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ABSTRACT

In the framework of wall-modeled large-eddy simulation (WMLES), the problem of combining sub-grid scale (SGS) models with the stan-
dard wall law is commonly acknowledged and expressed through multiple undesired near-wall behaviors. In this work, it is first observed
that the static Smagorinsky model predicts efficiently the wall shear stress in a wall-modeled context, while more advanced static models like
wall-adapting local eddy (WALE) viscosity or Sigma with proper cubic damping fail. It is, however, known that Smagorinsky is overall too
dissipative in the bulk flow and in purely sheared flows, whereas the two other models are better suited for near-wall flows. The observed dif-
ficulty comes from the fact that the SGS model relies on the filtered velocity gradient tensor that necessarily comes with large errors in the
near-wall region in the context of WMLES. Since the first off-wall node is usually located in the turbulent zone of the boundary layer, the tur-
bulent structures within the first cell are neither resolved by the grid nor represented by the SGS model, which results in a lack of turbulent
activity. In order to account for these subgrid turbulent structures, a stochastic forcing method derived from Reynolds-averaged
Navier-Stokes (RANS) turbulence models is proposed and applied to the velocity gradients to better estimate the near-wall turbulent viscos-
ity while providing the missing turbulent activity usually resulting from the WMLES approach. Based on such corrections, it is shown that

the model significantly improves the wall shear stress prediction when used with the WALE and Sigma models.

I. INTRODUCTION

In fluid dynamics, turbulence is a complex phenomenon charac-
terized by the motion, the creation, and the dissipation of different
scales, from the largest to the smallest eddies. Today, direct numerical
simulation (DNS) allows one to numerically study with the highest
precision turbulence because the mesh is fine enough to capture the
smallest eddies (Kolmogorov scale) without any need of modeling.
However, this requires huge computational resources: DNS is there-
fore restricted to academic cases like homogeneous isotropic turbu-
lence (HIT) or channel flows at moderate Reynolds numbers. When
dealing with industrial applications, DNS is too expensive and model-
ing is needed. In this specific context, the large-eddy simulation (LES)
modeling approach has shown successes by resolving the largest struc-
tures while modeling the smallest ones that are spatially filtered by the
grid size and known to be computationally expensive to resolve." The
smallest eddies are therefore modeled by a so-called sub-grid scale
(SGS) model to close the problem, which accounts for the energy

transfer between the resolved and the modeled scales, following the
well-known Kolmogorov energy cascade theory.”

Even if LES has proved its capability to compute complex turbu-
lent flows,”* wall-bounded flows remain a challenge and induce a large
computational cost. Indeed, with increasing Reynolds numbers, small
turbulent structures in the near-wall region still lead to strong mesh
requirements, and the cost of LES approaches the cost of DNS.
Chapman” estimated that the inner layer of the boundary layer (about
20% of its height) scales with Re'®. This order of magnitude has been
updated by Choi and Moin,” where the authors suggest even a higher
cost. In industrial flows where the Reynolds number can easily reach
1 x 10°, this makes LES unaffordable to accurately resolve the bound-
ary layer characteristic dynamics, that is, with the so-called wall-
resolved LES (WRLES) approach.

To alleviate the cost induced by this specific flow region, the con-
cept of wall-modeled LES (WMLES) is often put forward. Several ways
currently exist to model wall flows, and the reader is refereed to




Larsson et al.” and Bose and Park” for recent overviews of the available
methods. Among them, a widely used approach is the wall stress
model, where LES is used everywhere in the domain with dedicated
wall functions and models. Wall stress models can be developed in a
physical sense, trying to reproduce the real fluid behavior known
thanks for experiments or DNS, such as the classic log—law.g However,
the context of WMLES is also prone to numerical errors, and
mathematical-based models are developed to circumvent this problem,
like in Nicoud et al.'” This article focuses on wall stress models, which
we refer to as WMLES from here on.

