
CloudSkin: ML-based Smart Management for the
Cloud-Edge Continuum

Peini Liu∗†, Anna Ma. Nestorov∗†, Marc Palacı́n∗, Ramon Nou∗, Jordi Guitart∗†, Josep Ll. Berral∗†
∗Barcelona Supercomputing Center, Barcelona, Spain

†Universitat Politècnica de Catalunya, Barcelona, Spain
E-mail:{peini.liu, anna.nestorov, marc.palacin, ramon.nou}@bsc.es, {jordi.guitart, josep.ll.berral}@upc.edu

Abstract—The CloudSkin project embraces ML-based au-
tonomous management technologies, introducing the Learning
Plane (LP), which provides services and methods to embed
intelligence in Cloud-Edge Continuum management layers. By
leveraging AI, the continuum can achieve user demands for
resource, privacy, resilience, and energy efficiency requirements,
in an adaptive way. As a first Proof-of-Concept, we envision a
smart orchestrator to drive a 5G-powered automotive usecase,
focusing on a mobility scenario where the LP optimises resources
for AI data and applications, on a transversal Edge environment.

Index Terms—Cloud-Edge Continuum, Orchestration, Ma-
chine Learning, Workload Characterization, Edge AI.

I. INTRODUCTION

The emergence of the Cloud-Edge Computing Continuum
is driving the development of innovation in various sectors
such as smart cities, smart transportation, healthcare, and
industry 4.0. To achieve those scenarios, it is critical to develop
distributed services that handle large-scale data generation,
gathering, storage, and real-time analysis. However, the nature
of this distributed paradigm brings complexities to continuum
management, including orchestration, performance sustainabil-
ity, resilience, and scalability. To this end, CloudSkin embraces
ML-based autonomous management technologies, introducing
the LP, which provides services and methods to embed in-
telligence in Cloud-Edge Continuum management layers. As
shown in Figure 1, the proposed LP covers the management
of such distributed modelling, as a layer connected to the Data
Plane (DP) retrieving data from the system and environment,
and to the Control Plane (CP) providing recommendation and
prediction services, oriented to management and orchestration
for either centralised and distributed management agents in the
Cloud-Edge Continuum.

II. METHODOLOGY

The principal research on CloudSkin on smart orchestration
focuses on the design of the LP, which focuses on three
functionalities, a) System modeling and workload character-
ization from the telemetry, b) Model storage and federation
and c) Model provisioning service for recommendations and
predictions.

A. System Modeling and Workload Characterisation

A set of algorithms are explored for system modelling and
workload characterisation.

Fig. 1. Learning Plane for System Modelling, Model Management, Storage
and Provision through Prediction

1) Periodic Behavior Detection - ThetaScan: The ThetaS-
can method [1] uses time-oriented statistical learning to detect
statistical properties in telemetry as multi-variate time-series.
Computing requests using solely the statistics of the previous
time window presents some weaknesses when provisioning
periodic behaviours. The Theta-Scan method is intended for
detecting periodicity, leveraging the Theta-Model. In this
work, we introduce our implementation of the Theta-Model
based on the Simplified Exponential Smoothing method (SES),
also known as Holt-Winters smoothing [2], with a detrending
and deseasonalization of the analyzed time series.

The targeted behaviors to be detected in the CPU/Memory
consumption are related to the Trend and Seasonality (i.e.,
periodic patterns). Modeling the time-series will involve a
detrending process, where we extract (and keep) the trend
of the time-series, separating it from the potential seasonality
and drift. Next, the resulting series are deseasonalized, where
we extract (and keep) a potential season (periodic pattern) in
the series, separating it from the drift. And finally we can
model the drift for future prediction. Forecasting using this
model requires to extend the trace from SES, then add the
found seasonal pattern and the found trend. Figure 2 shows
an execution with hourly and daily periodicity, provisioning
results according to our multi-scale policy is presented.

Summarizing, the Theta-Scan algorithm attempts the auto-
mated detection of periodicity towards next period provision-
ing of resources, with the objective is to leverage the method to
detect periodic behaviors from the LP, towards provisioning
or placing applications and resources in advance.



