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Abstract

We consider a mean-field game model where the cost functions depend on a fixed parameter,

called state, which is unknown to players. Players learn about the state from a a stream of

private signals they receive throughout the game. We derive a mean field system satisfied by

the equilibrium payoff of the game and prove existence of a solution under standard regularity

assumptions. Additionally, we establish the uniqueness of the solution when the cost function

satisfies the monotonicity assumption of Lasry and Lions at each state.

Introduction

Mean field games (MFGs, see [19, 20, 21] and [16]) feature a continuum of non-atomic players

who control their own positions, and optimize a cost function that depends on their position, their

speed, and the distribution positions of the other players. These games have been intensively

studied in the last two decades (see e.g. [10, 8]), and found a wide range of applications. In most

of these works, players are assumed to know perfectly the variables determining the cost function.

This is in contrast with Game Theory literature, where models with incomplete information have

been intensively studied in a wide variety of frameworks (see e.g. [2], [24, Chapter III], [23, Chapter

10] and [13]). Incomplete information is typically on some variable affecting the cost function and

the dynamics. Such a variable may be static or dynamic, and players may acquire information on

it through the observation of a stream of private or public signals, or through the observation of

the other’s actions. As far as incomplete information is concerned, MFG literature is rather scarce.

Models where players are uninformed of their own state have been studied in [27, 28, 12, 3], where

players do not know the average position of the other players [11, 6], and where one major player

has a private information and discloses it strategically through her control to a population of small

players [4].
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Contribution of the paper In this paper, we introduce a MFG model where cost functions

depend on a fixed parameter called state. Players do not know the exact value of the state, and

receive a stream of private signals along the game. A major issue is the procedure by which the

players learn the state of nature from their signals. We adopt the Bayesian inference approach,

which is the standard approach in game theory: the players update their beliefs about the state

using Bayes’ formula. In a contemporary paper, [4] also study a MFG model with an unknown

state. A major difference between their model and ours is that in their model all players observe the

same signal, whereas in our model players observe idiosyncratic signals, conditionally independent

on the states. The model in [4] reduces to MFG with common noise. In contrast, our model does

not reduce to MFG with common noise and a different system of equations is needed to describe

the equilibrium.

Incorporating Bayesian inference in mean field games introduces a challenge because the pos-

terior beliefs about the parameter live in an infinite dimensional space. The work [4], following [2],

assumes a finite state space, so beliefs are in a finite dimensional simplex. Our approach is different.

The tractability of our model relies on the assumption that the state and the signals are jointly

normally distributed, so all posteriors beliefs are also normal, and are determined by the conditional

expectation of the states. Moreover, our signaling process is such that future information depends

on the state alone and not on current information. This assumption on the signal process makes

the posterior belief a Markov process and simplifies Bayesian updating.

We derive a PDE system that describes the equilibrium solution of the game, composed with

a Hamilton-Jacobi equation and a family of Fokker-Planck equations, indexed by the state. The

space variable of each player in this system is a pair (z, x), where x represents the position and z

is a variable that aggregates the information of the player about the state. Such a system is not

a classic MFG system. Indeed, the state appears explicitly as a parameter in the Fokker-Planck

equation, while in the Hamilton-Jacobi equation, it appears only through the belief of players. This

reflects the fact that the signal dynamics is driven by the state, while players controls are driven

by the information variable z. Hence, one can not apply directly existence and uniqueness result

to this system. Under standard regularity assumptions, we prove existence of a solution, using the

classic method of Shauder fixed-point theorem.

We then turn to the question of the uniqueness of the solution of our system. A well-known

condition under which a standard MFG system has a unique solution is the monotonicity condition

of Lions and Lasry [21], which can be intuitively interpreted by the fact that players have a pref-

erence for being far away from each other. Assuming that the monotonicity condition is satisfied

“state-by state”, we prove uniqueness of our system. This is rather surprising, since the state is not

observed by players; one may have expected instead a monotonicity condition expressed in terms

of the distribution of the state given players information, as it is the case for instance in [6], in a

different setting.
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Related game-theoretic models The mean-field game literature parallels the game theoretic

literature on large games with anonymous players. Here anonymity means that each players’ payoff

depends on opponents’ actions and types only through their empirical distribution, but not on

the identity of the opponent that played each action. The literature starts with static games

that model one-shot interaction. A canonical model in this literature, the so called continuum of

players or non-atomic approach [26, 22], assumes that idiosyncratic randomizations corresponding

to different players actions completely wash out in the aggregate, so that the outcome of the game

is fully deterministic. The non-atomic model can also allow some idiosyncratic characteristics of

the players, or types in the game-theoretic terminology, again under the assumption that there

is no aggregate uncertainty about the distribution of types. There are many results that relate

the asymptotic outcomes of anonymous games with N players, where N goes to infinity with the

outcome of the corresponding non-atomic model (see e.g. [9]).

