loss of Information

We have assumed that the observed data Y can be summarized
as a haplotype incidence matrix Y1 and a frequency matrix Y2,
that is, the individual samples are labeled by their haplotype
and sampling information (see e.g., Figure 4). Under Kingman’s
coalescent, every sequence is uniquely labeled, and every tip
in the Kingman’s genealogy corresponds to a labeled sequence.
Let Ylab denote the fully labeled data (i.e., the augmented data
where each sequence in Y receives a unique identifying label in
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{1, . . . , n}) and gK a labeled ranked tree shape, then the marginal
likelihood is P(Ylab | Ne), where we do not condition on μ

because, for simplicity, we assume that the mutation rate μ is
fixed. If we further assume that all sequences are sampled at
the same time point and all observed haplotypes have different
frequencies ni 
= nj for i 
= j, i, j = 1, . . . , k, then we have

P(Y | Ne) =
(

n
n1, . . . , nk

)
P(Ylab | Ne).

The same combinatorial factor above would result even if
ni = nj as long as the two haplotypes have different numbers
of mutations and become distinguishable. If different haplo-
types become indistiguishable in terms of number of mutations
and frequency, then the combinatorial factor would change by
another constant which is independent of Ne. This shows that
there is no loss of information when using the partially labeled
data Y. We will use c(Y) to denote the combinatorial factor
that counts the number of labeled datasets corresponding to the
unlabeled dataset by dropping the sample labels.

The motivation for estimating the posterior of log Ne by
sampling over Tajima’s genealogies instead of sampling over
Kingman’s genealogies is a variance reduction. With labeled
data, we are interested in

P(Ne | Ylab) = P(Ylab | Ne)P(Ne)

P(Ylab)
= P(Ne)Egk[P(Ylab | gK)]

P(Ylab)

where Egk [P(Ylab | gK)] is computed with respect to P(gk | Ne).
Similarly, with unlabeled data, we are interested in

P(Ne | Y) = P(Y | Ne)P(Ne)

P(Y)
= P(Ne)Eg[P(Y | g)]

P(Y)

where Eg[P(Y | g)] is computed with respect to P(g | Ne).
Both Egk [P(Ylab | gK)] and Eg[P(Y | g)] are approximated

via Monte Carlo. Making the two variances comparable, we wish
to show that for any given Y and Ylab

vargK [P(Ylab | gK)]
P(Ylab)2 ≥ varg[P(Y | g)]

P(Y)2 . (14)

Since the distribution of t is shared in both models, we will
assume fixed t and replace g, gK notation by g, gK to denote
topologies only. Since P(Y) = c(Y)P(Ylab), we wish to show

c(Y)2vargK [P(Ylab | gK)] ≥ varg[P(Y | g)]. (15)

The simplest cases occur when n ∈ (1, 2, 3). In these cases
there is only one g tree topology and so varg[P(Y | g)] = 0,
while vargK [P(Ylab | gK)] ≥ 0 and (15) holds. The next two
minimum nontrivial cases are the following.

Example 1 (n=4, two haplotypes). Consider two haplotypes with
frequencies n1 = n2 = 2 with m1 and m2 mutations in each
haplotype, and m1 
= m2. We can also fix μ = 1 as it is will
account for a proportionality constant. The only tree topology
with nonzero likelihood is the tree subtending two cherries. Let

l1 = t2 − t3 and l2 = t2 − t4, the lengths of the two branches
subtending the two cherries. In this case

varg[P(Y | g)] = c
2
9
(lm1

1 lm2
2 + lm2

1 lm1
2 )2,

vargK [P(Ylab | gK)] = c
[ 1

18
(l2m1

1 l2m2
2 + l2m2

1 l2m1
2 )

− 1
324

(lm1
1 lm2

2 + lm2
1 lm1

2 )2
]

.

where c = e−2T /[(m1!)2(m2!)2] and T denotes the tree length.
Using the two variances, along with c(Y) = 4!/(2!2!) = 6, we
can check that that the inequality (15) holds on in this example.
In this case, we see that the inequality is strict. Details of the
calculations of the variances are given in the SM Section 1.1.