Fig. 2. Example of hourly and daily CPU forecasting, selecting the t − 1
best forecaster for provisioning

2) Behavior Similarity Detection - AI4DL: While ThetaS-
can is intended to detect periodic patterns in workloads,
another approach to detect and discover patterns is to cluster
telemetry traces, to be later examined by the system architects
(human method) or used for statistical estimation (automatic
method). The next technology is AI4DL [3] [4] created in a
collaboration between IBM and the Barcelona Supercomput-
ing Center, purposed to characterize Cloud containerization for
Deep Learning applications, but we consider its application
for any kind of workload to be introduced in the CloudSkin
ecosystem for non-periodic behaviors on applications.

The proposed methodology collects container resource us-
age (i.e., CPU and memory, but also network or disk), creates
a model encoding these metrics to capture dynamics over
the time dimension (behavior), clusters similar behaviors as
unique phases, reduces the whole execution to a sequence
of phases, and then estimates the resource requests per each
phase. Figure 3 shows an example of real trace with differen-
tiated phases detected by AI4DL.

Fig. 3. Phase discovery for multi-variate time series on telemetry using AI4DL

A full life cycle of a containerized application can be en-
coded as a sequence of phases, representing behavior changes
in resource usage. Containers running similar workloads dis-
play similar behaviors (e.g., first phases are corresponding to
Memory.load, next phases to Intensive.CPU , last phases to
Memory.unload). A good representation of phase sequences
can indicate what types of behaviors the containers are under-
going, how much resources they need, and in which order they
consume resources. The resource usage of different containers
may show similar patterns in their phase sequences. E.g.,
an auto-scaler, resource provisioning or policy enforcement

mechanism can leverage behavior recognition, and use the
estimated resource usages for a given sequence of phases, to
proactively estimate and provision future resource demands.

3) Transformer-based Methods (WIP): Finally, we are
focusing our research on resource prediction through state-
of-art attention neural networks, such as Transformers, to
learn specific patterns to be discovered or forecasted. In
the CloudSkin project, we are progressing in the following
directions:

• The study and research of novel modeling methods based
on Transformers for proper prediction and anticipation
of sudden behaviors towards resource allocation, putting
specific emphasis in the correct prediction of patterns like
sudden changes. The objective is to learn and recognize
common patterns that can precede a sudden change in the
resource consumption, while keeping the model agnostic
about an specific workload and its dependencies, only
obtaining the required information from past values.

• The creation of new evaluation strategies to assess proper
allocation of resources during the execution of a work-
load, and the correct prediction in time and amplitude of
resource consumption changes.

B. Model Federation and Storage

For the CloudSkin project, the Learning Plane will start
with a centralized approach, where all control and manage-
ment operations are in the Cloud, while the aim during the
project is to explore ways to off-load such management to
the Edge, allowing scalability and autonomy to the different
Edge regions. The basic scenario corresponds to a centralized
system where management and orchestration relies in a single
location (single- or multi-node). As shown in Figure 4 (left),
a centralized system must have visibility and control of all
the infrastructure, concentrating all decision making on Edge
placement and provisioning. The Planner and Learning appli-
cations are in a central Cloud, while the storage can still be
distributed for the sake of collecting telemetry from the Edge
nodes without pushing all data to the central Cloud. For the
early designs of CloudSkin, we are pushing for this approach
for its initial simplicity regarding to the proposed use cases.

However, an alternative is a distributed system, where man-
agement and decisions are distributed across Edge nodes (or
intermediate Fog nodes), as shown in Figure 4 (right). In case
of large-scale systems that must maintain certain autonomy,
the Control and Learning Plane can be distributed (along with
the already distributed Data Plane). For this, each Edge node
or group of Edge nodes can coordinate locally and later report
or coordinate with the Central Cloud. Each Edge node/group
would perform orchestration and forecasting of applications
autonomously, leveraging the distributed repository to share
models, applications, learning applications, meta-data and
telemetry from other nodes, being able to create larger feder-
ated schemes on sharing data and models. In this early stage
of CloudSkin, we are focusing on a centralized architecture,
but without losing sight of distributed architectures, as they



Fig. 4. Example of centralized (left) vs. decentralized (right) schemes where the control and learning is placed in the Cloud nodes or in the Edge nodes

will allow off-loading part of the management load from the
Cloud to the Edge.

1) Model Federation: Model federation functionality in-
volves the distribution of the models towards sharing and
aggregation (what is “learned”); also the meta-data related
to the models, datasets and execution environments for the
algorithms fitting and inferring data using the models (the indi-
cations on “how to use the model”); and the objects containing
the implementation of those algorithms (the model’s “engine”
application).