A seminal paper of Green [14] combined large games with (discrete-time) dynamic games.

Green’s paper and most of its follow-up study games with perfect information, in which the funda-

mentals of the game are known to the players. Green studied repeated games, in which the players

play the same game at every period. Jovanovic [17], Bergin and Bernhadt [5], and Hoppenhayn [15]

studied large games in which the payoff depends on the history of the game and stochastic games

with some aggregated uncertainty.

There is a huge literature on Bayesian learning in game theory (See Young [29, Chapter 7]).

Most of these papers are about games with finite number of players. Kalai and Shmaya [18] seem to

be the first paper that studies dynamic non-atomic games in which the fundamental of the game are

not known initially. Their model also includes Bayesian learning of the fundamentals. In addition

to the fact that their model is in discrete time, a major difference between the model in this paper

and their model is that the signals in Kalai and Shmaya’s paper are commonly observed by all

players so at every period all players hold the same belief about the state of nature, whereas in our

paper beliefs are idiosyncratic.

Paper outline Section 1 describes the game model, while Section 2 establishes the corresponding

MFG system and relates it to the state of the art. Section 3 proves existence of a classical solution

of the MFG system, under standard regularity assumptions. Section 4 proves uniqueness under a

monotonicity assumption.

Notations Throughout the paper, the notation N (m, v) stands for the normal distribution with

mean m and variance v. The n-dimensional torus, defined as the quotient of Rn by Z
n, is denoted

by T
n. All finite-dimensional spaces under consideration will be equipped with the Borelian σ-

algebra. Given a measurable set A, the notation P(A) stands for the probability distributions over

A.
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1 Model

1.1 A control problem

The MFG system considered in this paper is interpreted as a game with a continuum of players,

where each player faces the control problem described by the following elements:

• A random state S in R, unknown to the player, with distribution N (0, 1).

• A signalling process (Zt) for the player, that is a process on R that follows the stochastic

differential equation (SDE)

dZt = Sdt+ σdBt, (1.1)

with σ > 0.

• A position Xt lying in the n-dimensional torus T
n, whose trajectory is controlled by the

player, according to the equation

dXt = αtdt+ σ′dB′
t, (1.2)

where (Bt) and (B′
t) are independent Brownians, and the control variable α = (αt)t≥0 is

measurable with respect to the filtration generated by (Xt, Zt). When we want to emphasize

the dependence of the player’s signal and position process on α we also use the notation

(Xα
t , Z

α
t ). The position space is taken as the torus for simplification purpose.

• A position distribution ρs,t ∈ P(Tn), with the interpretation that ρs,t is the distribution

density over positions at time t, conditional on the state being s,

• A total cost that is a function of the control (αt)t≥0 used by the player, defined by

E

(
∫ T

0
C(S,Xt, αt) + F (S,Xt, ρS,t) dt

)

+G(S,XT , ρS,T ), (1.3)

where the cost functions C,F , and G satisfy some regularity assumption that will be specified

in the next section, and the expectation is taken over the random state S and the random

path Xt of the player. The additive structure of the flow cost, with one component that does

not depend on the population distribution, and a second component that does not depend

on the control, is standard. Compared to the classic MFG model, the new feature is that the

cost functions also depend on the unknown state.

We assume that the flow cost is not observed by the player, so that all information about

the state comes from the signaling process. Section 1.3 provides examples where such a

situation arises. The fact that players do not observe their flow cost is a common feature of
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several classic incomplete information models, such as Partially Observable Markov Decision

Processes and stochastic games with signals [24].

1.2 Equilibrium

A game distribution is a mappingm = m : R×[0, T ]×T
n×R → R such that ms,t is a probability

density over Tn × R for every s, t. The game distribution will have two related interpretations:

• ms,t is the empirical distribution over positions and signals at time t if the state is s.