This latter framework however leads to specific difficulties related
to the coupling between wall laws and SGS models. This point has
been recently discussed in Rezaeiravesh et al,'’ Bae et al,"”” and
Vanna."” In those works, the authors indicate that the SGS contribu-
tion must be non-zero for a coarse grid at the wall. This means that
the choice of the SGS model is a crucial parameter for the wall stress
prediction and has consequences on the so-called log-layer mismatch
problem." ' This well-known phenomenon leads to potentially large
errors on the prediction of the wall shear stress and can indeed come
from not only SGS influence, but also numerical scheme choice'” or
the treatment of the boundary condition.'® In the present study, one
focuses on SGS models making use of the gradient hypothesis and
more specifically the static Smagorinsky,"” wall-adapting local eddy
viscosity (WALE),”” and Sigma”' models. The static Smagorinsky
model has been derived for isotropic turbulence, while WALE and
Sigma have been derived in a wall-resolved context, to provide an
accurate turbulent viscosity behavior close to the wall. In a wall-
modeled context, Jaegle et al”” however indicated that the standard
wall law gives better results in combination with the Smagorinsky
model because it provides more turbulent viscosity at the wall. On the
contrary, WALE and Sigma both have the property to vanish for pure
shear flows and follow the physical y* damping function near the wall.

However, although the Smagorinsky model has the desired prop-
erty of providing a non-zero viscosity at the wall in WMLES, it is
known to be too dissipative in the bulk flow, decreasing the overall
LES quality in either WRLES or WMLES context. WALE and Sigma
on the other hand show usually good results in the bulk flow, in both
non-reactive and reactive cases whenever subject to pure shear, rota-
tion, and contraction. In order to provide accurate LES results both in
the bulk flow and in the near-wall region in a wall-modeled context,
consistent SGS models, and wall-law coupling procedures must there-
fore be developed. This idea is not new, and the literature provides sev-
eral examples investigating this problem.'”””*° Note also that the
coupling of SGS models with other kind of physics is a general concern
in LES, for example, in the case of particle-laden flows (including the
near-wall problematic), as suggested by Marchioli,”” Bassenne et al,”*
and Johnson et al.”’

This paper proposes a coupling strategy to improve the behav-
ior of existing advanced static models when used in a WMLES con-
text. Main ideas for this work come from stochastic forcing methods
as proposed in Mason and Thomson,”’ Piomelli et al.,”" or Keating
and Piomelli.”* Their original purposes were however in the context
of Reynolds-averaged Navier-Stokes (RANS)/LES boundary layer
modeling to represent backscatter or to decrease the transition region
between the RANS and LES zones. The goal is here different and is
to generate stochastic fluctuations of velocity gradients that feed the
SGS models, as a correction for the incompatibility between SGS

models with the proper near-wall asymptotics and the WMLES
framework.

The paper is organized as follows. In Sec. II, the methodology
including the test case and the numerics is described. A brief compara-
tive study between Smagorinsky, WALE, and Sigma models is then
proposed to illustrate the identified weaknesses of the default coupling
strategy. In Sec. III, the development of a dedicated stochastic forcing
is introduced and applied to the different SGS models and results are
discussed. Finally, Sec. IV concludes and provides some perspectives.

Il. PRESENTATION OF THE PROBLEM
A. Numerical framework

The LES code AVBP developed by CERFACS™ ™ is used in this
study. In its original form, it solves the compressible Navier-Stokes
equations for unstructured meshes with a finite volume cell-vertex for-
malism. Although mainly dedicated to compressible applications such
as combustion, the code has been validated in incompressible frame-
work such as two-phase flow problems’”” and is therefore adapted
for the present work dealing with incompressible test cases (Sec. II B).
A Lax-Wendroff™ (second order in space and time) numerical scheme
coupled to a third-order Runge-Kutta procedure for time advance-
ment is applied. The filtered equations for mass, momentum, and
energy are written below:

op  Opu;
b Opu

8t ax,- - 07 (1)

dpu; Opu; OPd; O s
e +—8x,- o, —8—xi[‘c,j—p(u,u]—u,uj)], (2)

OpE  OpwE  OwPs; O [_ i~ -~ Ou;
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where p is the mixture density, u; stands for the ith component of the
velocity, P the pressure, T the viscous stress tensor, E the total non-
chemical energy, g; the ith component of the heat flux, and J;; is the
Kronecker symbol, equal to 1 if i=j and 0 otherwise. In these nota-
tions, the operator ~ represents a Reynolds-filtered variable and the
operator - denotes the mass-weighted Favre averaging.

