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Abstract19

This study presents the complexity and sensitivity of chaotic system dynamics20

in the case of the double pendulum. It applied detailed numerical analyses of21

the double pendulum in multiple computing platforms in order to demonstrate22

the complexity in behavior of the system of double pendulums. The equations23

of motion were derived from the Euler-Lagrange formalism, in order to capture24

the system’s dynamics, which is coupled nonlinearly. These were solved numeri-25

cally using the efficient Runge-Kutta-Fehlberg method, implemented in Python,26

R, GNU Octave, and Julia, while runtimes and memory usage were extensively27

benchmarked across these environments. Time series analyses, including the cal-28

culation of Shannon entropy and the Kolmogorov-Smirnov test, quantified the29

system’s unpredictability and sensitivity to infinitesimal perturbations of the ini-30

tial conditions. Phase space diagrams illustrated the intricate trajectories and31

strange attractors, as further confirmation of the chaotic nature of the double32
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pendulum. All the findings have a clear indication of the importance of accu-33

rate measurements of the initial condition in a chaotic system, contributing to34

an increased understanding of nonlinear dynamics. Future research directions are35

faster simulations using Numba and GPU computing, stochastic effects, chaotic36

synchronization, and applications in climate modeling. This work will be use-37

ful for understanding chaos theory and efficient computational approaches in38

complex systems of dynamical nature.39

Keywords: Chaotic Dynamics, Computational Platforms, Nonlinear Dynamics,40

Numerical Simulations, Sensitivity Analysis41

1 Introduction42

The double pendulum forms an interesting physics system consisting of two pendul-43

ulum hanging in a rigidly connected line. It does not only rely on the observation of44

immediate effects but also the study of the underlying structures that make things45

change. Though at first glance this machine may look mundane, its behavior will prove46

to be exciting and the underlying idea of balance between order and disorder that has47

intrigued scientists and mathematicians for centuries will be inspirationally brought48

to life. It is an example of the fascinating ways simple systems can exhibit complex49

behavior. From people like Henri Poincaré, who first took a look at non-linear systems50

and laid the foundation for chaos theory, to today’s powerful computational models,51

the double pendulum remains a symbol that the secret of nonlinear dynamics is a52

profound one [1].53

A double pendulum consists of two massless rods, each with a concentrated point54

mass at its end, connected by a frictionless hinge. This seemingly simple setup55

actually displays a remarkable sensitivity to initial conditions, a characteristic of56

chaotic systems that was first discovered by British mathematician and physicist Mary57

Cartwright in the early 20th century [1, 2]. Even tiny changes in the starting position58

can cause significant divergences in the paths the system takes - a concept that chal-59

lenges the traditional idea put forth by French scholar Pierre-Simon Laplace known60

as Laplace’s demon, which suggests that knowing all initial conditions of a system61

guarantees the ability to predict its future evolution with total certainty [3].62

The double pendulum is a prominently studied dynamical system in climate sci-63

ence due to its exquisite sensitivity to initial conditions, making it a valuable model64

for studying chaos theory and its applications in understanding Earth’s complex cli-65

mate systems [4]. Gaining insights into chaotic systems like the double pendulum66

could prove vital for tackling one of our most pressing global issues - anthropogenic67

climate change driven by human activities. Several studies have used simplified mod-68

els like the double pendulum to gain insights into the non-linear dynamics underlying69

atmospheric-oceanic flows and long-range climate predictions [e. g. 5–9].70

The double pendulum exemplifies how deterministic systems can exhibit unpre-71

dictable, chaotic behavior, bridging the gap between the simple, ordered world of72

classical physics and the apparent randomness we observe in complex phenomena like73
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weather and climate patterns [10]. This chaotic complexity represents a major fron-74

tier in our scientific understanding - we have robust theories for simple systems and75

stochastic models for randomness, but lack a unified framework to explain the rich76

dynamical behaviors that emerge in between the two extremes [11]. Unraveling the77

chaos inherent in multi-scale systems like the double pendulum may unlock deeper78

insights into the fundamental laws governing our climate and the universe at large.79

In this paper, our main goal is to thoroughly investigate and analyze the complex80

movements of a double pendulum system using detailed numerical simulations. We81

utilized open-source computing platforms to develop engaging visuals that can be used82

as effective educational resources. This graphical representation will help students,83

especially those with limited abstract mathematics knowledge, better understand the84

concepts of calculus of variations. The calculus of variations is a branch of mathe-85

matical analysis concerned with optimizing functionals, which are mappings from a86

space of functions to the real numbers. It addresses problems where the goal is to87

find a function that extremizes a given functional, either minimizing or maximizing88

it [12]. This field is particularly important in areas such as physics, engineering, and89

economics, where one seeks to optimize quantities that depend on functions, such as90

energy, action, or cost [13]. By presenting this information visually and in a practical91

context, we hope to make it easier for students to connect theoretical concepts with92

real-world applications.93

Furthermore, allowing students to freely access the simulation code enables them to94

explore the computational side of the project, enhancing their comprehension of how95

theory translates into practice. This also gives them the opportunity to improve and96

perfect the models, promoting a practical approach to learning physics and applied97

mathematics through coding. To ensure optimal performance and efficiency, we thor-98

oughly evaluated the free and open-source computing environments utilized in this99

study. This study will offer helpful information for teachers, scholars, and profession-100

als, helping them choose the best tools for their individual computing requirements101

and improving resource management and promoting excellence in scientific computing.102

