
HAL Id: hal-04568404
https://hal.science/hal-04568404v1

Submitted on 8 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Locally-Rank-One-Based Joint Unmixing and
Demosaicing Methods for Snapshot Spectral Images.

Part I: a Matrix-Completion Framework
Kinan Abbas, Matthieu Puigt, Gilles Delmaire, Gilles Roussel

To cite this version:
Kinan Abbas, Matthieu Puigt, Gilles Delmaire, Gilles Roussel. Locally-Rank-One-Based Joint Unmix-
ing and Demosaicing Methods for Snapshot Spectral Images. Part I: a Matrix-Completion Framework.
IEEE Transactions on Computational Imaging, 2024, 10, pp.848 - 862. �10.1109/TCI.2024.3402322�.
�hal-04568404�

https://hal.science/hal-04568404v1
https://hal.archives-ouvertes.fr


Authors’ version of a paper published in

“IEEE Transactions on Computational Imaging”

Paper reference: K. Abbas, M. Puigt, G. Delmaire and G. Roussel,
”Locally-Rank-One-Based Joint Unmixing and Demosaicing Methods for
Snapshot Spectral Images. Part I: A Matrix-Completion Framework,”
in IEEE Transactions on Computational Imaging, vol. 10, pp. 848-862,
2024.

IEEE online version: https://dx.doi.org/10.1109/TCI.2024.3402322.

Copyright: ©2024 IEEE. Personal use of this material is permitted. Per-
mission from IEEE must be obtained for all other uses, including reprint-
ing/republishing this material for advertising or promotional purposes,
collecting new collected works for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works.

1



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Locally-Rank-One-Based Joint Unmixing and
Demosaicing Methods for Snapshot Spectral

Images. Part I: a Matrix-Completion Framework
Kinan Abbas, Student Member, IEEE, Matthieu Puigt, Member, IEEE, Gilles Delmaire, and Gilles Roussel

Abstract—With the recent advancements in design and process-
ing speed, a new snapshot mosaic imaging sensor architecture
(SSI) has been successfully developed, holding the potential to
transform the way dynamic scenes are captured using miniatur-
ized platforms. However, SSI systems encounter a core trade-off
concerning spatial and spectral resolution due to the assignment
of individual spectral bands to each pixel. While the SSI camera
manufacturer provides a pipeline to process such data, we
propose in this paper to process the RAW SSI data directly.
We show this strategy to be much more accurate than post-
processing after the pipeline. In particular, in the first part
of this paper, we propose a low-rank matrix factorization and
completion framework which jointly tackles both the demosaicing
and the unmixing steps of the SSI data. In addition to a “natural”
technique, we expand the well-known pure pixel assumption
to the SSI sensor level and propose two dedicated methods to
extract the endmembers. The first one can be seen as a weighted
Sparse Component Analysis (SCA) method, while the second one
relaxes the abundance sparsity assumption of the former. The
abundances are then recovered by applying the naive approach
with the fixed extracted endmembers. Finally, we experimentally
validate the merits of the proposed methods using synthetically
generated data and real images obtained with an SSI camera.

Index Terms—Snapshot Spectral Imaging, Unmixing, Demo-
saicing, Low-Rank Approximation, Sparsity.

I. INTRODUCTION

STATE-OF-THE-ART Hyperspectral Imaging (HSI) archi-
tectures can be categorized into spatial, spectral, and frame

scanning approaches [1]. Regardless of the chosen approach,
the primary potential of all these methods lies in the capability
to obtain images with enhanced spectral, spatial, and temporal
resolutions. Nonetheless, a common characteristic across all
scenarios is the necessity for repeated scanning of the scene
and the acquisition of numerous exposures (frames) to compile
the full spatio-spectral resolution data cube coupled with con-
siderations regarding the cost and size of the camera. A new
generation of HSI imaging architectures, known as Snapshot
Spectral Imaging (SSI), has been introduced to address the
challenges mentioned earlier [2]. SSI enables the efficient
acquisition of the spatio-spectral content of dynamic scenes
using miniaturized platforms, and it can acquire the complete
cube from a single or a few exposures. To accomplish this
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objective, SSI architectures associate each spatial pixel with
a specific spectral band, hence introducing a crucial trade-
off between spatial and spectral resolution [3]. These cameras
can capture videos with a high frame rate, and they are
helpful in the case where the motion is unpredictable, and
the camera/object is moving in 2D or 3D, such as in robotic
applications or lane sorting [4].

Among the recent strategies that have emerged, SSI cameras
utilizing Fabry-Perot filters (FPf) [5] and compressive coded-
aperture SSI (CASSI) systems [6] only produce a 2-D image
derived from the 3-D hyperspectral data. For both types of
cameras, a post-processing technique called “demosaicing” is
required to estimate the complete hyperspectral data cube.
However, the two sensing technologies differ in their design
and associated demosaicing approaches. In this paper, we
focus on the cameras using FPf. Various approaches have been
proposed to perform demosaicing. These approaches can be
classified into two categories, including “traditional” methods
[3], [7]–[11] and deep-learning-based strategies [12]–[17].

On the other hand, hyperspectral unmixing is one of the
primary methods for analyzing hyperspectral images. It breaks
down a mixed pixel into a set of component materials, each
weighted by their respective proportions. To accomplish this,
multiple algorithms for hyperspectral unmixing have been
developed, typically encompassing two stages: endmember
extraction and mixed-pixel decomposition. The methods for
identifying endmembers include, e.g., N-FINDR, Pixel Purity
Index (PPI), or Vertex Component Analysis (VCA) [18].
Additionally, Nonnegative Matrix Factorization (NMF) [19]
is a commonly applied approach in unmixing scenarios. NMF
aims to learn a part-based representation of the data, aligning
with the cognitive process of how the brain identifies objects.
Finally, Sparse Component Analysis (SCA) [20] is another
widely used family of unmixing methods and has been applied
to HSI unmixing, e.g., in [21], [22].

However, as Tsagkatakis et al. [3] have stated that applying
classification directly on SSI images post-demosaicing often
leads to unsatisfactory performance. Contrastingly, most exist-
ing unmixing methods are designed to work on fully recon-
structed data cubes and do not account for the inherent missing
entries typical in snapshot imaging scenarios. Furthermore,
in the context of in-situ mobile sensor calibration, it has been
demonstrated that a combined approach of low-rank matrix
completion and factorization is significantly more efficient
than a sequential two-stage process of matrix completion
followed by factorization [23].
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This gap in methodology underscores a crucial limitation
in current practices, where the intricate balance between
demosaicing and unmixing is not adequately addressed.

Recognizing this issue, our proposed approach seeks to
perform demosaicing and unmixing jointly. This integrated
methodology aims not only to enhance unmixing results but
also to maintain optimal demosaicing performance.

In the first part of this paper, our contributions to the field
of Snapshot Spectral Imaging (SSI) are outlined as follows:

• We concentrate on establishing a general framework for
demosaicing images, applicable to various Multispectral
Filter Arrays (MSFAs) [24]. This broad-scope frame-
work sets the foundation for our comprehensive methods
in “demosaicing” and “unmixing” hyperspectral images
captured by SSI cameras.

• Our investigation is driven by the hypothesis that com-
bining low-rank matrix completion and factorization is
more efficient than a two-stage process involving these
components separately.

• Three innovative methods are proposed for RAW SSI
image demosaicing and unmixing:

– The first is a Naive approach directly derived from
Weighted NMF (WNMF).