The term T = —p (1 — w1i;) is the sub-grid scale viscous
stress tensor and is modeled following the Boussinesq assumption,
where the subgrid stresses are modeled thanks to a subgrid scale vis-
cosity vy = ,/p (with the hypothesis of having only a dissipative role
on the larger structures),

SgS — < 1 <
%i}? =2pv; (S,-j +§5ijsll)a (4)

where

- 10w o,

The turbulent viscosity v, is computed depending on the chosen sub-
grid scale model, being in this paper Smagorinsky,”” WALE,” or
Sigma.”’

Since the overall context of work is WMLES, wall modeling has
to be introduced to complement the above equations in the near-wall

region. Variables expressed in wall units (superscript “+”) are useful




to express a unified vision of the turbulent boundary layer. Based on
the friction velocity . and the viscous length scale d,, the wall distance
and the velocity are normalized as
L)Y pyly + u
=2 Mt S 6

A P ©
where the subscript “w” stands for wall values (in the cell-vertex for-
malism, variables are stored at nodes). The classic two-layer logarith-
mic law distinguishes the viscous sub-layer from the log-layer with
¥ = 11.445 as the cutoff value so that

1
ut = ;ln (") +Cify" >y, (7)
ut =y" otherwise, (8)

where k = 0.41 is the Von Kdrman constant and C=5.5 for internal
flows. Note that this classic wall law is used in this work in a local and
instantaneous way, even though it has been originally developed for
RANS;” however, it has been commonly used in LES as well. More
advanced wall laws exist but are not considered in this work as the
classic wall law is still largely used in industrial LES that is the target of
this study, and the cases described further fit the assumptions made
for the derivation of the classic wall law.
The friction flux is computed as

Ty = itz )
with

Ur = (MIHW)/(ylpW)a (10)

where the subscript “1” indicates the first off-wall node value (cf. Fig. 1).
From the friction flux predicted by the wall law and imposed as a
Neumann boundary condition, the wall velocity gradient is expressed as

Ju Ty

(9)/ w,wall—law Hyy + luf,W 7
with g, ,, the wall turbulent dynamic viscosity. Equation (11) leads to a
non-zero slip velocity ug;, as illustrated in Fig. 1. This is actually where
the coupling between the wall law and the sub-grid scale model

appears: At the next iteration, ug;, (which is unphysical but still results
from the convective scheme) and u; are used to compute the wall

(11)
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FIG. 1. Near-wall velocities scheme.

velocity gradient that feeds the SGS model. Then, u, acts directly on
the next evaluation of the exact wall velocity gradient through Eq.
(11): high values of y, will lead to a moderate velocity gradient, while
low values of p, induce steep wall velocity gradient, as observed in
Jaegle et al.”” and can lead to reversed slip velocities and spurious
oscillations.

B. Numerical setup

The simple bi-periodic turbulent channel flow configuration™ of
half-height h as sketched in Fig. 2 is used hereafter to illustrate the
issue and test the coupling strategy. In this specific case, the problem is
statistically steady and the average flow can be considered one-
dimensional, meaning that 9/0t = 0, 9/0x = 0, 9/0z = 0. Under
these conditions, the momentum equation, Eq. (2), reduces to

o ( ou e oul
6—y<y8—y—pu v +'ut6_y) = =S, (12)

where pu”v" is the LES resolved turbulence contribution and S, is a
source term needed to equilibrate the wall shear as the mean pressure
gradient is zero due to periodicity. This source term can be evaluated
using the Kérman-Nikuradse correlation"’ (abbreviated “KNc” here-
after) that predicts a friction coefficient Cf xne, based on the bulk
Reynolds number and hydraulic diameter Rej, py,

Cr.xne = 0.046 Re, 13, (13)

Ty.kne = 0.5 Cr e pu’. (14)

This source term is imposed dynamically to maintain the target mass
flow rate (or equivalently, the bulk Reynolds number),

1 N
(pu)target - VJJJ (pu)th
Si+At — Q

Trelax

, (15)

where t denotes the current time step, At is the computational time
step, Vis the integration volume in the domain Q, and 7, is a relax-
ation time coefficient, taken to T,y = 1/3 X h/u, in this study.

y
/ .
Flow h L‘_
e )
h L,
z L,

FIG. 2. Turbulent channel geometry. Gray surfaces represent wall boundary condi-
tions (making use of the wall law), while the other pairs of faces are periodic.