2 Methods103

In order to predict the positional paths of two point masses in a double pendulum104

system, we need a classical mechanics framework represented by the Euler-Lagrange105

equation. This is because the Euler-Lagrange equation provides a systematic approach106

to deriving the equations of motion for complex systems like the double pendulum,107

taking into account the constraints and forces involved. On the other hand, using New-108

tonian mechanics alone for the double pendulum can be challenging due to the system’s109

nonlinear nature and the presence of constraints such as the lengths of the pendu-110

lum arms. While it’s possible to analyze simpler pendulum systems using Newton’s111

laws directly, the double pendulum’s motion involves coupled, nonlinear differential112

equations that are more conveniently handled using the Euler-Lagrange formalism [14].113

The Euler-Lagrange equation is essential in classical mechanics and field theory,114

describing the motion of particles or fields by minimizing a functional known as the115

action. To derive this equation from scratch, we started with the action S, defined as116
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the integral of the Lagrangian (L) over time:117

S =

∫ t2

t1

L(q, q̇, t) dt (1)

Here, q represents the generalized coordinates, q̇ is the derivative of q with respect to118

time, and t is time. The Lagrangian (L) has a simple and concise definition:119

L ≡ T − V (2)

The kinetic energy (T ) and potential energy (V ) together make up the classical120

Lagrangian, which is just the difference between these energies in the system. This121

applies to classical mechanics with conservative systems, where the total energy is the122

sum of kinetic and potential energies. Our next step was to find the path q(t) that123

keeps the action constant, even if the path changes a little. This basic idea is called124

the principle of least action.125

To find this stationary path, we used the calculus of variations. Let δq(t) be a126

small variation in the path q(t), such that q(t) becomes q(t) + δq(t). The variation in127

the action is then:128

δS =

∫ t2

t1

[L(q + δq, q̇ + δq̇, t)− L(q, q̇, t)] dt (3)

We expanded L(q + δq, q̇ + δq̇, t) in a Taylor series around q and q̇:129

L(q + δq, q̇ + δq̇, t) = L(q, q̇, t) + ∂L
∂q

δq +
∂L
∂q̇

δq̇ +O(δq2, δq̇2) (4)

Substituting the expression back into equation 3 we would consider terms up to second130

order or higher in δq and δq̇ in the variation of the action S, O(δq2, δq̇2):131

δS =

∫ t2

t1

[
∂L
∂q

δq +
∂L
∂q̇

δq̇

]
dt+O(δq2, δq̇2) (5)

Integrating the first term by parts with respect to t and assuming that variations132

δq(t1) and δq(t2) vanish (boundary conditions), we got:133

δS =

∫ t2

t1

[
d

dt

(
∂L
∂q̇

)
− ∂L

∂q

]
δq dt (6)

For the action to be stationary, δS must be zero for all possible variations δq. This134

leads to the Euler-Lagrange equation:135

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= 0 (7)

This equation governs the dynamics of the system and provides the equations of motion136

for the generalized coordinates q(t).137

4



To apply the Euler-Lagrange equation to the double pendulum system, we must138

first establish its Lagrangian, which encapsulates both the system’s kinetic and poten-139

tial energies. This process started by delineating the geometric relationships governing140

the vertical and horizontal positions within the double pendulum system, as illus-141

trated in Fig. 1. These relationships were formalized through the following equations,142

denoted as equations 8 and 9:143

x1 = L1 sin (θ1)

x2 = x1 + L2 sin (θ2)

(8)

y1 = L1 cos (θ1)

y2 = y1 + L2 cos (θ2)

(9)

Here, x1 and x2 represent the horizontal positions, while y1 and y2 represent the144

vertical positions. These positions are determined by the lengths of the pendulum145

arms (L1 and L2) and the angles (θ1 and θ2).146

Fig. 1: Free-body diagram of a double pendulum. Point masses (m1,m2) connected
by massless rods (L1, L2). Angles θ1 and θ2 represent deviation from the vertical axis.
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Since the positions x and y are functions of the angles θ1 and θ2, respectively,147

obtaining their first derivatives requires applying the chain rule. This application148

results in the following expressions:149

ẋ1 = L1θ̇1 cos (θ1)

ẋ2 = L1θ̇1 cos (θ1) + L2θ̇2 cos (θ2)

(10)

150

ẏ1 = −L1θ̇1 sin (θ1)

ẏ2 = −L1θ̇1 sin (θ1)− L2θ̇2 cos (θ2)

(11)

These derivatives ẋ1, ẋ2, ẏ1, and ẏ2 represent the rates of change of the horizontal and151

vertical positions with respect to time, taking into account the angular velocities θ̇1152

and θ̇2.153

Starting from the general formula for kinetic energy T = 1
2mv2 (where m is the154

total of two-point masses of m1 +m2 and v is velocity), we substituted the velocities155

ẋ1, ẋ2, ẏ1, and ẏ2 from the systems of equations 10 and 11 into equation 12. This156

substitution yields the expanded form:157

T =
1

2

(
m1(ẋ

2
1 + ẏ21) +m2(ẋ

2
2 + ẏ22)

)
=

1

2

(
m1

(
L1θ̇1 cos (θ1)

)2

+m1

(
−L1θ̇1 sin (θ1)

)2

+m2

(
L1θ̇1 cos (θ1) + L2θ̇2 cos (θ2)

)2

+m2

(
−L1θ̇1 sin (θ1)− L2θ̇2 cos (θ2)

)2
)
(12)

Expanding and simplifying each term step by step, we obtained expressions for the158

kinetic energy components. These components involve terms related to the masses m1159

and m2, the lengths L1 and L2 of the pendulum arms, and the angular velocities θ̇1160

and θ̇2. After combining and simplifying the terms, we arrived at the final form of the161

kinetic energy:162

T =
1

2
(m1 +m2)L

2
1θ̇

2
1 +

1

2
m2L

2
2θ̇

2
2 +m2L1L2θ̇1θ̇2 cos (θ1 − θ2) (13)