– While building on the Naive approach, the second
and third methods operate under the assumption of
sparsity within sensor ’patches’ mainly dominated by
a single unique endmember. These methods differ in
their assumptions and treatment in cases involving
multiple endmembers.

– The second and the third methods incorporate (i)
rank-1 WNMF within the “patches”, (ii) a single-
source confidence metric, (iii) an endmember extrac-
tion phase, and (iv) a final abundance estimation step.

• Performance evaluations are conducted on both SSI
simulations—derived from synthetic images and the
Columbia CAVE Dataset [25]—and real SSI images from
the Hyko 2 dataset [26].

Building on the general framework established in this part
of the paper, Part II of our work [27] explores the complete
pipeline provided by the camera manufacturer, focusing on
new unmixing approaches for RAW SSI images. This part
is designed specifically for applications involving Fabry-Perot
filters or MSFA sensors with less selective filters, addressing
complex scenarios often encountered in practice.

Please note that the naı̈ve WNMF method and a preliminary
version of the second proposed method mentioned above were
proposed in [28]. This first part of the paper differs from
[28] as follows. We significantly refine the method by mainly
improving the abundance estimation and clustering stages.
We incorporate new techniques and insights from further
research and experimentation, enhancing the method accuracy,
robustness, and applicability.

The remainder of the paper is organized as follows. Sec-
tion II presents the snapshot mosaic sensor with the existing
work for demosaicing SSI data and for unmixing multi-
and hyperspectral images. Next, in Section III, we present
the problem of joint unmixing and demosaicing. Section IV

introduces our proposed methods, the performances of which
are assessed in Section V. Finally, we conclude our discussion
and introduce future directions for research in Section VI. A
table of notations used throughout this paper is provided in
Table I for clarity and ease of understanding.

TABLE I
TABLE OF MATHEMATICAL NOTATIONS

Notation Description
Y Matrix
Ŷ Estimated Y matrix
Ȳ Matrix Y after changing its size.
g Column vector
◦ Hadamard product
f Row vector
‖ · ‖2F The Frobenius norm

1(m·n)×k (m · n)× k matrix of ones
≈ Approximately equal
� Much greater than
F ,X Pool of the spectra

II. RELATED WORK

A. Hyperspectral Imaging and Snapshot Spectral Imaging

Hyperspectral Imaging (HSI) is an analytical technique
based on spectroscopy, which involves capturing hundreds of
images at various wavelengths for the same spatial region.
Hyperspectral imaging records the complete light spectrum for
every pixel within a scene, providing high-quality wavelength
resolution, encompassing both the visible and near-infrared
spectra. The gathered data forms a hyperspectral cube, where
two dimensions define the spatial dimensions of the scene, and
the third dimension represents its spectral content. [18], [29].

A fundamental challenge that HSI sensors must address
is how to acquire three-dimensional HSI data, encompassing
two spatial dimensions and one spectral dimension, using
a single detector, such as a 1D-array or 2D-plane detector.
Thus, different strategies in HSI acquisition designs have
emerged, leading to wavelength-scanning, point-scanning, and
line-scanning acquisition methods [29], [30]

Current spectral camera systems are slow, usually taking
seconds to minutes to scan an object. Furthermore, most
are not portable to be placed on drones or unmanned aerial
vehicles (UAVs). Portability involves not only the size of
the devices but also their platform configuration as either
being bench-top systems for use in a laboratory environment
or deployed instruments for in-field analysis [31]. Therefore,
technological advances have enabled fast, miniaturized, and
low-cost spectral cameras, i.e., snapshot spectral cameras using
Fabry-Perot filters (FPf) and compressive coded-aperture SSI
(CASSI) systems. Both designs acquire only a 2-D image, and
post-processing is required to restore the full data cube.

SSI cameras that utilize Fabry-Perot filters (FPf) are de-
signed by monolithically integrating optical interference filters
onto conventional CMOS image sensors [32]. The Fabry-
Perot filter (FPf) is a widely employed tool for directing and
measuring the wavelengths of light in systems that require
compact, integrated, and highly tunable spectral filtering ca-
pabilities. The FPf filter is made of a transparent layer (or
cavity) with two mirrors on each side of that layer. The cavity
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Fig. 1. Overview of acquisition and processing on a scene contains three endmemebers (sand, rocks, and eggs). The SSI image can be processed either by a
two-stage approach or by applying unmixing and demosaicing jointly to restore the data cube, extract the endmembers, and find the abundance maps.

Fig. 2. Snapshot mosaic filter layout (Source IMEC)

length and the mirror reflectivity determine the filter’s selected
wavelength and the spectral bandwidth (or full width at half
maximum), respectively [5], [32], [33].

The filter layout describes the pattern in which the filters are
deposited on the sensor, and currently, there are two snapshot
FPf designs, i.e., snapshot tiled and snapshot mosaic. The
snapshot tiled filter layout has an area design where the filters
are organized in rows and columns of tiles, all with a fixed
width and height. Each band image of a filter corresponds to
one tile on the active area. In order to get a full data cube, the
optical system needs to replicate the image to each tile [34].
The snapshot mosaic filter layout has a per-pixel design. The
basic FPf structure is extended into a set of filters by varying
the cavity length for each pixel-level within a

√
k×
√
k filter

cell (
√
k could be 3, 4, or 5) [5], [32]. This mosaic pattern,

also known as a sensor patch, is replicated across the entire
active area of the sensor surface. The organization of the filters
in the mosaic pattern is shown in Fig. 2. Due to its design and
contrary to the tiled filter, it can be used with a standard optical
system.

Coded aperture snapshot spectral imagers (CASSI) is a
snapshot imaging technology that employs compressive sens-
ing to capture the full data cube in just a few measurements
and, in some cases, a single shot [6]. It aims to overcome
the limitations of the spatial versus spectral resolution mul-
tiplexing trade-off by spatially undersampling the scene in
each band and using compressive sensing to reconstruct the

full spatial resolution. The concept of compressive sensing
replaces the spatial versus spectral resolution trade-off with a
signal-dependent spatial resolution versus image quality trade-
off, which often results in unpredictable quality and introduces
spatial and spectral reconstruction artifacts [35].

The three aforementioned snapshot imaging technologies,
including CASSI systems, aim to generate a data cube from a
single shot without scanning, each with its unique technology,
design, and processing methods. While we acknowledge the
numerous potential advantages of CASSI systems, our focus
in this work is specifically on processing snapshot mosaic
cameras based on Fabry-Perot filter technology. To the best
of our knowledge, no commercially available CASSI cameras
are on the market. In contrast, snapshot multispectral cameras
using IMEC Fabry-Perot filters are commercially available,
with three manufacturers currently offering such cameras. This
availability directly influences our research scope, allowing
us to conduct hands-on experiments and analysis with the
technology at our disposal. While some work has been done
using Compressed Sensing (CS), e.g., in the studies by Wang
et al. [36] and Vargas et al. [37], these approaches are only ap-
plicable to specific in-laboratory hardware and remain distinct
from our practical focus on snapshot mosaic cameras utilizing
Fabry-Perot filter technology. Therefore, while acknowledging
the broader landscape of snapshot imaging technologies, our
study focuses on the practical and accessible realm of Fabry-
Perot filter-based snapshot mosaic cameras.