Following the DNS of Hoyas and Jimenez,"" two cases are con-
sidered at Re; = 547 and Re; = 934 (with Re; = u;h/v,,), as test
cases for analyzing and developing the wall-law/SGS model coupling
strategy. The WMLES cases are built with meshes, respectively, satisfy-
ing y© & 55 and y* & 95, ensuring that the wall nodes are in the log
zone of the boundary layer. Note that for these cases, meshes are regu-
lar and fully made of hexaedra (of dimensions Ax™, Ay™, Az"), while
the channels have the same dimensions as indicated by Hoyas and
Jimenez"' (cf. Table I for mesh characteristics).

To finish, although the solver is fully compressible, the operating
mean flow pressure is fixed at 1 MPa so that M < 0.05 in both cases,
ensuring that no compressible effect is present. The wall boundary
condition relies on a slip formalism (u,=0 with a slip velocity
ugip 7 0, cf. Fig. 1 and Jaegle et al”* for the implementation) and the
standard law of the wall, used with an isothermal condition that is also
the flow temperature. The flow is thus virtually isothermal, and the
interest is put on the viscous flux of momentum through the solid
wall: the wall shear stress. Also, the heat generated by viscous dissipa-
tion is clearly negligible given the Mach number considered. As a con-
sequence, density and viscosity are nearly constant in the whole
channel.

All simulations are performed with the Smagorinsky, WALE,
and Sigma models and are time-averaged over at least 100 diffusive
times (100 X h/u.) to ensure statistical convergence.

C. Comparison between SGS models for wall shear
stress prediction

The wall shear stress obtained by using the different SGS models
within the WMLES framework described in Sec. IT A are displayed in
Tables IT and III. Although the following focuses on case Re. = 547,
the comments are valid for the case Re; = 934. In the results presented
below, the friction flux computed with the Kairman-Nikuradse corre-
lation (“KNc¢”), Eq. (14), is taken as the reference. Note that the incom-
pressible nature of the simulations has been checked following the
Morkovin hypothesis that has been verified in past studies,"”"” stating
that the compressibility effects on turbulent statistics are limited to the
mean density variations (here below 0.003% in space and time) as
long as the fluctuating Mach number is small.

The results clearly show that the Sigma and WALE models fail to
accurately predict the wall shear stress in this WMLES context, with
about ~ + 20% and ~ + 25% for Re, = 547, and =~ + 22% and
~+28% errors, respectively, for Re; = 934 for the friction flux.
Contrarily, the Smagorinsky model gives a good prediction by provid-
ing an error of only ~+3-4%. Such differences can be effectively
related to the fact that u, is over-predicted with Sigma and WALE, the
first off-wall velocity u; being clearly overestimated with these models
as observed from Fig. 3(a) contrarily to the Smagorinsky SGS closure.
This specific overestimation of t,, then expresses in reduced slopes of

TABLE I. Meshes used for the channel flow test cases considered.

Case Re, Le/h L:/h NyxNyxN, Axt Ayt Az*

Re, 547
Re, 934

10450 87 4nmn
18950 8m 3=

201 x 21 x 101 69 55 69
201 x 21 x 101 117 95 88

TABLE II. Comparison of the wall shear stress in the turbulent channel flow for
Re, = 547. Errors are relative to the KNc.

Smagorinsky Sigma WALE
KNc¢
Value Value Error Value Error Value Error
T, (Pa) 259 269 +377% 311 +1997% 324 +24.98%

the log-law velocity profiles as shown by Fig. 3(b) for Sigma and
WALE.

The over-prediction of the effective turbulent Reynolds number
and wall friction can be explained as follows. Since all SGS models are
gradient diffusion-based models making use of a turbulent viscosity,
their physical action is purely dissipative when it comes to energy and
purely diffusive when it comes to momentum. However, by construc-
tion Sigma and WALE provide a turbulent viscosity that is linked to
the near-wall velocity gradient, which itself depends on the wall dis-
tance. The near-wall velocity gradient being under-resolved and the
near-wall velocity fluctuation being too weak, and it results a stream-
wise off-wall velocity value u, that is overestimated compared to what
it should be. Indeed, its coupling with the wall law relying on Eq. (10),
an overestimation of t,, = p,,u?, is found as reported by Tables IT and
I11. Note that in such a scheme, a good prediction of 7,, requires a
good first off-wall streamwise velocity u, estimation (like in the
Smagorinsky case) or conversely a good turbulent SGS viscosity and
velocity gradient. This last critical issue is of particular importance as
emphasized in Sec. III.