How much bigger vargK [P(Ylab | gK)] is than varg[P(Ylab |
g)] will depend on t, m1 and m2.

To provide a more general sense of the difference in the
variances for this specific example, we sampled 100 time vectors
t assuming Ne = 1, and fixed m1 = 2 and m3 = 4. The ratio

r = vargK [P(Ylab | gK)]
varg[P(Y | g)]/c(Y)2 .

is on average 7.18, with a maximum value of 8.49, and a mini-
mum value of 4.

Example 2 (n=4, three haplotypes). Consider three haplotypes
with frequencies n1 = 2, n2 = 1, and n3 = 1 with m1 = 1,m2 =
1, and m3 = 0 mutations in each haplotype. The two variances
are available in closed form in the SM Section 1.2, however, the
two analytical expressions are not insightful. The average ratio r
based on 100 simulations is 60, taking values from 2 to 320.

While we currently do not have a proof of (14), the previous
two examples show the variance reduction in two nontrivial
cases. Revisiting the example discussed in introduction (Fig-
ure 2), we showed that the likelihood under Tajima is “more
concentrated,” in the sense that, for a fixed dataset, the range of
possible likelihood values is drastically smaller. We conjecture
that this property, along with the cardinality reduction, con-
tributes to a more efficient exploration of the tree space. The
Tajima n-coalescent partitions the space of Kingman’s trees into
equivalence classes, where each Tajima’s topology corresponds
to a set of Kingman’s topologies. That is,

P(Y | g) = c(Y)
∑

gK : unlabeled(gK )=g

P(Ylab | gK)P(gK |g).

To compute the likelihood under Tajima, we effectively sum
over many topologies with small likelihood. More details on this
example are given in the SM section 1.

6. Simulations

In Section 6.1 we compare average runtimes of our likelihood
algorithm vis-a-vis the backtracking-based one in Palacios et al.
(2019). In Section 6.2, we infer Ne using the Tajima hete-
rochronous n-coalescent, and compare results with our own
implementation of the Kingman heterochronous n-coalescent.
Both sections rely on simulated data obtained as follows: given
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n, s, and Ne, we simulate genealogies under the Tajima hete-
rochronous n-coalescent. Given a realized g and fixed μ, we
draw M mutations from a Poisson distribution with parameter
μL (L is the length of the tree g: the sum of all branch lengths of
g) and place them independently uniformly at random along the
branches of the timed genealogy. Y1, Y2, and T are constructed
as in Section 3.1.

6.1. Average Runtime

We consider varying sample sizes n ∈ (5, 10, 15, 20, 25, 30), 10
simulated datasets per each n, and 100 genealogies per dataset.
All datasets are simulated under constant population size, and
μ is set to have an expected number of mutations of n/2.
Since the method of Palacios et al. (2019) does not support
heterochronous data, we assumed s = 0. We compute P(Y |
g, Ne, μ) with the two algorithms for all simulations. Figure 6
plots the average runtimes in seconds, showing that our proposal
substantially reduces the average runtime in this specific setup.

6.2. Inference of Ne

We simulate genealogies with three population scenarios: a
bottleneck (“bottle”), an instantaneous drop (“drop”), and two
periods of constant population size with exponential growth in
between (“exp”). For each scenario, we generated genealogies
with three numbers of leaves (n = 14, 35, 70) and different
n, s as summarized in Table S1 in the SM Section 7. The muta-
tion parameter is varied to analyze the effect of the number of
segregating sites on the quality of the estimation, but in this
section it is assumed to be known. A simulation study dealing
with unknown μ (i.e., joint estimation of Ne and μ) is given in
SM S12. Details of the trajectories and of n, s employed are given
in SM Section 7. All functions required to simulate genealogies,
sequence data and estimate Ne are implemented in the R package
phylodyn. Likelihood calculation is implemented in Python
and called via the R package reticulate (Ushey, Allaire,
and Tang 2022). MCMC tuning parameters are discussed in SM
Section S7 and the validity of the algorithms’ implementation is
discussed in SM Section 8.