B. Demosaicing Methods

Demosaicing is a well-studied problem in the field of imag-
ing, particularly for RGB color images, where the challenge
arises from the presence of Bayer-structured filters that sample
the three primary colors. In the case of SSI images, the camera
associates each spatial pixel with a specific wavelength. The
straightforward method for generating the entire hyperspectral
cube from a single snapshot image involves grouping the
suitable number of pixels with a corresponding reduction in
spatial resolution. For the 16-band case for example, groups of
4×4 pixels are collapsed into a single “super-pixel”, incurring
a 93.75% reduction in spatial resolution [3]. However, the de-
mosaicing stage aims to generate the entire HS data cube and
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conserve the spatial resolution. Therefore, various approaches
for estimating the missing information have been proposed.
These approaches can be classified into two categories, i.e.,
“traditional” methods and deep learning-based strategies.

“Traditional” demosaicing methods refer to non-deep-
learning-based approaches that use spatial and/or spectral
correlation. In [7], a weighted bilinear interpolation method
was proposed. It employes a two-step process in which, for
each spectral band, a sparse raw image containing only the
observed measurements is reconstructed. Then, the demosaic-
ing is achieved through convolution with a low-pass filter that
is normalized to address the missing measurements. Mizutani
et al. [9] proposed an extension—termed Iterative Spectral
Difference (ItSD)—with better performance especially when
there is a cross-correlation between the images under different
wavelengths. Miao et al. [8] proposed a method divided into
four steps for 4×4 filter pattern where at each step t, 2t values
become known, either because they are already the acquired
values by the camera or previously estimated. A multispectral
demosaicing approach using a pseudo-panchromatic image
(PPID) was proposed by Mihoubi et al. [10] where the
panchromatic image is spatially defined from the raw image
and is used to estimate each channel.

The authors in [11] proposed a generalized demosaicing
method with structural and adaptive nonlocal optimization for
regular filters and new theoretical proposed filters. Tsagkatakis
et al. [3] proposed a novel method to solve the problem of
demosaicing using low-rank matrix completion with more re-
alistic spectral sensitive functions (SSFs) to model the spectral
correlation and the harmonics produced by the camera filter.
Recently, Rathi et al. [38] introduced two novel demosaicing
methods for multispectral images, PCWB and PCBSD, empha-
sizing spatial correlations and enhancing spectral difference,
respectively. Another approach by Rathi et al. [39], GMD-
SCPPI, employs a pseudo-panchromatic image for enhanced
multispectral image reconstruction. Subsequently, Gupta et
al. [40] contributed an adaptive and progressive demosaicing
approach distinguished by its application of a progressive
adaptive interpolation strategy. Additionally, Zhang et al. [41]
proposed GMDICC, which improves spatial and spectral re-
construction quality in MSFA imaging systems by combining
gray correction, wavelet transform, and iterative channel re-
construction.

Deep learning methods incorporate large-scale network
training to improve the process of demosaicing. In [12] a
framework using convolutional neural networks was devel-
oped involving the process of demosaicing and removing the
crosstalk in the image. A deep convolutional network for
snapshot hyperspectral demosaicing was proposed in [13],
while joint demosaicing and denoising for CFA and MSFA
images using a mosaic-adaptive dense residual network was
proposed in [14]. Recently Feng et al. [15] proposed a mosaic
convolution network for demosaicing multispectral filter array
images, where attention framework has been used to improve
the process of demosaicing. While deep learning methods have
demonstrated superior performance in demosaicing tasks, they
can have limited generalization and require large amounts of
training data compared to the above blind methods, which

work non-supervised [11]. Therefore, in this work, we fo-
cus only on studying the performance of the traditional ap-
proaches.

C. Unmixing Methods
Hyperspectral unmixing (HU) involves the separation of

pixel spectra from a hyperspectral image into a group of
endmembers and a series of fractional abundances. The end-
members represent the pure materials in the image, and the
abundances at each pixel represent the percentage proportion
of the presence of each endmember in the pixel [18]. Mainly,
unmixing algorithms can be divided into four categories1: ge-
ometrical, sparse regression-based, deep learning (DL)-based,
and statistical methods [42].

Geometrical approaches, divided into Pure Pixel (PP) and
Minimum Volume (MV) methods, rely on simplex models
or positive cones. PP methods, including the pixel purity
index and vertex component analysis (VCA), assume at least
one pure pixel per endmember [18]. MV methods minimize
simplex volume [43]–[45]. Sparse Component Analysis (SCA)
for Blind Source Separation (BSS) detects single-source zones,
categorized into 1-sparse and q-sparse methods, based on the
assumption of single or multiple active endmembers in image
areas [20], [46], [47].

Sparse regression-based methods, using spectral libraries,
assume linear combinations of pure spectral signatures [48]–
[51]. Deep learning methods, particularly autoencoders, have
shown promise in HU but require extensive training [42], [52]–
[54].

Statistical methods, like Independent Component Analysis
(ICA) and Nonnegative Matrix Factorization (NMF), address
highly mixed data when geometrical methods are insufficient.
Modified ICA and various forms of NMF, including con-
strained, structured, and generalized NMF, adapt to specific
HU challenges [42], [55]–[66].

From another perspective, modeling the mixture of spectra
in each pixel may result in two different linear and nonlinear
models, respectively. Both models address different degrees of
light-material interaction. Bilinear and linear-quadratic models
tackle nonlinearity effectively [67]–[69].

Finally, the endmembers can be significantly affected by at-
mospheric, illumination, or environmental variations within an
image. Unfortunately, traditional spectral unmixing algorithms
disregard the spectral variability of the endmembers, which
reproduces significant errors throughout the whole unmixing
process and compromises the quality of its results. Therefore,
multiple methods have been proposed to take spectral variabil-
ity into account [70]. Ge Zhang et al. [71] proposed a convex
optimization-based method for spectral variability-augmented
reconstruction. Hongyi Liu et al. [72] introduced a wavelet
domain approach with Bayesian methods for more accurate
spectral variability handling.

III. PROBLEM STATEMENT

As previously mentioned, the considered SSI technology op-
erates on a mosaic of Fabry-Perot filters, allowing each camera

1Another taxonomy is also possible, depending if the considered methods
are blind (i.e., geometrical and statistical methods) or supervised.
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pixel only to capture one unique narrow band of wavelengths
in the ideal case. Unmixing the SSI images requires processing
the images to build the 3-D data cube. However, Tsagkatakis
et al. [3], performed classification on the demosaiced images
and reported a low performance with a significant gap between
the average estimation accuracy and the intended one. On the
other hand, in the context of in situ mobile sensor calibration, it
was found that incorporating low-rank matrix completion and
factorization demonstrated significantly more efficient than
employing a two-stage approach involving low-rank matrix
completion followed by matrix factorization [23]. Accordingly,
we aim to apply the unmixing and demosaicing jointly, starting
from the raw SSI data (see Fig. 3). So in this section, we
define the SSI system and the joint demosaicing and unmixing
problem we aim to solve.

Formally, an SSI camera captures a two-dimensional image
consisting of m × n pixels for each exposure, where m and
n represent the pixel counts in the horizontal and vertical
dimensions, respectively. Each of the spatial pixels among the
m · n available ones corresponds to a distinct spectral band
from a total of k bands expected to be acquired by the camera.
More specifically, this signifies that an SSI image can be seen
as a two-dimensional projection of a theoretical 3D data cube
with dimensions m×n×k, which we will now formalize and
model.