In a wall-resolved context, the Smagorinsky model is known to
induce overestimated turbulent viscosity in the near-wall region,
because of its response to the wall shear stress. To address this issue,
WALE and Sigma have been developed to induce a turbulent viscosity
that follows a y damping when approaching the wall. This intends to
comply with the wall-resolved physics,”* where no turbulent activity
exists in the viscous sub-layer. However, in a WMLES context, this y3
damping function is no longer relevant since the first off-wall node is
located in the logarithmic region, which contains turbulent activity.
Still, Fig. 3(d) shows that this asymptotic behavior also occurs in
WMLES, meaning that it is independent of the y* or t,, values.

Figure 3(a) shows that the choice of SGS model also affects the
wall slip velocity: g, ~ 5.8 m/s using a Smagorinsky model, while
ugip = 1.6 m/s with WALE of Sigma. Although unphysical and artifi-
cially resulting from the law of the wall implementation,” this wall
velocity impacts the code evaluation of the normal streamwise velocity
gradient that then propagates to the near-wall nodes through the diffu-
sion process (either SGS or laminar process) as shown in Fig. 3(c). A
direct consequence of the small slip velocity produced by WALE of

TABLE lll. Comparison of the wall shear stress in the turbulent channel flow for
Re, = 934. Errors are relative to the KNc.

Smagorinsky Sigma WALE
KNc¢
Value Value Error Value Error Value Error
t,(Pa) 7.57 7.82 +333% 922 +21.83% 9.70 +28.17%




10
8
26
S 4 —— DNs4U
> o SMAGO
2 m  SIGMA
o < WALE
0.0 0.2 0.4 0.6 0.8 1.0
ylh
(@)
led
i e SMAGO
—3 " SIGMA
| < WALE
L) -
>
2
U .
0 L) L ] [ | n n ™ n
0.0 0.2 0.4 0.6 0.8
ylh
(©

/,‘u+=y+
20 =1
+ 15y —— DNSsl41l
3107 e SMAGO
. SIGMA
5 <« WALE
------ log — law
for 102
y+
(b)
101 ® e SMAGO
8 ° m  SIGMA
< WALE
36 i
3 <« « < <
4 R I " = =
P L [ O
2
n
0.0 0.2 0.4 0.6 0.8
ylh
(d)

FIG. 3. Comparison between the different SGS models for the channel flow Re, = 547. (a) Streamwise velocity. (b) Streamwise velocity in wall units. (c) Streamwise velocity

gradient. (d) Dynamic viscosity ratio.

Sigma is to generate higher velocity gradients than Smagorinsky at the
first two nodes.

The limitations of WMLES and more specifically the coupling
scheme adopted between the law of the wall and any SGS model have
been evidenced. WALE and Sigma near-wall behavior is physically jus-
tified in WRLES, but fails to characterize the near-wall region in
WMLES where the first off-wall node lies in the logarithmic region.
Contrarily, although the Smagorinsky model is known, in a wall-
resolved context, to have physical limitations especially in sheared
flows, its coupling with a law of the wall appears satisfying in the
WMLES context. Because these SGS models rely on the filtered veloc-
ity gradient, which is wrong in the framework of WMLES, the choice
of the SGS model in a WMLES context may significantly impact the
wall shear stress prediction.

Ill. PROPOSED WMLES/SGS COUPLING FRAMEWORK

The problem of WMLES and the coupling with different SGS
models has been evidenced in the specific cases of the Smagorinsky,
WALE, and Sigma models. The following discussion therefore pro-
poses a correction framework to facilitate the coupling between a law
of the wall and WALE or Sigma models while guaranteeing robust
near-wall flow predictions. The idea followed in this paper is to artifi-
cially generate the missing turbulent activity in the first cell of the wall-
modeled mesh, so that the velocity gradients feeding these SGS models
would be representative of the actual physics. Indeed, SGS models
build the turbulent viscosity operator with the assumption of a turbu-
lent physical property, generally presuming a velocity gradient of the
resolved field sufficiently representative of the true SGS turbulent
activity. Adding fluctuations to the velocity gradients of the resolved

field can therefore help meeting initial goal that is to manipulate a
locally turbulent field, which is not guaranteed if a law of the wall is
used.