• ms,t is the law of distribution of the (random) position and signal of a player at time t if the

state is s.

The distribution ms,t is an equilibrium if there exists a control α such that:

• ms,t = L (Xα
s,t, Z

α
s,t) is the probability density function of Xs,t, Zs,t.

• α minimizes the single player cost (1.3) where ρs,t is the marginal of ms,t over positions.

The first item captures the assumption that, while each player’s trajectory is stochastic due to the

randomness of his own Brownian, the population’s trajectory is deterministic conditional on the

state. In game theoretic terminology, this assumption is called no aggregated uncertainty. Note,

however, that in our environment, the population dynamic is still random because it depends on

the random state. The second item captures the idea that the players take the population dynamic

as given and ignore their own impact on it. In game theoretic terminology, players are outcome

takers [14].

Both of this assumptions make sense when the number of players is large. Indeed, the MFG

equilibrium, sometimes called a non-atomic equilibrium in game theoretic literature [26, 22], ap-

proximates a game with many players as follows: Consider a game with N players, each player

observes a signals and controls his positions according to (1.1) and (1.2) where the Brownian com-

ponents are independent between players. The flow cost to the players depends on the empirical

distribution of the players’ positions 1
N

∑

i δxi
t

where xit is the position of player i at time t. The

MFG equilibrium strategies given by the control α are ǫ-Nash equilibrium in the finite player game

for sufficiently large N .

As we mentioned, most of the game-theoretic literature focuses on discrete-time games. The

continuous-time modeling is also an approximation of discrete-time players when players take ac-

tion and receive signals in short intervals, or frequently in game theoretic terminology [25]. More

explicitly, in the discrete-time game with round duration ∆, at the beginning of each period each

player receives a signal from distribution N (s, σ2∆), where s is the realization of the state, and

signals are i.i.d. over players and rounds. At the beginning of every round, each player is at some

position xk, chooses a control αk and his position moves to xk+1 = xk + α∆+N (0, σ′2∆). At the
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end of the round, the player receives payoff ∆ (C(S, xk, αk) + F (S, xk, ρk)) where ρk is the empirical

distribution of positions of all players at round k. The game is played for T/∆ rounds. The MFG

equilibrium becomes a standard ǫ-Nash equilibrium in the discrete game for sufficiently small ∆.

1.3 Applications

Our model is a basis for future theoretical developments and applications, including the situa-

tions that we mention now.

• Product differentiation. consider firms that sell the same type of product (e.g. cellulars). They

have a time period T to develop their product. Their position represents the characteristics

of the product (size, quality, price...). The state S represents the ideal characteristics of the

consumer, and only affects the terminal cost. At time T , the product is put on the market.

Their aim is that the product characteristics are not far from the ideal of the consumer, and

moreover, that their product is far from the one of the other firms. The terminal cost reflects

these preferences, and can be taken for instance as G(s, x, ρ) = |x − s|2 −
∫

|x − y|2ρ( dy).

The flow cost is only a function of the position and the control.

• Portfolio management. Consider investors that put funds in some investment scheme during

some time period, (life insurance, hedge fund), such that the return interest rate is only known

at the end of the period. The state S represents the interest rate, and the position of each

player represents the composition of their portfolio.

2 Mean field game equations

2.1 The HJB equation

Fix the population density ρs,t over T
n at time t if the state is s. In this section we derive the

solution to the single-player control problem from Section 1.1.

The tractability of our model relies on the fact that the aggregated signal Zt at time t is a

sufficient statistic for S given the signals Zτ at times τ ∈ [0, t]. This sufficiency, combined with the

fact that the evolution of position Xt in (1.2) depends on the signal but not directly on the state,

imply that the signal Zt at time t is also a sufficient statistic for S given the process (Zτ ,Xτ ) at

times τ ∈ [0, t]. This allows us to reduce the player’s problem to a standard control problem with

the state variable (z, x).

We first describe the player’s evolution of beliefs about the state, which is a standard argument

in Bayesian statistics. We denote by N (µ, σ2) the normal law of mean µ and variance σ2, and by

ϕµ,σ2 its probability density function.
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Lemma 2.1. For all t ∈ R+,

(i) The law of Zt|S = s is N (st, σ2t)

(ii) The law of Zt is N (0, σ2t+ t2).