Following an unfolding strategy commonly utilized in
unmixing, we express the theoretical 3D data cube as an
(m ·n)×k matrix whose rows correspond to spatial positions
while column indices are linked to wavelengths. As suggested
in [3], it becomes feasible to create a data matrix of dimensions

(m·n)×k denoted as X , which contains missing entries. Both
matrices X and Y are linked through

W ◦X = W ◦ Y, (1)

where W represents a binary weight matrix, with its non-zero
entries indicating the wavelengths observed by the camera, Y
is the unfolded 3D data cube, X is the unfolded and expanded
SSI image—so that X and Y share the same dimensions,
see Fig. 3—and the symbol ◦ signifies the Hadamard product
between matrices. Similarly, applying the unfolding process to
the m×n SSI image, as we did for the data cube Y , results in
an (m ·n)×1 vector denoted as z. In this vector, the i-th entry
corresponds to the non-null value found in the i-th row of X .
Since the binary weight matrix W is known, obtaining X from
z is a straightforward process and vice-versa. Hence, we can
assume that X represents the original data matrix derived from
the SSI acquisition process. The process of retrieving Y from
X corresponds to “demosaicing” the SSI image. In practice,
this can be addressed by, e.g., incorporating the assumption
that Y is low-rank [3].

Additionally, we make the assumption that every row of
Y can be represented as a linear mixture of the spectra
corresponding to the materials observed by the camera—a.k.a.
endmembers—i.e.,

Y ≈ G · F, (2)

where F represents the p × k matrix of endmembers, G
represents the (m ·n)× p abundance matrix, and p represents
the number of endmembers present in the scene. Equation (2)
is not only a very classical model met in hyperspectral unmix-
ing [18] but also a low-rank approximation model, provided
p < min{(m ·n), k}. Combining Eqs. (1) and (2) provides the
considered joint “demosaicing” and “unmixing” model, i.e.,

W ◦X ≈W ◦ (G · F ). (3)

Indeed, if it was possible to fully estimate both G and F from
the partially observed matrix X , then their product G · F is
an estimation of Y and one may derive a more accurate one
as

Ŷ = W ◦X + (1(m·n)×k −W ) ◦ (G · F ), (4)

where 1(m·n)×k represents the (m · n) × k matrix of ones.
Moreover, the information contained within G and F can
be valuable for various applications, such as spectral library
learning through the use of F , or for land use/cover analysis
derived from G. Once more, it is important to emphasize our
objective of comparing the performance between a two-stage
strategy—including a demosaicing step where Y is estimated,
followed by an unmixing step where G and F are derived
(referred to as the green framework in Fig.3)—and a joint
demosaicing and unmixing strategy (depicted in red in Fig.3).
In Section IV, we introduce three different approaches for this
joint strategy.

IV. PROPOSED METHODS

We now present our proposed approaches. In fact, we are
proposing three joint demosaicing and unmixing methods. To
start with, we introduce a “naı̈ve” approach, derived from
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weighted NMF, following the strategy presented in [23] for
a different application. Subsequently, we propose two novel
methods, expressly developed for SSI data.

A. Naive Method

Initially, we introduce a naive method aimed at solving
Eq. (3), which is a specific case of Weighted NMF (WNMF).
Due to its similarity with low-rank matrix completion [73],
the naive approach below can be seen as an alternative to [3]
in which the structure of the low-rank matrix to recover is
more interpretable. WNMF can be addressed using various
strategies, including (i) incorporating the weights into the
update rules as proposed in [74], (ii) applying an Expectation-
Maximization (EM) Framework as discussed in [73], or (iii)
employing stochastic gradient descent while focusing on the
available data points. The second strategy, as identified in [73],
was reported to be significantly faster and more accurate than
the first one. Therefore, we choose this approach.

In the EM strategy, there are two steps—i.e., the E-step and
the M-step—which are alternatingly and iteratively run. The
E-step aims to estimate the expected complete matrix Ŷ with
respect to the known data W ◦X , the uncertain or unknown
matrix data (1(m·n)×k−W )◦Y , and the estimates of G and F
at the (t−1) iteration, denoted Ĝ(t−1) and F̂ (t−1), respectively.
Its solution reads [75]

Ŷ = W ◦X + (1(m·n)×k −W ) ◦ (Ĝt−1 · F̂ t−1). (5)

The M-step then consists of applying standard NMF update
rules to Ŷ to derive Ĝt and F̂ t. Once NMF converged to
a given solution [75] or after a given number MaxoutIter of
iterations [73], Ŷ is updated in another E-step using the
last estimates of Gt and F t [73], [75]. In this work, we
choose the Nesterov NMF (NeNMF) method [76] which is
run until one of the following stopping criteria is reached: a
maximum number of NMF iterations has been run—i.e., 1000
NMF iterations in our experiments—or the approximation
error between the complete matrix derived in the E-step and
its NMF approximation is below a threshold (i.e., 10−5 in our
experiments). Meanwhile, when the abundance matrix Ĝt is
updated, the sum to one constraint is satisfied by updating
Ŷ and F̂ t using the same strategy as in [42]. To apply this
constraint, we modify the matrices Ŷ and F̂ by adding an
additional column of ones. This modification allows us to
control the Abundance Sum-to-One Constraint (ASC) using
the parameter δ, which adjusts the influence of the sum-to-
one constraint in the optimization process2. The augmented
matrices Ȳ and F̄ are represented as follows:

Ȳ ,
[
Ŷ δ1T(m·n)×1

]
, F̄ ,

[
F̂ δ1Tp×1

]
(6)

The whole method is provided in Algorithm 1.

B. Locally Rank-1 and Clustering-based Proposed Technique

We now introduce our first proposed method, which orig-
inates from the fundamental approach to restoring the data

2In our implementation, the value of δ is set to be 15, as this value has
been found to provide an effective balance in the optimization process.

cube. Specifically, the image sensor is divided into patches
that are replicated across the sensor surface. Each patch has
dimensions

√
k ×
√
k, with common values for k being 16

or 25 3. Therefore, a patch typically measures either 4 × 4
or 5 × 5. In this context, it is reasonable to assume that
each patch corresponds to a “super-pixel,” meaning that each
patch is associated with a unique endmember. In practice,
such an assumption is not correct, which is why various
demosaicing methods have been developed. Nevertheless, this
assumption could still be valid for certain patches to find where
one endmember significantly dominates over the others. This
concept aligns with the pure-pixel assumption [18], or the
concept of abundance sparsity in SCA, as described in [20].
However, the primary difference between our problem and the
classical unmixing problem lies in the fact that we only have
partial observations of the data cube within a patch, and our
goal is to estimate it based on a limited number of available
samples. This permits us to declare our first assumption.

Assumption 1 (Pure patch assumption). For each endmember,
there exists at least one sensor patch where only this endmem-
ber is present.

Our proposed method is outlined as follows. We denote
by Xi, Ŷi, and Wi the k × k sub-matrices of X , Ŷ , and
W , respectively, corresponding to Patch i. We obtain a rank-
1 approximation of Ŷi from Xi using the aforementioned
WNMF strategy4, which can be expressed as follows:

Wi ◦Xi ≈Wi ◦ (g
i
· fi), (7)

where g
i

represents a k × 1 column vector and fi represents
a 1× k row vector.

When a patch contains only one dominant endmember,
thereby satisfying Assumption 1, the patch itself becomes
rank-1. Consequently, the rank-1 approximation derived from
partial data in Xi enables us to estimate the endmember fi.
However, when a patch contains multiple endmembers, we
must not detect the patch as pure. This leads us to our second
assumption.

Assumption 2. In the patches where several endmembers are
present, their abundances significantly vary over each patch.