The general idea of the proposed approach is therefore to keep
the WALE and Sigma models untouched in the bulk flow while modi-
fying the velocity gradients in the near-wall region. The goal is to
recover a corrected turbulent viscosity value in this region of the flow
to ensure an accurate wall shear stress prediction.

A. Development of the stochastic forcing approach

This subsection intends to relate the expected velocity gradient
near-wall activity to the available LES variables. To reach this objec-
tive, a Reynolds-averaged Navier-Stokes approach, for which the
logarithmic region is valid, is followed in a first step. This first step
evaluates the expected turbulent kinetic energy within the first cell,
on the basis of the filtered LES quantities within the outer layer.
This turbulent kinetic energy is then recast in terms of fluctuating
velocity gradients and complies with the unsteady LES context.
This fluctuating velocity gradients are finally generated using a sto-
chastic approach and added within the first LES cell to correct the
predicted velocity gradient, to account for the missing turbulent
activity.

In order to relate the turbulent kinetic energy with the external
LES velocity, both a mixing-length algebraic model and a turbulent
kinetic energy model* are used. On one hand, the mixing-length alge-
braic model writes
, Ou

vy = lma—y, (16)




where 1,, is the mixing length.’® Tt can be shown that in the overlap

region (500, < y < 0.10), as well in the log region, the mixing length
writes”/

L = K. (17)

where x is the von Kdrmdn constant. Furthermore at high Reynolds
number, within the log-zone,"”

ou  u;

—=— 18

i (18)
The mixing-length model can therefore be recast into

Uy = UK. (19)

On the other hand, the turbulent kinetic energy evolution model
follows:

ve = C}/*Vkly, with C, = 0.09, (20)

where k stands for the turbulent kinetic energy. Hence, combining
Egs. (16), (18), and (20), one gets across the log-region,

v = CY Vil = B2 1)
Ky

Injecting Eq. (17) into Eq. (21) allows to establish
C/*Vk = us, (22)

so that the kinetic energy within the log region finally writes

2
u; Ty

NN

Note that this last expression provides an evaluation of the local turbu-
lent kinetic energy based on the wall variables t,, and p,,.

The next step is to evaluate the velocity gradient activity: the tur-
bulent kinetic energy dissipation rate ¢ within the log law framework
is used.” Using Eq. (19), one can write

(23)

L_Gk _ck

; 24
Vr UKy
or, using the wall units y™ = y/d, and 0, = v,,/u,
C,k? C,k*
g=—2= =" (25)

ukytd, Kyt

The assumption of homogeneous isotropic turbulence (HIT) is now
called upon. Although it might appear as a strong assumption consid-
ering wall-bounded flows, Schlichting'® argued that even if strictly
speaking isotropic turbulence does not exist in nature, Eq. (26) hereaf-
ter enjoys a very wide applicability if one considers locally isotropic
turbulence, that is, large gradients of the fluctuating velocity field
(Ou;/0x;), which is exactly the context adopted here. With this
assumption, Taylor'w demonstrated that

N2
&= 15v (?9%) R (26)

where ©// denotes the turbulent velocity fluctuation.

Using Egs. (25) and (26), the gradient of the fluctuating velocity

follows:
<%)2 -z @)
ox/)  15kytid’

Then using Eq. (23) to substitute the turbulent kinetic energy, one

finally gets
2
oy Gt (28)
x 1502 kytp2C,  15ky+ud’

With the HIT assumption, Taylor also demonstrated that

)2_1 o _1(@_) 29)
2\ay) 2\o0z/)’

o\ (v (ow)’

L) - (22) = (%), (30)
0x Oy 0z

(31

and

(32)

Finally, to reconstruct LES-filtered values, a random variable is intro-
duced that is arbitrary chosen to follow a normal distribution to repre-
sent these fluctuations. The quantile function (also known as the
inverse cumulative distribution function) of a normal distribution
writes

fO) =y+0V2erf (20— 1), (33)

7 being the mean, considered here as the initial prediction of the LES
code, and o is the standard deviation. { is a random variable with
0 < { < 1. 0 being computed from Eqs. (31) and (32), this leads to

ou B Ty Sty .
(8_xj> (C) - \/WIJ’W \/Eeff (ZC 1) for i = ) (34)

and

614; _fiw 71 3 ) )
<3_xj>(5) 15Ky+yW2mf (20—1) fori #j. (35)