This expression captures the kinetic energy T of the double pendulum system compre-163

hensively, incorporating the massesm1 andm2, the lengths L1 and L2 of the pendulum164

arms, and the angular velocities θ̇1 and θ̇2 in a way that reflects the system’s dynamics165

and interactions.166

Beginning with equation 14, which defines potential energy as a function of the167

vertical positions y1 and y2, and the gravitational constant g, we can express it as:168

V = m1gy1 +m2gy2 (14)
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Substituting the expressions for y1 and y2 from the system of equations 9 into the169

above equation yields:170

V = m1g(L1 cos (θ1)) +m2g(L1 cos (θ1) + L2 cos (θ2)) (15)

We then simplified this expression to:171

V = g((m1 +m2)L1 cos (θ1) +m2L2 cos (θ2)) (16)

Finally, to express potential energy V solely in terms of the angles θ1 and θ2, we172

derived:173

V = −g((m1 +m2)L1 cos (θ1) +m2L2 cos (θ2)) (17)

Here, g represents the gravitational acceleration, and the potential energy V is derived174

from the vertical positions of the pendulum components and their respective masses,175

articulated in terms of the angles θ1 and θ2.176

After deriving the expressions for kinetic energy T and potential energy V , we can177

now formulate the Lagrangian L for the double pendulum system. The Lagrangian is178

defined in the definition 2. Substituting the expressions we derived for T and V into179

this equation, we obtained:180

L =
1

2
(m1 +m2)L

2
1θ̇

2
1 +

1

2
m2L

2
2θ̇

2
2 +m2L1L2θ̇1θ̇2 cos (θ1 − θ2)

− (−g((m1 +m2)L1 cos (θ1) +m2L2 cos (θ2)))

=
1

2
(m1 +m2)L

2
1θ̇

2
1 +

1

2
m2L

2
2θ̇

2
2 +m2L1L2θ̇1θ̇2 cos (θ1 − θ2)

+ g((m1 +m2)L1 cos (θ1) +m2L2 cos (θ2))

(18)

This expression for the Lagrangian L encapsulates the dynamic behavior of the181

double pendulum system. It incorporates the masses m1 and m2, the lengths L1 and182

L2 of the pendulum arms, the angular velocities θ̇1 and θ̇2, and the gravitational183

constant g, as well as the angles θ1 and θ2 that describe the positions of the pendulum184

components. The Lagrangian L serves as a fundamental quantity in the analysis of185

the system’s motion and dynamics, providing a comprehensive representation of its186

energy and interactions.187

Starting with the Lagrangian L derived earlier (equation 18), we applied the Euler-188

Lagrange equation (equation 7) to derive the equations of motion for a system with189

two point masses (the double pendulum in this case). The Euler-Lagrange equation190

for a variable qi is given by:191

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0 (19)
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Applying this equation to the variables θ1 and θ2 separately, we obtained two set of192

equations:193

d
dt

(
∂L
∂θ̇1

)
− ∂L

∂θ1
= 0

d
dt

(
∂L
∂θ̇2

)
− ∂L

∂θ2
= 0

(20)

For θ1, we first calculated the partial derivative of L with respect to θ̇1:194

∂L
∂θ̇1

= (m1 +m2)L
2
1θ̇1 +m2L1L2θ̇2 cos (θ1 − θ2) (21)

Then, we took the derivative of this with respect to time t:195

d

dt

(
∂L
∂θ̇1

)
= (m1 +m2)L

2
1θ̈1 +m2L1L2θ̈2 cos (θ1 − θ2) (22)

Next, we calculated the partial derivative of L with respect to θ1:196

∂L
∂θ1

= −m2L1L2θ̇1θ̇2 sin (θ1 − θ2)− g(m1 +m2)L1 sin (θ1) (23)

Finally, substituting these derivatives into the Euler-Lagrange equation (equation 20)197

for θ1:198

(m1 +m2)L
2
1θ̈1 +m2L1L2θ̈2 cos (θ1 − θ2) = 0 (24)

To derive the equation of motion for θ2 using the Euler-Lagrange equation199

(equation 20), we started by calculating the partial derivative of the Lagrangian L200

with respect to the derivative of θ2, denoted as θ̇2. This yields:201

∂L
∂θ̇2

= m2L
2
2θ̇2 +m2L1L2θ̇1 cos (θ1 − θ2) (25)

Taking the time derivative of this expression gave us:202

d

dt

(
∂L
∂θ̇2

)
= m2L

2
2θ̈2 +m2L1L2θ̈1 cos (θ1 − θ2)−m2L1L2θ̇1θ̇2 sin (θ1 − θ2) (26)

Next, we calculated the partial derivative of L with respect to θ2, denoted as ∂L
∂θ2

,203

which was given by:204

∂L
∂θ2

= −m2L1L2θ̇1θ̇2 sin (θ1 − θ2)−m2L2g sin (θ2) (27)