Figure 6. Average runtime (in seconds). The likelihood P(Y | g, Ne , μ) is computed
using two algorithms, the one in Palacios et al. (2019) (dashed line) and our proposal.
The average is based on 100 genealogies sampled for 10 simulated datasets for each
sample size n ∈ (5, 10, 15, 20, 25, 30).

Comparison to other methods. To our knowledge, there is
no publicly available software implementing Bayesian nonpara-
metric inference for Ne under the ISM and variable population
size. To test the performance of our model, we implemented a
function for computing the likelihood of Kingman’s genealogies
for labeled data (we compare the runtimes of this implementa-
tion to Tajima in the SM, see Figure S7). For posterior approx-
imation via MCMC, we used the Markovian proposal on the
space of ranked labeled topologies of Markovtsova, Marjoram,
and Tavaré (2000) (the Tajima proposal has the same rationale
but acts on the space of ranked unlabeled topologies). The
kernels used to update t and log(Ne) are shared between the two
implementations. Similarly, we employ the same initialization,
removing the labels for Tajima’s chain. We also compare our
results to an oracle estimator that infers Ne from the true g. The
oracle estimation is obtained using the method of Palacios and
Minin (2012), which is equivalent to model (12) removing the
randomness on g and t. Estimation of Ne in the oracle does
not use MCMC but INLA (Rue, Martino, and Chopin 2009).
A comparison with two other methodologies implemented in
BEAST (Drummond et al. 2012) is in SM section 9. We do
not include the results in the main manuscript because these
methodologies assume a different mutation model, a different
prior on Ne, and a different MCMC scheme. The comparisons
with BEAST should be interpreted as validity checks of our
implementations and a baseline attainable by state-of-the-art
implementations.

Criteria measured. We approximated the posterior distribu-
tions under Kingman and Tajima models via MCMC past con-
vergence for a fixed time budget (72 hr). We evaluated trace plots
and effective sample sizes (ESS) of t and of log(Ne) as empirical
assessments of convergence (SM Section S8). In a second study
described in SM section 10, we run MCMC past convergence
for one million iterations with a larger burn-in, given there
are no time constraints. See SM Section S7 for details. There
are several limitations that hinder a thorough comparison of
empirical mixing among different modeling resolutions. These
limitations arise from targeting different posterior distributions,
with different initializations and the absence of precise criteria
for assessing the achievement of stationarity.

To assess the accuracy in Ne estimate, we employ three cri-
teria. As a measure of bias, we use the sum of relative errors
(SRE), SRE = ∑k

i=1
|N̂e(vi)−Ne(vi)|

Ne(vi)
, where (v1, . . . , vk) is a

regular grid of k time points, N̂e(vi) is the posterior median
of Ne at time vi and Ne(vi) is the value of the true trajec-
tory at time vi. To quantify the uncertainty in the estimate,
the second criterion is the mean relative width, defined by
MRW = 1

k
∑k

i=1
|N̂97.5(vi)−N̂2.5(vi)|

N(vi)
, where N̂97.5(vi) and N̂2.5(vi)

are respectively the 97.5% and 2.5% quantiles of the posterior
distribution of N(vi). Lastly, we consider the envelope measure
defined by ENV = 1