Assumption 2 is classically stated in SCA [20]. In practical
situations, it is expected that the SSI camera is positioned close
enough to the observed scene, so that one may not expect
multiple abundances to remain in constant proportions over a
patch. Consequently, if the i-th patch under consideration is
approximately pure, then

‖Wi ◦Xi −Wi ◦ (g
i
· fi)‖2F ≈ 0. (8)

Conversely, if this patch is not pure, then

‖Wi ◦Xi −Wi ◦ (g
i
· fi)‖2F � 0. (9)

3As the patch size directly equals the number of wavelength bands, k is
consistently used to denote the two elements.

4We employ Weighted Nonnegative Matrix Factorization (WNMF) with a
Nesterov solver, using Expectation Maximization on each patch, to calculate
the rank-1 approximation.
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In this context, this type of error can be regarded as a
“single-source confidence measure,” corresponding to those
commonly employed in SCA. Hence, from each patch, we
obtain a noisy estimate of a “true” endmember. The retrieved
spectra that satisfy Eq. (8) are gathered and organized into
a matrix denoted as F . These estimates are further assumed
to be organized as clusters of spectra distributed around the
“true” source spectra. Therefore, we can employ any clustering
technique, such as K-means or K-medians, initialized with K-
means++ [77], to extract the actual endmembers. A refined
approach involves identifying the patches where the squared
Frobenius norm mentioned above is small-enough5. This re-
sults in a smaller set of spectra, each of which is closer to
the “true” ones. This approach is similar to the Selective K-
means or K-medians methods proposed in [78] and was found
to notably enhance the performance of our proposed method
preliminary test6.

Once the true endmembers are extracted and stored in the
matrix F , the abundance matrix G is re-estimated using the
Naive method described in Subsect. IV-A, with fixed F and the
sum-to-one constraint on the abundance matrix G in the M-
step. The whole strategy is provided in Algorithm 3. It is worth
noting that the abundance estimation can also be accomplished
using the least-squares method, similar to what we applied in
the [28]. However, our experiments discovered that running
the Naive WNMF yields more accurate results

C. Method with Relaxed Abundance Sparsity Assumption
We now introduce our third approach. It may be seen as an

extension of the previous one as it also assumes Assumption 1
to be valid. However, it significantly relaxes Assumption 2
which is replaced by the following one.

Assumption 3. In the patches where several endmembers are
present, their abundances may or may not vary over each
patch.

This assumption states that in the patches where multiple
endmembers are present, we do not require any constraint
on their abundances. Consequently, Eq. (8) is satisfied if the
patch is pure (Assumption 1) or, when several endmembers
are present in a patch, their abundances do not vary within the
considered patch. Still, Eq. (9) occurs in patches where several
endmembers are present and have their abundance proportions
to vary over the considered patches. As a consequence, the
KPWNMF method cannot be applied with such assumptions
and a refined strategy must be proposed.

As for KPWNMF, we collect all the spectra fi which are
estimated in patches where Eq. (8) holds7 and we arrange them

5In practice, we keep all the patches where the rank-one approximation error
is below a user-defined threshold. Estimating the optimal threshold value is
out of the scope of this paper. In the experiments provided in Sect. V, it is
set as the median of all the patch norm errors.

6It is noteworthy that K-medians with `1 norm is used for the clustering
stage because it performs slightly better than K-means. It tries to find p median
points in the data such that the `1 distances from each data point to its closest
median are minimized. Moreover, the clustering process is repeated several
times—e.g., 10 times—and the solution with the lowest within-cluster sums
of point-to-centroid distances is selected as the optimal solution.

7As for KPWNMF, we only keep spectra estimated in patches where the
approximation error is below the median of all the patch norm errors.

in a matrix denoted X. As explained above, each row vector
of this matrix is either an estimate of an endmember of F or
a mixture of them. As we assumed an LMM, this matrix can
be written as

X = G · F. (10)

Due to Assumption 1, each row of F exists at least once in
X and the estimation of F can be done by applying a pure
pixel based method8, e.g., VCA [79] or SPA [80]. Moreover,
G represents a specific abundance matrix associated with the
spectral data in X. It differs from the final abundance matrix
G but is derived by selecting rows corresponding to the chosen
patch indices in X.

Once the true endmembers are extracted and stored in the
matrix F , the abundance matrix G is re-estimated using the
Naive method described in Subsect. IV-A, with fixed F and
the sum-to-one constraint on the abundance matrix G in the
M-step. The whole strategy is provided in Algorithm 4.

In conclusion, we proposed two frameworks, KPWNMF and
VPWNMF. They both use spectra estimated in patches where
the rank-1 approximation error is low, making their first stages
similar. However, they differ in the final stage:

• Thanks to Assumption 2, we know that all the spectra
kept in F correspond to tentative estimates of the actual
endmembers in F . Consequently, we can apply any
clustering technique to derive F from F , as it is classically
done in SCA.

• When Assumption 2 is not met—i.e., when Assumption
3 is stated—some kept spectra might be linear mixtures
of the actual endmembers. This is why we here named
the pool of kept spectral X. We could propose an outlier
robust clustering method to process these data to derive
F , provided the number of mixed spectra in X is low.
Instead, as its assumptions are satisfied in X and as it
is not sensitive to the number of mixed spectra, we used
VCA instead.

D. Algorithms

This section introduces the pseudo code for our three
proposed methods. While these algorithms share several pro-
cedural steps, they fundamentally differ in their methodolo-
gies, as previously discussed. Algorithm 1 details our Naive
WNMF approach, serving as the fundamental framework
for the following methodologies. Algorithm 2 introduces the
shared patch processing steps essential to both the K-means
Patch-based WNMF (KPWNMF) and the VCA Patch-based
WNMF (VPWNMF), focusing on the extraction of tentative
endmembers. Building upon this, Algorithm 3 and Algorithm 4
diverge to apply specific endmember extraction techniques,
and the usage of Assumption 2 or Assumption 3.

8We selected VCA because it performed slightly better than the other
methods in some preliminary tests.
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Algorithm 1 Naive Method
Inputs:
X represents the unfolded SSI image with a rank of p and is
weighted by matrix W .
Outputs:
Ŷ signifies the reconstructed unfolded data cube.
[G,F ] represents the final abundances and endmembers.
Processing:

1: Initialize G and F
2: for t = 1 to MaxouterIter do
3: Ŷ = W ◦X + (1−W ) ◦ (G · F )t−1

4: for Counter = 1 to MaxinnerIter do
5: Update G from Ŷ and F using NeNMF
6: Update F from Ŷ and G using NeNMF

Algorithm 2 Rank-one patch detection and spectra estimation
method used in both proposed KPWNMF and VPWNMF
Inputs:
X represents the unfolded SSI image with a rank of p and is
weighted by matrix W .
nb patches denotes the number of patches to be processed.
Output:
Matrix M containing the “best” vectors—according to Eqs. (8)
and (9)—
for further processing.
Processing:

1: for i = 1 to nb patches do
2: Let the submatrices Xi and Wi linked to Patch i
3: Initialize g

i
and fi

4: for t = 1 to MaxouterIter do
5: XComp

i = Wi ◦Xi + (1k×k −Wi) ◦ (g
i
· fi)

6: for Counter = 1 to MaxinnerIter do
7: Update g

i
from XComp

i and fi using NeNMF
8: Update fi from XComp

i and g
i

using NeNMF

9: Keep the 50% best vectors fi—according to Eqs. (8) and
(9)—and organize them into matrix M

10: return M

Algorithm 3 K-means (resp. K-medians) Patch-based
Weighted Nonnegative Matrix Factorization (KPWNMF)
Inputs:
Matrix F the output from Algorithm 2.
Rank p.
Outputs:
Ŷ final signifies the reconstructed unfolded data cube.
[G,F ] represents the final abundances and endmembers.
Processing:

1: Call Algorithm 2 to get F
2: F = K-means(F , p) (resp. F = K-medians(F , p))
3: Initialize G of size (m · n)× p
4: Compute G and Ŷ final using Algorithm. 1 with fixed F

Algorithm 4 VCA Patch-based Weighted Nonnegative Matrix
Factorization (VPWNMF)
Inputs:
Matrix X the output from Algorithm 2.
Rank p.
Outputs: Ŷ final signifies the reconstructed unfolded data cube.
[G,F ] represents the final abundances and endmembers.
Processing:

1: Call Algorithm 2 to get X
2: F = VCA(X, p)
3: Initialize G of size (m · n)× p
4: Compute G and Ŷ final using Algorithm. 1 with fixed F

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

To evaluate the effectiveness of the proposed methods, we
carry out experiments using SSI simulations generated from
synthetic images as well as real SSI images captured by SSI
cameras. For the synthetic images, we did two experiments.
In the first one, we create one image where assumptions
one and two are satisfied, and another where assumptions
1 and 3 are satisfied. Each one has 100 × 100 pixels with
three endmembers, i.e., water, metal, and concrete, whose
signatures are taken from [81]. We compare the performance
reached with the naive method with our proposed approaches
KPWNMF and VPWNMF and seven 2-step demosaicing-then-
unmixing methods. For the latter, we consider seven SotA
demosaicing methods—i.e., GRMR [3], BTES [8], WB [7],
PPID [10], ItSD [9], SAND [11], and PCWB [38]—while
in the second step, we unmix the restored data cube Y using
VCA for estimating the endmembers and Fully Constrained
Least Squares (FCLS) for abundance estimation. To measure
the effectiveness of the tested methods, we assess their demo-
saicing improvements by comparing the estimated Y matrices
to the ground truth, utilizing the Peak Signal-to-Noise Ratio
(PSNR). For unmixing enhancement, we employ the Signal-
to-Interference Ratio (SIR), Spectral Angle Mapper (SAM)
for endmember estimation, and Mixing Error Ratio (MER)
to measure the quality of abundance maps. We additionally
incorporated RMSE for abundance estimation accuracy and
running time in seconds to assess computational efficiency

For the second experiment, we aim to validate the demo-
saicing enhancement provided by the proposed approaches on
more challenging data. We provide comparative results with
the SoTA methods on the CAVE dataset after simulating the
4 × 4 and 5 × 5 SSI images using the same strategy as in
[3] with all the images in the dataset. Moreover, using real
multispectral images allow us to experimentally investigate the
validity of the stated assumptions.

Finally, we used real SSIs taken from the Hyko 2 dataset
[26]. The images in the dataset are captured using two snap-
shot mosaic cameras. It is the first dataset to capture hyper-
spectral data from a moving vehicle, enabling hyperspectral
scene analysis for road scene understanding. The data span the
visible and near-infrared spectral ranges, from 400 to 1000 nm.
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TABLE II
PSNR, SAM, SIR, MER, RMSE, AND TIME IN SECONDS OBTAINED FOR THE SYNTHETIC IMAGES WITH 5X5 AND 4X4 (INTO BRACKETS) IDEAL

FILTERS. IN BOLD, THE HIGHEST PERFORMANCE VALUE AND FOR RMSE AND TIME, THE LOWEST VALUE.

Method Image 1 (Assumptions 1 & 2) Image 2 (Assumptions 1 & 3)
PSNR SAM SIR MER RMSE Time PSNR SAM SIR MER RMSE Time

GRMR 27.2 (27.5) 0.3 (0.3) 14.3 (65) 2.1 (1.1) 0.4 (0.4) 1.6 (1.57) 29.7 (33.2) 0.4 (0.2) 12.1 (67) 4.9 (4) 0.3 (0.3) 1.5 (0.3)
BTES 24.1 (24.2) 0.4 (0.3) 13.41 (65.8) -1.2 (-5.4) 0.5 (0.5) 0.2 (0.3) 30 (29.1) 0.4 (0.3) 12.3 (65.5) -4.5 (-2) 0.4 (0.5) 0.4 (0.3)
WB 26.3 (28.9) 0.3 (0.2) 15.6 (70.2) -0.45 (1.8) 0.4 (0.4) 0.2 (0.3) 30.2 (31.2) 0.4 (0.3) 18.2 (63.2) 4.8 (1.5) 0.3 (0.2) 0.3 (0.3)
PPID 30.3 (30.2) 0.06 (0.06) 34.7 (85.9) 9.9 (9.8) 0.3 (0.3) 0.3 (0.3) 34.8 (38) 0.08 (0.05) 31.7 (86) 9.2 (14.9) 0.3 (0.2) 0.3 (0.3)
ItSD 24.5 (23.9) 0.7 (0.6) 8.2 (55.7) 0.5 (-7.4) 0.4 (0.4) 0.2 (0.3) 26.4 (26.1) 0.4 (0.5) 8 (56) -2.4 (-2.08) 0.4 (0.2) 0.3 (0.3)
SAND 30 (30.1) 0.1 (0.1) 31.2 (80.1) 11.3 (9.1) 0.2 (0.2) 3720 (2800) 35.4 (36.9) 0.1 (0.1) 32 (82) 10 (13.2) 0.2 (0.1) 3660 (2500)
PCWB 28.6 (20.3) 0.1 (0.2) 31.7 (70.3) 9.7(9.4) 0.2 (0.3) 0.2 (0.2) 31 (20.2) 0.4 (0.3) 15.5 (71.8) 1.2 (4) 0.4 (0.2) 0.2 (0.2)
Naive 32.5 (32.7) 0.2 (0.2) 19.8 (68.7) 9.2 (8.5) 0.3 (0.3) 15 (12) 34.5 (34.4) 0.2 (0.3) 21.5 (67.2) 10.7 (5.4) 0.3 (0.2) 15 (12)
KPWNMF 36.5 (35.5) 0.01 (0.007) 50.2 (103.5) 16.0 (14.8) 0.2(0.2) 6 (6) 40.3 (40.4) 0.003 (0.006) 50.3 (102.5) 20.9 (19.7) 0.1 (0.1) 6 (6)
VPWNMF 35.9 (33.7) 0.002 (0.003) 59.9 (111.0) 14.7 (12.8) 0.2(0.2) 5 (5) 41.4 (40.8) 0.0006 (0.001) 75.8 (117.0) 21.0 (19.7) 0.1 (0.1) 5 (5)

(a) SSI Image (b) Water (c) Metal (d) Concrete

Fig. 4. Image 1, SSI image where assumptions 1 and assumption 2 are
satisfied with abundance maps of the three endmembers.

(a) SSI Image (b) Water (c) Metal (d) Concrete

Fig. 5. Image 2, SSI image where assumptions 1 and assumption 3 are
satisfied with abundance maps of the three endmembers.

B. Performance evaluation on synthetic images for the ideal
case

In the first set of experiments, we generated an image (avail-
able on Fig. 4) that fulfills Assumptions 1 and 2, and another
image (see Fig. 5) that satisfies Assumptions 1 and 3. Both
images have a resolution of 100×100 pixels and are composed
of three endmembers—i.e., water, metal, and concrete—with
signatures sourced from [81]. In this simulation, we consider
the ideal case where each filter associated with each detector
element corresponds to an ideal filter with perfect cut-off
characteristics, which allow light from a single wavelength
to be captured by the detector element. Both images simulate
a scene observed from a short distance, implying that many
patches are pure. We consider 4 × 4 and 5 × 5 spectral filter
patterns and investigate the performance of the tested methods
under different noise levels.