Ultimately, the velocity gradient tensor used in the turbulent viscosity
operator of WALE or Sigma models is corrected as

ou\ (0w o
<8_)Cj) corr - <a_xj> LES . (a_x]> (C) (36)

In the specific cell-vertex context of AVBP, the correction is applied at
the cell center of the wall cells as described in Fig. 4. Note that { is
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FIG. 4. Velocity gradient modification at the wall: artificial fluctuations are generated
at the wall cell center. The corrected velocity gradient then feeds the SGS operator
also computed at the cell center. The resulting turbulent viscosity is then scattered
at the wall and off-wall nodes. The rest of the domain is not modified.

randomly generated for each gradient component at each node and at
each integration time step. For each concerned wall cell, nine gradients
(in 3 D) are therefore perturbed as described above. Finally, a particu-
lar emphasis is put on this point: the fluctuations are only used to build
the turbulent viscosity value and are not used elsewhere in the code
(i.e., the velocity field is not changed directly, and its modification is
only induced by the modified y, value).

The resulting WMLES framework, coupling the law of the wall,
the SGS model, and the proposed stochastic forcing method, is sum-
marized in Fig. 5.

B. Results with stochastic forcing

In the following, the proposed coupling formalism is applied to
the previous test cases using WALE and Sigma, respectively, denoted

by the “_sf” tag (for “stochastic forcing”) to distinguish them with the
non-perturbed wall velocity gradient cases. Note that with the use of
the proposed strategy, the computational speed of the simulations has
been decreased by about 2%.

Wall shear stress issued by the new proposed coupling for the
Re. = 547 and Re, = 934 cases are presented in Tables IV and V.
They evidence a significant improvement in 7,, predictions for WALE
and Sigma with the proposed stochastic forcing. The prediction errors
are reduced from ~25% to about 4% for WALE, and from ~20% to
about 1% for Sigma.

Figures 6(a) and 6(b) illustrate velocity profiles for Sigma and
WALE with the proposed stochastic forcing that are found in close
agreement with the one obtained with the Smagorinsky model, with-
out the gradient perturbations. The first off-wall velocity value is found
to be exactly on the DNS prediction. This is confirmed by the profiles
plotted in wall units, Figs. 6(c) and 6(d), evidencing that the proposed
correction has significantly reduced the previously obtained log-layer
mismatch. As pointed out in Sec. IT B, this specific point is at the origin
of the observed improvement since this velocity is related to u, and
therefore 7,,,.

The impact of the proposed correction on the turbulent viscosity
profiles is observed on Figs. 6(e) and 6(f). Trends are now reversed,
Sigma and WALE providing more turbulent viscosity in the near-wall
region as expected in a WMLES context. This is also highlighted on
Fig. 7 depicting instantaneous fields of wall turbulent viscosity for
Smagorinsky, Sigma, and corrected Sigma models, where the effect of
added fluctuations is clearly visible at the wall. The direct consequence
of the proposed forcing is to increase dissipation at the wall, as shown
by Fig. 8. As anticipated, the added fluctuations fulfill their role
although the limit of the proposed approach can be a too dissipative/
diffusive process. Although dissipation is usually considered as a draw-
back for LES, it allows here to enhance the wall shear stress prediction,
to provide a better modeling of the turbulent structures enclosed
within the first cell in the WMLES context. Therefore, a better
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TABLE V. Comparison of the wall shear stress in the turbulent channel flow
Re, = 547 with stochastic forcing. Errors are relative to the KNc.

Sigma_sf WALE_sf
KNc
Value Value Error Value Error
Ty 2.59 2.58 —0.48% 2.51 —3.18%

TABLE V. Comparison of the wall shear stress in the turbulent channel flow
Re. = 934 with stochastic forcing. Errors are relative to the KNc.

Sigma_sf WALE_sf
KNc¢
Value Value Error Value Error
Ty 7.57 7.44 —1.69% 7.17 —5.26%
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turbulent kinetic energy profile is found when compared to the DNS,
Fig. 9: again, Smagorinsky seems to better fit the DNS due to its better
original prediction of the wall shear stress, and thanks to the fluctua-
tions WALE and Sigma tend also to match better the DNS results.