(iii) The law of S|Zt = z is N (rt(z), σt
2), where

rt(z) =
z

t+ σ2
and σ2

t =
σ2

σ2 + t
(2.1)

Proof. The first item follows from (1.1). The second and third items follow from the fact that

ϕ0,1(s)ϕst,σ2t(z) = ϕ0,σ2t+t2(z)ϕrt(z),σ2

t
(s). (2.2)

Recall that our cost functions F,C,G depend on the state that is not observed by the players.

Let F̃ (t, z, x, ρ), C̃(t, z, x, α), G̃(z, x, ρ) be the player’s corresponding expected cost given the signal

z at time t. More explicitly

F̃ (t, z, x, ρ) =

∫

ϕrt(z),σ2

t
(s)F (s, x, ρs,t) ds,

C̃(t, z, x, α) =

∫

ϕrt(z),σ2

t
(s)C(s, x, α) ds, and

G̃(z, x, ρ) =

∫

ϕrT (z),σ2

T

(s)G(s, x, ρs,T ) ds

(2.3)

By replacing the integrand in (1.3) with its conditional expectation at time τ and then using

the sufficiency of the signal process we can rewrite the player’s cost function as

E

∫ T

0

(

C̃(t, Zt,Xt, αt) + F̃ (t, Zt,Xt, ρS,t) dt
)

+ G̃(t, Zt,XT , ρS,T ), (2.4)

In addition, it follows from Lemma 2.1 that the signal process of a single player evolves according

the SDE.

dZt = rt(Zt)dt+ σ2dBt. (2.5)

Therefore, the control problem given by (2.4) is a standard control problem, with state z, x and

value function

u(t, z, x) = inf
αt

E

∫ T

t

(

F̃ (r, Zr,Xr, ρS,t) + C̃(r, Zr,Xr, αt)
)

dr + G̃(T,ZT ,XT , ρS,T ) (2.6)

with Xt = x and Zt = z and evolution given by (1.2) and (2.5).

7



For (t, z, x) ∈ R+ × R
n ×R

m and p ∈ R
n, let

H(t, z, x, p) := sup
α

{

−α · p− C̃(t, z, x, α)
}

(2.7)

The Hamilton-Jacobi-Bellman equation for u is

−Dtu+H(t, z, x,Dxu)−Dzu · rt(z)−
σ2

2
∆zu−

σ′2

2
∆xu = F̃ (t, z, x,m), (2.8)

with the terminal condition

u(T, z, x) = G̃(z, x). (2.9)

Standard verification results (for example [7, Lemma 3.1.6]) imply that if u(t, x, z) is a classi-

cal solution to (2.8) then u is the value function of (2.6) and the optimal control at (t, z, x) is

−DpH(t, z, x,Dxu).

2.2 The Fokker-Planck Equation

Assume each agent chooses the control α(t, z, x), which is continuous in t and Holder continuous

in z, x. Then for every s ∈ R the SDE

dZt = sdt+ σdBtdXt = αtdt+ σ′dB′
t. (2.10)

has a unique solution and the density m(s, t, z, x) of (Zt,Xt) at time t is a weak solution for the

Fokker-Planck equation (See [7, Lemma 3.1.3])

∂tm+ divx(α(t, z, x)m) + s · divz m−
σ2

2
∆zm−

σ′2

2
∆xm = 0 (2.11)

with the initial condition

m(s, 0, z, x) = ρ̄(x)δ0(z). (2.12)

Here ρ̄ ∈ ∆(Tn) is the initial density of positions, and we assume that the signal process starts

with 0 for all players (See [7, Section 3.1.2])

Recall that the signal Zt at time t is a sufficient statistic for S given the process (Zτ ,Xτ ) at

times τ ∈ [0, t]. The following lemma establishes the implication of sufficiency on the solution to

the Fokker-Planck equations (2.11): The solution factorizes to two terms, similar to the classical

Fisher–Neyman factorization theorem. In the lemma, τ does not depend on s. Note that Zt/t is an

unbiased estimator for S, which explains the drift coefficient that multiplies divzτ in the PDE of τ .

We will use the lemma in our proofs of existence and uniqueness of solutions to the MFG system.
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Lemma 2.2. The solution to (2.11) is of the form m(s, t, z, x) = ϕst,σ2t(z)τ(t, z, x) where τ(t, z, x)

is the solution to

∂tτ + divx(α(t, z, x)τ) +
z

t
divz τ −

σ2

2
∆zτ −

σ′2

2
∆xτ = 0,

with the initial condition

τ(0, z, x) = ρ̄(x).