2) Storage: Different candidates were considered as dis-
tributed file-systems and object storage platforms, as an ex-
ample for the first ones Hadoop HDFS for distributed data
with replication [5], [6] and GekkoFS for distributed in-
memory volatile data [7] were considered. Such systems are
a baseline option without the optimizations required for the
current case. Therefore, our preferences are object storage
systems, like GEDS [8], providing a distributed storage system
with replication and resilience, developed by the IBM partners
of CloudSkin.

C. Model Provisioning and Management

This functionality involves the execution of prediction and
recommendation, and provisioning algorithms with the re-
trieved data and learned models.

Current technologies involve containerization of the fitting
and inference engines (e.g. PyTorch, TensorFlow, ScikitLearn,
Mlflow, Seldon etc.) through Kubernetes and/or K3S on the
one hand, and micro-function serverless computing frame-
works like Lithops [9] or WebAssembly (WASM) [10] on the
other. Actions to be performed include model and meta-data
management (e.g., training, prediction and forecasting, model
aggregation, model updating), that must be executed near the
data, either source or storage.

III. USE CASE

As a Proof-of-Concept, the smart orchestrator will be
oriented to drive a 5G automotive use case, collaborated
among Barcelona Supercomputing Center, Nearby Computing

(NBC) and Cellnex Telecom (CNX). The proposed LP can
use AI as a driver to orchestrate resources across the Cloud-
Edge for AI applications (e.g., video analytics application),
where optimising resource provisioning, data movement and
application placement are cornerstone elements.

Fig. 5. Vehicle detection from camera streams

This use case considers two scenarios: a network-bound set-
ting, where the workload and data have to follow a user across
the Cloud-edge infrastructure (horizontal service migration
across edge servers), and a computing-bound situation, where
heavy workload needs to be placed closer to the user as much
as possible (vertical service migration across the cloud con-
tinuum). Therefore, this use case requires a smart orchestrator
to automatically deal with the placement and migration of
tasks across the Cloud-edge infrastructure and also a universal
virtualization abstraction (i.e., containerization) platform that
enables the seamless execution of tasks on a wide array of
cloud and embedded devices. With this holistic architecture,
applications are migratable across different servers and devices
in the continuum to effectively support both horizontal and
vertical service migration.



A. Usecase 1: Application Placement (WIP)

The basis to advice applications moving among edges or
between edge and cloud is to enable the placement of the
application in a containerized way in an edge or cloud.

Currently, we are working with NBC and CNX to pre-
pare the infrastructure, building Kubernetes platforms and
corresponding toolbox to run our applications (i.e., video
analytics application see figure 5). On the other hand, on the
integration of the characterization models (AI-based modules)
with the schedulers (recommenders), also on a first design and
implementation of the LP (i.e., data connectors) upon the CP
(i.e., NearbyONE orchestrator).

Fig. 6. Workflow of learning Plane on an usecase of application placement
and provisioning.

Figure 6 shows the workflow of LP on a usecase of
application placement and provisioning. In the example, an
application arrives and needs to be deployed. The NBC block
service needs to inform the LP of the application information.
Then the LP should get the application and the system resource
usage in order to forecast the quality of service (QoS) of
the application running on different systems, and based on
the prediction results the heuristic algorithm will be enabled
to select the system for the application placement. The first-
time placement will follow a naı̈ve approach meaning the
LP will use the specifications of the application from the
user or the application placement records from a previous
execution to place the application, then after having some
data, a “smart” approach will be attempted to forecast some
a-priori information from the application, in order to place
and provision it with less resource waste or more quality of
service. Note that the Planner will continuously monitor the
application and systems and make decisions on whether to
re-provision or migrate the application among systems.

In this example, after the arrival of the application, the
Planner will first place the application based on the application
specifications, step 1. Then in step 2, the NBC block gets
some information from the application, e.g. a profile, and

configures it to the LP, as well as the block should provide
the list of systems that can place the application, and then
deploy the learning plane aligned with the application. The
learning plane will run continuously to predict or forecast
the QoS of the application on different systems based on the
online monitoring data from the application execution and the
systems, and calculating the best QoS. Therefore, then the
LP could return to the Planner with the system that could
achieve the best application QoS (i.e., step 3). Finally, the
step 4, the Planner then call the orchestrator to enable the
placement/migration of the application in different systems
(e.g., edge or cloud).