k
∑k

i=1 1{N̂2.5(vi)≤Ne(vi)≤N̂97.5(vi)}, which mea-
sures the proportion of the curve that is covered by the 95%
credible region; that is, it is a proxy for coverage. We stress
that the three metrics are relevant measures of performance
as long as they are considered jointly. For example, one can
obtain very high coverage (ENV) with wide credible regions
(high MRW) but have wildly inaccurate point estimates (SRE).
Similarly, narrow credible regions benefit an estimator only if
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Figure 7. Simulation: effective population size posterior medians from different trajectories and sample sizes for the Tajima-based model. Ne posterior distribution
from simulated data with three population size trajectories (rows)—bottleneck (Bottle), exponential growth (Exp) and instantaneous fall (Drop)—different sample sizes
(columns)—n = 14, n = 35, and n = 70. Posterior medians are depicted as solid black lines and 95% Bayesian credible intervals are depicted by shaded areas. Dotted
lines depict the ground truth. n and s are depicted by the heat maps at the bottom of each panel: the squares along the time axis indicate the sampling time, while the
intensity of the black color depicts the number of samples. The y-axis is in logarithmic scale.

the estimates remain accurate. In this simulation study we fix
k = 100, v1 = 0 and vk = 0.6 t2.

Another common parameter estimated in coalescent infer-
ence is the time to most common ancestor (TMRCA), which
corresponds to the largest coalescent time. We compare inferred
TMRCAs via Tajima and Kingman in the SM Section S13.

Results. Table S2 in SM section S8 summarizes the mean
ESS for the 9 simulated datasets achieved with Tajima and
Kingman. The high ESSs suggest convergence of the MCs. This
is confirmed by the visual inspections of the trace plots (SM
Section S8). Tajima has the highest ESS for log Ne in 5 out of
9 instances, Kingman in 3, and there is one tie. In 6 out of
9 instances, Tajima has the highest ESS for t, Kingman in 2,
and there is one tie. According to this metric, the Tajima chain
appears to be more efficient, at least in the sense of achieving
stationarity quicker. The results obtained for a fixed number of
iterations suggest a more even performance (Tables S4 and S5 in
SM section 10). A possible explanation for this result is offered
by the larger burn-in used for the second study, suggesting that,
in the stationary regime, the two chains have a comparable
performance. However, we invite caution given the limitations
already discussed and the fact that ESS is only a proxy for
convergence.

With regards to Ne estimation, the results of the nine curves
estimated with our method are plotted in Figure 7. The SM
section 9 includes the plots for Kingman (Figure S9) and the
BEAST-based methodologies (Figure S8). True trajectories are
depicted as dashed lines, posterior medians as black lines, and
95% credible regions as gray shaded areas. Note that the y axis is
logarithmic. Table 1 summarizes SRE, MRW, ENV, and the mean
ESS for the 9 simulated datasets achieved with Tajima, Kingman,
and “Oracle” for the fixed computational budget runs in all three
scenarios.

The patterns are as predicted. As n increases, posterior medi-
ans track the true trajectories more closely. It is well known in
the literature that abrupt population size changes are the most
difficult to recover. The “drop” and “bottleneck” scenarios are
less accurate for n = 14, as exhibited by the wider credible
region. We recover the bottleneck (panel first row and first
column), but we do not recover the instantaneous drop (panel
first row and third column).

Table 1 quantifies the analysis of Figure 7. First, no method
unequivocally outperforms the others. All methods have iden-
tical performance for the ENV metric, with the ENV met-
ric decreasing as n increases in some cases and with both
models. This is due to the fact that credible regions become
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Table 1. Simulation: performance comparison between Tajima, Kingman, and Oracle models.