The PSNR, SAM, SIR, and SAM achieved by all the
methods for 4×4 and 5×5 spectral filter patterns are reported
in Table II. While the average performance with different noise
levels for both images with 4×4 and 5×5 filters is presented
in Fig. 6 and Fig. 7, respectively.

A number of key observations can be made from the results
presented in the table and the figures:

• The proposed KPWNMF and VPWNMF methods exhibit
the highest PSNRs for both images, i.e., the best de-
mosaicing quality. While the demosaicing performance
reached with PPID and the Naive method is almost
similar, the remaining methods achieve lower reconstruc-

tion quality for both images, with WB—i.e., a baseline
method—performing similarly to GRMR and ItSD, and
with BTES showing the poorest performance. It is impor-
tant to note that the performance of these methods may
vary under different noise levels. Our results show that
KPWNMF and VPWNMF continue to significantly out-
perform the other tested methods until the input SNR is
around 25 dB. With lower input SNRS, their performance
degrades and both methods provide a similar demosaicing
performance as SotA methods.

• In addition to their superior reconstruction quality, the
proposed KPWNMF and VPWNMF methods demon-
strate the highest performance in endmember identifica-
tion as measured by the spectral angle mapper (SAM)
and signal interference ratio (SIR). Our experimental
results show that KPWNMF and VPWNMF achieved the
lowest SAM and the highest SIR values among all other
methods, indicating their ability to accurately identify
endmembers even in the presence of noise. Moreover,
our experiments demonstrate that KPWNMF and VP-
WNMF are robust to noise, maintaining their superior
performance even at higher noise levels. Fig. 8 and Fig. 9
show the true and estimated endmembers for both images
with the 5 × 5 filter in the noiseless case. The quality
of the restored spectra with the proposed methods is
much higher than the 2-stage approach using PPID for
demosaicing, the latter being the SotA method to provide
the highest unmixing performance.

• The proposed methods KPWNMF and VPWNMF pro-
vide the highest MER values among all other methods,
indicating their superior abundance estimation perfor-
mance. Moreover, our experiments demonstrate that KP-
WNMF and VPWNMF are robust to noise, maintaining
their superior performance even at higher noise levels.
The comparison between the restored abundance maps
and the true abundance maps for both images using the
5×5 filter is shown in Fig.10 and Fig.11 in the noiseless
case. As can be seen from the figures, the abundance
maps estimated by KPWNMF and VPWNMF are visually
closer to the true abundance maps compared to the other
methods.

• In addition to MER, our analysis extends to the accuracy
of abundance estimation, as measured by RMSE. The
RMSE results for the KPWNMF and VPWNMF meth-
ods underscore their remarkable precision in estimating
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Fig. 6. Mean PSNR, SAM, SIR, MER and RMSE—obtained for Image 1 (Assumption 1&2) with 4× 4 and 5× 5 filters—relative to input SNR.
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Fig. 7. Mean PSNR, SAM, SIR, MER and RMSE—obtained for Image 2 (Assumption 1&3) with 4× 4 and 5× 5 filters—relative to input SNR.
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(a) KPWNMF
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(b) VPWNMF
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(c) Naive
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(d) PPID + Unmixing
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(e) PCWB + Unmixing
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(f) SAND + Unmixing

Fig. 8. Estimated spectra for the Image 1 with mosaic filter of size 5× 5.
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(b) VPWNMF
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(c) Naive
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(d) PPID + Unmixing
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(e) PCWB + Unmixing
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(f) SAND + Unmixing

Fig. 9. Estimated spectra for the Image 2 with mosaic filter of size 5× 5.

abundances, shown by the lowest RMSE values among
all methods evaluated. While the SAND method exhibits
almost similar RMSE performance, a closer examination
of the restored abundance maps, as illustrated in Fig.10
and Fig.11, reveals that our methods achieve superior
details and quality.

• While evaluating the effectiveness of our proposed KP-
WNMF and VPWNMF methods, it is essential to con-
sider the computational time alongside other performance
metrics. The experimental results indicate that the running
time for both methods is notably higher than other eval-
uated methods. However, it is important to note that the
primary focus of this study is to demonstrate the accuracy
and effectiveness of these methods in enhancing the
quality of demosaicing and unmixing in snapshot spectral
imaging. Developing and optimizing the computational
efficiency of these algorithms falls outside the immediate
scope of this article. Future work will explore strategies to
reduce computational time, making these methods more
possible for time-sensitive applications.

C. Performance evaluation on CAVE dataset

In addition to the experiments conducted on synthetic im-
ages, we evaluated the performance of the proposed methods
on the CAVE dataset, which consists of 32 spectral images
captured by a multispectral camera in the 400-700 nm range
with 10 nm steps. The images have a resolution of 512× 512
pixels and contain a variety of scenes and objects, making
them a suitable dataset for evaluating the performance of
multispectral image reconstruction methods. We performed
experiments on the CAVE dataset using 4 × 4 and 5 × 5
spectral filter patterns using the same strategy as in [3] with
all the images in the dataset and evaluated the PSNR achieved
by all the methods for both filter patterns. The results are
reported in Table III, where our proposed methods KPWNMF
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(a) Ground truth

(b) Naive

(c) KPWNMF

(d) VPWNMF

(e) PPID

(f) SAND

(g) PCWB

Fig. 10. Estimated abundance maps for the Image 1 with 5×5 mosaic filter.

and VPWNMF achieved the highest PSNR values, indicating
their superior performance in reconstructing the images. To
further evaluate the performance of the proposed methods,
we also generated a visual comparison of the restored images
using the 4×4 spectral filter pattern. The restored images using
KPWNMF, VPWNMF, and other SotA methods are shown
in Fig. 12. Our proposed methods demonstrated remarkable
results in restoring the details of the images demonstrating
their ability to preserve crucial spatial information in the
images, which was not effectively captured by the other
methods. These results demonstrate the proposed methods’

(a) Ground truth

(b) Naive

(c) KPWNMF

(d) VPWNMF

(e) PPID

(f) SAND

(g) PCWB

Fig. 11. Estimated abundance maps for the Image 2 with 5×5 mosaic filter.

effectiveness in restoring hyperspectral images with complex
spectral and spatial information and their superiority over other
SotA methods.

D. Performance evaluation on Hyko 2 dataset

We conducted a real data experiment using one image from
the Hyko 2 dataset [26], which captures hyperspectral data
from a moving vehicle. The dataset9 contains images captured
using two snapshot mosaic cameras and spans the visible

9The database is accessible at https://wp.uni-koblenz.de/hyko/.
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TABLE III
DEMOSAICING PERFORMANCE AVERAGED OVER ALL THE IMAGES IN THE

CAVE DATASET. PERF. CRITERION: PSNR (IN DB).

Method 16 bands 25 bands
GRMR 35.3 33.3
BTES 34.7 33.3
WB 35.0 33.4
PPID 37.1 35.4
ItSD 30.2 27.2
SAND 34.2 33.3
PCWB 33.7 33.7
Naive 35.1 34.1
KPWNMF 37.7 35.5
VPWNMF 37.7 35.5

(a) Ground truth (b) KPWNMF (c) VPWNMF

(d) PPID (e) GRMR (f) WB

(g) BTES (h) ItSD (i) Naive

(j) SAND (k) PCWB

Fig. 12. Comparison of the demosaicing performance of all the methods on
the Cloths image from the CAVE dataset with 4× 4 mosaic filter.

and near-infrared spectral ranges from 400 to 1000 nm. We
selected one image from the dataset that contained a road,
trees, sky, and white signs on the road. As we do not know the
real endmembers, we cannot estimate the unmixing accuracy.
Instead, we use unmixing to perform image segmentation,
as shown in Fig 13. The segmentation is done using the
abundance maps generated by each method, where we select
the dominant element in each pixel and draw an image
showing the segmentation.