Substituting the expressions for ∂L
∂θ̇2

and ∂L
∂θ2

into the Euler-Lagrange equation and205

simplifying this equation further results in the equation of motion for θ2, given as:206

m2L2θ̈2 +m2L1θ̈1 cos (θ1 − θ2)−m2L1θ̇
2
1 sin (θ1 − θ2) +m2g sin (θ2) = 0 (28)
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Combining the final forms of the Euler-Lagrange equations for θ1 (equation 24)207

and θ2 (equation 28) together form the complete system of equations of motion for208

the double pendulum system. They are coupled second-order ordinary differential209

equations (ODEs) because the acceleration terms θ̈1 and θ̈2 are dependent on each210

other due to the cosine and sine terms involving θ1 and θ2. This coupling reflects211

the interdependence of the pendulum’s motions and positions, making the system212

dynamically rich and challenging to analyze without numerical or advanced analytical213

techniques.214

For the numerical analysis, we substituted the following expressions (θ̇1 =215

ω1, θ̇2 = ω2, ∆θ = θ1 − θ2) to simplify the system of equations for computa-216

tional purposes. Substituting these into the given equations (equations 24 and 28), we217

obtained the following system:218

(m1 +m2)L1ω̇1 +m2L2ω̇2 cos (∆θ) +m2L2ω
2
2 sin (∆θ) + (m1 +m2)g sin θ1 = 0

m2L2ω̇2 +m2L1ω̇1 cos (∆θ)−m2L1ω
2
1 sin (∆θ) +m2g sin (θ2) = 0

(29)
This transformed system allows us to numerically solve for the angular frequencies ω1219

and ω2 given initial conditions and system parameters.220

To simplify the numerical analysis, we first rewrote the original system of equations221

in terms of the defined variables:222 

α = (m1 +m2)L1

β = m2L2 cos (∆θ)

γ = m2L1 cos (∆θ)

δ = m2L2

ε = −m2L2ω
2
2 sin (∆θ)−m2g sin (θ2)

ζ = m2L2ω
2
1 sin (∆θ)−m2g sin (θ2)

(30)

We then rewrote the system of equations in matrix form:223 (
α β
γ δ

)(
ω̇1

ω̇2

)
=

(
ε
ζ

)
(31)

Finally, solving for ω̇1 and ω̇2, we obtained:224

ω̇1 = εδ−βζ
αδ−βγ

ω̇2 = αζ−γε
αδ−βγ

(32)
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These derived equations were expressed in terms of the defined variables, providing a225

more organized and manageable representation for the numerical experiments.226

For the numerical simulation needs in this study, we used parameters consistent227

with the physical properties of the system. These include an acceleration due to gravity228

(g) of 9.8m/s
2
, the lengths of the pendulum arms L1 and L2 set to 2 meters and 1 meter229

respectively, and the masses of the pendulums (m1 and m2) set at 1 kilogram and 2230

kilograms respectively. The simulation time (t) is chosen to be 10 seconds with 10,000231

linearly time spacing, providing sufficient duration to observe the system’s behavior.232

With these parameters established, we set the initial conditions for the simulation.233

The initial angles (θ1 and θ2) are set to 3.14 radians (which is equivalent to 180◦)234

for θ1 and 1.57 radians (equivalent to 90◦) for θ2. Additionally, the initial angular235

velocities (ω1 and ω2) are initialized to 0 radians per second, representing a starting236

point where the pendulums are at rest. For the subsequent simulation, we changed237

the both angular velocities to 0.001 radians per seconds fo the sensitivity test with238

the initial conditions.239

We used the Runge-Kutta-Fehlberg (RKF) method for approximating the solution240

of our problem (system of equations 32). RKF is a powerful numerical integration241

technique used to solve systems of ODEs with high accuracy and computational effi-242

ciency [13]. Its adaptability makes it particularly suitable for dynamic systems like the243

double pendulum, where the motion can be complex and highly nonlinear.244

We started with the initial conditions and set the initial step size h. Then, we245

proceeded to define the predictor step by using the 4th order Runge-Kutta formulas to246

predict the solution at the next time step. For a general ODE of the form dy
dt = f(t, y),247

the 4th order Runge-Kutta formulas are:248

k1 = hf(tn, yn)

k2 = hf(tn + h
2 , yn + k1

2 )

k3 = hf(tn + h
2 , yn + k2

2 )

k4 = hf(tn + h, yn + k3)

(33)

The predicted solution at tn+1 is then given by:249

y
(4)
n+1 = yn +

1

6
(k1 + 2k2 + 2k3 + k4) (34)

We used the 5th order Runge-Kutta formulas to compute a more accurate estimate of250

the solution at the next time step. The 5th order Runge-Kutta formulas are similar251
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to the 4th order ones but include an additional evaluation point:252

k1 = hf(tn, yn)

k2 = hf(tn + h
4 , yn + k1

4 )

k3 = hf(tn + 3h
8 , yn + 3k1

32 + 9k2

32 )

k4 = hf(tn + 12h
13 , yn + 1932k1

2197 − 7200k2

2197 + 7296k3

2197 )

k5 = hf(tn + h, yn + 439k1

216 − 8k2 +
3680k3

513 − 845k4

4104 )

k6 = hf(tn + h
2 , yn − 8k1

27 + 2k2 − 3544k3

2565 + 1859k4

4104 − 11k5

40 )

(35)

The corrected solution at tn+1 is then given by:253

y
(5)
n+1 = yn +

1

90
(7k1 + 32k3 + 12k4 + 32k5 + 7k6) (36)

Then, we calculated the local truncation error by comparing the 4th and 5th order254

solutions. The error estimate ϵn is given by:255

ϵn = |y(5)n+1 − y
(4)
n+1| (37)

We compared the error estimate ϵn to a predefined tolerance. If ϵn is within the256

tolerance, accept the step and update the solution. If ϵn exceeds the tolerance, reduce257

the step size h and we repeated the process until the error is acceptable. Finally, we258

continued integrating until reaching the desired end time or number of steps.259

The adaptive step-size control implemented in the RKF method ensures accurate260

integration while minimizing computational costs. By dynamically adjusting the step261

size based on error estimation, the RKF method provides accurate numerical approxi-262

mations of the system’s behavior over time, rendering it an effective tool for analyzing263

complex dynamic systems such as the double pendulum. However, in the present study,264

we did not employ the RKF method directly from the beginning. Instead, we uti-265

lized several platform-specific tools, including SciPy in Python [15], deSolve in R [16],266