Proof. Note first that ϕst,σ2t is the solution to

∂tϕ+ s divz ϕ−
σ2

2
∆zϕ = 0,

with the initial condition

ϕ(0, z) = δ0(z) .

Assume ϕ and τ satisfy these equations and let m = ϕ · τ . Then

divx αm = ϕdivx ατ, and divz m = τ divz ϕ+ ϕdivz τ

and

∆xm = ϕ∆xτ and ∆zm = τ∆zϕ+ 2divz ϕdivz τ + ϕ∆zτ

Therefore

∂tm =τ∂tϕ+ ϕ∂tτ =

τ(−s divz ϕ+
σ2

2
∆zϕ) + ϕ(− divx(ατ) −

z

t
divz τ +

σ2

2
∆zτ +

σ′2

2
∆xτ) =

− divx(αm) − s divz(m) +
σ2

2
∆zm+

σ′2

2
∆xm.

where the last equality uses the fact that

σ2 divz ϕ = (s−
z

t
)ϕ.
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2.3 The MFG system

Definition 2.3. An equilibrium is a pair (u,m) that satisfies the following system in the classical

sense:























−Dtu+H(t, z, x,Dxu)−Dzu · rt(z) −
σ2

2 ∆zu−∆xu = F̃ (t, z, x,m)

∂tm+ divx(−DpH(t, z, x,Dxu)m) + s · divz m− σ2

2 ∆zm− σ′2

2 ∆xm = 0

u(T, z, x) = G̃(z, x)

m(s, 0, z, x) = ρ̄(x)δ0(z)

Remark 2.4. The above equations do not constitute a standard MFG system. Indeed, the pa-

rameter s appearing in the Fokker-Planck equation is not known to the players. An interesting

question is whether such a system can be rewritten with a new set of variables, that are known to

the players. This type of transformation is classical in discrete-time zero-sum games,and the new

state variables incorporate the beliefs of players about the unknown parameters of the game (see

[1] for the 1-Player case and [24, Chapter IV] for the 2-Player case). In the MFG context, this

has been exploited in [6, 4]. In our setting, such variables could be the triple (z, x, µ), where µ is

a probability measure representing the belief of a player over the set of population distributions.

This would yield to a MFG system written on an infinite dimensional state space.

2.4 Comparison to previous models

We now compare our model to the two standard models of mean-field games, first without

common noise and then with common noise.

Recall our players’ signaling structure (1.1). For two distinct players i, j their signaling processes

dZi
t and dZj

t are stochastically dependent since their drift is governed by the same random variable

S. Under fixed control functions αi(t, z, x) and αj(t, z, x) of the players, their positions Xi
t and Xj

t

are therefore also stochastically dependent.

The canonical model of mean-field games without common noise can be viewed as our model

with a fixed state. In this model, unlike our model, for a fixed control functions, the positions of

two players are stochastically independent because they are governed by independent noises.

In stochastic games with common noise the positions of the players is governed by idiosyncratic

brownian motion and also by some common brownian noise: If we denote by Y i
t and Y j

t the positions

of two players under fixed controls αi(t, y) and αj(t, y) then

dY i
t = αi(t, Y i

t ) + dBi
t + dBi

0

where Bi
t are the idiosyncratic noises and B0

t is the common noise. Because of the common noise,

the players’ positions are also stochastically dependent, as in our model. However, the nature of

the dependence is different: For a fixed t̄, the future process (Y i
t )t≥t̄ of player i is conditionally
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independent of the history (Y j
t )t≤t̄ of player j given the history (Y i

t )t≤t̄ of player i. In other words,

player i, who knows his history up to time t̄, would not learn anything new about his future from

observing the history of his opponent. This property does not hold in our model, since player i

could gain more information about the state S by observing the trajectory of player j.

The difference between our model and these two canonical model can also be seen from the

structure of the mean field equations. In the canonical model without common noise there is a

single Fokker-Planck equation. We have a paramatrized set of Fokker-Planck equation and their

joint solution has to be compatible with the HJB equation through the expected cost function F̃

in (2.3). Note that for a fixed s, our ms is not a solution to the corresponding HJB equation with

cost F , hence our system does not reduce to standard MFG equations. The forward equation of

the canonical model with common noise is a stochastic equation governed by the common noise

component, while we have a parametrized family of standard Fokker Plank partial differential

equations.