The “Learning Application” request the Planner through a
service, API or remote procedure call. This Learning Appli-
cation is a machine learning engine, in charge of loading an
already trained model capable of performing such predictions
or forecasts, performing inference with the application infor-
mation, the model and additional data such as meta-data or
telemetry from the system.

IV. ENVISIONING NEXT STEPS

To achieve such goals, we plan to deepen on the knowledge
learned from system modeling and characterisation, expanding
scenarios from specialised telemetry towards holistic moni-
toring, considering distributed learning and inference, from
both application and infrastructure layers. We envision that the
continuum can achieve user demands for resource efficiency,
privacy, resilience, and energy efficiency requirements by
using such emerging smart orchestrators, evolving with new
ML/Deep Learning capabilities for day-by-day more complex
behavior patterns and problem solving.

ACKNOWLEDGMENT

This work is financed by the EU-HORIZON
programme under grant agreements EU-HORIZON
GA.101092646, EU-HORIZON MSCA GA.101086248,
EU-HORIZON GA.101092644, by Generalitat de
Catalunya (AGAUR) GA.2021-SGR-00478, and the
Spanish Ministry of Science (MICINN), the Research
State Agency (AEI) and European Regional Development
Funds (ERDF/FEDER) PID2021-126248OB-I00,
MCIN/AEI/10.13039/ 501100011033/FEDER, UE.

REFERENCES

[1] J. L. Berral, D. Buchaca, C. Herron, C. Wang, and A. Youssef, “Theta-
scan: Leveraging behavior-driven forecasting for vertical auto-scaling in
container cloud,” in 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD), 2021, pp. 404–409.

[2] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted
moving averages,” International Journal of Forecasting, vol. 20, no. 1,
pp. 5–10, 2004. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0169207003001134

[3] J. L. Berral, C. Wang, and A. Youssef, “Ai4dl: Mining behaviors of
deep learning workloads for resource management,” in Proceedings of
the 12th USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’20. USA: USENIX Association, 2020.

[4] D. B. Prats, J. L. Berral, and D. Carrera, “Automatic generation of work-
load profiles using unsupervised learning pipelines,” IEEE Transactions
on Network and Service Management, vol. 15, no. 1, pp. 142–155, 2018.

https://www.sciencedirect.com/science/article/pii/S0169207003001134
https://www.sciencedirect.com/science/article/pii/S0169207003001134


[5] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc.,
2009.

[6] Y. Zhai, J. Tchaye-Kondi, K.-J. Lin, L. Zhu, W. Tao, X. Du, and
M. Guizani, “Hadoop perfect file: A fast and memory-efficient metadata
access archive file to face small files problem in HDFS,” Journal of
Parallel and Distributed Computing, vol. 156, pp. 119–130, oct 2021.
[Online]. Available: https://doi.org/10.1016/j.jpdc.2021.05.011

[7] M.-A. Vef, N. Moti, T. Süß, M. Tacke, T. Tocci, R. Nou,
A. Miranda, T. Cortes, and A. Brinkmann, “Gekkofs — a temporary
burst buffer file system for hpc applications,” J. Comput. Sci.
Technol., vol. 35, no. 1, p. 72–91, jan 2020. [Online]. Available:
https://doi.org/10.1007/s11390-020-9797-6

[8] IBM, “GEDS Distributed Ephemeral Data Store,”
https://github.com/IBM/GEDS.

[9] J. Sampé, M. Sánchez-Artigas, G. Vernik, I. Yehekzel, and P. Garcı́a-
López, “Outsourcing data processing jobs with lithops,” IEEE Transac-
tions on Cloud Computing, vol. 11, no. 1, pp. 1026–1037, 2023.

[10] “WebAssembly,” https://webassembly.org.

https://doi.org/10.1016/j.jpdc.2021.05.011
https://doi.org/10.1007/s11390-020-9797-6

	Introduction
	Methodology
	System Modeling and Workload Characterisation
	Periodic Behavior Detection - ThetaScan
	Behavior Similarity Detection - AI4DL
	Transformer-based Methods (WIP)

	Model Federation and Storage
	Model Federation
	Storage

	Model Provisioning and Management

	Use Case
	Usecase 1: Application Placement (WIP)

	Envisioning Next Steps
	References