DifferentialEquations.jl in Julia [17], and the built-in function ode45 in GNU Octave267

[18].268

The motivation behind using multiple programming languages and their respective269

computing environments was twofold. First, it allowed us to leverage the strengths and270

unique features of each language and environment, enabling a comprehensive explo-271

ration of the double pendulum problem from diverse perspectives. Second, it facilitated272

a comparative analysis of the performance and accuracy of different numerical solvers273

across these platforms.274

In Python, the SciPy library provided a robust and well-established collection of275

scientific computing tools, including numerical solvers for ODEs. The flexibility and276

ease of use of Python, combined with the power of SciPy, made it a suitable choice for277
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implementing and testing numerical methods for the double pendulum problem [19,278

20]. However, the interpreted nature of Python may introduce performance overhead279

compared to compiled languages.280

The R programming language, with its deSolve package, offered a specialized envi-281

ronment for solving ODEs and differential algebraic equations (DAEs) [21]. R’s strong282

emphasis on statistical analysis and data visualization made it an attractive option283

for exploring the double pendulum problem, enabling efficient data analysis and visual284

representation of the results. Nonetheless, the high-level nature of R may lead to285

performance limitations for computationally intensive simulations.286

Julia, a relatively new language designed for scientific computing, provided a high-287

performance computing environment through its DifferentialEquations.jl package. The288

combination of Julia’s dynamic programming capabilities and its efficient just-in-time289

(JIT) compilation made it a promising choice for solving the double pendulum problem290

with potentially improved computational performance [22, 23]. However, the relatively291

young ecosystem of Julia may present challenges in terms of package maturity and292

community support.293

Finally, GNU Octave, a high-level language primarily intended for numerical294

computations, offered the built-in ode45 function, which implements a versatile Runge-295

Kutta method for solving ODEs. GNU Octave’s compatibility with MATLAB® syntax296

and its open-source nature made it an accessible option for researchers and students297

alike [18]. However, its performance may be limited compared to lower-level languages298

or specialized numerical libraries. By employing these various computing environ-299

ments, we aimed to evaluate the trade-offs between performance, accuracy, and ease300

of use for each approach.301

When conducting scientific research involving computational simulations, it is cru-302

cial to ensure reproducibility and transparency in the methods used. In this particular303

study, we aim to benchmark the performance of four different computing environ-304

ments: Python, R, Octave/MATLAB, and Julia, by running a script that simulates the305

motion of a double pendulum. The script was executed 1,000 times in each computing306

environment, and the runtime and memory usage for each run will be measured and307

recorded. The benchmarking was performed on a Fedora Linux 39 (Budgie) x86 64308

system with a 20LB0021US ThinkPad P52s laptop equipped with an Intel i7-8550U309

(8) @4.000GHz CPU.310

The rationale behind this benchmarking approach is multifaceted. Firstly, it pro-311

motes reproducibility by providing the scripts and the benchmarking script, allowing312

other researchers to easily replicate the computational experiments and verify the313

results. Additionally, it facilitates a direct comparison of the runtime and memory314

usage across different computing environments for the same task, providing valuable315

insights into the relative performance of each environment. This information can guide316

researchers in choosing the most suitable tool for their specific computational needs.317

Furthermore, running the scripts 1,000 times in each environment helps to account318

for potential variability and ensures that the performance measurements are consis-319

tent and reliable. This is particularly important when dealing with computationally320

intensive simulations like the double pendulum simulation, where minor fluctuations321

in hardware or software configurations can impact the results. With a large number322
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of runs, it becomes possible to perform statistical analysis on the collected data, such323

as calculating confidence intervals, identifying outliers, and determining the statistical324

significance of any observed performance differences.325

Measuring memory usage alongside runtime can provide insights into the scala-326

bility and resource requirements of each computing environment. This information is327

crucial when working with large-scale simulations or data-intensive applications, where328

efficient memory management is essential. By including the benchmarking method-329

ology and results in the scientific paper, researchers demonstrate transparency and330

allow others to critically evaluate the computational approaches used in the study331

[24]. This aligns with the principles of open science and facilitates future replication332

and extension of the research.333

After conducting the benchmarking process and collecting the runtime and mem-334

ory usage data for each computing environment, we performed statistical analyses to335

determine if there were significant differences in performance among the platforms.336

Specifically, we employed the Kruskal-Wallis (K-W) test and Dunn’s test with Bon-337

ferroni adjustment, which are commonly used in various scientific fields for comparing338

multiple groups or treatments.339

The K-W test is a non-parametric alternative to the one-way analysis of variance340

(ANOVA) and is used when the assumptions of normality and homogeneity of vari-341

ances are violated [25]. It is a rank-based test that evaluates whether the populations342

from which the samples were drawn have the same distribution. The test statistic for343

the K-W test was calculated as:344

H =
12

N(N + 1)

k∑
i=1

R2
i

ni
− 3(N + 1) (38)

, where N is the total number of observations across all groups, k is the number of345

groups, Ri is the sum of ranks for group i, and ni is the number of observations in346

group i. The null hypothesis for the K-W test is that the populations have the same347

distribution, while the alternative hypothesis is that at least one population has a348

different distribution from the others.349

If the K-W test indicates significant differences among the groups, post-hoc tests350

are typically performed to determine which specific groups differ from each other.351

In our case, we used Dunn’s test with Bonferroni adjustment, which is a multiple352

comparison procedure that adjusts the significance level to control the family-wise353

error rate (FWER) [26]. The Dunn’s test statistic for comparing groups i and j was354

calculated as:355

Z =
Ri −Rj√

N(N+1)
12

(
1
ni

+ 1
nj

) (39)