The detail of the turbulent kinetic energy can be found in the
second-order moment of the statistics, namely, the root mean square
(“rms”) of the velocity components, which are presented in Fig. 10.
They highlight a strong impact of the proposed model on the velocity
fluctuations that are found closer to the Smagorinsky case and way
more in accordance with the DNS for the streamwise direction [Figs.
10(a) and 10(b)]. For the other directions [wall-normal and spanwise,
Figs. 10(c)-10(f)], the comparison with the DNS is not as straightfor-
ward: the near-wall zone (until y* = 200) seems in favor of the non-
model cases for both Sigma and WALE, but in the channel bulk flow
(y > 200), the agreement is overall better with the model. Note a
particular behavior due to the coupling effect of the strategy: even if
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FIG. 6. Comparison between the SGS models with adding of the gradients of velocity fluctuations for channel flow Re, = 547. (a) Streamwise velocity, Sigma. (b) Streamwise
velocity, WALE. (c) Streamwise velocity in wall units, Sigma. (d) Streamwise velocity in wall units, WALE. (e) Dynamic viscosity ratio, Sigma. (f) Dynamic viscosity ratio,
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FIG. 7. Instantaneous fields of the wall turbulent viscosity (u,), in the case Re. = 934. From left o the right: Smagorinsky, Sigma, and Sigma with fluctuations.

fluctuations of velocity gradients are added, as their effect is to increase Note that the proposed method relies on the generation of ran-
the wall turbulent viscosity, which leads to a better estimation of the dom fluctuations of velocity gradients, but one could also choose to
wall friction flux that was initially over-estimated, the rms are actually directly act on the fluctuating velocity (therefore at a node level instead
lower with the use of the model than without. of the cell level for the specific cell-vertex context of AVBP). Following

FIG. 8. Instantaneous fields of the first off-wall axial velocity (us), in the case Re. = 934. From left to the right: Smagorinsky, Sigma, and Sigma with fluctuations.
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IV. CONCLUSION

A stochastic forcing method is proposed in this paper to address
the log-layer mismatch experienced through the use of WALE and

Re. = 934. Sigma subgrid scale models in a wall-modeled LES context (WMLES).
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FIG. 10. Comparison between the SGS models of the root mean square of the velocity components with adding of the gradients of velocity fluctuations for channel flow
Re. = 547, in wall units. (a) Streamwise rms velocity, Sigma. (b) Streamwise rms velocity, WALE. (c) Wall-normal rms velocity, Sigma. (d) Wall-normal rms velocity, WALE.
(e) Spanwise rms velocity, Sigma. (f) Spanwise rms velocity, WALE.




Results with a classical use of Smagorinky, WALE, and Sigma on
a WMLES turbulent channel configuration are first investigated, and
evidence accurate wall predictions with Smagorinsky (known to be too
dissipative in the bulk flow), while the WALE and Sigma models pre-
dict an overestimated wall shear stress with about 25% of error. It is
shown that this behavior results from the inherent turbulent viscosity
damping at the wall with the WALE and Sigma models, that is, an
accurate behavior in a wall-resolved context, but not in a wall-
modeled one where the first off-wall node lies in the logarithmic
region. Such turbulent viscosity damping does not allow one to model
the turbulent structures within the first cell.

To address this indirect weakness, a combination of the mixing-
length algebraic model and the turbulent kinetic energy model is con-
sidered to provide the expected kinetic energy within the log region on
the basis of the available LES quantities at the wall and first off-wall
node. This evaluated turbulent kinetic energy is then recast in terms of
unsteady LES quantities through a stochastic forcing that provides a
gradient of fluctuating velocity within the first cell. This stochastic
forcing allows to correct the gradient predicted by the law of the wall
and accurately feeds the WALE and Sigma operators thus accounting
for turbulent activity within the first cell.

Results show that this stochastic forcing procedure allows to
reduce the log-layer mismatch with WALE and Sigma SGS models in
a WMLES context, and error predictions for the wall shear stress are
reduced from ~25% to about 4% for WALE and from ~20% to about
1% for Sigma.

Future work will be devoted to anisothermal channels with high
temperature gradients between the wall and the bulk flow, which suffer
from similar issues in WMLES, and focus will be put on the wall heat
flux prediction.
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