In motivation and modeling approaches, our paper is probably most similar to Bertucci’s model

[6] of mean field games with incomplete information. In his model, the initial distribution of players

positions is random, unknown to the players, and plays a similar role to our unknown state S. In

particular, his HJB equation also involves an expected cost function under players’ belief at that

time. In addition to the difference in modeling the information flow, the results are different: In our

model uniqueness is obtained under standard monotonicity assumptions on the primitives, while

Bertucci shows that this does not hold in his model.

3 Existence

In this section, we provide sufficient conditions under which the MFG system has a classical

solution, that are largely inspired by [7].

1. The functions F and G are continuous on R× T
d ×∆(Td).

2. The functions F (s, ·,m) and G(s, ·,m) are in C1+β(Td) and C2+β(Td) for some β ∈ (0, 1),

with norm that is bounded by a sub-exponential function of s, uniformly w.r.t. m.

3. The function F (s, ·, π) and G(s, ·, π) are bounded in C1+β(Td) and C2+β(Td) (for some β ∈

(0, 1)) uniformly in s and π.

4. The cost function C is continuously differentiable in x, α and C(s, x, α) has exponential growth

in s, and α → C(s, x, α) is strongly convex, uniformly in s and x.

5. The cost function satisfies the following growth condition: there exists A > 0, for all (s, x, α),

DxC(s, z, x, α) · p ≥ −A(1 + |α|2)
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Theorem 3.1. Under Assumptions 1-4, the MFG system has a classical solution.

Before we prove Theorem 3.1, we explain how the assumptions on the cost function translate to

properties of the Hamiltonian. The function C̃ enjoys the same properties of C. Consequently, the

maximum α∗(t, z, x, p) is attained in (2.7) and the Hamiltonian is differentiable w.r.t. p and x with

DpH = −α∗(t, z, x, p)

Dz,xH = −Dz,xC̃(t, z, x, α∗(t, z, x, p))
(3.1)

In addition, DpH is globally Lipschitz, where the Lipschitz constant is uniform in (t, z, x) and

depends only on the strong convexity constant of C [30].

The global Lipschitz property property on DpH and (3.1) implies that α∗(t, z, x, p) has a linear

growth in p. Together with the growth condition on C̃ and (3.1) again it implies a growth condition

on H: there exists B > 0, for all (s, x, α),

Dz,xH(t, z, x, α) · p ≥ −B(1 + |p|2).

Proof. Consider the space C0(R × [0, T ],P(Td)) of all possible position distribution µ, with the

interpretation that µ(s, t) is the empirical distribution of players’ positions at time t if state is s.

The assumptions on F and G imply that F̃ (t, z, x, µ) and G̃(z, x, µ) are bounded in C1+β and C2+β

uniformly w.r.t. µ, t and that the maps µ 7→ ((t, z, x) → F̃ (t, z, x, µ)) and µ 7→ ((z, x) → G̃(z, x, µ))

from C0(R× [0, T ],P(Td)) to C0([0, T ] × T
d × R) are continuous.

For a large C > 0 and, let C be the set of elements µ in C0(R× [0, T ],P(Td)) such that

d1(µ(s, t), µ(s, t
′)) ≤ C|t− t′|1/2, and (3.2)

d1(µ(s, t), µ(s
′, t)) ≤ C|s− s′|1/2. (3.3)

Then C is a convex closed subset of C0(R×[0, T ],Td), which we equip with the topology of compact

convergence. It is compact, thanks to Arzela-Ascoli theorem.

Let µ ∈ C . We associate ν = Ψ(µ) in the following way: Let u be the unique solution to







−Dtu+H(t, z, x,Dxu)−Dzu · rt(z)−∆xu−∆zu = F̃ (t, z, x, µ)

u(z, x, T ) = G̃(t, z, x, µ(T ))
(3.4)

The existence of a solution follows from [7, Corollary A.2.2], the growth condition on H and the

regularity of F̃ (t, z, x, µ) and G̃(z, x, µ). Then we define m : S × [0, T ] × R
n × R such as for any
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s ∈ R, m(s, .) is the solution of the Fokker-Planck equation







∂tm+ divx(−DpH(t, z, x,Dxu)m) + s · divz m− σ2

2 ∆zm− σ′2

2 ∆xm = 0

m(., 0) = m0

(3.5)

Last, we define ν such that: for any s, t, x, ν(s, t, x) is the marginal of m(s, t, x, .). We now claim

that ν ∈ C . The global Lipschitz assumption on H and the classical 1
2 -Holder estimate on the

Fokker Plank equation [7, Lemma 3.1.4] imply (3.2). Lemma 2.2 implies (3.3).