, where Ri and Rj are the average ranks for groups i and j, respectively, N is the total356

number of observations across all groups, and ni and nj are the number of observations357

in groups i and j, respectively. The Bonferroni adjustment was applied by dividing the358

desired significance level (α) by the number of pairwise comparisons made, resulting359

in an adjusted significance level of α/
(
k
2

)
, where k is the number of groups.360
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The K-W test and Dunn’s test with Bonferroni adjustment are widely used in361

various scientific fields [e. g. 27–29]. These tests are particularly useful when dealing362

with non-normal data or when the assumptions of parametric tests (such as ANOVA)363

are violated. They provide a robust and reliable way to compare multiple groups or364

treatments, ensuring that any observed differences are statistically significant and not365

due to chance alone. By applying these statistical tests to our benchmarking data,366

we aimed to determine if there were significant differences in performance among the367

four computing environments (Python, R, GNU Octave, and Julia) for the double368

pendulum simulation task. These non-parametric procedures were implemented in369

Python using the SciPy stats module [15] and the scikit-posthoc library [30].370

After conducting the benchmarking process to measure the runtime and memory371

usage of the double pendulum simulation across different computing environments,372

we further analyzed the obtained time series data to gain insights into the underlying373

dynamics of the system. One of the analysis techniques we employed was the calcu-374

lation of Shannon entropy [31], which is a measure derived from information theory375

that quantifies the amount of information or uncertainty present in a random variable376

or time series. The Shannon entropy was calculated using the following equation:377

H(X) = −
n∑

i=1

p(xi) log2 p(xi) (40)

, where H(X) is the Shannon entropy, n is the number of unique values in the time378

series, and p(xi) is the probability of the occurrence of the value xi in the time series.379

A higher Shannon entropy value indicates a higher degree of uncertainty or unpre-380

dictability in the time series, while a lower entropy value suggests a more predictable381

or regular pattern. This measure can provide valuable insights into the complexity382

and dynamics of the double pendulum system.383

In our analysis, we calculated the Shannon entropy for each variable (e.g., x1, y1,384

θ1, θ2, ω1, ω2) in the time series data obtained from the double pendulum simula-385

tion. To interpret the entropy scores, we established thresholds based on the following386

criteria: low entropy (predictable) for entropy scores ≤ 0.5, medium entropy (some pre-387

dictability) for entropy scores between 0.5 and 1.0, and high entropy (unpredictable)388

for entropy scores > 1.0. These thresholds are commonly used in various applications389

and provide a convenient way to interpret the degree of predictability or uncertainty390

present in the time series data. By calculating and analyzing the Shannon entropy of391

the time series data, we can gain insights into the predictability and complexity of the392

double pendulum system’s dynamics. A high entropy score for a particular variable393

suggests that the corresponding time series is highly unpredictable or complex, while394

a low entropy score indicates a more regular or predictable pattern.395

The choice of Shannon entropy as an analysis technique was motivated by its strong396

theoretical foundation in information theory and its widespread use in various scientific397

fields for quantifying the complexity and uncertainty of dynamical systems. Further-398

more, the interpretation of entropy scores based on predefined thresholds provides a399

convenient and standardized way to categorize the time series data into different levels400

of predictability or complexity.401
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After conducting the entropy measurement, we employed the Kolmogorov-Smirnov402

(K-S) test to assess the sensitivity of the system to initial conditions, which is a403

characteristic feature of chaotic systems. The K-S test is a non-parametric statistical404

test that compares the cumulative distribution functions (CDFs) of two samples to405

determine if they are drawn from the same underlying distribution [32]. In the context406

of dynamical systems analysis, the K-S test can be used to compare the time series407

obtained from the original system with slightly perturbed initial conditions, allowing408

us to quantify the divergence between the trajectories. Let F (x) and G(x) be the409

empirical CDFs of the original time series and the perturbed time series, respectively.410

The K-S statistic is defined as the maximum absolute difference between these two411

CDFs:412

Dn,m = sup
x

|F (x)−G(x)| (41)

, where supx represents the supremum (least upper bound) of the set of absolute413

differences between the CDFs over all possible values of x.414

The null hypothesis for the K-S test is that the two samples are drawn from415

the same continuous distribution, while the alternative hypothesis is that they are416

drawn from different distributions. The null hypothesis is rejected if the K-S statis-417

tic Dn,m exceeds a critical value that depends on the chosen significance level and418

the sample sizes n and m. In our analysis, we compared the original time series419

(x1, y1, θ1, θ2, ω1, ω2) obtained from the double pendulum simulation with slightly per-420

turbed time series, where the initial conditions for ω1 and ω2 were perturbed by 0.001421

rad/s. By applying the K-S test to each pair of original and perturbed time series, we422

can assess whether the small perturbation in the initial conditions leads to a signifi-423

cant divergence in the trajectories over time. If the K-S test rejects the null hypothesis,424

indicating that the original and perturbed time series are drawn from different distri-425

butions, it suggests that the double pendulum system is sensitive to initial conditions,426

which is a hallmark of chaotic behavior. Conversely, if the test fails to reject the null427

hypothesis, it implies that the system is less sensitive to small perturbations in the428

initial conditions, suggesting a more predictable or regular dynamics.429

The choice of the K-S test was motivated by its nonparametric nature, which means430

that it does not make assumptions about the underlying distribution of the data,431

making it suitable for analyzing complex dynamical systems where the distribution is432

often unknown or difficult to model parametrically. Additionally, the K-S test is widely433

used in various scientific fields for comparing distributions and detecting deviations434

from a hypothesized distribution [e. g. 33–35], further justifying its application in our435

analysis. We employed SciPy’s stats module [15] to conduct an automated K-S test.436