Our proposed VPWNMF method—which is based on As-
sumption 1 and Assumption 3—performed the best among
all the methods. It can detect endmembers better than the
other methods by using VCA because of the flexibility of
Assumption 3. On the other hand, KPWNMF—which is based

on Assumption 1 and Assumption 2—only considers the case
where the abundance coefficients are significantly changing
when there are several endmembers. Therefore, it did not
perform as well on this image since the abundance maps were
not significantly changing in certain patches. The other SotA
methods, including the Naive method, their performance var-
ied and generally fell short in capturing fine details compared
to our proposed methods. While VPWNMF was the best-
performing method, its performance could have been better,
as in some places, the road was classified as the sky. This
might be due to multiple issues, e.g., spectral variability, sensor
impurities, or nonlinear mixtures in some pixels.

(a) SSI Image (b) KPWNMF (c) VPWNMF

(d) PPID (e) WB (f) GRMR

(g) ItSD (h) BTES (i) Naive

(j) SAND (k) PCWB

Fig. 13. Comparison of the segmentation performance of all the methods on
the Hyko 2 Dataset Image.

VI. CONCLUSION AND DISCUSSION

In this work, we aimed to perform “demosaicing” and
“unmixing” jointly for the hyperspectral images acquired by
the SSI camera. Therefore, we proposed two novel approaches
in addition to the naive method derived from Weighted NMF
(WNMF). The first one (KPWNMF) assumes that the abun-
dances are sparse in a few patches to find, so that each of these
patches is dominated by one endmember. Such an assumption
is similarly met with SCA, except that we consider partially
observed data. In contrast, the second one (VPWNMF) relaxes
the sparsity assumption needed in the latter. We accomplished
experiments on SSI simulations derived from synthetic images
and real SSI images taken by SSI cameras. Our experimental
results showed that the proposed methods outperform the
two-stages approaches consisting of applying demosaicing
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and, after that, unmixing. Moreover, The VPWNMF approach
performs better than all the methods on real images due to the
flexibility of the assumptions covering more real-life scenarios.
However, while our proposed approaches show promising
results, there are still challenges to overcome, especially the
estimation errors due to spectral variability and the sensor’s
impurities that we aim to solve in future works.
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[46] A. Boulais, O. Berné, G. Faury, and Y. Deville, “Unmixing methods
based on nonnegativity and weakly mixed pixels for astronomical
hyperspectral datasets,” Astronomy & Astrophysics, vol. 647, p. A105,
mar 2021.

[47] F. Movahedi Naini, G. Hosein Mohimani, M. Babaie-Zadeh, and C. Jut-
ten, “Estimating the mixing matrix in sparse component analysis (sca)
based on partial k-dimensional subspace clustering,” Neurocomputing,
vol. 71, no. 10, pp. 2330–2343, 2008.

[48] S. Zhang, J. Li, H.-C. Li, C. Deng, and A. Plaza, “Spectral–spatial
weighted sparse regression for hyperspectral image unmixing,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 6, pp. 3265–3276, 2018.

[49] H. Li, R. Feng, L. Wang, Y. Zhong, and L. Zhang, “Superpixel-
based reweighted low-rank and total variation sparse unmixing for
hyperspectral remote sensing imagery,” IEEE Trans. Geosci. Remote
Sens., vol. 59, no. 1, pp. 629–647, 2021.

[50] L. Qi, J. Li, Y. Wang, Y. Huang, and X. Gao, “Spectral–spatial-weighted
multiview collaborative sparse unmixing for hyperspectral images,”
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 12, pp. 8766–8779,
2020.

[51] T. Ince, “Superpixel-based graph laplacian regularization for sparse
hyperspectral unmixing,” IEEE Geosci. Remote Sens. Lett., vol. 19,
pp. 1–5, 2022.

[52] B. Palsson, J. R. Sveinsson, and M. O. Ulfarsson, “Blind hyperspectral
unmixing using autoencoders: A critical comparison,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 1340–1372, 2022.

[53] J. R. Patel, M. V. Joshi, and J. S. Bhatt, “Spectral unmixing using
autoencoder with spatial and spectral regularizations,” in Proc. IEEE
IGARSS’21, pp. 3321–3324, 2021.

[54] B. Palsson, J. Sigurdsson, J. R. Sveinsson, and M. O. Ulfarsson,
“Hyperspectral unmixing using a neural network autoencoder,” IEEE
Access, vol. 6, pp. 25646–25656, 2018.

[55] J. M. Nascimento and J. M. Dias, “Does independent component
analysis play a role in unmixing hyperspectral data?,” IEEE Trans.
Geosci. Remote Sens., vol. 43, no. 1, pp. 175–187, 2005.

[56] D. Benachir, S. Hosseini, Y. Deville, M. S. Karoui, and A. Hameurlain,
“Modified independent component analysis for initializing non-negative
matrix factorization: An approach to hyperspectral image unmixing,” in
Proc. IEEE ECMSM’13, pp. 1–6, IEEE, 2013.

[57] X. Lv, W. Wang, and H. Liu, “Cluster-wise weighted nmf for hyperspec-
tral images unmixing with imbalanced data,” Remote Sensing, vol. 13,
no. 2, 2021.

[58] X. Lu, L. Dong, and Y. Yuan, “Subspace clustering constrained sparse
nmf for hyperspectral unmixing,” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 5, pp. 3007–3019, 2020.

[59] C. Li, X. Chen, and Y. Jiang, “On diverse noises in hyperspectral
unmixing,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 10, pp. 5388–
5402, 2015.

[60] R. Rajabi and H. Ghassemian, “Spectral unmixing of hyperspectral
imagery using multilayer NMF,” IEEE Geosci. Remote Sens. Lett.,
vol. 12, pp. 38–42, jan 2015.

[61] H. Fang, A. Li, H. Xu, and T. Wang, “Sparsity-constrained deep
nonnegative matrix factorization for hyperspectral unmixing,” IEEE
Geosci. Remote Sens. Lett., vol. 15, no. 7, pp. 1105–1109, 2018.

[62] F. Xiong, Y. Qian, J. Zhou, and Y. Y. Tang, “Hyperspectral unmixing
via total variation regularized nonnegative tensor factorization,” IEEE
Trans. Geosci. Remote Sens., vol. 57, no. 4, pp. 2341–2357, 2019.

[63] N. Yokoya, J. Chanussot, and A. Iwasaki, “Nonlinear unmixing of
hyperspectral data using semi-nonnegative matrix factorization,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 2, pp. 1430–1437, 2013.

[64] X. Li, J. Cui, and L. Zhao, “Blind nonlinear hyperspectral unmixing
based on constrained kernel nonnegative matrix factorization,” Signal,
Image and Video Processing, vol. 8, pp. 1555–1567, Oct. 2012.

[65] F. Zhu and P. Honeine, “Biobjective nonnegative matrix factorization:
Linear versus kernel-based models,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 54, pp. 4012–4022, July 2016.

[66] S. S. Vijayashekhar and J. S. Bhatt, “A blind spectral unmixing in
wavelet domain,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 14, pp. 10287–10302, 2021.
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