Finally, the maps Ψ is continuous. Indeed, let µn ∈ C converge to µ∞ and let (un,mn) be the

corresponding solutions. Then the maps (t, z, x) 7→ F (t, z, x, µn) and (t, z, x) 7→ G(t, z, x, µn) con-

verge uniformly to (t, z, x) 7→ F (t, z, x, µ∞) and (t, z, x) 7→ G(t, z, x, µ∞) thanks to the continuity

properties of F̃ and G̃. Moreover, as the RHS of the HJ for un is bounded in C1+β,1+β/2, then the

un are uniformly bounded in C2+β,1+β/2, hence converges in C2,1 to the unique solution u∞ of the

HJB with RHS F (·, µ∞). Then the mn are solutions of a linear equation with uniformly Holder

continuous coefficient, hence are uniformly bounded in C2+β,1+β/2. Then the mn converge in C1,2

to the unique solution of the FP equation corresponding to u∞. This implies converges of νn to ν∞

in C .

By Schauder fixed point Theorem the map Ψ admits a fxed point µ. The corresponding u,m

are an equilibrium.

Together with the assumptions on H, this implies that the Hamilton-Jacobi equation (3.4) has

a classical smooth solution.

4 Uniqueness

We made the following assumptions:

1. The function α → C(., α) has a Lipschitz gradient, where the Lipschitz constant is uniform

in (s, x). This implies that H is strongly convex in p, uniformly in (t, z, x).

2. We assume that F satisfies the monotonicity condition [21] for every s: the cost functions F

and G satisfy

∫

(

ρ1(x)− ρ2(x)
) (

F (s, x, ρ1)− F (s, x, ρ2)
)

dx ≥ 0, and
∫

(

ρ1(x)− ρ2(x)
) (

G(s, x, ρ1)−G(s, x, ρ2)
)

dx ≥ 0.

for every s ∈ R
m and every ρ1 6= ρ2 ∈ P(Rn).

Theorem 4.1. Under this assumption, if (u1,m1) and (u2,m2) are two solutions. Then u1 = u2

and m1(s, t, x)z = m2(s, t, x) for almost every s, t.
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Proof. Fix s ∈ R. Set ū = u1 − u2 and m̄ = m1 −m2. Then

d

dt

∫

Td×R

ūm̄ =

∫

Td×R

(∂tū)m̄+ ū(∂tm̄)

=

∫

Td×R

(−∆z,xū+H(t, z, x,Dxu1)−H(t, z, x,Dxu2)−Dzū · rt(z)− F̃ (t, z, x,m1) + F̃ (t, z, x,m2

+

∫

Td×R

ū∆z,xm̄− 〈Dxū,m1DpH(t, z, x,Dxu1)−m2DpH(t, z, x,Dxu2)〉+ sm̄ ·Dzū,

where the last term is obtained after integration by parts. Note that

∫

Td×R

−(∆ū)m̄+ ū(∆m̄) = 0.

We now rewrite the remaining terms in H in the following way

∫

Td×R

(H(t, z, x,Dxu1)−H(t, z, x,Dxu2))m̄− 〈Dxū,m1DpH(t, z, x,Dxu1)−m2DpH(t, z, x,Dxu2)〉 =

−

∫

Td×R

m1 (H(t, z, x,Dxu2)−H(t, z, x,Dxu1)− 〈DpH(t, z, x,Dxu1),Dxu2 −Dxu1〉)

−

∫

Td×R

m2 (H(t, z, x,Dxu1)−H(t, z, x,Dxu2)− 〈DpH(t, z, x,Dxu2),Dxu1 −Dxu2〉)

≤ −

∫

Td×R

m1 +m2

2C
|Dxu1 −Dxu2|

2.

where the inequality follows from the uniform convexity assumption on H.