3 Results and Discussion437

The K-W test, a non-parametric test for comparing multiple groups, yielded a test438

statistic of 3523.203 and a p-value of 0.000 for the runtime data, indicating that at439

least one group’s median runtime significantly differs from the others. Dunn’s post-440

hoc test, with Bonferroni adjustment for multiple comparisons, showed that all pairs441

of groups had p-values below 0.05, indicating significant differences in their median442

runtimes.443
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The results (Fig. 2a) indicate that R and GNU Octave exhibited the fastest run-444

times, with mean values of 1.914 seconds and 1.944 seconds, respectively. The fast445

performance of R can be attributed to the use of the deSolve package, which provides446

efficient solvers for ODEs. GNU Octave, on the other hand, likely leverages opti-447

mized numerical libraries or solvers for ODE systems. Python followed closely with448

a mean runtime of 2.503 seconds, benefiting from the SciPy and NumPy libraries,449

which provide efficient numerical computations and ODE solvers. Notably, Julia had450

the slowest runtime performance, with a mean of 35.701 seconds, which is signifi-451

cantly longer than the other environments. One potential factor contributing to Julia’s452

slower performance could be the overhead associated with its JIT compilation process.453

JIT compilation can introduce additional runtime overhead, particularly for compu-454

tationally intensive tasks like solving ODEs, which may have impacted Julia’s overall455

runtime performance in this specific implementation.456
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(a)

(b)

Fig. 2: Comparison of (a) execution time and (b) memory usage across different
computing environments.

The K-W test for memory usage data yielded a test statistic of 3375.563 and a p-457

value of 0.000, indicating that at least one group’s median memory usage significantly458

differs from the others. Dunn’s post-hoc test showed that the pairs of groups with p-459

values below 0.05, indicating significant differences in their median memory usage, were460

GNU Octave-Julia, GNU Octave-Python, Julia-Python, and Julia-R. The results (Fig.461

2b) show that Python, R, and GNU Octave exhibited similar memory usage patterns,462

with a mean of approximately 142.84 MB. Julia, on the other hand, had significantly463

higher memory usage, with a mean of 1031.703 MB, which is about seven times higher464

than the other environments. The differences in memory usage across the computing465

environments can be attributed to various factors, such as the memory management466
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strategies of the respective programming languages and the specific implementation467

of the double pendulum simulation in each environment. However, it is worth noting468

that the pure Julia implementation using DifferentialEquations.jl may have different469

memory requirements or optimization strategies compared to the packages or libraries470

used in the other environments.471

When selecting the appropriate computing environment for the double pendulum472

simulation, the statistical significance of the runtime and memory usage differences473

should be considered alongside other factors, such as existing codebase, familiarity474

with the language, and potential optimizations. If runtime performance is the primary475

concern, R and GNU Octave would be the recommended choices based on the pro-476

vided results, with R leveraging the deSolve package and GNU Octave likely utilizing477

optimized numerical libraries or solvers for ODE systems. Python, with the SciPy and478

NumPy libraries, also exhibited a relatively good runtime performance and could be479

a viable option, especially if existing Python code or familiarity with the language480

is a consideration. If memory usage is a critical factor and the higher memory foot-481

print of Julia is not a concern, Julia could be considered, potentially with further482

optimization efforts or alternative implementations. It is important to note that the483

pure Julia implementation using DifferentialEquations.jl may have different memory484

requirements or optimization strategies compared to the packages or libraries used in485

the other environments.486

Figure 3 and Fig. 4 present time series plots of a double pendulum system with487

slightly different initial angular velocities for the inner and outer pendulum. Each488

subplot displays the time evolution of the angular positions of both pendulums over489

10 seconds with 1000 time steps.490
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(a) (b)

(c) (d)

Fig. 3: Time series of a double pendulum positions with slightly different initial
angular velocities for (a-b) inner and (c - d) outer pendulum.
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(a) (b)

(c) (d)

Fig. 4: Time series of a double pendulum (a - b) angles and (c - d) angular velocities
with slightly different initial angular velocities for (a - c) inner and (b - d) outer
pendulum.

The sensitivity to initial conditions is evident as the trajectories diverge signifi-491

cantly, despite only a small difference of 0.001 rad/s in the initial angular velocities492

(ω1 and ω2) of the inner and outer pendulums. This phenomenon is characteristic of493

chaotic systems, where minuscule changes in initial conditions can lead to vastly dif-494

ferent long-term behaviors, making precise predictions challenging [1]. The time series495

exhibit intricate patterns with recurring oscillations, indicative of the underlying non-496

linear dynamics. However, the trajectories quickly diverge, showcasing the system’s497
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sensitivity to initial conditions, a hallmark of chaos theory [36]. The time series ini-498

tially following similar paths but rapidly diverging due to the infinitesimal differences499

in the initial angular velocities, further demonstrating the sensitive dependence on500

initial conditions in chaotic systems.501

These results highlight the importance of accurately measuring and accounting for502

initial conditions in chaotic systems, as even minute uncertainties can amplify over503

time, leading to substantial deviations in the system’s behavior. The double pendulum504

serves as a compelling example of the intricate dynamics and unpredictability that505

can arise in nonlinear systems due to their extreme sensitivity to initial conditions, a506

fundamental concept in chaos theory [37].507

To further quantify and statistically validate this divergence, we performed the508

K-S test on the time series data for various variables, including positions (x, y, θ)509

and angular velocities (ω1, ω2), before and after the initial perturbation. The K-S test510

results revealed that for each of these variables, the distributions of the time series511

data before and after the perturbation were significantly different, with p-values less512

than 0.05, leading to the rejection of the null hypothesis. This statistically confirms513

that the slight change in the initial angular velocity has a profound impact on the514

system’s dynamics, causing the distributions of the position and velocity variables to515

diverge substantially.516

This divergence can be attributed to the chaotic nature of the double pendulum517

system, where the nonlinear equations governing its motion exhibit extreme sensitivity518

to initial conditions. Even minuscule differences in the starting values can rapidly519

amplify over time, leading to vastly different trajectories in the phase space [36]. The520