%ENV SRE MRW

Label n Oracle Tajima Kingman Oracle Tajima Kingman Oracle Tajima Kingman

Bottle 14 100 100 100 408.11 175.66 123 20164.85 2298.28 6241.1
35 99 96 96 155.81 148.33 78.81 203.52 1385.86 148.73
70 98 88 82 121.34 124.55 98.84 23.33 22.8 17.12

Drop 14 100 100 100 28.78 36.47 38.21 10.54 8.8 6.24
35 99 96 93 21.27 31.73 67.69 2.96 6.02 24.78
70 99 92 98 17.1 29.09 34.41 2.13 3.66 4.86

Exp 14 100 100 100 35.94 50.91 53.48 16.56 19.33 1163.38
35 100 100 100 35.58 112.5 114.42 11.41 116.97 148.147
70 100 100 100 30.71 43.16 37.31 3.64 3.97 2.75

NOTE: Envelope (ENV), sum of relative errors (SRE), and mean relative width (MRW) for three population trajectories (Bottle, Exp, Drop) and three sample sizes (n = 14, 35, 70).
Tajima (our model), Kingman (Kingman n-coalescent), Oracle (Palacios and Minin 2012) (known g). Bold depicts the method with the best performance (excluding the
“oracle”) or within 10% of the best performance. The MCMC was run until convergence.

much narrower, as indicated by MRW. With respect to SRE and
MRW, our method has a superior performance in the “drop”
and “exp” scenarios, while Kingman-based inference is superior
in the “Bottle” scenario. We note that the Tajima methodol-
ogy is the one that more closely tracks the “Oracle” results
(in eight out of nine cases, Tajima has the closest SRE and
MRW to the Oracle). We consider this a positive feature given
that “Oracle” posterior does not account for the uncertainty
in g and could be interpreted as a benchmark performance.
Surprisingly, both Tajima and Kingman outperform the “Ora-
cle” methodology in certain examples. Finally, in general as
pointed out in Palacios et al. (2019) and Cappello and Pala-
cios (2020), and SM Section 6, we would expect Tajima to
outperform Kingman in regimes with low mutation rate. In
our simulations, Tajima outperforms Kingman in the scenar-
ios with the smallest number of observed mutations (Drop
and Exp).

7. North American Bison Data

In this section, we study the long-standing question of whether
the population decline of steppe Berigian bison was instigated
by human intervention (the overkill hypothesis; Martin 1973)
or by environmental changes. Using ancient DNA bison
sequences, Shapiro et al. (2004) estimated the start of the
population decline to be between 32 and 43 thousand year
ago (kya). At the time of the study, the prevailing consensus
was that human entered the Americas about 13 kya (“Clovis-
first” model, Meltzer 2015). Based on the “Clovis-first” model,
Shapiro et al. (2004) suggested that their estimate supported the
environmental hypothesis, given that there was not a sufficiently
large human population that could have caused the decline.
In particular, they hypothesize that the decline may be due
to abnormal environmental events preceding the last glacial
maxima (LGM), which happened between 25 and 19 kya (Clark
et al. 2009). There has been mounting evidence supporting
a migration to the Americas preceding that leading to the
Clovis population. Latest data show that humans were probably
present already before and during the LGM, even if the major
expansion happened after the LGM (Becerra-Valdivia and
Higham 2020). The authors suggest that studies confuting

the human-driven extinction hypothesis should be thus
revisited.

In light of the new discoveries, we deem relevant to repro-
duce Shapiro et al. (2004) analysis with new bison data recently
presented by Froese et al. (2017). Our aim is to assess whether
the timing of start of the decline is confirmed by this new data.
To our knowledge, there is no phylodynamics analysis of this
dataset in the literature. The data differs from that of Shapiro
et al. (2004): Shapiro et al. (2004) sequences include 602 base
pairs from the mitochondrial control region, while Froese et al.
(2017) provide the full mitochondrial genome (16322 base pairs
after alignment). We analyzed 38 sequences (10 modern, 28
ancient). Details on the dataset and models used are given in the
SM S14

Figure 8 depicts the posterior medians (solid lines) of Ne
along with the 95% credible bands (dashed lines) obtained
from posterior samples by sampling Tajima’s trees (Tajima, blue
colored lines) and Kingman’s trees (GMRF, red colored lines).
Both, our method and GMRF, recover the pattern reconstructed
by Shapiro et al. (2004): a population expansion followed by a
decline. The population decline recovered by GMRF is some-
what sharper than that with Tajima. The two estimates of
population expansions are roughly identical, and the credible
bands practically overlap. The two methods’ estimates of the
population decline are essentially identical: GMRF median time
estimate is 29.6 kya, while the median time estimate for our
method is 29.7 kya. The estimates obtained analyzing the 2017
data differ substantially from those obtained by analyzing the
2004 data (32–43 kya).