We now claim that from the assumption on F it follows that

∫

ϕ0,1(s) ds

∫

Td×R

m̄(s, t, z, x)(F̃ (t, z, x,m1)− F̃ (t, z, x,m2)) ds dx dz ≥ 0

For every t. Indeed, by Lemma 2.2 mi have the form mi(s, t, z, x) = ϕst,σ2tτi(x|z) and therefore

m̄(s, t, z, x) = ϕst,σ2tτ̄(x|z) (4.1)
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with τ̄ = τ1 − τ2. Therefore,

∫

ϕ0,1(s)m̄(s, t, z, x)(F̃ (t, z, x,m1)− F̃ (t, z, x,m2)) ds dx dz =
∫

ϕ0,1(s)m̄(s, t, z, x)ϕrt(z),σ2

t
(s′)

(

F (x, m̂1(s
′, t, ·), s′)− F (x, m̂2(s

′, t, ·), s′)
)

ds′ ds dx dz =
∫

ϕ0,1(s)ϕst,σ2t(z)τ̄ (x|z)ϕrt(z),σ2

t

(s′)
(

F (x, m̂1(s
′, t, ·), s′)− F (x, m̂2(s

′, t, ·), s′)
)

ds′ ds dx dz =
∫

ϕ0,σ2t+t2(z)ϕrt(z),σ2

t
(s′)τ̄(x|z)

(

F (x, m̂1(s
′, t, ·), s′)− F (x, m̂2(s

′, t, ·), s′)
)

ds′ dx dz =
∫

ϕ0,1(s
′)ϕs′t,σ2t(z)τ̄ (x|z)

(

F (x, m̂1(s
′, t, ·), s′)− F (x, m̂2(s

′, t, ·), s′)
)

ds′ dx dz =

∫

ϕ0,1(s
′) ds′

(
∫

(

m̂1(s
′, t, x)− m̂2(s

′, t, x)
) (

F (x, m̂1(s
′, t, ·), s′)− F (x, m̂2(s

′, t, ·), s′)
)

dx

)

≥ 0

The first equality follows from (2.3). The second from (4.1). The third and fourth from (2.2). The

fifth from (4.1). The inequality follows from the state-wise monotonicity assumption.

Similarly, from the monotonicity assumption on G it follows that

∫

R×Td×R

ϕ0,1(s)m̄(s, t, z, x)(G̃(z, x,m1)− G̃(z, x,m2)) ds dx dz ≥ 0. (4.2)

Finally, for the remaining terms with Dzū

∫

ϕ0,1(s)m̄(s, t, z, x)Dz ū (−rt(z) + s) = E

∫

x
τ(x|t, Z)DZ ū(t, z, x) · (S − E(S|Z)) = 0

where the expectation is taken w.r.t. S ∼ N (0, 1) and Z|S = s ∼ N (s, σ2t).

Putting all the estimates together we get

d

dt

∫

ϕ0,1(s)ds

∫

Td×R

ūm̄ ≤ −

∫

ϕ0,1(s)ds

∫

Td×R

m1 +m2

2C
|Dxu1 −Dxu2|

2

We integrate this inequality on the time interval [0, T ] to obtain

∫

ϕ0,1(s)ds

∫

Td×R

ū(T )m̄(T )− ū(0)m̄(0) ≤ −

∫ T

0

∫

Td×R

ϕ0,1(s)
m1 +m2

2C
|Dxu1 −Dxu2|

2 (4.3)

Note that m̄(0) = m1(0)−m2(0) = 0 while, as Ū(T ) = G̃(t, z, x,m1(T ))− G̃(t, z, x,m2(T )),

∫

ϕ0,1(s)ds

∫

Td×R

ū(T )m̄(T ) =

∫

Td×R

∫

R×Td×R

ϕ0,1(s)m̄(s, t, z, x)(G̃(z, x,m1)−G̃(z, x,m2)) ds dx dz ≥ 0

thanks to (4.2). So the LHS of (4.3) is nonnegative, while the RHS is nonpositive, which implies

that both sides must vanish. Therefore Dxu1 = Dxu2 in {m1 > 0} ∪ {m2 > 0}. As a conse-
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quence m2 actually solves the same equation as m1 (with the same drifts DpH(t, z, x,Dxu1) =

DpH(t, z, x,Dxu2): hence m1 = m2. Then, in turn, u1 and u2 solve the same HJB equation, so

that u1 = u2.
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Rendus Mathématique, 343(9):619–625, 2006.

[20] Jean-Michel Lasry and Pierre-Louis Lions. Jeux à champ moyen. ii–horizon fini et contrôle
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