K-S test results corroborate this fundamental characteristic of chaos, demonstrating521

that the distributions of the system’s variables become statistically distinct due to522

the exponential divergence of initially close trajectories, a phenomenon known as the523

”butterfly effect” [38].524

Figure 5a and Fig. 5b show the trajectories of the inner and outer pendulums in525

the x− y plane, providing a visualization of their motion over time. However, Fig. 5c526

and Fig. 5d represent the phase space diagrams of the coupled pendulum system. A527

phase space diagram is a powerful tool for studying dynamical systems, as it provides528

a geometric representation of the system’s state at any given time [13]. In the case529

of the coupled pendulum system, the phase space diagrams plot the angular position530

(θ) of each pendulum against its angular velocity (ω), capturing the evolution of the531

system’s state over time.532

The complex patterns observed in Fig. 5c and Fig. 5d are indicative of the chaotic533

nature of the coupled pendulum system. The phase space trajectories exhibit intri-534

cate, aperiodic behavior, never repeating the same pattern or revisiting the same state.535

The presence of chaos in the coupled pendulum system has significant consequences536

for its predictability and controllability [36]. Even with precise knowledge of the ini-537

tial conditions and governing equations, the system’s behavior becomes increasingly538

difficult to predict over long time scales due to the exponential divergence of nearby539

trajectories in the phase space.540
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(a) (b)

(c) (d)

Fig. 5: Coupled inner-outer pendulum dynamics. (a - c) Original system. (b - d) Sys-
tem with 0.001 rad/s perturbation to initial angular velocities. (a - b) x−y trajectories.
(c - d) θ vs. ω phase space diagrams for inner (blue) and outer (red) pendulums.

Furthermore, chaotic systems often exhibit strange attractors in the phase space,541

which are geometrically complex structures that the system’s trajectories are con-542

fined. The presence of strange attractors in the phase space diagrams of the coupled543

pendulum system suggests that the system’s dynamics are governed by an underly-544

ing deterministic process, despite the apparent randomness and unpredictability of its545

behavior [1].546
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The high Shannon entropy values (greater than 1.0) mentioned for the time series547

data of the coupled pendulum system are consistent with the observed chaotic dynam-548

ics. For chaotic systems, the Shannon entropy is expected to be high due to the inherent549

unpredictability and lack of regularity in the system’s behavior [39].550

4 Conclusion551

The double pendulum system serves as a compelling example of the intricate dynamics552

and unpredictability that can arise in nonlinear systems due to their extreme sensi-553

tivity to initial conditions, a fundamental concept in chaos theory. Through numerical554

simulations and extensive analysis, we have demonstrated the chaotic behavior of the555

double pendulum, characterized by the exponential divergence of trajectories, the pres-556

ence of strange attractors in the phase space, and high Shannon entropy values. These557

findings underscore the importance of accurately measuring and accounting for ini-558

tial conditions in chaotic systems, as even minute uncertainties can amplify over time,559

leading to substantial deviations in the system’s behavior. Furthermore, our compar-560

ative study of different computing environments (Python, R, GNU Octave, and Julia)561

has revealed significant differences in their runtime performance and memory usage562

for the double pendulum simulation task. This information can guide researchers in563

selecting the most appropriate computing environment based on their specific needs564

and resource constraints.565

To further enhance the computational performance of the double pendulum simula-566

tions, future work could explore the use of accelerated computing techniques. Numba,567

a JIT compiler for Python [40], can be leveraged to optimize numerical computations568

by compiling Python code to efficient machine instructions, potentially improving the569

runtime performance of the Python-based simulations [e. g. 41–43]. Additionally, the570

utilization of GPU-accelerated computing libraries like CuPy (CUDA for Python) [44]571

could significantly accelerate the simulations by offloading computationally intensive572

tasks to the highly parallel architecture of modern graphics processing units (GPUs)573

[e. g. 45–47]. The massive parallelism provided by GPUs can lead to substantial574

speedups, especially for large-scale simulations or ensemble runs. While the double575

pendulum system studied in this work was modeled as a deterministic system, future576

studies could explore the effects of incorporating stochastic elements. Real-world sys-577

tems often exhibit random fluctuations or noise, which can significantly impact the578

system’s dynamics and introduce additional complexity. By incorporating stochastic579

components into the double pendulum model, researchers could investigate the inter-580

play between deterministic chaos and random noise, potentially revealing new insights581

into the behavior of complex dynamical systems.582

Future investigations could also focus on studying chaotic synchronization, a phe-583

nomenon where two or more chaotic systems can become synchronized, exhibiting584

correlated behavior despite their inherent unpredictability. Exploring chaotic synchro-585

nization in coupled double pendulum systems or the potential applications of such586

synchronization in various fields, such as secure communication, signal processing,587

and control systems, could yield valuable insights. As mentioned in the introduction,588

the double pendulum system serves as a valuable model for studying chaos theory589
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and its applications in understanding Earth’s complex climate systems. Future work590

could explore the potential use of the double pendulum as a simplified model for591

investigating the nonlinear dynamics underlying atmospheric-oceanic flows and devel-592

oping improved long-range climate predictions. By pursuing these future directions,593

researchers can continue to deepen our understanding of chaotic systems, leverage594

advanced computational techniques for efficient simulations, and explore the potential595

applications of chaos theory in various scientific and engineering domains.596
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