The estimates are also closer to the LGM and recent proofs
of human presence in Eastern Beringia (Bluefish Caves, 24 kya,
Bourgeon, Burke, and Higham 2017), and the whole Northern
and Central America (Ardelean et al. 2020; Bennett et al. 2021).
Our results support the Becerra-Valdivia and Higham (2020)
call to revisit the question of whether humans have contributed
to the extinction of certain animal species, like the steppe
Beringian bison. We note that Shapiro et al. (2004) discussed the
possibility of human presence before the LGM. At the time of
their work, there was an active debate on the date of molecular
specimens in the Bluefish Caves. What remains an open question
is understanding the number of humans living in the Americas
before the LGM.
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Figure 8. Bison in North America: posterior median estimates from Froese et al. (2017) dataset. Solid lines display estimated posterior medians of Ne obtained from n = 38
ancient and modern sequences from North America specimens in Froese et al. (2017) data. Blue depicts our method, and red GMRF. The 95% Bayesian credible region
boundaries are depicted by dashed lines. Annotations refer to events of interest commented in the text. Purple shaded area annotations are in the upper part of the panel.
The y-axis is in logarithmic scale.

8. Discussion

We have studied an alternative to the Kingman n-coalescent
to infer the population size trajectory from serially sampled
sequences collected at non-recombining loci. We develop a new
efficient algorithm to compute the likelihood of partially labeled
ranked trees, and discuss the advantages of using the proposed
lower-resolution coalescent process.

Despite the evidence presented, our simulations did not
produce irrefutable proof of the advantages of employing such
coarsening in terms of faster MCMC convergence. One of the
challenges is the fairly comparison of the chains with two dif-
ferent target distributions, π(g, Ne|Y, μ) and π(gK , Ne|Ylab, μ).
Nevertheless, our goal is not to show the superiority due to
faster mixing MC (we tried to design the two proposals as
similar as possible), but rather due to some intrinsic properties
of the coarsened state space. We showed that in regimes of low
mutation rate and large sample size, we tend to perform better.
We expect evidence of further gains in simulations with larger
sample sizes. Our current implementation in R does not handle
sample sizes larger than a couple of hundred sequences and fur-
ther work needs to be done to optimize current implementation.
Further, we impose some limiting assumptions. Accommodat-
ing departure from the ISM model and modeling recombination
are priority for future work.

Supplementary Materials

The supplementary material file contains the following sections:
(S1) Examples of likelihood calculations under Kingman and Tajima
coalescent models; and variance calculations of the examples in
the main text. (S2) Algorithm for generating the augmented perfect
phylogeny. (S3) Mapping of nodes in T to subtrees of g. (S4) Algorithm
for Allocation matrix. (S5) Details of the MCMC implementations.
(S6) Counting the number of compatible tree topologies under the ISM
with heterochoronous data. (S7) Simulation details. (S8) Checking the
validity of the implementation. (S9) Comparison of Tajima-based inference
with state-of-the-art alternatives. (S10) Simulations: fixed number of
iterations. (S11) Simulations with multiple loci. (S12) Simulations with
unknown mutation rate. (S13) Simulations: time to the most common
ancestor. (S14) North American Bison. We detail the dataset and analysis.

We also include a folder with all the codes necessary to reproduce the
analysis. For using the method, we suggest looking at the R package
phylodyn cited in the manuscript.
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